1
|
Wang S, Ma R, Gao C, Tian YN, Hu RG, Zhang H, Li L, Li Y. Unraveling the function of TSC1-TSC2 complex: implications for stem cell fate. Stem Cell Res Ther 2025; 16:38. [PMID: 39901197 PMCID: PMC11792405 DOI: 10.1186/s13287-025-04170-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/23/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Tuberous sclerosis complex is a genetic disorder caused by mutations in the TSC1 or TSC2 genes, affecting multiple systems. These genes produce proteins that regulate mTORC1 activity, essential for cell function and metabolism. While mTOR inhibitors have advanced treatment, maintaining long-term therapeutic success is still challenging. For over 20 years, significant progress has linked TSC1 or TSC2 gene mutations in stem cells to tuberous sclerosis complex symptoms. METHODS A comprehensive review was conducted using databases like Web of Science, Google Scholar, PubMed, and Science Direct, with search terms such as "tuberous sclerosis complex," "TSC1," "TSC2," "stem cell," "proliferation," and "differentiation." Relevant literature was thoroughly analyzed and summarized to present an updated analysis of the TSC1-TSC2 complex's role in stem cell fate determination and its implications for tuberous sclerosis complex. RESULTS The TSC1-TSC2 complex plays a crucial role in various stem cells, such as neural, germline, nephron progenitor, intestinal, hematopoietic, and mesenchymal stem/stromal cells, primarily through the mTOR signaling pathway. CONCLUSIONS This review aims shed light on the role of the TSC1-TSC2 complex in stem cell fate, its impact on health and disease, and potential new treatments for tuberous sclerosis complex.
Collapse
Affiliation(s)
- Shuang Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruishuang Ma
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chong Gao
- School of Medicine, Institute of Brain and Cognitive Science, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Yu-Nong Tian
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rong-Gui Hu
- State Key Laboratory of Brain-Machine Intelligence, Liangzhu Laboratory, School of Medicine, Zhejiang University, Zhejiang, China.
| | - Han Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Lan Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Yue Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China.
| |
Collapse
|
2
|
Harry GJ. Microglia Colonization Associated with Angiogenesis and Neural Cell Development. ADVANCES IN NEUROBIOLOGY 2024; 37:163-178. [PMID: 39207692 DOI: 10.1007/978-3-031-55529-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 09/04/2024]
Abstract
The temporal and spatial pattern of microglia colonization of the nervous system implies a role in early stages of organ development including cell proliferation, differentiation, and neurovascularization. As microglia colonize and establish within the developing nervous system, they assume a neural-specific identity and contribute to key developmental events. Their association around blood vessels implicates them in development of the vascular system or vice versa. A similar association has been reported for neural cell proliferation and associated phenotypic shifts and for cell fate differentiation to neuronal or glial phenotypes. These processes are accomplished by phagocytic activities, cell-cell contact relationships, and secretion of various factors. This chapter will present data currently available from studies evaluating the dynamic and interactive nature of these processes throughout the progression of nervous system development.
Collapse
Affiliation(s)
- G Jean Harry
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
3
|
Yugami M, Hayakawa-Yano Y, Ogasawara T, Yokoyama K, Furukawa T, Hara H, Hashikami K, Tsuji I, Takebayashi H, Araki S, Okano H, Yano M. Sbp2l contributes to oligodendrocyte maturation through translational control in Tcf7l2 signaling. iScience 2023; 26:108451. [PMID: 38213786 PMCID: PMC10783607 DOI: 10.1016/j.isci.2023.108451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/24/2023] [Revised: 10/09/2023] [Accepted: 11/10/2023] [Indexed: 01/13/2024] Open
Abstract
Oligodendrocytes (OLs) are the myelin-forming cells in the CNS that support neurons through the insulating sheath of axons. This unique feature and developmental processes are achieved by extrinsic and intrinsic gene expression programs, where RNA-binding proteins can contribute to dynamic and fine-tuned post-transcriptional regulation. Here, we identified SECIS-binding protein 2-like (Sbp2l), which is specifically expressed in OLs by integrated transcriptomics. Histological analysis revealed that Sbp2l is a molecular marker of OL maturation. Sbp2l knockdown (KD) led to suppression of matured OL markers, but not a typical selenoprotein, Gpx4. Transcriptome analysis demonstrated that Sbp2l KD decreased cholesterol-biosynthesis-related genes regulated by Tcf7l2 transcription factor. Indeed, we confirmed the downregulation of Tcf7l2 protein without changing its mRNA in Sbp2l KD OPCs. Furthermore, Sbp2l KO mice showed the decrease of Tcf7l2 protein and deficiency of OL maturation. These results suggest that Sbp2l contributes to OL maturation by translational control of Tcf7l2.
Collapse
Affiliation(s)
- Masato Yugami
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yoshika Hayakawa-Yano
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachidori, Chuo-ku, Niigata, Niigata 951-8510, Japan
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takahisa Ogasawara
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kazumasa Yokoyama
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takako Furukawa
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachidori, Chuo-ku, Niigata, Niigata 951-8510, Japan
| | - Hiroe Hara
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kentaro Hashikami
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Isamu Tsuji
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachidori, Chuo-ku, Niigata, Niigata 951-8510, Japan
| | - Shinsuke Araki
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masato Yano
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachidori, Chuo-ku, Niigata, Niigata 951-8510, Japan
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
4
|
Zhang X, Xiao G, Johnson C, Cai Y, Horowitz ZK, Mennicke C, Coffey R, Haider M, Threadgill D, Eliscu R, Oldham MC, Greenbaum A, Ghashghaei HT. Bulk and mosaic deletions of Egfr reveal regionally defined gliogenesis in the developing mouse forebrain. iScience 2023; 26:106242. [PMID: 36915679 PMCID: PMC10006693 DOI: 10.1016/j.isci.2023.106242] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/27/2022] [Revised: 12/09/2022] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) plays a role in cell proliferation and differentiation during healthy development and tumor growth; however, its requirement for brain development remains unclear. Here we used a conditional mouse allele for Egfr to examine its contributions to perinatal forebrain development at the tissue level. Subtractive bulk ventral and dorsal forebrain deletions of Egfr uncovered significant and permanent decreases in oligodendrogenesis and myelination in the cortex and corpus callosum. Additionally, an increase in astrogenesis or reactive astrocytes in effected regions was evident in response to cortical scarring. Sparse deletion using mosaic analysis with double markers (MADM) surprisingly revealed a regional requirement for EGFR in rostrodorsal, but not ventrocaudal glial lineages including both astrocytes and oligodendrocytes. The EGFR-independent ventral glial progenitors may compensate for the missing EGFR-dependent dorsal glia in the bulk Egfr-deleted forebrain, potentially exposing a regenerative population of gliogenic progenitors in the mouse forebrain.
Collapse
Affiliation(s)
- Xuying Zhang
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Guanxi Xiao
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Caroline Johnson
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Yuheng Cai
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC, USA
| | - Zachary K. Horowitz
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Christine Mennicke
- Department of Mathematics, North Carolina State University, Raleigh, NC, USA
| | - Robert Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mansoor Haider
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David Threadgill
- Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, USA
| | - Rebecca Eliscu
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA, USA
| | - Michael C. Oldham
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA, USA
| | - Alon Greenbaum
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC, USA
| | - H. Troy Ghashghaei
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
5
|
Kremsky I, Ma Q, Li B, Dasgupta C, Chen X, Ali S, Angeloni S, Wang C, Zhang L. Fetal hypoxia results in sex- and cell type-specific alterations in neonatal transcription in rat oligodendrocyte precursor cells, microglia, neurons, and oligodendrocytes. Cell Biosci 2023; 13:58. [PMID: 36932456 PMCID: PMC10022003 DOI: 10.1186/s13578-023-01012-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/23/2022] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Fetal hypoxia causes vital, systemic, developmental malformations in the fetus, particularly in the brain, and increases the risk of diseases in later life. We previously demonstrated that fetal hypoxia exposure increases the susceptibility of the neonatal brain to hypoxic-ischemic insult. Herein, we investigate the effect of fetal hypoxia on programming of cell-specific transcriptomes in the brain of neonatal rats. RESULTS We obtained RNA sequencing (RNA-seq) data from neurons, microglia, oligodendrocytes, A2B5+ oligodendrocyte precursor cells, and astrocytes from male and female neonatal rats subjected either to fetal hypoxia or control conditions. Substantial transcriptomic responses to fetal hypoxia occurred in neurons, microglia, oligodendrocytes, and A2B5+ cells. Not only were the transcriptomic responses unique to each cell type, but they also occurred with a great deal of sexual dimorphism. We validated differential expression of several genes related to inflammation and cell death by Real-time Quantitative Polymerase Chain Reaction (qRT-PCR). Pathway and transcription factor motif analyses suggested that the NF-kappa B (NFκB) signaling pathway was enriched in the neonatal male brain due to fetal hypoxia, and we verified this result by transcription factor assay of NFκB-p65 in whole brain. CONCLUSIONS Our study reveals a significant impact of fetal hypoxia on the transcriptomes of neonatal brains in a cell-specific and sex-dependent manner, and provides mechanistic insights that may help explain the development of hypoxic-ischemic sensitive phenotypes in the neonatal brain.
Collapse
Affiliation(s)
- Isaac Kremsky
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.,Center for Genomics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Qingyi Ma
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.,Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Bo Li
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Chiranjib Dasgupta
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Xin Chen
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.,Center for Genomics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Samir Ali
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Shawnee Angeloni
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Charles Wang
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.,Center for Genomics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Lubo Zhang
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA. .,Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.
| |
Collapse
|
6
|
Guan Z, Liang Y, Wang X, Zhu Z, Yang A, Li S, Yu J, Niu B, Wang J. Unraveling the Mechanisms of Clinical Drugs-Induced Neural Tube Defects Based on Network Pharmacology and Molecular Docking Analysis. Neurochem Res 2022; 47:3709-3722. [PMID: 35960485 DOI: 10.1007/s11064-022-03717-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/24/2022] [Revised: 07/23/2022] [Accepted: 07/31/2022] [Indexed: 11/30/2022]
Abstract
Chemotherapeutic agents such as methotrexate (MTX), raltitrexed (RTX), 5-fluorouracil (5-FU), hydroxyurea (HU), and retinoic acid (RA), and valproic acid (VPA), an antiepileptic drug, all can cause malformations in the developing central nervous system (CNS), such as neural tube defects (NTDs). However, the common pathogenic mechanisms remain unclear. This study aimed to explore the mechanisms of NTDs caused by MTX, RTX, 5-FU, HU, RA, and VPA (MRFHRV), based on network pharmacology and molecular biology experiments. The MRFHRV targets were integrated with disease targets, to find the potential molecules related to MRFHRV-induced NTDs. Protein-protein interaction analysis and molecular docking were performed to analyze these common targets. Utilizing the kyoto encyclopedia of genes and genomes (KEGG) signaling pathways, we analyzed and searched the possible causative pathogenic mechanisms by crucial targets and the signaling pathway. Results showed that MRFHRV induced NTDs through several key targets (including TP53, MAPK1, HSP90AA1, ESR1, GRB2, HDAC1, EGFR, PIK3CA, RXRA, and FYN) and multiple signaling pathways such as PI3K/Akt pathway, suggesting that abnormal proliferation and differentiation could be critical pathogenic contributors in NTDs induced by MRFHRV. These results were further validated by CCK8 assay in mouse embryonic stem cells and GFAP staining in embryonic brain tissue. This study indicated that chemotherapeutic and antiepileptic agents induced NTDs might through predicted targets TP53, MAPK1, GRB2, HDAC1, EGFR, PIK3CA, RXRA, and FYN and multiple signaling pathways. More caution was required for the clinical administration for women with childbearing potential and pregnant.
