1
|
Happi AN, Ogunsanya OA, Ayinla AO, Sijuwola AE, Saibu FM, Akano K, Nwofoke C, Elias OT, Achonduh-Atijegbe O, Daodu RO, Adedokun OA, Adeyemo A, Ogundana KE, Lawal OZ, Parker E, Nosamiefan I, Okolie J, Parker ZF, McCauley MD, Eller LA, Lombardi K, Tiamiyu AB, Iroezindu M, Akinwale E, Njatou TLFA, Mebrahtu T, Broach E, Zuppe A, Prins P, Lay J, Amare M, Modjarrad K, Collins ND, Vasan S, Tucker C, Daye S, Happi CT. Lassa virus in novel hosts: insights into the epidemiology of lassa virus infections in southern Nigeria. Emerg Microbes Infect 2024; 13:2294859. [PMID: 38088796 PMCID: PMC10810657 DOI: 10.1080/22221751.2023.2294859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024]
Abstract
Identification of the diverse animal hosts responsible for spill-over events from animals to humans is crucial for comprehending the transmission patterns of emerging infectious diseases, which pose significant public health risks. To better characterize potential animal hosts of Lassa virus (LASV), we assessed domestic and non-domestic animals from 2021-2022 in four locations in southern Nigeria with reported cases of Lassa fever (LF). Birds, lizards, and domestic mammals (dogs, pigs, cattle and goats) were screened using RT-qPCR, and whole genome sequencing was performed for lineage identification on selected LASV positive samples. Animals were also screened for exposure to LASV by enzyme-linked immunosorbent assay (ELISA). Among these animals, lizards had the highest positivity rate by PCR. Genomic sequencing of samples in most infected animals showed sub-lineage 2 g of LASV. Seropositivity was highest among cattle and lowest in pigs. Though the specific impact these additional hosts may have in the broader virus-host context are still unknown - specifically relating to pathogen diversity, evolution, and transmission - the detection of LASV in non-rodent hosts living in proximity to confirmed human LF cases suggests their involvement during transmission as potential reservoirs. Additional epidemiological data comparing viral genomes from humans and animals, as well as those circulating within the environment will be critical in understanding LASV transmission dynamics and will ultimately guide the development of countermeasures for this zoonotic health threat.
Collapse
Affiliation(s)
- Anise Nkenjop Happi
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede, Osun State, Nigeria
| | - Olusola Akinola Ogunsanya
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede, Osun State, Nigeria
| | - Akeemat Opeyemi Ayinla
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede, Osun State, Nigeria
| | - Ayotunde Elijah Sijuwola
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede, Osun State, Nigeria
| | - Femi Mudasiru Saibu
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede, Osun State, Nigeria
| | - Kazeem Akano
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede, Osun State, Nigeria
- Redeemer’s University, Ede, Osun, Nigeria
| | - Cecilia Nwofoke
- Alex Ekwueme Federal University Teaching Hospital, Abakaliki, Ebonyi State, Nigeria
| | | | | | - Richard Olumide Daodu
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede, Osun State, Nigeria
| | - Oluwatobi Abel Adedokun
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede, Osun State, Nigeria
| | - Abraham Adeyemo
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede, Osun State, Nigeria
| | | | | | - Edyth Parker
- Scripps Translational Science Institute, La Jolla, CA, USA
| | - Iguosadolo Nosamiefan
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede, Osun State, Nigeria
| | - Johnson Okolie
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede, Osun State, Nigeria
| | - Zahra F. Parker
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Melanie D. McCauley
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Leigh Anne Eller
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Kara Lombardi
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Abdulwasiu Bolaji Tiamiyu
- Henry M. Jackson Foundation Medical Research International Ltd/Gte, Abuja, Nigeria
- Emerging Infectious Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Michael Iroezindu
- Henry M. Jackson Foundation Medical Research International Ltd/Gte, Abuja, Nigeria
- Emerging Infectious Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Edward Akinwale
- Henry M. Jackson Foundation Medical Research International Ltd/Gte, Abuja, Nigeria
- Emerging Infectious Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - Tsedal Mebrahtu
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Erica Broach
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Anastasia Zuppe
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Petra Prins
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jenny Lay
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Mihret Amare
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Natalie D. Collins
- Viral Diseases Program, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sandhya Vasan
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Cynthia Tucker
- One Health Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sharon Daye
- One Health Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Christian Tientcha Happi
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede, Osun State, Nigeria
- Redeemer’s University, Ede, Osun, Nigeria
- Department of Immunology and Infectious Diseases, Harvard T H Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
2
|
Carr CR, Crawford KHD, Murphy M, Galloway JG, Haddox HK, Matsen FA, Andersen KG, King NP, Bloom JD. Deep mutational scanning reveals functional constraints and antibody-escape potential of Lassa virus glycoprotein complex. Immunity 2024; 57:2061-2076.e11. [PMID: 39013466 PMCID: PMC11390330 DOI: 10.1016/j.immuni.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/23/2024] [Accepted: 06/20/2024] [Indexed: 07/18/2024]
Abstract
Lassa virus is estimated to cause thousands of human deaths per year, primarily due to spillovers from its natural host, Mastomys rodents. Efforts to create vaccines and antibody therapeutics must account for the evolutionary variability of the Lassa virus's glycoprotein complex (GPC), which mediates viral entry into cells and is the target of neutralizing antibodies. To map the evolutionary space accessible to GPC, we used pseudovirus deep mutational scanning to measure how nearly all GPC amino-acid mutations affected cell entry and antibody neutralization. Our experiments defined functional constraints throughout GPC. We quantified how GPC mutations affected neutralization with a panel of monoclonal antibodies. All antibodies tested were escaped by mutations that existed among natural Lassa virus lineages. Overall, our work describes a biosafety-level-2 method to elucidate the mutational space accessible to GPC and shows how prospective characterization of antigenic variation could aid the design of therapeutics and vaccines.
