1
|
Keller JK, Diekhof EK. Visual cues of respiratory contagion: Their impact on neuroimmune activation and mucosal immune responses in humans. Brain Behav Immun 2025; 125:398-409. [PMID: 39870198 DOI: 10.1016/j.bbi.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/12/2024] [Accepted: 01/21/2025] [Indexed: 01/29/2025] Open
Abstract
This study investigated the neural correlates of perceiving visual contagion cues characteristic of respiratory infections through functional magnetic resonance imaging (fMRI). Sixty-two participants (32f/ 30 m; ∼25 years on average) watched short videos depicting either contagious or non-contagious everyday situations, while their brain activation was continuously measured. We further measured the release of secretory immunoglobulin A (sIgA) in saliva to examine the first-line defensive response of the mucosal immune system. Perceiving sneezing and sick individuals compared to non-contagious individuals triggered increased activation in the anterior insula and other regions of the neuroimmune axis, that have been implicated in the somatosensory representation of the respiratory tract, and further led to increased release of sIgA. In line with predictions, this contagion cue-related activation of the insula was positively correlated with both perceived contagiousness and disgust evoked by the videos, as well as with the mucosal sIgA response. In contrast, the amygdala exhibited heightened activation to all videos featuring humans, regardless of explicit signs of contagion, indicating a nonspecific alertness to human presence. Nevertheless, amygdala activation was also correlated with the disgust ratings of each video. Collectively, these findings outline a neuroimmune mechanism for the processing of respiratory contagion cues. While the insula coordinates central and peripheral immune activation to match the perceived contagion threat, supposedly by triggering both increased sIgA release and contagion-related cognitions, the amygdala may rather act as an alerting system for social situations with a heightened transmission risk. This proactive neuroimmune response may help humans to manage contagion risks, that are difficult to avoid, by activating physiological and cognitive countermeasures in reaction to typical symptoms of respiratory infection, which prepares the organism for subsequent pathogen exposure.
Collapse
Affiliation(s)
- Judith K Keller
- Department of Biology, Neuroendocrinology and Human Biology Unit, Institute for Animal Cell- and Systems Biology, Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, D-22085 Hamburg, Germany.
| | - Esther K Diekhof
- Department of Biology, Neuroendocrinology and Human Biology Unit, Institute for Animal Cell- and Systems Biology, Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, D-22085 Hamburg, Germany.
| |
Collapse
|
2
|
Kayyal H, Cruciani F, Chandran SK, Edry E, Schif-Zuck S, Koren T, Yiannakas A, Rolls A, Ariel A, Rosenblum K. Retrieval of conditioned immune response in male mice is mediated by an anterior-posterior insula circuit. Nat Neurosci 2025; 28:589-601. [PMID: 39870921 DOI: 10.1038/s41593-024-01864-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 12/05/2024] [Indexed: 01/29/2025]
Abstract
To protect the body from infections, the brain has evolved the ability to coordinate behavioral and immunological responses. The conditioned immune response (CIR) is a form of Pavlovian conditioning wherein a sensory (for example, taste) stimulus, when paired with an immunomodulatory agent, evokes aversive behavior and an anticipatory immune response after re-experiencing the taste. Although taste and its valence are represented in the anterior insular cortex and immune response in the posterior insula and although the insula is pivotal for CIRs, the precise circuitry underlying CIRs remains unknown. Here, we demonstrated that a bidirectional circuit connecting the anterior and posterior (aIC-pIC) insula mediates the CIR in male mice. Retrieving the behavioral dimension of the association requires activity of aIC-to-pIC neurons, whereas modulating the anticipatory immunological dimension requires bidirectional projections. These results illuminate a mechanism by which experience shapes interactions between sensory internal representations and the immune system. Moreover, this newly described intrainsular circuit contributes to the preservation of brain-dependent immune homeostasis.
Collapse
Affiliation(s)
- Haneen Kayyal
- Sagol Department of Neuroscience, The Integrated Brain and Behavior Center, University of Haifa, Haifa, Israel.
| | - Federica Cruciani
- Sagol Department of Neuroscience, The Integrated Brain and Behavior Center, University of Haifa, Haifa, Israel.
| | | | - Efrat Edry
- Sagol Department of Neuroscience, The Integrated Brain and Behavior Center, University of Haifa, Haifa, Israel
- Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| | - Sagie Schif-Zuck
- Department of Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Departments of Human Biology, University of Haifa, Haifa, Israel
| | - Tamar Koren
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Adonis Yiannakas
- Sagol Department of Neuroscience, The Integrated Brain and Behavior Center, University of Haifa, Haifa, Israel
- European University of Cyprus Medical School, Frankfurt am Main, Germany
| | - Asya Rolls
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Amiram Ariel
- Department of Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Departments of Human Biology, University of Haifa, Haifa, Israel
| | - Kobi Rosenblum
- Sagol Department of Neuroscience, The Integrated Brain and Behavior Center, University of Haifa, Haifa, Israel.
- Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel.
| |
Collapse
|
3
|
Lei M, Tan Y, Ke J, Wang M, He Z, Ou G, Tu H, Tan W. Loss of cilia in chemosensory neurons inhibits pathogen avoidance in Caenorhabditis elegans. Microbes Infect 2024; 26:105370. [PMID: 38843949 DOI: 10.1016/j.micinf.2024.105370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/16/2024]
Abstract
Pathogen avoidance is a crucial and evolutionarily conserved behavior that enhances survival by preventing infection in diverse species, including Caenorhabditis elegans (C. elegans). This behavior relies on multiple chemosensory neurons equipped with cilia that are exposed to the external environment. However, the specific role of neuronal cilia in pathogen avoidance has not been completely elucidated. Herein, we discovered that osm-3(p802) mutants, which lack chemosensory neuronal cilia, exhibit slower avoidance of the pathogen Pseudomonas aeruginosa PA14, but not Escherichia coli OP50. This observation was consistent when osm-3(p802) mutants were exposed to P. aeruginosa PAO1. Following an encounter with PA14, the pumping, thrashing, and defecation behaviors of osm-3 mutants were comparable to those of the wild-type. However, the osm-3 mutants demonstrated reduced intestinal colonization of PA14, suggesting that they have stronger intestinal clearance ability. We conducted RNA-seq to identify genes responding to external stimuli that were differentially expressed owing to the loss of osm-3 and PA14 infection. Using RNAi, we demonstrated that three of these genes were essential for normal pathogen avoidance. In conclusion, our findings demonstrate that the loss of chemosensory neuronal cilia reduces pathogen avoidance in C. elegans while delaying intestinal colonization.