Collapse
Affiliation(s)
- Zhen Guan
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yingchao Liang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Xiuwei Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Zhiqiang Zhu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Aiyun Yang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Shen Li
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Jialu Yu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Bo Niu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Jianhua Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Translational Medicine Laboratory, Capital Institute of Pediatrics, Beijing, 100020, China.
| |
Collapse
|
7
|
Molina-Holgado E, Esteban PF, Arevalo-Martin Á, Moreno-Luna R, Molina-Holgado F, Garcia-Ovejero D. Endocannabinoid signaling in oligodendroglia. Glia 2022; 71:91-102. [PMID: 35411970 DOI: 10.1002/glia.24180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/10/2021] [Revised: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 12/11/2022]
Abstract
In the central nervous system, oligodendrocytes synthesize the myelin, a specialized membrane to wrap axons in a discontinuous way allowing a rapid saltatory nerve impulse conduction. Oligodendrocytes express a number of growth factors and neurotransmitters receptors that allow them to sense the environment and interact with neurons and other glial cells. Depending on the cell cycle stage, oligodendrocytes may respond to these signals by regulating their survival, proliferation, migration, and differentiation. Among these signals are the endocannabinoids, lipidic molecules synthesized from phospholipids in the plasma membrane in response to cell activation. Here, we discuss the evidence showing that oligodendrocytes express a full endocannabinoid signaling machinery involved in physiological oligodendrocyte functions that can be therapeutically exploited to promote remyelination in central nervous system pathologies.
Collapse
Affiliation(s)
- Eduardo Molina-Holgado
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | - Pedro F Esteban
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | - Ángel Arevalo-Martin
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | - Rafael Moreno-Luna
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | | | - Daniel Garcia-Ovejero
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| |
Collapse
|
8
|
Quaresima S, Istiaq A, Jono H, Cacci E, Ohta K, Lupo G. Assessing the Role of Ependymal and Vascular Cells as Sources of Extracellular Cues Regulating the Mouse Ventricular-Subventricular Zone Neurogenic Niche. Front Cell Dev Biol 2022; 10:845567. [PMID: 35450289 PMCID: PMC9016221 DOI: 10.3389/fcell.2022.845567] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/30/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Neurogenesis persists in selected regions of the adult mouse brain; among them, the ventricular-subventricular zone (V-SVZ) of the lateral ventricles represents a major experimental paradigm due to its conspicuous neurogenic output. Postnatal V-SVZ neurogenesis is maintained by a resident population of neural stem cells (NSCs). Although V-SVZ NSCs are largely quiescent, they can be activated to enter the cell cycle, self-renew and generate progeny that gives rise to olfactory bulb interneurons. These adult-born neurons integrate into existing circuits to modify cognitive functions in response to external stimuli, but cells shed by V-SVZ NSCs can also reach injured brain regions, suggesting a latent regenerative potential. The V-SVZ is endowed with a specialized microenvironment, which is essential to maintain the proliferative and neurogenic potential of NSCs, and to preserve the NSC pool from exhaustion by finely tuning their quiescent and active states. Intercellular communication is paramount to the stem cell niche properties of the V-SVZ, and several extracellular signals acting in the niche milieu have been identified. An important part of these signals comes from non-neural cell types, such as local vascular cells, ependymal and glial cells. Understanding the crosstalk between NSCs and other niche components may aid therapeutic approaches for neuropathological conditions, since neurodevelopmental disorders, age-related cognitive decline and neurodegenerative diseases have been associated with dysfunctional neurogenic niches. Here, we review recent advances in the study of the complex interactions between V-SVZ NSCs and their cellular niche. We focus on the extracellular cues produced by ependymal and vascular cells that regulate NSC behavior in the mouse postnatal V-SVZ, and discuss the potential implication of these molecular signals in pathological conditions.
Collapse
Affiliation(s)
- Sabrina Quaresima
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
| | - Arif Istiaq
- Department of Stem Cell Biology, Faculty of Arts and Science, Kyushu University, Fukuoka, Japan
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirofumi Jono
- Department of Pharmacy, Kumamoto University Hospital, Kumamoto, Japan
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Emanuele Cacci
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
| | - Kunimasa Ohta
- Department of Stem Cell Biology, Faculty of Arts and Science, Kyushu University, Fukuoka, Japan
- *Correspondence: Kunimasa Ohta, ; Giuseppe Lupo,
| | - Giuseppe Lupo
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
- *Correspondence: Kunimasa Ohta, ; Giuseppe Lupo,
| |
Collapse
|
9
|
Sánchez-González R, López-Mascaraque L. Lineage Relationships Between Subpallial Progenitors and Glial Cells in the Piriform Cortex. Front Neurosci 2022; 16:825969. [PMID: 35386594 PMCID: PMC8979001 DOI: 10.3389/fnins.2022.825969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2021] [Accepted: 01/21/2022] [Indexed: 11/22/2022] Open
Abstract
The piriform cortex is a paleocortical area, located in the ventrolateral surface of the rodent forebrain, receiving direct input from the olfactory bulb. The three layers of the PC are defined by the diversity of glial and neuronal cells, marker expression, connections, and functions. However, the glial layering, ontogeny, and sibling cell relationship along the PC is an unresolved question in the field. Here, using multi-color genetic lineage tracing approaches with different StarTrack strategies, we performed a rigorous analysis of the derived cell progenies from progenitors located at the subpallium ventricular surface. First, we specifically targeted E12-progenitors with UbC-StarTrack to analyze their adult derived-cell progeny and their location within the piriform cortex layers. The vast majority of the cell progeny derived from targeted progenitors were identified as neurons, but also astrocytes and NG2 cells. Further, to specifically target single Gsx-2 subpallial progenitors and their derived cell-progeny in the piriform cortex, we used the UbC-(Gsx-2-hyPB)-StarTrack to perform an accurate analysis of their clonal relationships. Our results quantitatively delineate the adult clonal cell pattern from single subpallial E12-progenitors, focusing on glial cells. In summary, there is a temporal pattern in the assembly of the glial cell diversity in the piriform cortex, which also reveals spatio-temporal progenitor heterogeneity.
Collapse
|
10
|
Belmonte-Mateos C, Pujades C. From Cell States to Cell Fates: How Cell Proliferation and Neuronal Differentiation Are Coordinated During Embryonic Development. Front Neurosci 2022; 15:781160. [PMID: 35046768 PMCID: PMC8761814 DOI: 10.3389/fnins.2021.781160] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/22/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022] Open
Abstract
The central nervous system (CNS) exhibits an extraordinary diversity of neurons, with the right cell types and proportions at the appropriate sites. Thus, to produce brains with specific size and cell composition, the rates of proliferation and differentiation must be tightly coordinated and balanced during development. Early on, proliferation dominates; later on, the growth rate almost ceases as more cells differentiate and exit the cell cycle. Generation of cell diversity and morphogenesis takes place concomitantly. In the vertebrate brain, this results in dramatic changes in the position of progenitor cells and their neuronal derivatives, whereas in the spinal cord morphogenetic changes are not so important because the structure mainly grows by increasing its volume. Morphogenesis is under control of specific genetic programs that coordinately unfold over time; however, little is known about how they operate and impact in the pools of progenitor cells in the CNS. Thus, the spatiotemporal coordination of these processes is fundamental for generating functional neuronal networks. Some key aims in developmental neurobiology are to determine how cell diversity arises from pluripotent progenitor cells, and how the progenitor potential changes upon time. In this review, we will share our view on how the advance of new technologies provides novel data that challenge some of the current hypothesis. We will cover some of the latest studies on cell lineage tracing and clonal analyses addressing the role of distinct progenitor cell division modes in balancing the rate of proliferation and differentiation during brain morphogenesis. We will discuss different hypothesis proposed to explain how progenitor cell diversity is generated and how they challenged prevailing concepts and raised new questions.
Collapse
Affiliation(s)
| | - Cristina Pujades
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
11
|
Hines JH. Evolutionary Origins of the Oligodendrocyte Cell Type and Adaptive Myelination. Front Neurosci 2021; 15:757360. [PMID: 34924932 PMCID: PMC8672417 DOI: 10.3389/fnins.2021.757360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/12/2021] [Accepted: 10/29/2021] [Indexed: 12/23/2022] Open
Abstract
Oligodendrocytes are multifunctional central nervous system (CNS) glia that are essential for neural function in gnathostomes. The evolutionary origins and specializations of the oligodendrocyte cell type are among the many remaining mysteries in glial biology and neuroscience. The role of oligodendrocytes as CNS myelinating glia is well established, but recent studies demonstrate that oligodendrocytes also participate in several myelin-independent aspects of CNS development, function, and maintenance. Furthermore, many recent studies have collectively advanced our understanding of myelin plasticity, and it is now clear that experience-dependent adaptations to myelination are an additional form of neural plasticity. These observations beg the questions of when and for which functions the ancestral oligodendrocyte cell type emerged, when primitive oligodendrocytes evolved new functionalities, and the genetic changes responsible for these evolutionary innovations. Here, I review recent findings and propose working models addressing the origins and evolution of the oligodendrocyte cell type and adaptive myelination. The core gene regulatory network (GRN) specifying the oligodendrocyte cell type is also reviewed as a means to probe the existence of oligodendrocytes in basal vertebrates and chordate invertebrates.
Collapse
Affiliation(s)
- Jacob H. Hines
- Biology Department, Winona State University, Winona, MN, United States
| |
Collapse
|
12
|
Szu J, Wojcinski A, Jiang P, Kesari S. Impact of the Olig Family on Neurodevelopmental Disorders. Front Neurosci 2021; 15:659601. [PMID: 33859549 PMCID: PMC8042229 DOI: 10.3389/fnins.2021.659601] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/27/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
The Olig genes encode members of the basic helix-loop-helix (bHLH) family of transcription factors. Olig1, Olig2, and Olig3 are expressed in both the developing and mature central nervous system (CNS) and strictly regulate cellular specification and differentiation. Extensive studies have established functional roles of Olig1 and Olig2 in directing neuronal and glial formation during different stages in development. Recently, Olig2 overexpression was implicated in neurodevelopmental disorders down syndrome (DS) and autism spectrum disorder (ASD) but its influence on cognitive and intellectual defects remains unknown. In this review, we summarize the biological functions of the Olig family and how it uniquely promotes cellular diversity in the CNS. This is followed up with a discussion on how abnormal Olig2 expression impacts brain development and function in DS and ASD. Collectively, the studies described here emphasize vital features of the Olig members and their distinctive potential roles in neurodevelopmental disease states.
Collapse
Affiliation(s)
- Jenny Szu
- Department of Translational Neurosciences and Neurotherapeutics, Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, United States
| | - Alexandre Wojcinski
- Department of Translational Neurosciences and Neurotherapeutics, Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, United States
| | - Peng Jiang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Santosh Kesari
- Department of Translational Neurosciences and Neurotherapeutics, Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, United States.,Pacific Neuroscience Institute, Providence Saint John's Health Center, Santa Monica, CA, United States
| |
Collapse
|
13
|
Clonal Analysis of Gliogenesis in the Cerebral Cortex Reveals Stochastic Expansion of Glia and Cell Autonomous Responses to Egfr Dosage. Cells 2020; 9:cells9122662. [PMID: 33322301 PMCID: PMC7764668 DOI: 10.3390/cells9122662] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/16/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
Development of the nervous system undergoes important transitions, including one from neurogenesis to gliogenesis which occurs late during embryonic gestation. Here we report on clonal analysis of gliogenesis in mice using Mosaic Analysis with Double Markers (MADM) with quantitative and computational methods. Results reveal that developmental gliogenesis in the cerebral cortex occurs in a fraction of earlier neurogenic clones, accelerating around E16.5, and giving rise to both astrocytes and oligodendrocytes. Moreover, MADM-based genetic deletion of the epidermal growth factor receptor (Egfr) in gliogenic clones revealed that Egfr is cell autonomously required for gliogenesis in the mouse dorsolateral cortices. A broad range in the proliferation capacity, symmetry of clones, and competitive advantage of MADM cells was evident in clones that contained one cellular lineage with double dosage of Egfr relative to their environment, while their sibling Egfr-null cells failed to generate glia. Remarkably, the total numbers of glia in MADM clones balance out regardless of significant alterations in clonal symmetries. The variability in glial clones shows stochastic patterns that we define mathematically, which are different from the deterministic patterns in neuronal clones. This study sets a foundation for studying the biological significance of stochastic and deterministic clonal principles underlying tissue development, and identifying mechanisms that differentiate between neurogenesis and gliogenesis.