Collapse
Affiliation(s)
- Caleb R Carr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Katharine H D Crawford
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Michael Murphy
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Jared G Galloway
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Hugh K Haddox
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Frederick A Matsen
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Statistics, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Kristian G Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Research Translational Institute, La Jolla, CA 92037, USA
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA.
| |
Collapse
|
3
|
Pretelli I, Crittenden AN, Dounias E, Friant S, Koster J, Kramer KL, Mangola SM, Saez AM, Lew-Levy S. Child and adolescent foraging: New directions in evolutionary research. Evol Anthropol 2024; 33:e22020. [PMID: 38214699 DOI: 10.1002/evan.22020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/01/2023] [Accepted: 12/27/2023] [Indexed: 01/13/2024]
Abstract
Young children and adolescents in subsistence societies forage for a wide range of resources. They often target child-specific foods, they can be very successful foragers, and they share their produce widely within and outside of their nuclear family. At the same time, while foraging, they face risky situations and are exposed to diseases that can influence their immune development. However, children's foraging has largely been explained in light of their future (adult) behavior. Here, we reinterpret findings from human behavioral ecology, evolutionary medicine and cultural evolution to center foraging children's contributions to life history evolution, community resilience and immune development. We highlight the need to foreground immediate alongside delayed benefits and costs of foraging, including inclusive fitness benefits, when discussing children's food production from an evolutionary perspective. We conclude by recommending that researchers carefully consider children's social and ecological context, develop cross-cultural perspectives, and incorporate children's foraging into Indigenous sovereignty discourse.
Collapse
Affiliation(s)
- Ilaria Pretelli
- Institute for Advanced Study in Toulouse, Toulouse School of Economics, and University of Toulouse Capitole, Toulouse, France
- Department of Human Behavior, Ecology, and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Edmond Dounias
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Sagan Friant
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jeremy Koster
- Department of Human Behavior, Ecology, and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Karen L Kramer
- Department of Anthropology, University of Utah, Salt Lake City, Utah, USA
| | - Shani M Mangola
- The Law School of Tanzania, Dar es Salaam, Tanzania
- Olanakwe Community Fund, Mang'ola, Tanzania
| | - Almudena Mari Saez
- TransVHIMI Unit, French National Institute for Sustainable Development, IRD, Montpellier, France
| | | |
Collapse
|
4
|
Friant S. Human behaviors driving disease emergence. Evol Anthropol 2024; 33:e22015. [PMID: 38130075 DOI: 10.1002/evan.22015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023]
Abstract
Interactions between humans, animals, and the environment facilitate zoonotic spillover-the transmission of pathogens from animals to humans. Narratives that cast modern humans as exogenous and disruptive forces that encroach upon "natural" disease systems limit our understanding of human drivers of disease. This review leverages theory from evolutionary anthropology that situates humans as functional components of disease ecologies, to argue that human adaptive strategies to resource acquisition shape predictable patterns of high-risk human-animal interactions, (2) humans construct ecological processes that facilitate spillover, and (3) contemporary patterns of epidemiological risk are emergent properties of interactions between human foraging ecology and niche construction. In turn, disease ecology serves as an important vehicle to link what some cast as opposing bodies of theory in human ecology. Disease control measures should consider human drivers of disease as rational, adaptive, and dynamic and capitalize on our capacity to influence ecological processes to mitigate risk.