Collapse
Affiliation(s)
- Ming Lei
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China; The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yanheng Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Jingyi Ke
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Mengqi Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Zeyang He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Guangshuo Ou
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Haijun Tu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China.
| | - Weihong Tan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China; The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Lei M, Tan Y, Tu H, Tan W. Neuronal basis and diverse mechanisms of pathogen avoidance in Caenorhabditis elegans. Front Immunol 2024; 15:1353747. [PMID: 38751431 PMCID: PMC11094273 DOI: 10.3389/fimmu.2024.1353747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Pathogen avoidance behaviour has been observed across animal taxa as a vital host-microbe interaction mechanism. The nematode Caenorhabditis elegans has evolved multiple diverse mechanisms for pathogen avoidance under natural selection pressure. We summarise the current knowledge of the stimuli that trigger pathogen avoidance, including alterations in aerotaxis, intestinal bloating, and metabolites. We then survey the neural circuits involved in pathogen avoidance, transgenerational epigenetic inheritance of pathogen avoidance, signalling crosstalk between pathogen avoidance and innate immunity, and C. elegans avoidance of non-Pseudomonas bacteria. In this review, we highlight the latest advances in understanding host-microbe interactions and the gut-brain axis.
Collapse
Affiliation(s)
- Ming Lei
- Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yanheng Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Haijun Tu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Weihong Tan
- Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Bishnoi IR, Kavaliers M, Ossenkopp KP. Lipopolysaccharide (LPS) attenuates the primary conditioning of lithium chloride (LiCl)-induced context aversion but not the secondary conditioning of context aversion or taste avoidance. Behav Brain Res 2024; 459:114800. [PMID: 38061669 DOI: 10.1016/j.bbr.2023.114800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/20/2023] [Accepted: 12/03/2023] [Indexed: 12/25/2023]
Abstract
A first-order association can be formed between toxin-induced nausea and a context, as well as nausea and a taste cue. However, comparatively little is understood about second-order associations. The present study examined if the bacterial endotoxin, LPS, could impair the first- and second-order conditioning of context aversion (anticipatory nausea paradigm) and subsequent conditioned taste avoidance (two-bottle task). Adult male Long Evans rats were treated with LiCl (127 mg/kg, intraperitoneal [i.p.]) or vehicle control (NaCl) and then exposed to a distinct context for 4 first-order conditioning trials. LPS (200 μg/kg, i.p.) or NaCl were administered 24 h after each trial. Seventy-two h after the final first-order conditioning trial, rats underwent 2 second-order conditioning trials where they were treated with 2% saccharin (i.p.) and then exposed to the same context. Twenty-four h after the final second-order conditioning trial, rats were tested in a two-bottle task (2 trials), where they were given a choice between water and a palatable 0.2% saccharin solution. LiCl-treated rats demonstrated a context aversion by the 3rd conditioning trial in the anticipatory nausea paradigm. Rats previously exposed to LiCl also displayed a conditioned taste avoidance of saccharin within the two-bottle task. LPS attenuated first-order context aversion but did not alter either second-order context aversion or conditioned taste avoidance in the two-bottle task. This study demonstrated that a secondary association formed within an aversive context could result in a conditioned taste avoidance. Further, LPS may be able to attenuate primary conditioning, but not secondary conditioning.
Collapse
Affiliation(s)
- Indra R Bishnoi
- Graduate Program in Neuroscience, University of Western Ontario, London, Canada; Department of Psychology, University of Western Ontario, London, Canada.
| | - Martin Kavaliers
- Graduate Program in Neuroscience, University of Western Ontario, London, Canada; Department of Psychology, University of Western Ontario, London, Canada; Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Canada
| | - Klaus-Peter Ossenkopp
- Graduate Program in Neuroscience, University of Western Ontario, London, Canada; Department of Psychology, University of Western Ontario, London, Canada
| |
Collapse
|
6
|
Infection, Learning, and Memory: Focus on Immune Activation and Aversive Conditioning. Neurosci Biobehav Rev 2022; 142:104898. [PMID: 36183862 DOI: 10.1016/j.neubiorev.2022.104898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
Abstract
Here we review the effects of immune activation primarily via lipopolysaccharide (LPS), a cell wall component of Gram-negative bacteria, on hippocampal and non-hippocampal-dependent learning and memory. Rodent studies have found that LPS alters both the acquisition and consolidation of aversive learning and memory, such as those evoking evolutionarily adaptive responses like fear and disgust. The inhibitory effects of LPS on the acquisition and consolidation of contextual fear memory are discussed. LPS-induced alterations in the acquisition of taste and place-related conditioned disgust memory within bottle preference tasks and taste reactivity tests (taste-related), in addition to conditioned context avoidance tasks and the anticipatory nausea paradigm (place-related), are highlighted. Further, conditioned disgust memory consolidation may also be influenced by LPS-induced effects. Growing evidence suggests a central role of immune activation, especially pro-inflammatory cytokine activity, in eliciting the effects described here. Understanding how infection-induced immune activation alters learning and memory is increasingly important as bacterial and viral infections are found to present a risk of learning and memory impairment.
Collapse
|
7
|
Rudzki S. Is PTSD an Evolutionary Survival Adaptation Initiated by Unrestrained Cytokine Signaling and Maintained by Epigenetic Change? Mil Med 2022; 188:usac095. [PMID: 35446412 DOI: 10.1093/milmed/usac095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/01/2022] [Accepted: 03/24/2022] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Treatment outcomes for PTSD with current psychological therapies are poor, with very few patients achieving sustained symptom remission. A number of authors have identified physiological and immune disturbances in Post Traumatic Stress Disorder (PTSD) patients, but there is no unifying hypothesis that explains the myriad features of the disorder. MATERIALS AND METHODS The medical literature was reviewed over a 6-year period primarily using the medical database PUBMED. RESULTS The literature contains numerous papers that have identified a range of physiological and immune dysfunction in association with PTSD. This paper proposes that unrestrained cytokine signaling induces epigenetic changes that promote an evolutionary survival adaptation, which maintains a defensive PTSD phenotype. The brain can associate immune signaling with past threat and initiate a defensive behavioral response. The sympathetic nervous system is pro-inflammatory, while the parasympathetic nervous system is anti-inflammatory. Prolonged cholinergic withdrawal will promote a chronic inflammatory state. The innate immune cytokine IL-1β has pleiotropic properties and can regulate autonomic, glucocorticoid, and glutamate receptor functions, sleep, memory, and epigenetic enzymes. Changes in epigenetic enzyme activity can potentially alter phenotype and induce an adaptation. Levels of IL-1β correlate with severity and duration of PTSD and PTSD can be prevented by bolus administration of hydrocortisone in acute sepsis, consistent with unrestrained inflammation being a risk factor for PTSD. The nervous and immune systems engage in crosstalk, governed by common receptors. The benefits of currently used psychiatric medication may arise from immune, as well as synaptic, modulation. The psychedelic drugs (3,4-Methylenedioxymethamphetamine (MDMA), psilocybin, and ketamine) have potent immunosuppressive and anti-inflammatory effects on the adaptive immune system, which may contribute to their reported benefit in PTSD. There may be distinct PTSD phenotypes induced by innate and adaptive cytokine signaling. CONCLUSION In order for an organism to survive, it must adapt to its environment. Cytokines signal danger to the brain and can induce epigenetic changes that result in a persistent defensive phenotype. PTSD may be the price individuals pay for the genomic flexibility that promotes adaptation and survival.