Collapse
|
14
|
Coated nanodiamonds interact with tubulin beta-III negative cells of adult brain tissue. Biointerphases 2020; 15:061009. [PMID: 33272020 DOI: 10.1116/6.0000525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022] Open
Abstract
Fluorescent nanodiamonds (NDs) coated with therapeutics and cell-targeting structures serve as effective tools for drug delivery. However, NDs circulating in blood can eventually interact with the blood-brain barrier, resulting in undesired pathology. Here, we aimed to detect interaction between NDs and adult brain tissue. First, we cultured neuronal tissue with ND ex vivo and studied cell prosperity, regeneration, cytokine secretion, and nanodiamond uptake. Then, we applied NDs systemically into C57BL/6 animals and assessed accumulation of nanodiamonds in brain tissue and cytokine response. We found that only non-neuronal cells internalized coated nanodiamonds and responded by excretion of interleukin-6 and interferon-γ. Cells of neuronal origin expressing tubulin beta-III did not internalize any NDs. Once we applied coated NDs intravenously, we found no presence of NDs in the adult cortex but observed transient release of interleukin-1α. We conclude that specialized adult neuronal cells do not internalize plain or coated NDs. However, coated nanodiamonds interact with non-neuronal cells present within the cortex tissue. Moreover, the coated NDs do not cross the blood-brain barrier but they interact with adjacent barrier cells and trigger a temporary cytokine response. This study represents the first report concerning interaction of NDs with adult brain tissue.
Collapse
|
15
|
Biniazan F, Manzari-Tavakoli A, Safaeinejad F, Moghimi A, Rajaei F, Niknejad H. The differentiation effect of bone morphogenetic protein (BMP) on human amniotic epithelial stem cells to express ectodermal lineage markers. Cell Tissue Res 2020; 383:751-763. [PMID: 32960356 DOI: 10.1007/s00441-020-03280-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/10/2019] [Accepted: 08/12/2020] [Indexed: 11/28/2022]
Abstract
Stem cells are a promising tool for treatment of a variety of degenerative diseases. Human amniotic epithelial stem cells (hAECs) have desirable and unique characteristics that make them a proper candidate for cell therapy. In this study, we have investigated the effects of BMP-4 (bone morphogenetic protein-4) and its inhibition on differentiation of AECs into ectodermal lineages. Analysis of AEC-derived ectodermal lineages (neurons and keratinocytes) was performed by using flow cytometry technique for Map2 and β-tubulin (as neuron markers), Olig2 and MBP (as oligodendrocyte markers), and K14 and K10 (as keratinocyte markers). The results of this study illustrated that noggin (as BMP antagonist), BMP4, and both BMP4 and heparin (together or separately) increased neural and keratinocyte marker expression, respectively. The expression of markers MAP2, olig2, and K14 in hAECs has been significantly decreased 21 days after exposure to differentiation medium (without growth factors) compared with isolation day, which supports the hypothesis that AECs can be dedifferentiated into pluripotent cells. Moreover, activation and inhibition of BMP signaling have no effects on viability of hAECs. The results of this study showed that BMP signaling and its inhibition are the key factors for ectodermal lineage differentiation of amnion-derived stem cells.
Collapse
Affiliation(s)
- Felor Biniazan
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Center, Qazvin University of Medical Science, Qazvin, Iran
| | - Asma Manzari-Tavakoli
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fahimeh Safaeinejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Moghimi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Farzad Rajaei
- Cellular and Molecular Research Center, Qazvin University of Medical Science, Qazvin, Iran.
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Tandon A, Singh SJ, Gupta M, Singh N, Shankar J, Arjaria N, Goyal S, Chaturvedi RK. Notch pathway up-regulation via curcumin mitigates bisphenol-A (BPA) induced alterations in hippocampal oligodendrogenesis. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122052. [PMID: 32151947 DOI: 10.1016/j.jhazmat.2020.122052] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/17/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 05/02/2023]
Abstract
CNS myelination process involves proliferation and differentiation of oligodendrocyte progenitor cells (OPCs). Defective myelination causes onset of neurological disorders. Bisphenol-A (BPA), a component of plastic items, exerts adverse effects on human health. Our previous studies indicated that BPA impairs neurogenesis and myelination process stimulating cognitive dysfunctions. But, the underlying mechanism(s) of BPA induced de-myelination and probable neuroprotection by curcumin remains elusive. We found that curcumin protected BPA mediated adverse effects on oligosphere growth kinetics. Curcumin significantly improved proliferation and differentiation of OPCs upon BPA exposure both in-vitro and in-vivo. Curcumin enhanced the mRNA expression and protein levels of myelination markers in BPA treated rat hippocampus. Curcumin improved myelination potential via increasing β-III tubulin-/MBP+ cells (neuron-oligodendrocyte co-culture) and augmented fluoromyelin intensity and neurofilament/MBP+ neurons in vivo. In silico docking studies suggested Notch pathway genes (Notch-1, Hes-1 and Mib-1) as potential targets of BPA and curcumin. Curcumin reversed BPA mediated myelination inhibition via increasing the Notch pathway gene expression. Genetic and pharmacological Notch pathway inhibition by DAPT and Notch-1 siRNA exhibited decreased curcumin mediated neuroprotection. Curcumin improved BPA mediated myelin sheath degeneration and neurobehavioral impairments. Altogether, results suggest that curcumin protected BPA induced de-myelination and behavioural deficits through Notch pathway activation.
Collapse
Affiliation(s)
- Ankit Tandon
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (U.P.), India; Department of Biochemistry, School of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 226 028, U.P., India
| | - Sangh Jyoti Singh
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (U.P.), India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow, India
| | - Manjeet Gupta
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (U.P.), India
| | - Nivedita Singh
- Department of Biochemistry, School of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 226 028, U.P., India
| | - Jai Shankar
- Advanced Imaging Facility, CSIR-IITR, Lucknow, India
| | - Nidhi Arjaria
- Advanced Imaging Facility, CSIR-IITR, Lucknow, India
| | - Shweta Goyal
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (U.P.), India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (U.P.), India.
| |
Collapse
|
17
|
Marcos AC, Siqueira M, Alvarez-Rosa L, Cascabulho CM, Waghabi MC, Barbosa HS, Adesse D, Stipursky J. Toxoplasma gondii infection impairs radial glia differentiation and its potential to modulate brain microvascular endothelial cell function in the cerebral cortex. Microvasc Res 2020; 131:104024. [PMID: 32502488 DOI: 10.1016/j.mvr.2020.104024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/24/2019] [Revised: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 01/30/2023]
Abstract
Congenital toxoplasmosis is a parasitic disease that occurs due vertical transmission of the protozoan Toxoplasma gondii (T. gondii) during pregnancy. The parasite crosses the placental barrier and reaches the developing brain, infecting progenitor, glial, neuronal and vascular cell types. Although the role of Radial glia (RG) neural stem cells in the development of the brain vasculature has been recently investigated, the impact of T. gondii infection in these events is not yet understood. Herein, we studied the role of T. gondii infection on RG cell function and its interaction with endothelial cells. By infecting isolated RG cultures with T. gondii tachyzoites, we observed a cytotoxic effect with reduced numbers of RG populations together with decrease neuronal and oligodendrocyte progenitor populations. Conditioned medium (CM) from RG control cultures increased ZO-1 protein levels and organization on endothelial bEnd.3 cells membranes, which was impaired by CM from infected RG, accompanied by decreased trans-endothelial electrical resistance (TEER). ELISA assays revealed reduced levels of anti-inflammatory cytokine TGF-β1 in CM from T. gondii-infected RG cells. Treatment with recombinant TGF-β1 concomitantly with CM from infected RG cultures led to restoration of ZO-1 staining in bEnd.3 cells. Congenital infection in Swiss Webster mice led to abnormalities in the cortical microvasculature in comparison to uninfected embryos. Our results suggest that infection of RG cells by T. gondii negatively modulates cytokine secretion, which might contribute to endothelial loss of barrier properties, thus leading to impairment of neurovascular interaction establishment.
Collapse
Affiliation(s)
| | - Michele Siqueira
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Liandra Alvarez-Rosa
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Brazil; Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Cynthia M Cascabulho
- Laboratório de Inovação em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fiocruz, Brazil
| | - Mariana C Waghabi
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fiocruz, Brazil
| | - Helene S Barbosa
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Brazil
| | - Daniel Adesse
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Brazil
| | - Joice Stipursky
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil.
| |
Collapse
|
18
|
Jossin Y. Molecular mechanisms of cell polarity in a range of model systems and in migrating neurons. Mol Cell Neurosci 2020; 106:103503. [PMID: 32485296 DOI: 10.1016/j.mcn.2020.103503] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/06/2020] [Revised: 04/20/2020] [Accepted: 05/23/2020] [Indexed: 01/09/2023] Open
Abstract
Cell polarity is defined as the asymmetric distribution of cellular components along an axis. Most cells, from the simplest single-cell organisms to highly specialized mammalian cells, are polarized and use similar mechanisms to generate and maintain polarity. Cell polarity is important for cells to migrate, form tissues, and coordinate activities. During development of the mammalian cerebral cortex, cell polarity is essential for neurogenesis and for the migration of newborn but as-yet undifferentiated neurons. These oriented migrations include both the radial migration of excitatory projection neurons and the tangential migration of inhibitory interneurons. In this review, I will first describe the development of the cerebral cortex, as revealed at the cellular level. I will then define the core molecular mechanisms - the Par/Crb/Scrib polarity complexes, small GTPases, the actin and microtubule cytoskeletons, and phosphoinositides/PI3K signaling - that are required for asymmetric cell division, apico-basal and front-rear polarity in model systems, including C elegans zygote, Drosophila embryos and cultured mammalian cells. As I go through each core mechanism I will explain what is known about its importance in radial and tangential migration in the developing mammalian cerebral cortex.
Collapse
Affiliation(s)
- Yves Jossin
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
19
|
Ferreira BK, Rodrigues MT, Streck EL, Ferreira GC, Schuck PF. White matter disturbances in phenylketonuria: Possible underlying mechanisms. J Neurosci Res 2020; 99:349-360. [PMID: 32141105 DOI: 10.1002/jnr.24598] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2019] [Revised: 01/09/2020] [Accepted: 02/04/2020] [Indexed: 12/24/2022]
Abstract
White matter pathologies, as well as intellectual disability, microcephaly, and other central nervous system injuries, are clinical traits commonly ascribed to classic phenylketonuria (PKU). PKU is an inherited metabolic disease elicited by the deficiency of phenylalanine hydroxylase. Accumulation of l-phenylalanine (Phe) and its metabolites is found in tissues and body fluids in phenylketonuric patients. In order to mitigate the clinical findings, rigorous dietary Phe restriction constitutes the core of therapeutic management in PKU. Myelination is the process whereby the oligodendrocytes wrap myelin sheaths around the axons, supporting the conduction of action potentials. White matter injuries are implicated in the brain damage related to PKU, especially in untreated or poorly treated patients. The present review summarizes evidence toward putative mechanisms driving the white matter pathology in PKU patients.