Collapse
Affiliation(s)
- Sagan Friant
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
5
|
Kotliar D, Raju S, Tabrizi S, Odia I, Goba A, Momoh M, Sandi JD, Nair P, Phelan E, Tariyal R, Eromon PE, Mehta S, Robles-Sikisaka R, Siddle KJ, Stremlau M, Jalloh S, Gire SK, Winnicki S, Chak B, Schaffner SF, Pauthner M, Karlsson EK, Chapin SR, Kennedy SG, Branco LM, Kanneh L, Vitti JJ, Broodie N, Gladden-Young A, Omoniwa O, Jiang PP, Yozwiak N, Heuklom S, Moses LM, Akpede GO, Asogun DA, Rubins K, Kales S, Happi AN, Iruolagbe CO, Dic-Ijiewere M, Iraoyah K, Osazuwa OO, Okonkwo AK, Kunz S, McCormick JB, Khan SH, Honko AN, Lander ES, Oldstone MBA, Hensley L, Folarin OA, Okogbenin SA, Günther S, Ollila HM, Tewhey R, Okokhere PO, Schieffelin JS, Andersen KG, Reilly SK, Grant DS, Garry RF, Barnes KG, Happi CT, Sabeti PC. Genome-wide association study identifies human genetic variants associated with fatal outcome from Lassa fever. Nat Microbiol 2024; 9:751-762. [PMID: 38326571 PMCID: PMC10914620 DOI: 10.1038/s41564-023-01589-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/14/2023] [Indexed: 02/09/2024]
Abstract
Infection with Lassa virus (LASV) can cause Lassa fever, a haemorrhagic illness with an estimated fatality rate of 29.7%, but causes no or mild symptoms in many individuals. Here, to investigate whether human genetic variation underlies the heterogeneity of LASV infection, we carried out genome-wide association studies (GWAS) as well as seroprevalence surveys, human leukocyte antigen typing and high-throughput variant functional characterization assays. We analysed Lassa fever susceptibility and fatal outcomes in 533 cases of Lassa fever and 1,986 population controls recruited over a 7 year period in Nigeria and Sierra Leone. We detected genome-wide significant variant associations with Lassa fever fatal outcomes near GRM7 and LIF in the Nigerian cohort. We also show that a haplotype bearing signatures of positive selection and overlapping LARGE1, a required LASV entry factor, is associated with decreased risk of Lassa fever in the Nigerian cohort but not in the Sierra Leone cohort. Overall, we identified variants and genes that may impact the risk of severe Lassa fever, demonstrating how GWAS can provide insight into viral pathogenesis.
Collapse
Affiliation(s)
- Dylan Kotliar
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| | - Siddharth Raju
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Shervin Tabrizi
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ikponmwosa Odia
- Institute of Lassa Fever, Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Augustine Goba
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - Mambu Momoh
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
- Eastern Polytechnic College, Kenema, Sierra Leone
| | - John Demby Sandi
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - Parvathy Nair
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | | | - Philomena E Eromon
- Institute of Lassa Fever, Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Nigeria
| | - Samar Mehta
- Department of Critical Care Medicine, University of Maryland Medical Center, Baltimore, MA, USA
| | - Refugio Robles-Sikisaka
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Katherine J Siddle
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | | | - Simbirie Jalloh
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | | | - Sarah Winnicki
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Bridget Chak
- Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Stephen F Schaffner
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | | | - Elinor K Karlsson
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, USA
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Sarah R Chapin
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Sharon G Kennedy
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Lansana Kanneh
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
| | - Joseph J Vitti
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Nisha Broodie
- New York-Presbyterian Hospital-Columbia and Cornell, New York, NY, USA
| | - Adrianne Gladden-Young
- Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | | | | | - Nathan Yozwiak
- Gene and Cell Therapy Institute, Mass General Brigham, Cambridge, MA, USA
| | - Shannon Heuklom
- San Francisco Community Health Center, San Francisco, CA, USA
| | - Lina M Moses
- Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - George O Akpede
- Institute of Lassa Fever, Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
- Department of Medicine, Ambrose Alli University, Ekpoma, Nigeria
| | - Danny A Asogun
- Department of Community Medicine, Ambrose Alli University, Ekpoma, Nigeria
| | - Kathleen Rubins
- National Aeronautics and Space Administration, Houston, TX, USA
| | | | - Anise N Happi
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Nigeria
| | | | - Mercy Dic-Ijiewere
- Department of Medicine, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Kelly Iraoyah
- Department of Medicine, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Omoregie O Osazuwa
- Department of Medicine, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | | | - Stefan Kunz
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Joseph B McCormick
- UTHealth Houston School of Public Health, Brownsville Campus, Brownsville, TX, USA
| | - S Humarr Khan
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - Anna N Honko
- Boston University School of Medicine, Boston, MA, USA
| | - Eric S Lander
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Michael B A Oldstone
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Lisa Hensley
- National Institutes of Health Integrated Research Facility, Frederick, MA, USA
| | - Onikepe A Folarin
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Nigeria
- Department of Biological Sciences, Redeemer's University, Ede, Nigeria
| | - Sylvanus A Okogbenin
- Institute of Lassa Fever, Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Stephan Günther
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Hanna M Ollila
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Peter O Okokhere
- Institute of Lassa Fever, Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
- Department of Medicine, Ambrose Alli University, Ekpoma, Nigeria
- Department of Medicine, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - John S Schieffelin
- Section of Infectious Disease, Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, USA
| | - Kristian G Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Steven K Reilly
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Donald S Grant
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
| | - Robert F Garry
- Tulane University School of Medicine, New Orleans, LA, USA
| | - Kayla G Barnes
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Christian T Happi
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Nigeria.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.