Collapse
Affiliation(s)
- Stephan Rudzki
- Canberra Sports Medicine, Deakin, Australian Capital Territory 2600, Australia
| |
Collapse
|
8
|
Soares GLDS, Leão ERLPD, Freitas SF, Alves RMC, Tavares NDP, Costa MVN, Menezes GCD, Oliveira JHPD, Guerreiro LCF, Assis ACLD, Araújo SC, Franco FTDC, Anaissi AKM, Carmo ELD, Morais RDAPB, Demachki S, Diniz JAP, Nunes HM, Anthony DC, Diniz DG, Diniz CWP. Behavioral and Neuropathological Changes After Toxoplasma gondii Ocular Conjunctival Infection in BALB/c Mice. Front Cell Infect Microbiol 2022; 12:812152. [PMID: 35372100 PMCID: PMC8965508 DOI: 10.3389/fcimb.2022.812152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/07/2022] [Indexed: 11/15/2022] Open
Abstract
Ocular infection with Toxoplasma gondii causes toxoplasmosis in mice. However, following ocular infection with tachyzoites, the cause of the accompanying progressive changes in hippocampal-dependent tasks, and their relationship with the morphology and number of microglia, is less well understood. Here, in 6-month-old, female BALB/c mice, 5 μl of a suspension containing 48.5 × 106 tachyzoites/ml was introduced into the conjunctival sac; control received an equal volume of saline. Before and after instillation, all mice were subject to an olfactory discrimination (OD) test, using predator (cat) feces, and to an open-field (OF) task. After the behavioral tests, the animals were culled at either 22 or 44 days post-instillation (dpi), and the brains and retinas were dissected and processed for immunohistochemistry. The total number of Iba-1-immunolabeled microglia in the molecular layer of the dentate gyrus was estimated, and three-dimensional reconstructions of the cells were evaluated. Immobility was increased in the infected group at 12, 22, and 43 dpi, but the greatest immobility was observed at 22 dpi and was associated with reduced line crossing in the OF and distance traveled. In the OD test, infected animals spent more time in the compartment with feline fecal material at 14 and at 43 dpi. No OD changes were observed in the control group. The number of microglia was increased at 22 dpi but returned to control levels by 44 dpi. These changes were associated with the differentiation of T. gondii tachyzoites into bradyzoite-enclosed cysts within the brain and retina. Thus, infection of mice with T. gondii alters exploratory behavior, gives rise to a loss in predator’s odor avoidance from 2 weeks after infection, increased microglia number, and altered their morphology in the molecular layer of the dentate gyrus.
Collapse
|
9
|
Carvalho-Paulo D, Bento Torres Neto J, Filho CS, de Oliveira TCG, de Sousa AA, dos Reis RR, dos Santos ZA, de Lima CM, de Oliveira MA, Said NM, Freitas SF, Sosthenes MCK, Gomes GF, Henrique EP, Pereira PDC, de Siqueira LS, de Melo MAD, Guerreiro Diniz C, Magalhães NGDM, Diniz JAP, Vasconcelos PFDC, Diniz DG, Anthony DC, Sherry DF, Brites D, Picanço Diniz CW. Microglial Morphology Across Distantly Related Species: Phylogenetic, Environmental and Age Influences on Microglia Reactivity and Surveillance States. Front Immunol 2021; 12:683026. [PMID: 34220831 PMCID: PMC8250867 DOI: 10.3389/fimmu.2021.683026] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022] Open
Abstract
Microglial immunosurveillance of the brain parenchyma to detect local perturbations in homeostasis, in all species, results in the adoption of a spectrum of morphological changes that reflect functional adaptations. Here, we review the contribution of these changes in microglia morphology in distantly related species, in homeostatic and non-homeostatic conditions, with three principal goals (1): to review the phylogenetic influences on the morphological diversity of microglia during homeostasis (2); to explore the impact of homeostatic perturbations (Dengue virus challenge) in distantly related species (Mus musculus and Callithrix penicillata) as a proxy for the differential immune response in small and large brains; and (3) to examine the influences of environmental enrichment and aging on the plasticity of the microglial morphological response following an immunological challenge (neurotropic arbovirus infection). Our findings reveal that the differences in microglia morphology across distantly related species under homeostatic condition cannot be attributed to the phylogenetic origin of the species. However, large and small brains, under similar non-homeostatic conditions, display differential microglial morphological responses, and we argue that age and environment interact to affect the microglia morphology after an immunological challenge; in particular, mice living in an enriched environment exhibit a more efficient immune response to the virus resulting in earlier removal of the virus and earlier return to the homeostatic morphological phenotype of microglia than it is observed in sedentary mice.