Collapse
Affiliation(s)
- Bruna Klippel Ferreira
- Laboratório de Neuroenergética e Erros Inatos do Metabolismo, Programa de Bioquímica e Biofísica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Porto Alegre, Brazil
| | - Melissa Torres Rodrigues
- Laboratório de Erros Inatos do Metabolismo, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Emilio Luiz Streck
- Laboratório de Neurologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Gustavo Costa Ferreira
- Laboratório de Neuroenergética e Erros Inatos do Metabolismo, Programa de Bioquímica e Biofísica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Porto Alegre, Brazil
| | - Patricia Fernanda Schuck
- Laboratório de Erros Inatos do Metabolismo, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
20
|
Pook C, Ahrens JM, Clagett-Dame M. Expression pattern of Nav2 in the murine CNS with development. Gene Expr Patterns 2020; 35:119099. [PMID: 32081718 DOI: 10.1016/j.gep.2020.119099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/16/2019] [Revised: 01/07/2020] [Accepted: 02/12/2020] [Indexed: 12/11/2022]
Abstract
Neuron navigator 2 (NAV2, RAINB1, POMFIL2, HELAD1, unc53H2) is essential for nervous system development. In the present study the spatial distribution of Nav2 transcript in mouse CNS during embryonic, postnatal and adult life is examined. Because multiple NAV2 proteins are predicted based on alternate promoter usage and RNA splicing, in situ hybridization was performed using probes designed to the 5' and 3' ends of the Nav2 transcript, and PCR products using primer sets spanning the length of the mRNA were also examined by real time PCR (qPCR). These studies support full-length Nav2 transcript as the predominant form in the wild-type mouse CNS. The developing cortex, hippocampus, thalamus, olfactory bulb, and granule cells (GC) within the cerebellum show the highest expression, with a similar staining pattern using either the 5'Nav2 or 3'Nav2 probe. Nav2 is expressed in GC precursors migrating over the cerebellar primordium as well as in the postmitotic premigratory cells of the external granule cell layer (EGL). It is expressed in the cornu ammonis (CA) and dentate gyrus (DG) throughout hippocampal development. In situ hybridization was combined with immunohistochemistry for Ki67, CTIP2 and Nissl staining to follow Nav2 transcript location during cortical development, where it is observed in neuroepithelial cells exiting the germinal compartments, as well as later in the cortical plate (CP) and developing cortical layers. The highest levels of Nav2 in all brain regions studied are observed in late gestation and early postnatal life which coincides with times when neurons are migrating and differentiating. A hypomorphic mouse that lacks the full-length transcript but expresses shorter transcript shows little staining in the CNS with either probe set except at the base of the cerebellum, where a shorter Nav2 transcript is detected. Using dual fluorescent probe in situ hybridization studies, these cells are identified as oligodendrocytes and are detected using both Olig1 and the 3'Nav2 probe. The identification of full-length Nav2 as the primary transcript in numerous brain regions suggests NAV2 could play a role in CNS development beyond that of its well-established role in the cerebellum.
Collapse
Affiliation(s)
- Caitlin Pook
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Madison, WI, 53706, USA; Medical College of Wisconsin-Milwaukee Campus, Wauwatosa, WI, 53226, USA
| | - Jamie M Ahrens
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Madison, WI, 53706, USA
| | - Margaret Clagett-Dame
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Madison, WI, 53706, USA; Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, 53706, USA.
| |
Collapse
|
21
|
Zarei-Kheirabadi M, Vaccaro AR, Rahimi-Movaghar V, Kiani S, Baharvand H. An Overview of Extrinsic and Intrinsic Mechanisms Involved in Astrocyte Development in the Central Nervous System. Stem Cells Dev 2020; 29:266-280. [PMID: 31847709 DOI: 10.1089/scd.2019.0189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022] Open
Abstract
Over the past few decades, our knowledge about the function of the central nervous system (CNS) and astrocytes has improved, and research has confirmed the key roles that astrocytes play in the physiology and pathology of the CNS. Here, we reviewed the intrinsic and extrinsic mechanisms that regulate the development of astrocytes, which are generated from radial glial cells. These regulatory systems modulate various signaling pathways and transcription factors. In this review, four stages of astrocyte development-specification (patterning and switch), migration, proliferation, and maturation, are discussed. In astrocyte patterning, VA1-VA3 domains create the astrocyte subtypes by differential expression of Slit1 and Reelin in the spinal cord. In the brain, patterning creates several astrocyte subtypes by different organizing centers. At the switch step, the janus kinase-signal transducer and activator of transcription pathway governs the transition of neurogenesis to gliogenesis. Bone marrow protein and Notch pathways are also important players of the progliogenic switch. Intrinsic regulation is mediated by DNA methylation transferases, and polycomb group complexes can intrinsically affect the development of astrocytes. In the next stage, these cells proliferate and migrate to their final location. Astrocyte maturation is accomplished through the development of cellular processes, molecular markers, and functions.
Collapse
Affiliation(s)
- Masoumeh Zarei-Kheirabadi
- Department of Brain, Cognitive Sciences and Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Alexander R Vaccaro
- Department of Orthopedics, Rothman Orthopedic Institute, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Kiani
- Department of Brain, Cognitive Sciences and Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| |
Collapse
|
22
|
Cheng X, Yeung PKK, Zhong K, Zilundu PLM, Zhou L, Chung SK. Astrocytic endothelin-1 overexpression promotes neural progenitor cells proliferation and differentiation into astrocytes via the Jak2/Stat3 pathway after stroke. J Neuroinflammation 2019; 16:227. [PMID: 31733648 PMCID: PMC6858703 DOI: 10.1186/s12974-019-1597-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/02/2018] [Accepted: 09/23/2019] [Indexed: 12/17/2022] Open
Abstract
Background Endothelin-1 (ET-1) is synthesized and upregulated in astrocytes under stroke. We previously demonstrated that transgenic mice over-expressing astrocytic ET-1 (GET-1) displayed more severe neurological deficits characterized by a larger infarct after transient middle cerebral artery occlusion (tMCAO). ET-1 is a known vasoconstrictor, mitogenic, and a survival factor. However, it is unclear whether the observed severe brain damage in GET-1 mice post stroke is due to ET-1 dysregulation of neurogenesis by altering the stem cell niche. Methods Non-transgenic (Ntg) and GET-1 mice were subjected to tMCAO with 1 h occlusion followed by long-term reperfusion (from day 1 to day 28). Neurological function was assessed using a four-point scale method. Infarct area and volume were determined by 2,3,5-triphenyltetra-zolium chloride staining. Neural stem cell (NSC) proliferation and migration in subventricular zone (SVZ) were evaluated by immunofluorescence double labeling of bromodeoxyuridine (BrdU), Ki67 and Sox2, Nestin, and Doublecortin (DCX). NSC differentiation in SVZ was evaluated using the following immunofluorescence double immunostaining: BrdU and neuron-specific nuclear protein (NeuN), BrdU and glial fibrillary acidic protein (GFAP). Phospho-Stat3 (p-Stat3) expression detected by Western-blot and immunofluorescence staining. Results GET-1 mice displayed a more severe neurological deficit and larger infarct area after tMCAO injury. There was a significant increase of BrdU-labeled progenitor cell proliferation, which co-expressed with GFAP, at SVZ in the ipsilateral side of the GET-1 brain at 28 days after tMCAO. p-Stat3 expression was increased in both Ntg and GET-1 mice in the ischemia brain at 7 days after tMCAO. p-Stat3 expression was significantly upregulated in the ipsilateral side in the GET-1 brain than that in the Ntg brain at 7 days after tMCAO. Furthermore, GET-1 mice treated with AG490 (a JAK2/Stat3 inhibitor) sh owed a significant reduction in neurological deficit along with reduced infarct area and dwarfed astrocytic differentiation in the ipsilateral brain after tMCAO. Conclusions The data indicate that astrocytic endothelin-1 overexpression promotes progenitor stem cell proliferation and astr ocytic differentiation via the Jak2/Stat3 pathway.
Collapse
Affiliation(s)
- Xiao Cheng
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine, 111 Dade Road, Guangzhou, 510120, China. .,School of Biomedical Sciences, The University of Hong Kong, HKSAR, China. .,The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510405, China. .,Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, 510120, China. .,State Key Laboratory of Dampness Syndrome of Traditional Chinese Medicine, Guangzhou, 510120, China.
| | - Patrick K K Yeung
- School of Biomedical Sciences, The University of Hong Kong, HKSAR, China
| | - Ke Zhong
- Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangdong Province, Guangzhou, China
| | - Prince L M Zilundu
- Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangdong Province, Guangzhou, China
| | - Lihua Zhou
- Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangdong Province, Guangzhou, China
| | - Sookja K Chung
- Faculty of Medicine, Macau University of Science and Technology, Macau, China. .,School of Biomedical Sciences, The University of Hong Kong, HKSAR, China.
| |
Collapse
|
23
|
Abstract
Leukodystrophies are genetically determined disorders affecting the white matter of the central nervous system. The combination of MRI pattern recognition and next-generation sequencing for the definition of novel disease entities has recently demonstrated that many leukodystrophies are due to the primary involvement and/or mutations in genes selectively expressed by cell types other than the oligodendrocytes, the myelin-forming cells in the brain. This has led to a new definition of leukodystrophies as genetic white matter disorders resulting from the involvement of any white matter structural component. As a result, the research has shifted its main focus from oligodendrocytes to other types of neuroglia. Astrocytes are the housekeeping cells of the nervous system, responsible for maintaining homeostasis and normal brain physiology and to orchestrate repair upon injury. Several lines of evidence show that astrocytic interactions with the other white matter cellular constituents play a primary pathophysiologic role in many leukodystrophies. These are thus now classified as astrocytopathies. This chapter addresses how the crosstalk between astrocytes, other glial cells, axons and non-neural cells are essential for the integrity and maintenance of the white matter in health. It also addresses the current knowledge of the cellular pathomechanisms of astrocytic leukodystrophies, and specifically Alexander disease, vanishing white matter, megalencephalic leukoencephalopathy with subcortical cysts and Aicardi-Goutière Syndrome.