- Department of Biological Sciences, Redeemer's University, Ede, Nigeria.
| | - Pardis C Sabeti
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, USA.
| |
Collapse
|
6
|
Carr CR, Crawford KHD, Murphy M, Galloway JG, Haddox HK, Matsen FA, Andersen KG, King NP, Bloom JD. Deep mutational scanning reveals functional constraints and antigenic variability of Lassa virus glycoprotein complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.579020. [PMID: 38370709 PMCID: PMC10871245 DOI: 10.1101/2024.02.05.579020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Lassa virus is estimated to cause thousands of human deaths per year, primarily due to spillovers from its natural host, Mastomys rodents. Efforts to create vaccines and antibody therapeutics must account for the evolutionary variability of Lassa virus's glycoprotein complex (GPC), which mediates viral entry into cells and is the target of neutralizing antibodies. To map the evolutionary space accessible to GPC, we use pseudovirus deep mutational scanning to measure how nearly all GPC amino-acid mutations affect cell entry and antibody neutralization. Our experiments define functional constraints throughout GPC. We quantify how GPC mutations affect neutralization by a panel of monoclonal antibodies and show that all antibodies are escaped by mutations that exist among natural Lassa virus lineages. Overall, our work describes a biosafety-level-2 method to elucidate the mutational space accessible to GPC and shows how prospective characterization of antigenic variation could aid design of therapeutics and vaccines.
Collapse
Affiliation(s)
- Caleb R. Carr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98109, USA
| | - Katharine H. D. Crawford
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98109, USA
| | - Michael Murphy
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Jared G. Galloway
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Hugh K. Haddox
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Frederick A. Matsen
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Statistics, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Kristian G. Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Research Translational Institute, La Jolla, CA 92037, USA
| | - Neil P. King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
- Lead contact
| |
Collapse
|
7
|
Kloch A, Mierzejewska EJ, Welc-Falęciak R, Bajer A, Biedrzycka A. Cytokine gene polymorphism and parasite susceptibility in free-living rodents: Importance of non-coding variants. PLoS One 2023; 18:e0258009. [PMID: 36693052 PMCID: PMC9873194 DOI: 10.1371/journal.pone.0258009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/06/2023] [Indexed: 01/25/2023] Open
Abstract
Associations between genetic variants and susceptibility to infections have long been studied in free-living hosts so as to infer the contemporary evolutionary forces that shape the genetic polymorphisms of immunity genes. Despite extensive studies of proteins interacting with pathogen-derived ligands, such as MHC (major histocompatilbility complex) or TLR (Toll-like receptors), little is known about the efferent arm of the immune system. Cytokines are signalling molecules that trigger and modulate the immune response, acting as a crucial link between innate and adaptive immunity. In the present study we investigated how genetic variation in cytokines in bank voles Myodes glareolus affects their susceptibility to infection by parasites (nematodes: Aspiculuris tianjensis, Heligmosomum mixtum, Heligmosomoides glareoli) and microparasites (Cryptosporidium sp, Babesia microti, Bartonella sp.). We focused on three cytokines: tumour necrosis factor (TNF), lymphotoxin alpha (LTα), and interferon beta (IFNβ1). Overall, we identified four single nucleotide polymorphisms (SNPs) associated with susceptibility to nematodes: two located in LTα and two in IFNβ1. One of those variants was synonymous, another located in an intron. Each SNP associated with parasite load was located in or next to a codon under selection, three codons displayed signatures of positive selection, and one of purifying selection. Our results indicate that cytokines are prone to parasite-driven selection and that non-coding variants, although commonly disregarded in studies of the genetic background of host-parasite co-evolution, may play a role in susceptibility to infections in wild systems.
Collapse
Affiliation(s)
- Agnieszka Kloch
- Department of Ecology, Faculty of Biology, University of Warsaw, Warszawa, Poland
- * E-mail:
| | - Ewa J. Mierzejewska
- Wild Urban Evolution and Ecology Laboratory, Centre of New Technologies, University of Warsaw, Warszawa, Poland
| | - Renata Welc-Falęciak
- Department of Parasitology, Faculty of Biology, University of Warsaw, Warszawa, Poland
| | - Anna Bajer
- Department of Eco-epidemiology of Parasitic Diseases, Faculty of Biology, University of Warsaw, Warszawa, Poland
| | | |
Collapse
|
8
|
Faleye T, Adewumi M, Japhet M, George U, David O, Oluyege A, Adeniji J, Famurewa O. Enterovirus species B isolates recovered from children with acute flaccid paralysis in Nigeria, 2010 and 2012. JOURNAL OF CLINICAL VIROLOGY PLUS 2022. [DOI: 10.1016/j.jcvp.2022.100117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
9
|
Kun Á. Is there still evolution in the human population? Biol Futur 2022; 73:359-374. [PMID: 36592324 PMCID: PMC9806833 DOI: 10.1007/s42977-022-00146-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/08/2022] [Indexed: 01/03/2023]
Abstract
It is often claimed that humanity has stopped evolving because modern medicine erased all selection on survival. Even if that would be true, and it is not, there would be other mechanisms of evolution which could still led to changes in allelic frequencies. Here I show, by applying basic evolutionary genetics knowledge, that we expect humanity to evolve. The results from genome sequencing projects have repeatedly affirmed that there are still recent signs of selection in our genomes. I give some examples of such adaptation. Then I briefly discuss what our evolutionary future has in store for us.