Collapse
Affiliation(s)
- Dario Carvalho-Paulo
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - João Bento Torres Neto
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
- Faculdade de Fisioterapia e Terapia Ocupacional, Universidade Federal do Pará, Belém, Brazil
| | - Carlos Santos Filho
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Thais Cristina Galdino de Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Aline Andrade de Sousa
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Renata Rodrigues dos Reis
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Zaire Alves dos Santos
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Camila Mendes de Lima
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Marcus Augusto de Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Nivin Mazen Said
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Sinara Franco Freitas
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Marcia Consentino Kronka Sosthenes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Giovanni Freitas Gomes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Ediely Pereira Henrique
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Patrick Douglas Côrrea Pereira
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Lucas Silva de Siqueira
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Mauro André Damasceno de Melo
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Cristovam Guerreiro Diniz
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Nara Gyzely de Morais Magalhães
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | | | - Pedro Fernando da Costa Vasconcelos
- Dep. de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Belém, Brazil
- Departamento de Patologia, Universidade do Estado do Pará, Belém, Brazil
| | - Daniel Guerreiro Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, Brazil
| | | | - David Francis Sherry
- Department of Psychology, Advanced Facility for Avian Research, University of Western Ontario, London, ON, Canada
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
10
|
Hadamitzky M, Lückemann L, Pacheco-López G, Schedlowski M. Pavlovian Conditioning of Immunological and Neuroendocrine Functions. Physiol Rev 2020; 100:357-405. [DOI: 10.1152/physrev.00033.2018] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The phenomenon of behaviorally conditioned immunological and neuroendocrine functions has been investigated for the past 100 yr. The observation that associative learning processes can modify peripheral immune functions was first reported and investigated by Ivan Petrovic Pavlov and his co-workers. Their work later fell into oblivion, also because so little was known about the immune system’s function and even less about the underlying mechanisms of how learning, a central nervous system activity, could affect peripheral immune responses. With the employment of a taste-avoidance paradigm in rats, this phenomenon was rediscovered 45 yr ago as one of the most fascinating examples of the reciprocal functional interaction between behavior, the brain, and peripheral immune functions, and it established psychoneuroimmunology as a new research field. Relying on growing knowledge about efferent and afferent communication pathways between the brain, neuroendocrine system, primary and secondary immune organs, and immunocompetent cells, experimental animal studies demonstrate that cellular and humoral immune and neuroendocrine functions can be modulated via associative learning protocols. These (from the classical perspective) learned immune responses are clinically relevant, since they affect the development and progression of immune-related diseases and, more importantly, are also inducible in humans. The increased knowledge about the neuropsychological machinery steering learning and memory processes together with recent insight into the mechanisms mediating placebo responses provide fascinating perspectives to exploit these learned immune and neuroendocrine responses as supportive therapies, the aim being to reduce the amount of medication required, diminishing unwanted drug side effects while maximizing the therapeutic effect for the patient’s benefit.
Collapse
Affiliation(s)
- Martin Hadamitzky
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany; Health Sciences Department, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico; and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Laura Lückemann
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany; Health Sciences Department, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico; and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gustavo Pacheco-López
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany; Health Sciences Department, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico; and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany; Health Sciences Department, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico; and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Singh J, Aballay A. Neural control of behavioral and molecular defenses in C. elegans. Curr Opin Neurobiol 2019; 62:34-40. [PMID: 31812835 DOI: 10.1016/j.conb.2019.10.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/14/2019] [Indexed: 01/22/2023]
Abstract
The nervous and immune systems use bi-directional communication to control host responses against microbial pathogens. Recent studies at the interface of the two systems have highlighted important roles of the nervous system in the regulation of both microbicidal pathways and pathogen avoidance behaviors. Studies on the neural circuits in the simple model host Caenorhabditis elegans have significantly improved our understanding of the roles of conserved neural mechanisms in controlling innate immunity. Moreover, behavioral studies have advanced our understanding of how the nervous system may sense potential pathogens and consequently elicit pathogen avoidance, reducing the risk of infection. In this review, we discuss the neural circuits that regulate both behavioral immunity and molecular immunity in C. elegans.
Collapse
Affiliation(s)
- Jogender Singh
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alejandro Aballay
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
12
|
Kobrzycka A, Napora P, Pearson BL, Pierzchała-Koziec K, Szewczyk R, Wieczorek M. Peripheral and central compensatory mechanisms for impaired vagus nerve function during peripheral immune activation. J Neuroinflammation 2019; 16:150. [PMID: 31324250 PMCID: PMC6642550 DOI: 10.1186/s12974-019-1544-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/10/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Determining the etiology and possible treatment strategies for numerous diseases requires a comprehensive understanding of compensatory mechanisms in physiological systems. The vagus nerve acts as a key interface between the brain and the peripheral internal organs. We set out to identify mechanisms compensating for a lack of neuronal communication between the immune and the central nervous system (CNS) during infection. METHODS We assessed biochemical and central neurotransmitter changes resulting from subdiaphragmatic vagotomy and whether they are modulated by intraperitoneal infection. We performed a series of subdiaphragmatic vagotomy or sham operations on male Wistar rats. Next, after full, 30-day recovery period, they were randomly assigned to receive an injection of Escherichia coli lipopolysaccharide or saline. Two hours later, animal were euthanized and we measured the plasma concentration of prostaglandin E2 (with HPLC-MS), interleukin-6 (ELISA), and corticosterone (RIA). We also had measured the concentration of monoaminergic neurotransmitters and their metabolites in the amygdala, brainstem, hippocampus, hypothalamus, motor cortex, periaqueductal gray, and prefrontal medial cortex using RP-HPLC-ED. A subset of the animals was evaluated in the elevated plus maze test immediately before euthanization. RESULTS The lack of immunosensory signaling of the vagus nerve stimulated increased activity of discrete inflammatory marker signals, which we confirmed by quantifying biochemical changes in blood plasma. Behavioral results, although preliminary, support the observed biochemical alterations. Many of the neurotransmitter changes observed after vagotomy indicated that the vagus nerve influences the activity of many brain areas involved in control of immune response and sickness behavior. Our studies show that these changes are largely eliminated during experimental infection. CONCLUSIONS Our results suggest that in vagotomized animals with blocked CNS, communication may transmit via a pathway independent of the vagus nerve to permit restoration of CNS activity for peripheral inflammation control.
Collapse
Affiliation(s)
- Anna Kobrzycka
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Paweł Napora
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Brandon L. Pearson
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, USA
| | | | - Rafał Szewczyk
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Marek Wieczorek
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
13
|
Kavaliers M, Choleris E. The role of social cognition in parasite and pathogen avoidance. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0206. [PMID: 29866919 DOI: 10.1098/rstb.2017.0206] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2017] [Indexed: 12/22/2022] Open
Abstract
The acquisition and use of social information are integral to social behaviour and parasite/pathogen avoidance. This involves social cognition which encompasses mechanisms for acquiring, processing, retaining and acting on social information. Social cognition entails the acquisition of social information about others (i.e. social recognition) and from others (i.e. social learning). Social cognition involves assessing other individuals and their infection status and the pathogen and parasite threat they pose and deciding about when and how to interact with them. Social cognition provides a framework for examining pathogen and parasite avoidance behaviours and their associated neurobiological mechanisms. Here, we briefly consider the relationships between social cognition and olfactory-mediated pathogen and parasite avoidance behaviours. We briefly discuss aspects of (i) social recognition of actual and potentially infected individuals and the impact of parasite/pathogen threat on mate and social partner choice; (ii) the roles of 'out-groups' (strangers, unfamiliar individuals) and 'in-groups' (familiar individuals) in the expression of parasite/pathogen avoidance behaviours; (iii) individual and social learning, i.e. the utilization of the pathogen recognition and avoidance responses of others; and (iv) the neurobiological mechanisms, in particular the roles of the nonapeptide, oxytocin and steroid hormones (oestrogens) associated with social cognition and parasite/pathogen avoidance.This article is part of the Theo Murphy meeting issue 'Evolution of pathogen and parasite avoidance behaviours'.