Collapse
Affiliation(s)
- M S Jorge
- Department of Pathology, Free University Medical Centre, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pathology, Free University Medical Centre, Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Zhang L, Zhang X, Zhang Y, Xu N, Wang J, Zhu Y, Xia C. Brn4 promotes the differentiation of radial glial cells into neurons by inhibiting CtBP2. Life Sci 2019; 254:116866. [PMID: 31518606 DOI: 10.1016/j.lfs.2019.116866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/25/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 10/26/2022]
Abstract
Neural stem cells (NSCs) are pluripotent cells that are capable of differentiating into neurons and considered as the most promising cell source for cell replacement therapy. However, the difficulty in inducing neuronal differentiation and maturation from NSCs is a major challenge for their clinical application. Clarifying the molecular mechanisms underlying the neuronal differentiation of NSCs can provide a basis for expanding their uses. Brain 4 (Brn4) is a member of the POU domain family of transcription factors and can induce the neuronal differentiation of NSCs, but its precise function in NSCs is unclear. To address this question, in this study we isolated and expanded radial glial cells (RGCs), a type of NSC, from the cerebral cortex of 14-day embryonic rats and used lentivirus carrying the human Brn4 gene to overexpress Brn4 in these cells. This induced the differentiation of RGCs into neurons and inhibited the expression of C-terminal binding protein 2 (CtBP2), a transcriptional co-repressor. CtBP2 overexpression in RGCs suppressed their differentiation into neurons, whereas CtBP2 knockdown had the opposite effect. These results indicated that Brn4 promoted the neuronal differentiation of NSCs via inhibition of CtBP2 and is a potential tool for generating neurons in cell replacement therapy of neurodegenerative diseases and brain injury.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Anatomy and Cytoneurobiology Unit, Medical College of Soochow University, Suzhou, Jiangsu 215123, China; Department of Human Anatomy, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Xinhua Zhang
- Department of Human Anatomy, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Ye Zhang
- Department of Anatomy and Cytoneurobiology Unit, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Naijuan Xu
- Department of Human Anatomy, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Jue Wang
- Department of Human Anatomy, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Yuanyuan Zhu
- Department of Human Anatomy, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Chunlin Xia
- Department of Anatomy and Cytoneurobiology Unit, Medical College of Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
25
|
Kang M, Yao Y. Oligodendrocytes in intracerebral hemorrhage. CNS Neurosci Ther 2019; 25:1075-1084. [PMID: 31410988 PMCID: PMC6776757 DOI: 10.1111/cns.13193] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/30/2019] [Revised: 06/23/2019] [Accepted: 06/26/2019] [Indexed: 12/22/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a cerebrovascular disorder with high mortality and disability rates. Although a lot of effort has been put in ICH, there is still no effective treatment for this devastating disease. Recent studies suggest that oligodendrocytes play an important role in brain repair after ICH and thus may be targeted for the therapies of ICH. Here in this review, we first introduce the origin, migration, proliferation, differentiation, and myelination of oligodendrocytes under physiological condition. Second, recent findings on how ICH affects oligodendrocyte biology and function are reviewed. Third, potential crosstalk between oligodendrocytes and other cells in the brain is also summarized. Last, we discuss the therapeutic potential of oligodendrocyte‐based treatments in ICH. Our goal is to provide a comprehensive review on the biology and function of oligodendrocytes under both physiological and ICH conditions.
Collapse
Affiliation(s)
- Minkyung Kang
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| | - Yao Yao
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| |
Collapse
|
26
|
Abstract
The study of brain plasticity has tended to focus on the synapse, where well-described activity-dependent mechanisms are known to play a key role in learning and memory. However, it is becoming increasingly clear that plasticity occurs beyond the synapse. This review focuses on the emerging concept of white matter plasticity. For example, there is growing evidence, both from animal studies and from human neuroimaging, that activity-dependent regulation of myelin may play a role in learning. This previously overlooked phenomenon may provide a complementary but powerful route through which experience shapes the brain.
Collapse
|
27
|
Li S, Zheng J, Chai L, Lin M, Zeng R, Lu J, Bian J. Rapid and Efficient Differentiation of Rodent Neural Stem Cells into Oligodendrocyte Progenitor Cells. Dev Neurosci 2019; 41:79-93. [DOI: 10.1159/000499364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/02/2017] [Accepted: 03/04/2019] [Indexed: 11/19/2022] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) may have beneficial effects in cell replacement therapy of neurodegenerative disease owing to their unique capability to differentiate into myelinogenic oligodendrocytes (OLs) in response to extrinsic signals. Therefore, it is of significance to establish an effective differentiation methodology to generate highly pure OPCs and OLs from some easily accessible stem cell sources. To achieve this goal, in this study, we present a rapid and efficient protocol for oligodendroglial lineage differentiation from mouse neural stem cells (NSCs), rat NSCs, or mouse embryonic stem cell-derived neuroepithelial stem cells. In a defined culture medium containing Smoothened Agonist, basic fibroblast growth factor, and platelet-derived growth factor-AA, OPCs could be generated from the above stem cells over a time course of 4–6 days, achieving a cell purity as high as ∼90%. In particular, these derived OPCs showed high expandability and could further differentiate into myelin basic protein-positive OLs within 3 days or alternatively into glial fibrillary acidic protein-positive astrocytes within 7 days. Furthermore, transplantation of rodent NSC-derived OPCs into injured spinal cord indicated that it is a feasible strategy to treat spinal cord injury. Our results suggest a differentiation strategy for robust production of OPCs and OLs from rodent stem cells, which could provide an abundant OPC source for spinal cord injury.
Collapse
|
28
|
Astrocyte-selective AAV gene therapy through the endogenous GFAP promoter results in robust transduction in the rat spinal cord following injury. Gene Ther 2019; 26:198-210. [PMID: 30962538 PMCID: PMC6760677 DOI: 10.1038/s41434-019-0075-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/11/2018] [Revised: 10/02/2018] [Accepted: 03/27/2019] [Indexed: 12/30/2022]
Abstract
Adeno-associated viral (AAV) vectors are a promising system for transgene delivery into the central nervous system (CNS) based on their safety profile and long-term gene expression. Gene delivery to the CNS has largely been neuron centric but advances in AAV technology are facilitating the development of approaches to enable transduction of glial cells. Considering the role of astrocytes in the on-going secondary damage in spinal cord injury (SCI), an AAV vector that targets astrocytes could show benefit as a potential treatment. Transduction efficiency, transgene expression and cellular tropism were compared for the AAV serotypes AAV5, AAV9 and AAVRec2 whereby destabilised yellow fluorescent protein (dYFP) was controlled by the GFAP or the truncated GfaABC1D promoter. The vectors were tested in primary spinal cord astrocyte cell culture, spinal cord slice culture and an in vivo model of SCI contusion. AAV5 resulted in greater transduction efficiency, transgene expression and astrocyte tropism compared with AAV9 and AAVRec2. In a rodent model of SCI, robust transgene expression by AAV5-GFAP/GfaABC1D-dYFP was observed through 12 mm of spinal cord tissue and expression was largely restricted to astrocytes. Thus, AAV5-GFAP/GfaABC1D carries the potential as a potential gene therapy vector, particularly for transducing astrocytes in the damaged spinal cord.
Collapse
|
29
|
Teo RTY, Ferrari Bardile C, Tay YL, Yusof NABM, Kreidy CA, Tan LJ, Pouladi MA. Impaired Remyelination in a Mouse Model of Huntington Disease. Mol Neurobiol 2019; 56:6873-6882. [PMID: 30937636 DOI: 10.1007/s12035-019-1579-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/06/2019] [Accepted: 03/20/2019] [Indexed: 01/26/2023]
Abstract
White matter (WM) abnormalities are a well-established feature of Huntington disease (HD), although their nature is not fully understood. Here, we asked whether remyelination as a measure of WM plasticity is impaired in a model of HD. Using the cuprizone assay, we examined demyelination and remyelination responses in YAC128 HD mice. Treatment with 0.2% cuprizone (CPZ) for 6 weeks resulted in significant reduction in mature (GSTπ-positive) oligodendrocyte counts and FluoroMyelin staining in the corpus callosum, leading to similar demyelination states in YAC128 and wild-type (WT) mice. Six weeks following cessation of CPZ, we observed robust remyelination in WT mice as indicated by an increase in mature oligodendrocyte counts and FluoroMyelin staining. In contrast, YAC128 mice exhibited an impaired remyelination response. The increase in mature oligodendrocyte counts in YAC128 HD mice following CPZ cessation was lower than that of WT. Furthermore, there was no increase in FluoroMyelin staining compared to the demyelinated state in YAC128 mice. We confirmed these findings using electron microscopy where the CPZ-induced reduction in myelinated axons was reversed following CPZ cessation in WT but not YAC128 mice. Our findings demonstrate that remyelination is impaired in YAC128 mice and suggest that WM plasticity may be compromised in HD.
Collapse
Affiliation(s)
- Roy Tang Yi Teo
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A*STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore, 138648, Singapore
| | - Costanza Ferrari Bardile
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A*STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore, 138648, Singapore
| | - Yi Lin Tay
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A*STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore, 138648, Singapore
| | - Nur Amirah Binte Mohammad Yusof
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A*STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore, 138648, Singapore
| | - Charbel A Kreidy
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A*STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore, 138648, Singapore
| | - Liang Juin Tan
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A*STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore, 138648, Singapore
| | - Mahmoud A Pouladi
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A*STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore, 138648, Singapore.
- Department of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- Department of Physiology, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
30
|
Sanchez-Rodriguez MA, Gomez O, Esteban PF, Garcia-Ovejero D, Molina-Holgado E. The endocannabinoid 2-arachidonoylglycerol regulates oligodendrocyte progenitor cell migration. Biochem Pharmacol 2018; 157:180-188. [PMID: 30195734 DOI: 10.1016/j.bcp.2018.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/25/2018] [Accepted: 09/05/2018] [Indexed: 02/07/2023]
Abstract
While the endocannabinoid 2-arachidonoylglycerol (2-AG) is thought to enhance the proliferation and differentiation of oligodendrocyte progenitor cells (OPCs) in vitro, less is known about how endogenous 2-AG may influence the migration of these cells. When we assessed this in Agarose drop and Boyden chemotaxis chamber assays, inhibiting the sn-1-diacylglycerol lipases α and β (DAGLs) that are responsible for 2-AG synthesis significantly reduced the migration of OPCs stimulated by platelet-derived growth factor-AA (PDGF) and basic fibroblast growth factor (FGF). Likewise, antagonists of the CB1 and CB2 cannabinoid receptors (AM281 and AM630, respectively) produced a similar inhibition of OPC migration. By contrast, increasing the levels of endogenous 2-AG by blocking its degradation (impairing monoacylglycerol lipase activity with JZL-184) significantly increased OPC migration, as did agonists of the CB1, CB2 or CB1/CB2 cannabinoid receptors. This latter effect was abolished by selective CB1 or CB2 antagonists, strongly suggesting that cannabinoid receptor activation specifically potentiates OPC chemotaxis and chemokinesis in response to PDGF/FGF. Furthermore, the chemoattractive activity of these cannabinoid receptor agonists on OPCs was even evident in the absence of PDGF/FGF. In cultured brain slices prepared from the corpus callosum of postnatal rat brains, DAGL or cannabinoid receptor inhibition substantially diminished the in situ migration of Sox10+ OPCs. Overall, these results reveal a novel function of endogenous 2-AG in PDGF and FGF induced OPC migration, highlighting the importance of the endocannabinoid system in regulating essential steps in oligodendrocyte development.
Collapse
Affiliation(s)
- Maria A Sanchez-Rodriguez
- Laboratory of Neuroinflammation, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Oscar Gomez
- Laboratory of Neuroinflammation, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Pedro F Esteban
- Laboratory of Neuroinflammation, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Daniel Garcia-Ovejero
- Laboratory of Neuroinflammation, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Eduardo Molina-Holgado
- Laboratory of Neuroinflammation, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain.
| |
Collapse
|
31
|
Yuan T, York JR, McCauley DW. Gliogenesis in lampreys shares gene regulatory interactions with oligodendrocyte development in jawed vertebrates. Dev Biol 2018; 441:176-190. [DOI: 10.1016/j.ydbio.2018.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/21/2018] [Revised: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 01/09/2023]
|
32
|
Proliferative cells in the rat developing neocortical grey matter: new insights into gliogenesis. Brain Struct Funct 2018; 223:4053-4066. [PMID: 30132245 DOI: 10.1007/s00429-018-1736-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/03/2018] [Accepted: 08/14/2018] [Indexed: 02/04/2023]
Abstract
The postnatal brain development is characterized by a substantial gain in weight and size, ascribed to increasing neuronal size and branching, and to massive addition of glial cells. This occurs concomitantly to the shrinkage of VZ and SVZ, considered to be the main germinal zones, thus suggesting the existence of other germinative niches. The aim of this study is to characterize the cortical grey matter proliferating cells during postnatal development, providing their stereological quantification and identifying the nature of their cell lineage. We performed double immunolabeling for the proliferation marker Ki67 and three proteins which identify either astrocytes (S100β) or oligodendrocytes (Olig2 and NG2), in addition to a wider panel of markers apt to validate the former markers or to investigate other cell lineages. We found that proliferating cells increase in number during the first postnatal week until P10 and subsequently decreased until P21. Cell lineage characterization revealed that grey matter proliferating cells are prevalently oligodendrocytes and astrocytes along with endothelial and microglial cells, while no neurons have been detected. Our data showed that astrogliogenesis occurs prevalently during the first 10 days of postnatal development, whereas contrary to the expected peak of oligodendrogenesis at the second postnatal week, we found a permanent pool of proliferating oligodendrocytes enduring from birth until P21. These data support the relevance of glial proliferation within the grey matter and could be a point of departure for further investigations of this complex process.