Collapse
Affiliation(s)
- Ádám Kun
- grid.5591.80000 0001 2294 6276Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös University, Budapest, Hungary ,Parmenides Center for the Conceptual Foundations of Science, Pöcking, Germany ,grid.481817.3Institute of Evolution, Centre for Ecological Research, Budapest, Hungary ,grid.5018.c0000 0001 2149 4407MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Budapest, Hungary ,grid.5018.c0000 0001 2149 4407MTA-ELTE-MTM Ecology Research Group, Budapest, Hungary
| |
Collapse
|
10
|
The Influence of War and Conflict on Infectious Disease: A Rapid Review of Historical Lessons We Have Yet to Learn. SUSTAINABILITY 2021. [DOI: 10.3390/su131910783] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Armed conflicts degrade established healthcare systems, which typically manifests as a resurgence of preventable infectious diseases. While 70% of deaths globally are now from non-communicable disease; in low-income countries, respiratory infections, diarrheal illness, malaria, tuberculosis, and HIV/AIDs are all in the top 10 causes of death. The burden of these infectious diseases is exacerbated by armed conflict, translating into even more dramatic long-term consequences. This rapid evidence review searched electronic databases in PubMed, Scopus, and Web of Science. Of 381 identified publications, 73 were included in this review. Several authors indicate that the impact of infectious diseases increases in wars and armed conflicts due to disruption to surveillance and response systems that were often poorly developed to begin with. Although the true impact of conflict on infectious disease spread is not known and requires further research, the link between them is indisputable. Current decision-making management systems are insufficient and only pass the baton to the next unwary generation.
Collapse
|
11
|
Glycosaminoglycan biosynthesis pathway in host genome is associated with Helicobacter pylori infection. Sci Rep 2021; 11:18235. [PMID: 34521966 PMCID: PMC8440747 DOI: 10.1038/s41598-021-97790-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/31/2021] [Indexed: 02/08/2023] Open
Abstract
Helicobacter pylori is a causative pathogen of many gastric and extra-gastric diseases. It has infected about half of the global population. There were no genome-wide association studies (GWAS) for H. pylori infection conducted in Chinese population, who carried different and relatively homogenous strain of H. pylori. In this work, we performed SNP (single nucleotide polymorphism)-based, gene-based and pathway-based genome-wide association analyses to investigate the genetic basis of host susceptibility to H. pylori infection in 480 Chinese individuals. We also profiled the composition and function of the gut microbiota between H. pylori infection cases and controls. We found several genes and pathways associated with H. pylori infection (P < 0.05), replicated one previously reported SNP rs10004195 in TLR1 gene region (P = 0.02). We also found that glycosaminoglycan biosynthesis related pathway was associated with both onset and progression of H. pylori infection. In the gut microbiome association study, we identified 2 species, 3 genera and several pathways had differential abundance between H. pylori infected cases and controls. This paper is the first GWAS for H. pylori infection in Chinese population, and we combined the genetic and microbial data to comprehensively discuss the basis of host susceptibility to H. pylori infection.
Collapse
|
12
|
Hollox EJ, Zuccherato LW, Tucci S. Genome structural variation in human evolution. Trends Genet 2021; 38:45-58. [PMID: 34284881 DOI: 10.1016/j.tig.2021.06.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 01/01/2023]
Abstract
Structural variation (SV) is a large difference (typically >100 bp) in the genomic structure of two genomes and includes both copy number variation and variation that does not change copy number of a genomic region, such as an inversion. Improved reference genomes, combined with widespread genome sequencing using short-read sequencing technology, and increasingly using long-read sequencing, have reignited interest in SV. Recent large-scale studies and functional focused analyses have highlighted the role of SV in human evolution. In this review, we highlight human-specific SVs involved in changes in the brain, population-specific SVs that affect response to the environment, including adaptation to diet and infectious diseases, and summarise the contribution of archaic hominin admixture to present-day human SV.