Collapse
Affiliation(s)
- Martin Kavaliers
- Department of Psychology and Neuroscience Program, Social Science Centre, University of Western Ontario, London, Ontario, Canada N6A 5C2 .,Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
14
|
Kavaliers M, Ossenkopp KP, Choleris E. Social neuroscience of disgust. GENES BRAIN AND BEHAVIOR 2018; 18:e12508. [DOI: 10.1111/gbb.12508] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/13/2018] [Accepted: 07/26/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Martin Kavaliers
- Department of Psychology and Neuroscience Program; University of Western Ontario; London Ontario Canada
- Department of Psychology and Neuroscience Program; University of Guelph; Guelph Ontario Canada
| | - Klaus-Peter Ossenkopp
- Department of Psychology and Neuroscience Program; University of Western Ontario; London Ontario Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program; University of Guelph; Guelph Ontario Canada
| |
Collapse
|
15
|
Sarabian C, Belais R, MacIntosh AJJ. Feeding decisions under contamination risk in bonobos. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170195. [PMID: 29866924 PMCID: PMC6000142 DOI: 10.1098/rstb.2017.0195] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2018] [Indexed: 01/30/2023] Open
Abstract
Threats from parasites and pathogens are ubiquitous, and many use pathways that exploit host trophic interactions for their transmission. As such, host organisms have evolved a behavioural immune system to facilitate contamination-risk assessment and avoidance of potential contaminants in various contexts, including feeding. Detecting pathogen threats can rely on different sensory modalities allowing animals to screen for a wide array of contaminants. Here, we present a series of experiments in which bonobos showed clear avoidance of contaminated food items, and were sensitive to risk along a contamination probability gradient. Across experiments, bonobos appeared to use multisensorial cues to inform their feeding decisions. In addition, bonobos showed reduced tactile, gustatory and tool use activities when in the presence of contaminant versus control odours in a challenging foraging context. Our experiments build on previous work conducted in Japanese macaques and chimpanzees aiming at a better understanding of the ways in which the behavioural immune system operates in primates.This article is part of the Theo Murphy meeting issue 'Evolution of pathogen and parasite avoidance behaviours'.
Collapse
Affiliation(s)
- Cecile Sarabian
- Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama 484-8506, Japan
| | - Raphael Belais
- Amis des bonobos du Congo, Lola ya Bonobo Sanctuary, Les petites chutes de la Lukaya, Kimwenza, Kinshasa, Democratic Republic of the Congo
| | - Andrew J J MacIntosh
- Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama 484-8506, Japan
| |
Collapse
|
16
|
Münger E, Montiel-Castro AJ, Langhans W, Pacheco-López G. Reciprocal Interactions Between Gut Microbiota and Host Social Behavior. Front Integr Neurosci 2018; 12:21. [PMID: 29946243 PMCID: PMC6006525 DOI: 10.3389/fnint.2018.00021] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/18/2018] [Indexed: 12/26/2022] Open
Abstract
Animals harbor an extensive, dynamic microbial ecosystem in their gut. Gut microbiota (GM) supposedly modulate various host functions including fecundity, metabolism, immunity, cognition and behavior. Starting by analyzing the concept of the holobiont as a unit of selection, we highlight recent findings suggesting an intimate link between GM and animal social behavior. We consider two reciprocal emerging themes: (i) that GM influence host social behavior; and (ii) that social behavior and social structure shape the composition of the GM across individuals. We propose that, throughout a long history of coevolution, GM may have become involved in the modulation of their host’s sociality to foster their own transmission, while in turn social organization may have fine-tuned the transmission of beneficial endosymbionts and prevented pathogen infection. We suggest that investigating these reciprocal interactions can advance our understanding of sociality, from healthy and impaired social cognition to the evolution of specific social behaviors and societal structure.
Collapse
Affiliation(s)
- Emmanuelle Münger
- Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | | | - Wolfgang Langhans
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Gustavo Pacheco-López
- Health Sciences Department, Metropolitan Autonomous University (UAM), Lerma, Mexico.,Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Savitz J, Harrison NA. Interoception and Inflammation in Psychiatric Disorders. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 3:514-524. [PMID: 29884282 PMCID: PMC5995132 DOI: 10.1016/j.bpsc.2017.12.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/28/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
Abstract
Despite a historical focus on neurally mediated interoceptive signaling mechanisms, humoral (and even cellular) signals also play an important role in communicating bodily physiological state to the brain. These signaling pathways can perturb neuronal structure, chemistry, and function, leading to discrete changes in behavior. They are also increasingly implicated in the pathophysiology of psychiatric disorders. The importance of these humoral signaling pathways is perhaps most powerfully illustrated in the context of infection and inflammation. Here we provide an overview of how interaction of immune activation of neural and humoral interoceptive mechanisms mediates discrete changes in brain and behavior and highlight how activation of these pathways at specific points in neural development may predispose to psychiatric disorder. As our mechanistic understanding of these interoceptive pathways continues to emerge, it is revealing novel therapeutic targets, potentially heralding an exciting new era of immunotherapies in psychiatry.
Collapse
Affiliation(s)
- Jonathan Savitz
- Laureate Institute for Brain Research, the University of Tulsa, Tulsa, Oklahoma; Oxley College of Health Sciences, the University of Tulsa, Tulsa, Oklahoma
| | - Neil A Harrison
- Clinical Imaging Sciences Centre, Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom; Sackler Centre for Consciousness Science, University of Sussex, Brighton, United Kingdom; Sussex Partnership NHS Foundation Trust, Brighton, United Kingdom.
| |
Collapse
|
18
|
Compensatory up-regulation of behavioral disease avoidance in immuno-compromised people with rheumatoid arthritis. EVOL HUM BEHAV 2017. [DOI: 10.1016/j.evolhumbehav.2016.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
19
|
Lückemann L, Unteroberdörster M, Kirchhof J, Schedlowski M, Hadamitzky M. Applications and limitations of behaviorally conditioned immunopharmacological responses. Neurobiol Learn Mem 2017; 142:91-98. [PMID: 28216206 DOI: 10.1016/j.nlm.2017.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/10/2017] [Accepted: 02/15/2017] [Indexed: 12/17/2022]
Abstract
The importance of placebo responses for the treatment of various medical conditions has increasingly been recognized, whereas knowledge and systematic application in clinical settings are still sparse. One possible application for placebo responses in pharmacotherapy is given by learning paradigms, such as behaviorally conditioned immunosuppression, aiming at drug dose reduction while maintaining therapeutic efficacy of drug treatment. In an established learning paradigm of conditioned taste aversion/avoidance (CTA) in both, rats and humans, respectively, a novel-tasting drinking solution (conditioned stimulus, CS) is paired with an injection of the immunosuppressive drug cyclosporine A (CsA) as unconditioned stimulus (US). The conditioned response, evoked by re-presenting the CS alone at a later time, is reflected by avoidance behavior of consuming the solution (conditioned taste aversion; CTA) and a diminished interleukin (IL)-2 and interferon (IFN)-γ cytokine production as well as mRNA expression of rat splenic T cells or human peripheral T lymphocytes, closely mimicking the immunosuppressive effects of CsA. However, due to unreinforced CS-re-exposure conditioned responses progressively decreases over time (extinction), reflecting a considerable challenge for potential clinical applications of this learned immunosuppression. The present article discusses and critically reviews actual approaches, applications but also limitations of learning paradigms in immune pharmacotherapy.