Collapse
|
33
|
Vieira MS, Santos AK, Vasconcellos R, Goulart VAM, Parreira RC, Kihara AH, Ulrich H, Resende RR. Neural stem cell differentiation into mature neurons: Mechanisms of regulation and biotechnological applications. Biotechnol Adv 2018; 36:1946-1970. [PMID: 30077716 DOI: 10.1016/j.biotechadv.2018.08.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/20/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023]
Abstract
The abilities of stem cells to self-renew and form different mature cells expand the possibilities of applications in cell-based therapies such as tissue recomposition in regenerative medicine, drug screening, and treatment of neurodegenerative diseases. In addition to stem cells found in the embryo, various adult organs and tissues have niches of stem cells in an undifferentiated state. In the central nervous system of adult mammals, neurogenesis occurs in two regions: the subventricular zone and the dentate gyrus in the hippocampus. The generation of the different neural lines originates in adult neural stem cells that can self-renew or differentiate into astrocytes, oligodendrocytes, or neurons in response to specific stimuli. The regulation of the fate of neural stem cells is a finely controlled process relying on a complex regulatory network that extends from the epigenetic to the translational level and involves extracellular matrix components. Thus, a better understanding of the mechanisms underlying how the process of neurogenesis is induced, regulated, and maintained will provide elues for development of novel for strategies for neurodegenerative therapies. In this review, we focus on describing the mechanisms underlying the regulation of the neuronal differentiation process by transcription factors, microRNAs, and extracellular matrix components.
Collapse
Affiliation(s)
- Mariana S Vieira
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil
| | - Anderson K Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rebecca Vasconcellos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil
| | - Vânia A M Goulart
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ricardo C Parreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil
| | - Alexandre H Kihara
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil.
| | - Rodrigo R Resende
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil.
| |
Collapse
|
34
|
The Dorsal Wave of Neocortical Oligodendrogenesis Begins Embryonically and Requires Multiple Sources of Sonic Hedgehog. J Neurosci 2018; 38:5237-5250. [PMID: 29739868 DOI: 10.1523/jneurosci.3392-17.2018] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2017] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 01/06/2023] Open
Abstract
Neural progenitor cells in the developing dorsal forebrain give rise to excitatory neurons, astrocytes, and oligodendrocytes for the neocortex. While we are starting to gain a better understanding about the mechanisms that direct the formation of neocortical neurons and astrocytes, far less is known about the molecular mechanisms that instruct dorsal forebrain progenitors to make oligodendrocytes. In this study, we show that Sonic hedgehog (Shh) signaling is required in dorsal progenitors for their late embryonic transition to oligodendrogenesis. Using genetic lineage-tracing in mice of both sexes, we demonstrate that most oligodendrocytes in the embryonic neocortex derive from Emx1+ dorsal forebrain progenitors. Deletion of the Shh signaling effector Smo specifically in Emx1+ progenitors led to significantly decreased oligodendrocyte numbers in the embryonic neocortex. Conversely, knock-out of the Shh antagonist Sufu was sufficient to increase neocortical oligodendrogenesis. Using conditional knock-out strategies, we found that Shh ligand is supplied to dorsal progenitors through multiple sources. Loss of Shh from Dlx5/6+ interneurons caused a significant reduction in oligodendrocytes in the embryonic neocortex. This phenotype was identical to that observed upon Shh deletion from the entire CNS using Nestin-Cre, indicating that interneurons migrating into the neocortex from the subpallium are the primary neural source of Shh for dorsal oligodendrogenesis. Additionally, deletion of Shh from migrating interneurons together with the choroid plexus epithelium led to a more severe loss of oligodendrocytes, suggesting that the choroid plexus is an important non-neural source of Shh ligand. Together, our studies demonstrate that the dorsal wave of neocortical oligodendrogenesis occurs earlier than previously appreciated and requires highly regulated Shh signaling from multiple embryonic sources.SIGNIFICANCE STATEMENT Most neocortical oligodendrocytes are made by neural progenitors in the dorsal forebrain, but the mechanisms that specify this fate are poorly understood. This study identifies Sonic hedgehog (Shh) signaling as a critical pathway in the transition from neurogenesis to oligodendrogenesis in dorsal forebrain progenitors during late embryonic development. The timing of this neuron-to-glia "switch" coincides with the arrival of migrating interneurons into the dorsal germinal zone, which we identify as a critical source of Shh ligand, which drives oligodendrogenesis. Our data provide evidence for a new model in which Shh signaling increases in the dorsal forebrain late in embryonic development to provide a temporally regulated mechanism that initiates the third wave of neocortical oligodendrogenesis.
Collapse
|
35
|
Garwood CJ, Ratcliffe LE, Simpson JE, Heath PR, Ince PG, Wharton SB. Review: Astrocytes in Alzheimer's disease and other age-associated dementias: a supporting player with a central role. Neuropathol Appl Neurobiol 2018; 43:281-298. [PMID: 27442752 DOI: 10.1111/nan.12338] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/09/2016] [Revised: 07/15/2016] [Accepted: 07/21/2016] [Indexed: 12/12/2022]
Abstract
Astrocytes have essential roles in the central nervous system and are also implicated in the pathogenesis of neurodegenerative disease. Forming non-overlapping domains, astrocytes are highly complex cells. Immunohistochemistry to a variety of proteins can be used to study astrocytes in tissue, labelling different cellular components and sub-populations, including glial fibrillary acidic protein, ALDH1L1, CD44, NDRG2 and amino acid transporters, but none of these labels the entire astrocyte population. Increasing heterogeneity is recognized in the astrocyte population, a complexity that is relevant both to their normal function and pathogenic roles. They are involved in neuronal support, as active components of the tripartite synapse and in cell interactions within the neurovascular unit (NVU), where they are essential for blood-brain barrier maintenance and neurovascular coupling. Astrocytes change with age, and their responses may modulate the cellular effects of neurodegenerative pathologies, which alone do not explain all of the variance in statistical models of neurodegenerative dementias. Astrocytes respond to both the neurofibrillary tangles and plaques of Alzheimer's disease, to hyperphosphorylated tau and Aβ, eliciting an effect which may be neuroprotective or deleterious. Not only astrocyte hypertrophy, in the form of gliosis, occurs, but also astrocyte injury and atrophy. Loss of normal astrocyte functions may contribute to reduced support for neurones and dysfunction of the NVU. Understanding how astrocytes contribute to dementia requires an understanding of the underlying heterogeneity of astrocyte populations, and the complexity of their responses to pathology. Enhancing the supportive and neuroprotective components of the astrocyte response has potential translational applications in therapeutic approaches to dementia.
Collapse
Affiliation(s)
- C J Garwood
- Sheffield Institute for Translational Neuroscience, Sheffield, UK
| | - L E Ratcliffe
- Sheffield Institute for Translational Neuroscience, Sheffield, UK
| | - J E Simpson
- Sheffield Institute for Translational Neuroscience, Sheffield, UK
| | - P R Heath
- Sheffield Institute for Translational Neuroscience, Sheffield, UK
| | - P G Ince
- Sheffield Institute for Translational Neuroscience, Sheffield, UK
| | - S B Wharton
- Sheffield Institute for Translational Neuroscience, Sheffield, UK
| |
Collapse
|
36
|
Katsel P, Fam P, Tan W, Khan S, Yang C, Jouroukhin Y, Rudchenko S, Pletnikov MV, Haroutunian V. Overexpression of Truncated Human DISC1 Induces Appearance of Hindbrain Oligodendroglia in the Forebrain During Development. Schizophr Bull 2018; 44:515-524. [PMID: 28981898 PMCID: PMC5890457 DOI: 10.1093/schbul/sbx106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2022]
Abstract
Genetic, neuroimaging, and gene expression studies suggest a role for oligodendrocyte (OLG) dysfunction in schizophrenia (SZ). Disrupted-in-schizophrenia 1 (DISC1) is a risk gene for major psychiatric disorders, including SZ. Overexpression of mutant truncated (hDISC1), but not full-length sequence of human DISC1 in forebrain influenced OLG differentiation and proliferation of glial progenitors in the developing cerebral cortex concurrently with reduction of OLG progenitor markers in the hindbrain. We examined gene and protein expression of the molecular determinants of hindbrain OLG development and their interactions with DISC1 in mutant hDISC1 mice. We found ectopic upregulation of hindbrain glial progenitor markers (early growth response 2 [Egr2] and NK2 homeobox 2 [Nkx2-2]) in the forebrain of hDISC1 (E15) embryos. DISC1 and Nkx2-2 were coexpressed and interacted in progenitor cells. Overexpression of truncated hDISC1 impaired interactions between DISC1 and Nkx2-2, which was associated with increased differentiation of OLG and upregulation of hindbrain mature OLG markers (laminin alpha-1 [LAMA1] and myelin protein zero [MPZ]) suggesting a suppressive function of endogenous DISC1 in OLG specialization of hindbrain glial progenitors during embryogenesis. Consistent with findings in hDISC1 mice, several hindbrain OLG markers (PRX, LAMA1, and MPZ) were significantly upregulated in the superior temporal cortex of persons with SZ. These findings show a significant effect of truncated hDISC1 on glial identity cells along the rostrocaudal axis and their OLG specification. Appearance of hindbrain OLG lineage cells and their premature differentiation may affect cerebrocortical organization and contribute to the pathophysiology of SZ.
Collapse
Affiliation(s)
- Pavel Katsel
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY,To whom correspondence should be addressed; JJ Peters VA Medical Center, 151 Research Build, Room 5F-04C, 130 West Kingsbridge Road, Bronx, NY 10468; tel: 718-584-9000 ext. 6067, fax: 718-741-4746, e-mail:
| | - Peter Fam
- Department of Psychiatry, James J Peters VA Medical Center, Bronx, NY
| | - Weilun Tan
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY
| | - Sonia Khan
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY
| | - Chunxia Yang
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Yan Jouroukhin
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Mikhail V Pletnikov
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Vahram Haroutunian
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY,Department of Neuroscience, The Icahn School of Medicine at Mount Sinai, New York, NY,Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical Center, Bronx, NY
| |
Collapse
|
37
|
Zoupi L, Savvaki M, Kalemaki K, Kalafatakis I, Sidiropoulou K, Karagogeos D. The function of contactin-2/TAG-1 in oligodendrocytes in health and demyelinating pathology. Glia 2017; 66:576-591. [PMID: 29165835 DOI: 10.1002/glia.23266] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/31/2017] [Revised: 10/09/2017] [Accepted: 11/02/2017] [Indexed: 12/21/2022]
Abstract
The oligodendrocyte maturation process and the transition from the pre-myelinating to the myelinating state are extremely important during development and in pathology. In the present study, we have investigated the role of the cell adhesion molecule CNTN2/TAG-1 on oligodendrocyte proliferation, differentiation, myelination, and function during development and under pathological conditions. With the combination of in vivo, in vitro, ultrastructural, and electrophysiological methods, we have mapped the expression of CNTN2 protein in the oligodendrocyte lineage during the different stages of myelination and its involvement on oligodendrocyte maturation, branching, myelin-gene expression, myelination, and axonal function. The cuprizone model of central nervous system demyelination was further used to assess CNTN2 in pathology. During development, CNTN2 can transiently affect the expression levels of myelin and myelin-regulating genes, while its absence results in reduced oligodendrocyte branching, hypomyelination of fiber tracts and impaired axonal conduction. In pathology, CNTN2 absence does not affect the extent of de- and remyelination. However during remyelination, a novel, CNTN2-independent mechanism is revealed that is able to recluster voltage gated potassium channels (VGKCs) resulting in the improvement of fiber conduction.