Collapse
Affiliation(s)
- Edward J Hollox
- Department of Genetics and Genome Biology, University of Leicester, UK.
| | - Luciana W Zuccherato
- Núcleo de Ensino e Pesquisa, Instituto Mário Penna, Belo Horizonte, Brazil; Departmento de Bioquímica e Imunologia, Universidade de Minas Gerais, Belo Horizonte, Brazil
| | - Serena Tucci
- Department of Anthropology, Yale University, New Haven, CT, USA
| |
Collapse
|
13
|
Tewogbola P, Aung N. Lassa fever: History, causes, effects, and reduction strategies. INTERNATIONAL JOURNAL OF ONE HEALTH 2020. [DOI: 10.14202/ijoh.2020.95-98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lassa fever is a disease that is not well-known worldwide, particularly due to the inability of the multimammate rat, the primary vector of the Lassa virus, to breed in temperate regions. The aim of this review is to provide an overview of the disease and its modus operandi while also providing information about trends in the past decade, as well as proven strategies that have been used to manage its spread.
Collapse
Affiliation(s)
- Promise Tewogbola
- School of Psychological and Behavioral Sciences, Southern Illinois University, Carbondale, 62901, USA
| | - Norah Aung
- Department of Health Sciences and Social Work, Western Illinois University, Macomb, 61455, USA
| |
Collapse
|
14
|
Asogun DA, Günther S, Akpede GO, Ihekweazu C, Zumla A. Lassa Fever: Epidemiology, Clinical Features, Diagnosis, Management and Prevention. Infect Dis Clin North Am 2020; 33:933-951. [PMID: 31668199 DOI: 10.1016/j.idc.2019.08.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Lassa fever outbreaks West Africa have caused up to 10,000 deaths annually. Primary infection occurs from contact with Lassa virus-infected rodents and exposure to their excreta, blood, or meat. Incubation takes 2 to 21 days. Symptoms are difficult to distinguish from malaria, typhoid, dengue, yellow fever, and other viral hemorrhagic fevers. Clinical manifestations range from asymptomatic, to mild, to severe fulminant disease. Ribavirin can improve outcomes. Overall mortality is between 1% and 15%. Lassa fever should be considered in the differential diagnosis with travel to West Africa. There is an urgent need for rapid field-friendly diagnostics and preventive vaccine.
Collapse
Affiliation(s)
- Danny A Asogun
- Department of Public Health, College of Medicine, Ambrose Alli University, Ekpoma, Nigeria; Department of Public Health, Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, P.M.B 008, Kilometre 87, Benin City-Auchi Road, Irrua, Nigeria.
| | - Stephan Günther
- Bernhard-Nocht Institute for Tropical Medicine, Strab 74, Hamburg 20359, Germany; German Centre for Infection Research (DZIF), Partner Site Hamburg, Hamburg, Germany
| | - George O Akpede
- Department of Paediatrics, Faculty of Clinical Sciences, College of Medicine, Ambrose Alli University, Ekpoma, Nigeria
| | - Chikwe Ihekweazu
- Nigeria Centre for Disease Control, Plot 801, Ebitu Ukiwe Street, Jabi, Abuja, Nigeria
| | - Alimuddin Zumla
- Center for Clinical Microbiology, University College London, Royal Free Campus 2nd Floor, Rowland Hill Street, London NW3 2PF, United Kingdom
| |
Collapse
|
15
|
Domínguez-Andrés J, Netea MG. Impact of Historic Migrations and Evolutionary Processes on Human Immunity. Trends Immunol 2019; 40:1105-1119. [PMID: 31786023 PMCID: PMC7106516 DOI: 10.1016/j.it.2019.10.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 10/04/2019] [Accepted: 10/09/2019] [Indexed: 12/30/2022]
Abstract
The evolution of mankind has constantly been influenced by the pathogens encountered. The various populations of modern humans that ventured out of Africa adapted to different environments and faced a large variety of infectious agents, resulting in local adaptations of the immune system for these populations. The functional variation of immune genes as a result of evolution is relevant in the responses against infection, as well as in the emergence of autoimmune and inflammatory diseases observed in modern populations. Understanding how host-pathogen interactions have influenced the human immune system from an evolutionary perspective might contribute to unveiling the causes behind different immune-mediated disorders and promote the development of new strategies to detect and control such diseases.
Collapse
Affiliation(s)
- Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500HB Nijmegen, The Netherlands.
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500HB Nijmegen, The Netherlands; Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany; Human Genomics Laboratory, Craiova University of Medicine and Pharmacy, Craiova, Romania
| |
Collapse
|
16
|
Amato KR, Jeyakumar T, Poinar H, Gros P. Shifting Climates, Foods, and Diseases: The Human Microbiome through Evolution. Bioessays 2019; 41:e1900034. [PMID: 31524305 DOI: 10.1002/bies.201900034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 07/29/2019] [Indexed: 12/26/2022]
Abstract
Human evolution has been punctuated by climate anomalies, structuring environments, deadly infections, and altering landscapes. How well humans adapted to these new circumstances had direct effects on fitness and survival. Here, how the gut microbiome could have contributed to human evolutionary success through contributions to host nutritional buffering and infectious disease resistance is reviewed. How changes in human genetics, diet, disease exposure, and social environments almost certainly altered microbial community composition is also explored. Emerging research points to the microbiome as a key player in host responses to environmental change. Therefore, the reciprocal interactions between humans and their microbes are likely to have shaped human patterns of local adaptation throughout our shared evolutionary history. Recent alterations in human lifestyle, however, are altering human microbiomes in unprecedented ways. The consequences of interrupted host-microbe relationships for human adaptive potential in the future are unknown.