Collapse
Affiliation(s)
- Laura Lückemann
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Meike Unteroberdörster
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Julia Kirchhof
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Martin Hadamitzky
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany.
| |
Collapse
|
20
|
Dipasquale O, Cooper EA, Tibble J, Voon V, Baglio F, Baselli G, Cercignani M, Harrison NA. Interferon-α acutely impairs whole-brain functional connectivity network architecture - A preliminary study. Brain Behav Immun 2016; 58:31-39. [PMID: 26697999 PMCID: PMC5074446 DOI: 10.1016/j.bbi.2015.12.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/10/2015] [Accepted: 12/13/2015] [Indexed: 12/24/2022] Open
Abstract
Interferon-alpha (IFN-α) is a key mediator of antiviral immune responses used to treat Hepatitis C infection. Though clinically effective, IFN-α rapidly impairs mood, motivation and cognition, effects that can appear indistinguishable from major depression and provide powerful empirical support for the inflammation theory of depression. Though inflammation has been shown to modulate activity within discrete brain regions, how it affects distributed information processing and the architecture of whole brain functional connectivity networks have not previously been investigated. Here we use a graph theoretic analysis of resting state functional magnetic resonance imaging (rfMRI) to investigate acute effects of systemic interferon-alpha (IFN-α) on whole brain functional connectivity architecture and its relationship to IFN-α-induced mood change. Twenty-two patients with Hepatitis-C infection, initiating IFN-α-based therapy were scanned at baseline and 4h after their first IFN-α dose. The whole brain network was parcellated into 110 cortical and sub-cortical nodes based on the Oxford-Harvard Atlas and effects assessed on higher-level graph metrics, including node degree, betweenness centrality, global and local efficiency. IFN-α was associated with a significant reduction in global network connectivity (node degree) (p=0.033) and efficiency (p=0.013), indicating a global reduction of information transfer among the nodes forming the whole brain network. Effects were similar for highly connected (hub) and non-hub nodes, with no effect on betweenness centrality (p>0.1). At a local level, we identified regions with reduced efficiency of information exchange and a sub-network with decreased functional connectivity after IFN-α. Changes in local and particularly global functional connectivity correlated with associated changes in mood measured on the Profile of Mood States (POMS) questionnaire. IFN-α rapidly induced a profound shift in whole brain network structure, impairing global functional connectivity and the efficiency of parallel information exchange. Correlations with multiple indices of mood change support a role for global changes in brain functional connectivity architecture in coordinated behavioral responses to IFN-α.
Collapse
Affiliation(s)
- Ottavia Dipasquale
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy,IRCCS, Fondazione don Carlo Gnocchi, Milan, Italy,Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, UK
| | - Ella A. Cooper
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, UK
| | - Jeremy Tibble
- Department of Gastroenterology, Brighton & Sussex University Hospitals, Brighton, UK
| | - Valerie Voon
- Department of Psychiatry, University of Cambridge, Cambridge, UK,Cambridge and Peterborough NHS Foundation Trust, Cambridge, UK
| | | | - Giuseppe Baselli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Mara Cercignani
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, UK,Neuroimaging Laboratory, Santa Lucia Foundation, Rome, Italy
| | - Neil A. Harrison
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, UK,Sackler Centre for Consciousness Science, University of Sussex, Falmer, UK,Sussex Partnership NHS Foundation Trust, Brighton, UK,Corresponding author at: Clinical Imaging Sciences Centre, Brighton & Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK.Clinical Imaging Sciences CentreBrighton & Sussex Medical SchoolUniversity of SussexFalmerBN1 9RRUK
| |
Collapse
|
21
|
Kaczorowski RL, Markman S. Nectar alkaloids of tree tobacco can reduce Palestine sunbird foraging performance in a colour discrimination task. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2016.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
22
|
Ordovas-Montanes J, Rakoff-Nahoum S, Huang S, Riol-Blanco L, Barreiro O, von Andrian UH. The Regulation of Immunological Processes by Peripheral Neurons in Homeostasis and Disease. Trends Immunol 2016; 36:578-604. [PMID: 26431937 DOI: 10.1016/j.it.2015.08.007] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 08/13/2015] [Accepted: 08/13/2015] [Indexed: 02/06/2023]
Abstract
The nervous system and the immune system are the principal sensory interfaces between the internal and external environment. They are responsible for recognizing, integrating, and responding to varied stimuli, and have the capacity to form memories of these encounters leading to learned or 'adaptive' future responses. We review current understanding of the cross-regulation between these systems. The autonomic and somatosensory nervous systems regulate both the development and deployment of immune cells, with broad functions that impact on hematopoiesis as well as on priming, migration, and cytokine production. In turn, specific immune cell subsets contribute to homeostatic neural circuits such as those controlling metabolism, hypertension, and the inflammatory reflex. We examine the contribution of the somatosensory system to autoimmune, autoinflammatory, allergic, and infectious processes in barrier tissues and, in this context, discuss opportunities for therapeutic manipulation of neuro-immune interactions.