Collapse
Affiliation(s)
- Lida Zoupi
- Department of Basic Science, Faculty of Medicine, University of Crete, Voutes University Campus, GR-70013, P.O. Box 2208, Heraklion, Crete, Greece and 1Institute of Molecular Biology & Biotechnology -FoRTH, Nikolaou Plastira 100 GR-70013, Heraklion, Crete, Greece
| | - Maria Savvaki
- Department of Basic Science, Faculty of Medicine, University of Crete, Voutes University Campus, GR-70013, P.O. Box 2208, Heraklion, Crete, Greece and 1Institute of Molecular Biology & Biotechnology -FoRTH, Nikolaou Plastira 100 GR-70013, Heraklion, Crete, Greece
| | - Katerina Kalemaki
- Department of Basic Science, Faculty of Medicine, University of Crete, Voutes University Campus, GR-70013, P.O. Box 2208, Heraklion, Crete, Greece and 1Institute of Molecular Biology & Biotechnology -FoRTH, Nikolaou Plastira 100 GR-70013, Heraklion, Crete, Greece
| | - Ilias Kalafatakis
- Department of Basic Science, Faculty of Medicine, University of Crete, Voutes University Campus, GR-70013, P.O. Box 2208, Heraklion, Crete, Greece and 1Institute of Molecular Biology & Biotechnology -FoRTH, Nikolaou Plastira 100 GR-70013, Heraklion, Crete, Greece
| | - Kyriaki Sidiropoulou
- Neurophysiology & Behavior Laboratory, Department of Biology, University of Crete, Voutes University Campus, GR-70013, P.O. Box 2208, Heraklion, Crete, Greece
| | - Domna Karagogeos
- Department of Basic Science, Faculty of Medicine, University of Crete, Voutes University Campus, GR-70013, P.O. Box 2208, Heraklion, Crete, Greece and 1Institute of Molecular Biology & Biotechnology -FoRTH, Nikolaou Plastira 100 GR-70013, Heraklion, Crete, Greece
| |
Collapse
|
38
|
Ohayon D, Garcès A, Joly W, Soukkarieh C, Takagi T, Sabourin JC, Agius E, Darling DS, De Santa Barbara P, Higashi Y, Stolt CC, Hugnot JP, Richardson WD, Carroll P, Pattyn A. Onset of Spinal Cord Astrocyte Precursor Emigration from the Ventricular Zone Involves the Zeb1 Transcription Factor. Cell Rep 2017; 17:1473-1481. [PMID: 27806288 DOI: 10.1016/j.celrep.2016.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/20/2016] [Revised: 06/17/2016] [Accepted: 10/04/2016] [Indexed: 01/01/2023] Open
Abstract
During spinal cord development, astrocyte precursors arise from neuroepithelial progenitors, delaminate from the ventricular zone, and migrate toward their final locations where they differentiate. Although the mechanisms underlying their early specification and late differentiation are being deciphered, less is known about the temporal control of their migration. Here, we show that the epithelial-mesenchymal transition regulator Zeb1 is expressed in glial precursors and report that loss of Zeb1 function specifically delays the onset of astrocyte precursor delamination from the ventricular zone, correlating with transient deregulation of the adhesion protein Cadherin-1. Consequently, astrocyte precursor invasion into the Zeb1-/- mutant white matter is delayed, and induction of their differentiation is postponed. These findings illustrate how fine regulation of adhesive properties influences the onset of neural precursor migration and further support the notion that duration of exposure of migrating astrocyte precursors to environmental cues and/or their correct positioning influence the timing of their differentiation.
Collapse
Affiliation(s)
- David Ohayon
- INSERM U1051, Institut des Neurosciences de Montpellier, 34091 Montpellier, France; Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), CBD-UMR5547, 31062 Toulouse, France; Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Alain Garcès
- INSERM U1051, Institut des Neurosciences de Montpellier, 34091 Montpellier, France
| | - Willy Joly
- INSERM U1051, Institut des Neurosciences de Montpellier, 34091 Montpellier, France
| | - Chadi Soukkarieh
- INSERM U1051, Institut des Neurosciences de Montpellier, 34091 Montpellier, France; Department of Animal Biology, Faculty of Sciences, Damascus University, Damascus, Syria
| | - Tsuyoshi Takagi
- Department of Perinatology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi 480-0392, Japan
| | | | - Eric Agius
- Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), CBD-UMR5547, 31062 Toulouse, France
| | - Douglas S Darling
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY 40202, USA
| | - Pascal De Santa Barbara
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, 34295 Montpellier, France
| | - Yujiro Higashi
- Department of Perinatology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi 480-0392, Japan
| | - Claus C Stolt
- Institut für Biochemie, Emil-Fischer-Zentrum, Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jean-Philippe Hugnot
- INSERM U1051, Institut des Neurosciences de Montpellier, 34091 Montpellier, France
| | - William D Richardson
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Patrick Carroll
- INSERM U1051, Institut des Neurosciences de Montpellier, 34091 Montpellier, France
| | - Alexandre Pattyn
- INSERM U1051, Institut des Neurosciences de Montpellier, 34091 Montpellier, France.
| |
Collapse
|
39
|
Kommata V, Dermon CR. Transient vimentin expression during the embryonic development of the chicken cerebellum. Int J Dev Neurosci 2017; 65:11-20. [PMID: 29030097 DOI: 10.1016/j.ijdevneu.2017.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/11/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 01/16/2023] Open
Abstract
Complex morphogenetic events, critical for the development of normal cerebellum foliation and layering, are known to involve type III intermediate filament protein such as vimentin expressed by Bergmann glia. The present study aimed to determine aspects of intermediate and late embryonic pattern of vimentin expression during the corticogenesis of chicken cerebellum at embryonic days 10-19 (E10-E19), using single and double immunohistochemistry/immunofluorescence. Vimentin expression showed partial co-localization with the glial markers GFAP and BLBP. Within cerebellar cortex, vimentin+ fibers were first found within lobules I and X (E10) and gradually extended to all folia (E15-E17), located within the external granule (EGL) the molecular cell layer, showing a radial orientation towards the inner granular layer and the cerebellar white matter oriented longitudinally. Interestingly, within the immature fissures base of most lobules, vimentin+ fibers radiate in a fan shape. Short-term BrdU experiments revealed that EGL cell proliferation was higher in the fissure base compared to folia apex. In addition, following 24-h survival, BrdU+ cells were found in close association to vimentin+ fibers in the EGL pre-migratory zone and within immature molecular layer. Paralleling cerebellum development, vimentin expression gradually extended to all folia sub-regions (base, wall, apex), but, at day E19, it was mainly confined to the folia apex and secondary fissure base. Taken together our data further support the possible role of vimentin+ fibers in the structural events of cerebellum corticogenesis, suggesting the participation of radial/Bergmann glia in chicken cerebellum foliation, similarly to that described for mammalian cerebellum morphogenesis.
Collapse
Affiliation(s)
- Vasiliki Kommata
- Lab Human & Animal Physiology, Dept. Biology, Univ. Patras, Patras, Greece
| | - Catherine R Dermon
- Lab Human & Animal Physiology, Dept. Biology, Univ. Patras, Patras, Greece.
| |
Collapse
|
40
|
Turrero García M, Harwell CC. Radial glia in the ventral telencephalon. FEBS Lett 2017; 591:3942-3959. [PMID: 28862741 DOI: 10.1002/1873-3468.12829] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/19/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 12/31/2022]
Abstract
The ventral telencephalon is the developmental origin of the basal ganglia and the source of neuronal and glial cells that integrate into developing circuits in other areas of the brain. Radial glia in the embryonic subpallium give rise to an enormous diversity of mature cell types, either directly or through other transit-amplifying progenitors. Here, we review current knowledge about these subpallial neural stem cells and their progeny, focusing on the period of neurogenesis. We describe their cell biological features and the extrinsic and intrinsic molecular codes that guide their fate specification in defined temporal and spatial sequences. We also discuss the role of clonal lineage in the organization and specification of mature neurons.
Collapse
Affiliation(s)
| | - Corey C Harwell
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
41
|
Chen VS, Morrison JP, Southwell MF, Foley JF, Bolon B, Elmore SA. Histology Atlas of the Developing Prenatal and Postnatal Mouse Central Nervous System, with Emphasis on Prenatal Days E7.5 to E18.5. Toxicol Pathol 2017; 45:705-744. [PMID: 28891434 DOI: 10.1177/0192623317728134] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022]
Abstract
Evaluation of the central nervous system (CNS) in the developing mouse presents unique challenges, given the complexity of ontogenesis, marked structural reorganization over very short distances in 3 dimensions each hour, and numerous developmental events susceptible to genetic and environmental influences. Developmental defects affecting the brain and spinal cord arise frequently both in utero and perinatally as spontaneous events, following teratogen exposure, and as sequelae to induced mutations and thus are a common factor in embryonic and perinatal lethality in many mouse models. Knowledge of normal organ and cellular architecture and differentiation throughout the mouse's life span is crucial to identify and characterize neurodevelopmental lesions. By providing a well-illustrated overview summarizing major events of normal in utero and perinatal mouse CNS development with examples of common developmental abnormalities, this annotated, color atlas can be used to identify normal structure and histology when phenotyping genetically engineered mice and will enhance efforts to describe and interpret brain and spinal cord malformations as causes of mouse embryonic and perinatal lethal phenotypes. The schematics and images in this atlas illustrate major developmental events during gestation from embryonic day (E)7.5 to E18.5 and after birth from postnatal day (P)1 to P21.
Collapse
Affiliation(s)
- Vivian S Chen
- 1 Charles River Laboratories Inc., Durham, North Carolina, USA.,Authors contributed equally
| | - James P Morrison
- 2 Charles River Laboratories Inc., Shrewsbury, Massachusetts, USA.,Authors contributed equally
| | - Myra F Southwell
- 3 Cellular Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Julie F Foley
- 4 Bio-Molecular Screening Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | | | - Susan A Elmore
- 3 Cellular Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
42
|
Siqueira M, Francis D, Gisbert D, Gomes FCA, Stipursky J. Radial Glia Cells Control Angiogenesis in the Developing Cerebral Cortex Through TGF-β1 Signaling. Mol Neurobiol 2017; 55:3660-3675. [PMID: 28523566 DOI: 10.1007/s12035-017-0557-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/03/2017] [Accepted: 04/12/2017] [Indexed: 10/19/2022]
Abstract
Neuroangiogenesis in the developing central nervous system is controlled by interactions between endothelial cells (ECs) and radial glia (RG) neural stem cells, although RG-derived molecules implicated in these events are not fully known. Here, we investigated the role of RG-secreted TGF-β1, in angiogenesis in the developing cerebral cortex. By isolation of murine microcapillary brain endothelial cells (MBECs), we demonstrate that conditioned medium from RG cultures (RG-CM) promoted MBEC migration and formation of vessel-like structures in vitro, in a TGF-β1-dependent manner. These events were followed by endothelial regulation of GPR124 and BAI-1 gene expression by RG-CM. Proteome profile of RG-CM identified angiogenesis-related molecules IGFBP2/3, osteopontin, endostatin, SDF1, fractalkine, TIMP1/4, Ang-1, pentraxin3, and Cyr61, some of them modulated by TGF-β1 induction. In vivo gain and loss of function assays targeting RG cells demonstrates a specific TGF-β1-dependent control of blood vessels branching in the cerebral cortex. Together, our results point to TGF-β1 signaling pathway as a potential mediator of the RG-EC interactions and shed light to the key role of RG in paving the brain vascular network.