Collapse
Affiliation(s)
- Katherine R Amato
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Thiviya Jeyakumar
- McGill Center for the Study of Complex Traits, Department of Human Genetics, Department of Biochemistry, McGill University, 3649 Sir William Osler Promenade, Montreal, QC, H3G 0B1, Canada
| | - Hendrik Poinar
- Department of Anthropology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4M4, Canada
| | - Philippe Gros
- Department of Biochemistry, McGill University, 3649 Sir William Osler Promenade, Montreal, QC, H3G 0B1, Canada
| |
Collapse
|
17
|
Happi AN, Happi CT, Schoepp RJ. Lassa fever diagnostics: past, present, and future. Curr Opin Virol 2019; 37:132-138. [PMID: 31518896 DOI: 10.1016/j.coviro.2019.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/13/2019] [Indexed: 12/18/2022]
Abstract
Lassa fever is a unique viral hemorrhagic fever that is endemic in parts of West Africa, primarily Sierra Leone, Guinea, Liberia, and Nigeria. The disease is caused by the Lassa virus, an Old World arenavirus that has as primary reservoir host the multimammate rodent Mastomys nataliensis, which lives in association with humans. Recent estimates suggest LF causes two million cases and 5000-10000 deaths annually, mainly in West Africa. Clinical diagnosis and laboratory confirmation have always been major challenges for effective management and control of the disease in afflicted areas of West Africa. Recent advancements in molecular biology, recombinant DNA technology, and genomics sequencing has facilitated major advancement in development of better diagnostic and surveillance tools for Lassa fever virus. These include, the multiplex, magnetic bead-based immunodiagnostics for both Lassa virus antigens and antibodies; molecular probe-based quantitative real-time PCR for genomic signatures; rapid diagnostics tests that detects the most prevalent West African lineages; and the successful utilization of next-generation sequencing technology to diagnose and characterize Lassa virus in West Africa. These advances will continue to improve disease treatment, control, and prevention. In this review we will discuss progression of Lassa virus diagnostics from the past and into the future.
Collapse
Affiliation(s)
- Anise N Happi
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Christian T Happi
- Department of Biological Sciences, College of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria; African center of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
| | - Randal J Schoepp
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, USA.
| |
Collapse
|
18
|
Genomic Evidence for Local Adaptation of Hunter-Gatherers to the African Rainforest. Curr Biol 2019; 29:2926-2935.e4. [DOI: 10.1016/j.cub.2019.07.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/26/2019] [Accepted: 07/04/2019] [Indexed: 12/18/2022]
|
19
|
Jeyakumar T, Beauchemin N, Gros P. Impact of the Microbiome on the Human Genome. Trends Parasitol 2019; 35:809-821. [PMID: 31451407 DOI: 10.1016/j.pt.2019.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 02/07/2023]
Abstract
Humans live in a microbial world that includes pathogenic bacteria, viruses, and fungi that cause lethal infections. In addition, a large number of microbial communities inhabit mucosal surfaces where they provide key metabolic activities, facilitating adaptation to changing environments. New genome technologies enable both sequencing of the human genome and sequence-based cataloging of microbial communities inhabiting human mucosal surfaces. These have revealed intricate two-way relationships between the microbiome and the genome, including strong effects of human genotypes on the composition and activity of the microbiome. Likewise, the microbiome plays an important role in training and regulating the immune system, and acts to modify expression of human genetic risk for debilitating chronic inflammatory and immune conditions. These studies are suggesting a new role of the microbiome in human health and disease.
Collapse
Affiliation(s)
- Thiviya Jeyakumar
- Department of Biochemistry, McGill University, Montreal, Canada; McGill Center for the Study of Complex Traits, McGill University, Montreal, Canada
| | - Nicole Beauchemin
- Department of Biochemistry, McGill University, Montreal, Canada; Goodman Cancer Research Center, McGill University, Montreal, Canada
| | - Philippe Gros
- Department of Biochemistry, McGill University, Montreal, Canada; McGill Center for the Study of Complex Traits, McGill University, Montreal, Canada; Goodman Cancer Research Center, McGill University, Montreal, Canada.
| |
Collapse
|
20
|
Brisse ME, Ly H. Hemorrhagic Fever-Causing Arenaviruses: Lethal Pathogens and Potent Immune Suppressors. Front Immunol 2019; 10:372. [PMID: 30918506 PMCID: PMC6424867 DOI: 10.3389/fimmu.2019.00372] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/14/2019] [Indexed: 12/22/2022] Open
Abstract
Hemorrhagic fevers (HF) resulting from pathogenic arenaviral infections have traditionally been neglected as tropical diseases primarily affecting African and South American regions. There are currently no FDA-approved vaccines for arenaviruses, and treatments have been limited to supportive therapy and use of non-specific nucleoside analogs, such as Ribavirin. Outbreaks of arenaviral infections have been limited to certain geographic areas that are endemic but known cases of exportation of arenaviruses from endemic regions and socioeconomic challenges for local control of rodent reservoirs raise serious concerns about the potential for larger outbreaks in the future. This review synthesizes current knowledge about arenaviral evolution, ecology, transmission patterns, life cycle, modulation of host immunity, disease pathogenesis, as well as discusses recent development of preventative and therapeutic pursuits against this group of deadly viral pathogens.