Collapse
Affiliation(s)
- Jose Ordovas-Montanes
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Seth Rakoff-Nahoum
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Boston Children's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Siyi Huang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Olga Barreiro
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ulrich H von Andrian
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard University, Cambridge, MA 02139, USA.
| |
Collapse
|
23
|
CD40-TNF activation in mice induces extended sickness behavior syndrome co-incident with but not dependent on activation of the kynurenine pathway. Brain Behav Immun 2015; 50:125-140. [PMID: 26173174 DOI: 10.1016/j.bbi.2015.06.184] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 06/23/2015] [Accepted: 06/27/2015] [Indexed: 12/12/2022] Open
Abstract
The similarity between sickness behavior syndrome (SBS) in infection and autoimmune disorders and certain symptoms in major depressive disorder (MDD), and the high co-morbidity of autoimmune disorders and MDD, constitutes some of the major evidence for the immune-inflammation hypothesis of MDD. CD40 ligand-CD40 immune-activation is important in host response to infection and in development of autoimmunity. Mice given a single intra-peritoneal injection of CD40 agonist antibody (CD40AB) develop SBS for 2-3days characterized by weight loss and increased sleep, effects that are dependent on the cytokine, tumor necrosis factor (TNF). Here we report that CD40AB also induces behavioral effects that extend beyond acute SBS and co-occur with but are not mediated by kynurenine pathway activation and recovery. CD40AB led to decreased saccharin drinking (days 1-7) and decreased Pavlovian fear conditioning (days 5-6), and was without effect on physical fatigue (day 5). These behavioral effects co-occurred with increased plasma and brain levels of kynurenine and its metabolites (days 1-7/8). Co-injection of TNF blocker etanercept with CD40AB prevented each of SBS, reduced saccharin drinking, and kynurenine pathway activation in plasma and brain. Repeated oral administration of a selective indoleamine 2,3-dioxygenase (IDO) inhibitor blocked activation of the kynurenine pathway but was without effect on SBS and saccharin drinking. This study provides novel evidence that CD40-TNF activation induces deficits in saccharin drinking and Pavlovian fear learning and activates the kynurenine pathway, and that CD40-TNF activation of the kynurenine pathway is not necessary for induction of the acute or extended SBS effects.
Collapse
|
24
|
Testing the disgust conditioning theory of food-avoidance in adolescents with recent onset anorexia nervosa. Behav Res Ther 2015; 71:131-8. [DOI: 10.1016/j.brat.2015.06.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 06/10/2015] [Accepted: 06/18/2015] [Indexed: 11/18/2022]
|
25
|
Stevenson RJ, Hodgson D, Oaten MJ, Sominsky L, Mahmut M, Case TI. Oral Immune Activation by Disgust and Disease-Related Pictures. J PSYCHOPHYSIOL 2015. [DOI: 10.1027/0269-8803/a000143] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract. Both disgust and disease-related images appear able to induce an innate immune response but it is unclear whether these effects are independent or rely upon a common shared factor (e.g., disgust or disease-related cognitions). In this study we directly compared these two inductions using specifically generated sets of images. One set was disease-related but evoked little disgust, while the other set was disgust evoking but with less disease-relatedness. These two image sets were then compared to a third set, a negative control condition. Using a wholly within-subject design, participants viewed one image set per week, and provided saliva samples, before and after each viewing occasion, which were later analyzed for innate immune markers. We found that both the disease related and disgust images, relative to the negative control images, were not able to generate an innate immune response. However, secondary analyses revealed innate immune responses in participants with greater propensity to feel disgust following exposure to disease-related and disgusting images. These findings suggest that disgust images relatively free of disease-related themes, and disease-related images relatively free of disgust may be suboptimal cues for generating an innate immune response. Not only may this explain why disgust propensity mediates these effects, it may also imply a common pathway.
Collapse
Affiliation(s)
| | - Deborah Hodgson
- Laboratory of Neuroimmunology, University of Newcastle, Callaghan, NSW, Australia
| | - Megan J. Oaten
- Department of Applied Psychology, Griffith University, Southport, QLD, Australia
| | - Luba Sominsky
- Laboratory of Neuroimmunology, University of Newcastle, Callaghan, NSW, Australia
| | - Mehmet Mahmut
- Department of Psychology, Macquarie University, Sydney, NSW, Australia
| | - Trevor I. Case
- Department of Psychology, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
26
|
Physical Activity Protects the Human Brain against Metabolic Stress Induced by a Postprandial and Chronic Inflammation. Behav Neurol 2015; 2015:569869. [PMID: 26074674 PMCID: PMC4436444 DOI: 10.1155/2015/569869] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/27/2015] [Indexed: 12/19/2022] Open
Abstract
In recent years, it has become clear that chronic systemic low-grade inflammation is at the root of many, if not all, typically Western diseases associated with the metabolic syndrome. While much focus has been given to sedentary lifestyle as a cause of chronic inflammation, it is less often appreciated that chronic inflammation may also promote a sedentary lifestyle, which in turn causes chronic inflammation. Given that even minor increases in chronic inflammation reduce brain volume in otherwise healthy individuals, the bidirectional relationship between inflammation and sedentary behaviour may explain why humans have lost brain volume in the last 30,000 years and also intelligence in the last 30 years. We review evidence that lack of physical activity induces chronic low-grade inflammation and, consequently, an energy conflict between the selfish immune system and the selfish brain. Although the notion that increased physical activity would improve health in the modern world is widespread, here we provide a novel perspective on this truism by providing evidence that recovery of normal human behaviour, such as spontaneous physical activity, would calm proinflammatory activity, thereby allocating more energy to the brain and other organs, and by doing so would improve human health.
Collapse
|
27
|
Harrison NA, Cercignani M, Voon V, Critchley HD. Effects of inflammation on hippocampus and substantia nigra responses to novelty in healthy human participants. Neuropsychopharmacology 2015; 40:831-8. [PMID: 25154706 PMCID: PMC4264953 DOI: 10.1038/npp.2014.222] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/10/2014] [Accepted: 08/15/2014] [Indexed: 11/09/2022]
Abstract
Humans are naturally inquisitive. This tendency is adaptive, aiding identification of potentially valuable novel outcomes. The dopaminergic substantia nigra (SN) is implicated in the drive to explore novel stimuli and situations. However, infection and inflammation inhibit the motivation to seek out novelty. This likely serves to limit exposure to uncertain, potentially detrimental outcomes when metabolic resources are limited. Nevertheless, the neural mechanisms through which inflammation constrains novelty seeking are poorly understood. We therefore scanned 16 healthy participants (6 male, mean 27.2±7.3 years), using fMRI, once following experimental inflammation (intramuscular (i.m.) typhoid vaccination) and once after placebo (i.m. saline), with the aim of characterizing effects of inflammation on neural processing of novel and familiar place, and face stimuli. We specifically tested the effects of inflammation on the hypothesized roles of SN and hippocampus in novelty processing. Typhoid vaccination evoked a nearly threefold increase in circulating pro-inflammatory cytokine (interleukin-6) levels 3 h after injection, indicating induction of mild systemic inflammation. Enhanced hippocampal responses to novel (compared with familiar) stimuli were observed following both vaccine and placebo, consistent with intact central novelty detection. However, the normal bilateral reactivity of SN to stimulus novelty was significantly attenuated following inflammation. Correspondingly, inflammation also markedly impaired novelty-related functional coupling between the SN and hippocampus. These data extend previous findings of SN sensitivity to mild inflammation associated with changes in psychomotor responding, and suggest that inflammation-induced blunting of SN responses to hippocampal novelty signals may represent a plausible mechanism through which inflammation impairs motivational responses to novelty.