Collapse
Affiliation(s)
- Michele Siqueira
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Daniel Francis
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Diego Gisbert
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Joice Stipursky
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil. .,Laboratório de Neurobiologia Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro - Centro de Ciências da Saúde, Bloco F, Sala F15, Ilha do Fundão, Rio de Janeiro, RJ, 21949-902, Brazil.
| |
Collapse
|
43
|
Minocha S, Valloton D, Arsenijevic Y, Cardinaux JR, Guidi R, Hornung JP, Lebrand C. Nkx2.1 regulates the generation of telencephalic astrocytes during embryonic development. Sci Rep 2017; 7:43093. [PMID: 28266561 PMCID: PMC5339799 DOI: 10.1038/srep43093] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/09/2016] [Accepted: 01/19/2017] [Indexed: 11/22/2022] Open
Abstract
The homeodomain transcription factor Nkx2.1 (NK2 homeobox 1) controls cell differentiation of telencephalic GABAergic interneurons and oligodendrocytes. Here we show that Nkx2.1 also regulates astrogliogenesis of the telencephalon from embryonic day (E) 14.5 to E16.5. Moreover we identify the different mechanisms by which Nkx2.1 controls the telencephalic astrogliogenesis. In Nkx2.1 knockout (Nkx2.1−/−) mice a drastic loss of astrocytes is observed that is not related to cell death. Further, in vivo analysis using BrdU incorporation reveals that Nkx2.1 affects the proliferation of the ventral neural stem cells that generate early astrocytes. Also, in vitro neurosphere assays showed reduced generation of astroglia upon loss of Nkx2.1, which could be due to decreased precursor proliferation and possibly defects in glial specification/differentiation. Chromatin immunoprecipitation analysis and in vitro co-transfection studies with an Nkx2.1-expressing plasmid indicate that Nkx2.1 binds to the promoter of glial fibrillary acidic protein (GFAP), primarily expressed in astrocytes, to regulate its expression. Hence, Nkx2.1 controls astroglial production spatiotemporally in embryos by regulating proliferation of the contributing Nkx2.1-positive precursors.
Collapse
Affiliation(s)
- Shilpi Minocha
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland
| | - Delphine Valloton
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland
| | - Yvan Arsenijevic
- Department of Ophthalmology, University of Lausanne, Hôpital ophtalmique Jules-Gonin, Av. de France 15, CH-1004 Lausanne, Switzerland
| | - Jean-René Cardinaux
- Department of Psychiatry, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, CH-1008 Lausanne, Switzerland
| | - Raffaella Guidi
- Department of Psychiatry, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, CH-1008 Lausanne, Switzerland
| | - Jean-Pierre Hornung
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland
| | - Cécile Lebrand
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland
| |
Collapse
|
44
|
Neuroanatomical distribution of galectin-3 in the adult rat brain. J Mol Histol 2017; 48:133-146. [DOI: 10.1007/s10735-017-9712-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/10/2017] [Accepted: 02/15/2017] [Indexed: 01/11/2023]
|
45
|
Engel M, Do-Ha D, Muñoz SS, Ooi L. Common pitfalls of stem cell differentiation: a guide to improving protocols for neurodegenerative disease models and research. Cell Mol Life Sci 2016; 73:3693-709. [PMID: 27154043 PMCID: PMC5002043 DOI: 10.1007/s00018-016-2265-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/21/2016] [Revised: 04/05/2016] [Accepted: 05/03/2016] [Indexed: 12/17/2022]
Abstract
Induced pluripotent stem cells and embryonic stem cells have revolutionized cellular neuroscience, providing the opportunity to model neurological diseases and test potential therapeutics in a pre-clinical setting. The power of these models has been widely discussed, but the potential pitfalls of stem cell differentiation in this research are less well described. We have analyzed the literature that describes differentiation of human pluripotent stem cells into three neural cell types that are commonly used to study diseases, including forebrain cholinergic neurons for Alzheimer's disease, midbrain dopaminergic neurons for Parkinson's disease and cortical astrocytes for neurodegenerative and psychiatric disorders. Published protocols for differentiation vary widely in the reported efficiency of target cell generation. Additionally, characterization of the cells by expression profile and functionality differs between studies and is often insufficient, leading to highly variable protocol outcomes. We have synthesized this information into a simple methodology that can be followed when performing or assessing differentiation techniques. Finally we propose three considerations for future research, including the use of physiological O2 conditions, three-dimensional co-culture systems and microfluidics to control feeding cycles and growth factor gradients. Following these guidelines will help researchers to ensure that robust and meaningful data is generated, enabling the full potential of stem cell differentiation for disease modeling and regenerative medicine.
Collapse
Affiliation(s)
- Martin Engel
- Illawarra Health and Medical Research Institute, School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Dzung Do-Ha
- Illawarra Health and Medical Research Institute, School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Sonia Sanz Muñoz
- Illawarra Health and Medical Research Institute, School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
46
|
Domingues HS, Portugal CC, Socodato R, Relvas JB. Oligodendrocyte, Astrocyte, and Microglia Crosstalk in Myelin Development, Damage, and Repair. Front Cell Dev Biol 2016; 4:71. [PMID: 27551677 PMCID: PMC4923166 DOI: 10.3389/fcell.2016.00071] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/31/2016] [Accepted: 06/15/2016] [Indexed: 01/01/2023] Open
Abstract
Oligodendrocytes are the myelinating glia of the central nervous system. Myelination of axons allows rapid saltatory conduction of nerve impulses and contributes to axonal integrity. Devastating neurological deficits caused by demyelinating diseases, such as multiple sclerosis, illustrate well the importance of the process. In this review, we focus on the positive and negative interactions between oligodendrocytes, astrocytes, and microglia during developmental myelination and remyelination. Even though many lines of evidence support a crucial role for glia crosstalk during these processes, the nature of such interactions is often neglected when designing therapeutics for repair of demyelinated lesions. Understanding the cellular and molecular mechanisms underlying glial cell communication and how they influence oligodendrocyte differentiation and myelination is fundamental to uncover novel therapeutic strategies for myelin repair.
Collapse
Affiliation(s)
- Helena S Domingues
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| | - Camila C Portugal
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| | - Renato Socodato
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| | - João B Relvas
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| |
Collapse
|
47
|
Abstract
In the embryonic and adult brain, neural stem cells proliferate and give rise to neurons and glia through highly regulated processes. Epigenetic mechanisms - including DNA and histone modifications, as well as regulation by non-coding RNAs - have pivotal roles in different stages of neurogenesis. Aberrant epigenetic regulation also contributes to the pathogenesis of various brain disorders. Here, we review recent advances in our understanding of epigenetic regulation in neurogenesis and its dysregulation in brain disorders, including discussion of newly identified DNA cytosine modifications. We also briefly cover the emerging field of epitranscriptomics, which involves modifications of mRNAs and long non-coding RNAs.
Collapse
Affiliation(s)
- Bing Yao
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, Georgia 30322, USA
| | - Kimberly M Christian
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland 21205, USA
| | - Chuan He
- Department of Chemistry, Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA.,Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, Georgia 30322, USA
| | - Guo-Li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland 21205, USA.,The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland 21205, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland 21205, USA
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland 21205, USA.,The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland 21205, USA
| |
Collapse
|
48
|
Lourenço T, Paes de Faria J, Bippes CA, Maia J, Lopes-da-Silva JA, Relvas JB, Grãos M. Modulation of oligodendrocyte differentiation and maturation by combined biochemical and mechanical cues. Sci Rep 2016; 6:21563. [PMID: 26879561 PMCID: PMC4754901 DOI: 10.1038/srep21563] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/31/2015] [Accepted: 01/25/2016] [Indexed: 01/17/2023] Open
Abstract
Extracellular matrix (ECM) proteins play a key role during oligodendrogenesis. While fibronectin (FN) is involved in the maintenance and proliferation of oligodendrocyte progenitor cells (OPCs), merosin (MN) promotes differentiation into oligodendrocytes (OLs). Mechanical properties of the ECM also seem to affect OL differentiation, hence this study aimed to clarify the impact of combined biophysical and biochemical elements during oligodendrocyte differentiation and maturation using synthetic elastic polymeric ECM-like substrates. CG-4 cells presented OPC- or OL-like morphology in response to brain-compliant substrates functionalised with FN or MN, respectively. The expression of the differentiation and maturation markers myelin basic protein — MBP — and proteolipid protein — PLP — (respectively) by primary rat oligodendrocytes was enhanced in presence of MN, but only on brain-compliant conditions, considering the distribution (MBP) or amount (PLP) of the protein. It was also observed that maturation of OLs was attained earlier (by assessing PLP expression) by cells differentiated on MN-functionalised brain-compliant substrates than on standard culture conditions. Moreover, the combination of MN and substrate compliance enhanced the maturation and morphological complexity of OLs. Considering the distinct degrees of stiffness tested ranging within those of the central nervous system, our results indicate that 6.5 kPa is the most suitable rigidity for oligodendrocyte differentiation.
Collapse
Affiliation(s)
- Tânia Lourenço
- Biocant, Technology Transfer Association, Cantanhede, Portugal.,Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Joana Paes de Faria
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | | | - João Maia
- Chemical Engineering Department, Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal
| | | | - João B Relvas
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Mário Grãos
- Biocant, Technology Transfer Association, Cantanhede, Portugal.,Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
49
|
Low Density Lipoprotein Receptor Related Proteins as Regulators of Neural Stem and Progenitor Cell Function. Stem Cells Int 2016; 2016:2108495. [PMID: 26949399 PMCID: PMC4754494 DOI: 10.1155/2016/2108495] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/14/2015] [Revised: 11/24/2015] [Accepted: 01/06/2016] [Indexed: 12/20/2022] Open
Abstract
The central nervous system (CNS) is a highly organised structure. Many signalling systems work in concert to ensure that neural stem cells are appropriately directed to generate progenitor cells, which in turn mature into functional cell types including projection neurons, interneurons, astrocytes, and oligodendrocytes. Herein we explore the role of the low density lipoprotein (LDL) receptor family, in particular family members LRP1 and LRP2, in regulating the behaviour of neural stem and progenitor cells during development and adulthood. The ability of LRP1 and LRP2 to bind a diverse and extensive range of ligands, regulate ligand endocytosis, recruit nonreceptor tyrosine kinases for direct signal transduction and signal in conjunction with other receptors, enables them to modulate many crucial neural cell functions.
Collapse
|
50
|
Domingues HS, Portugal CC, Socodato R, Relvas JB. Oligodendrocyte, Astrocyte, and Microglia Crosstalk in Myelin Development, Damage, and Repair. Front Cell Dev Biol 2016. [PMID: 27551677 DOI: 10.3389/fcell.2016.00071.ecollection2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/26/2023] Open
Abstract
Oligodendrocytes are the myelinating glia of the central nervous system. Myelination of axons allows rapid saltatory conduction of nerve impulses and contributes to axonal integrity. Devastating neurological deficits caused by demyelinating diseases, such as multiple sclerosis, illustrate well the importance of the process. In this review, we focus on the positive and negative interactions between oligodendrocytes, astrocytes, and microglia during developmental myelination and remyelination. Even though many lines of evidence support a crucial role for glia crosstalk during these processes, the nature of such interactions is often neglected when designing therapeutics for repair of demyelinated lesions. Understanding the cellular and molecular mechanisms underlying glial cell communication and how they influence oligodendrocyte differentiation and myelination is fundamental to uncover novel therapeutic strategies for myelin repair.
Collapse
Affiliation(s)
- Helena S Domingues
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| | - Camila C Portugal
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| | - Renato Socodato
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| | - João B Relvas
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| |
Collapse
|