Collapse
Affiliation(s)
- Neil A Harrison
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex Campus, Brighton, UK,Sackler Centre for Consciousness Science, University of Sussex, Brighton, UK,Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton BN1 9RR, UK, Tel: +44 0 1273 876657, Fax: +44 0 1273 876721, E-mail:
| | - Mara Cercignani
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex Campus, Brighton, UK
| | - Valerie Voon
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Hugo D Critchley
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex Campus, Brighton, UK,Sackler Centre for Consciousness Science, University of Sussex, Brighton, UK
| |
Collapse
|
28
|
Straub RH. TRPV1, TRPA1, and TRPM8 channels in inflammation, energy redirection, and water retention: role in chronic inflammatory diseases with an evolutionary perspective. J Mol Med (Berl) 2014; 92:925-37. [DOI: 10.1007/s00109-014-1175-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/17/2014] [Accepted: 05/20/2014] [Indexed: 01/04/2023]
|
29
|
Ersche KD, Hagan CC, Smith DG, Abbott S, Jones PS, Apergis-Schoute AM, Döffinger R. Aberrant disgust responses and immune reactivity in cocaine-dependent men. Biol Psychiatry 2014; 75:140-7. [PMID: 24090796 PMCID: PMC3898808 DOI: 10.1016/j.biopsych.2013.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/29/2013] [Accepted: 08/01/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND Infectious diseases are the most common and cost-intensive health complications associated with drug addiction. There is wide belief that drug-dependent individuals expose themselves more regularly to disease-related pathogens through risky behaviors such as sharing pipes and needles, thereby increasing their risk for contracting an infectious disease. However, evidence is emerging indicating that not only lifestyle but also the immunomodulatory effects of addictive drugs, such as cocaine, may account for their high infection risk. As feelings of disgust are thought to be an important psychological mechanism in avoiding the exposure to pathogens, we sought to investigate behavioral, physiological, and immune responses to disgust-evoking cues in both cocaine-dependent and healthy men. METHODS All participants (N = 61) were exposed to neutral and disgust-evoking photographs depicting food and nonfood images while response accuracy, latency, and skin conductivity were recorded. Saliva samples were collected before and after exposure to neutral and disgusting images, respectively. Attitudes toward disgust and hygiene behaviors were assessed using questionnaire measures. RESULTS Response times to disgust-evoking photographs were prolonged in all participants, and specifically in cocaine-dependent individuals. While viewing the disgusting images, cocaine-dependent individuals exhibited aberrant skin conductivity and increased the secretion of the salivary cytokine interleukin-6 relative to control participants. CONCLUSION Our data provide evidence of a hypersensitivity to disgusting stimuli in cocaine-dependent individuals, possibly reflecting conditioned responses to noningestive sources of infection. Coupled with a lack of interoception of bodily signals, aberrant disgust responses might lead to increased infection susceptibility in affected individuals.
Collapse
Affiliation(s)
- Karen D Ersche
- Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom.
| | - Cindy C Hagan
- Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Dana G Smith
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Sanja Abbott
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - P Simon Jones
- Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Annemieke M Apergis-Schoute
- Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Rainer Döffinger
- Department of Clinical Biochemistry and Immunology, Cambridge University Hospitals National Health Service Foundation Trust, Addenbrooke's Hospital, Cambridge, United Kingdom
| |
Collapse
|
30
|
Disgust elevates core body temperature and up-regulates certain oral immune markers. Brain Behav Immun 2012; 26:1160-8. [PMID: 22841694 DOI: 10.1016/j.bbi.2012.07.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/17/2012] [Accepted: 07/17/2012] [Indexed: 11/23/2022] Open
Abstract
Recent findings suggest that disgust can activate particular aspects of the immune system. In this study we examine whether disgust can also elevate core body temperature (BT), a further feature of an immune response to disease. In addition, we also examined whether food based disgust--a core eliciting stimulus--may be a more potent immune stimulus than non-food based disgust. Healthy males were randomly assigned to view one of four sets of images--food disgust, non-food disgust, food control and negative emotion control. Measures of BT, salivary immune and related markers, and self-report data, were collected before, and at two time points after image viewing. Disgust elevated BT relative to the negative emotion control condition, as did food images. Different mechanisms appeared to account for these effects on BT, with higher initial levels of Tumor Necrosis Factor alpha (TNF-a) and disgust, predictive of BT increases in the disgust conditions. Disgust also increased TNF-a, and albumin levels, relative to the control conditions. Type of disgust exerted little effect. These findings further support the idea that disgust impacts upon immune function, and that disgust serves primarily a disease avoidance function.
Collapse
|
31
|
Learned Immunosuppression: Extinction, Renewal, and the Challenge of Reconsolidation. J Neuroimmune Pharmacol 2012; 8:180-8. [DOI: 10.1007/s11481-012-9388-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 07/04/2012] [Indexed: 12/17/2022]
|
32
|
Stevenson RJ, Case TI, Oaten MJ. Proactive strategies to avoid infectious disease. Philos Trans R Soc Lond B Biol Sci 2012; 366:3361-3. [PMID: 22042913 DOI: 10.1098/rstb.2011.0170] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Infectious disease exerts a large selective pressure on all organisms. One response to this has been for animals to evolve energetically costly immune systems to counter infection, while another--the focus of this theme issue--has been the evolution of proactive strategies primarily to avoid infection. These strategies can be grouped into three types, all of which demonstrate varying levels of interaction with the immune system. The first concerns maternal strategies that function to promote the immunocompetence of their offspring. The second type of strategy influences mate selection, guiding the selection of a healthy mate and one who differs maximally from the self in their complement of antigen-coding genes. The third strategy involves two classes of behaviour. One relates to the capacity of the organisms to learn associations between cues indicative of pathogen threat and immune responses. The other relates to prevention and even treatment of infection through behaviours such as avoidance, grooming, quarantine, medicine and care of the sick. In humans, disease avoidance is based upon cognition and especially the emotion of disgust. Human disease avoidance is not without its costs. There is a propensity to reject healthy individuals who just appear sick--stigmatization--and the system may malfunction, resulting in various forms of psychopathology. Pathogen threat also appears to have been a highly significant and unrecognized force in shaping human culture so as to minimize infection threats. This cultural shaping process--moralization--can be co-opted to promote human health.
Collapse
Affiliation(s)
- Richard J Stevenson
- Department of Psychology, Macquarie University, Sydney, New South Wales 2109, Australia.
| | | | | |
Collapse
|