Collapse
Affiliation(s)
- Morgan E Brisse
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, St. Paul, MN, United States.,Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
21
|
Fernandes J, Coelho TA, Oliveira RCD, Guedes LSAL, Teixeira BR, Guterres A, Niel C, Levis SC, Lago BV, Motta-Castro ARC, Lemos ERSD. Seroprevalence of rodent-borne viruses in Afro-descendent communities in Brazil. Rev Inst Med Trop Sao Paulo 2019; 61:e66. [PMID: 31859843 PMCID: PMC6907417 DOI: 10.1590/s1678-9946201961066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/17/2019] [Indexed: 11/21/2022] Open
Abstract
During the Brazilian slavery period, many African migrants were brought to the American continent. Historically, some of these migrants escaped from the Brazilian gold mines and farms to which they had been brought and settled in remote valleys and this was the main mode of resistance to the slavery system. These runaway-slave descendant communities are called quilombos, a group with distinct ethnic identity, specific behavioral habits, including geographic isolation and conservative practices. The objective of this study was to investigate the prevalence of rodent-borne viruses in two Afro-descendent communities from Mato Grosso do Sul State, Midwestern Brazil. A total of 319 individuals from rural and urban quilombola communities were enrolled. Twelve (3.76%) had anti-rodent-borne virus IgG antibodies. Seven (2.19%) were anti-mammarenavirus reactive and nine (2.82%) had anti-orthohantavirus antibodies. The literature includes limited data on the health status of quilombola communities, but all the studies emphasize the disparity of attention of local healthcare personnel to these communities compared to the general population. The findings of this study highlight the vulnerability and the precarious health conditions of quilombola groups, especially those living in rural areas and thus, point to the need of preventive measures to improve access to healthcare for this ethnic group.
Collapse
|
22
|
The demographic and adaptive history of central African hunter-gatherers and farmers. Curr Opin Genet Dev 2018; 53:90-97. [PMID: 30103089 DOI: 10.1016/j.gde.2018.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/18/2018] [Indexed: 01/06/2023]
Abstract
Central Africa, a forested region that supports an exceptionally high biodiversity, hosts the world's largest group of hunter-gatherers, who live in close proximity with groups that have adopted agriculture over the past 5000 years. Our understanding of the prehistory of these populations has been dramatically hampered by the almost total absence of fossil remains in this region, a limitation that has recently been circumvented by population genomics approaches. Different studies have estimated that ancestors of rainforest hunter-gatherers and Bantu-speaking farmers separated more than 60 000 years ago, supporting the occurrence of ancient population structure in Africa since the Late Pleistocene. Conversely, the Holocene in central Africa was characterized by large-scale population migrations associated with the emergence of agriculture, and increased genetic interactions between autochthonous rainforest hunter-gatherers and expanding Bantu-speaking farmers. Genomic scans have detected numerous candidate loci for positive selection in these populations, including convergent adaptation for short stature in groups of rainforest hunter-gatherers and local adaptation to endemic malaria in western and central Africans. Furthermore, there is recent increasing evidence that adaptive variation has been acquired by various African populations through admixture, suggesting a previously unappreciated role of intraspecies gene flow in local adaptation. Ancient and modern DNA studies will greatly broaden, and probably challenge, our view on the past history of central Africa, where introgression from yet uncharacterized archaic hominins and long-term adaptation to distinct ecological niches are suspected.
Collapse
|
23
|
Choudhury A, Aron S, Sengupta D, Hazelhurst S, Ramsay M. African genetic diversity provides novel insights into evolutionary history and local adaptations. Hum Mol Genet 2018; 27:R209-R218. [PMID: 29741686 PMCID: PMC6061870 DOI: 10.1093/hmg/ddy161] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 12/22/2022] Open
Abstract
Genetic variation and susceptibility to disease are shaped by human demographic history and adaptation. We can now study the genomes of extant Africans and uncover traces of population migration, admixture, assimilation and selection by applying sophisticated computational algorithms. There are four major ethnolinguistic divisions among present day Africans: Hunter-gatherer populations in southern and central Africa; Nilo-Saharan speakers from north and northeast Africa; Afro-Asiatic speakers from north and east Africa; and Niger-Congo speakers who are the predominant ethnolinguistic group spread across most of sub-Saharan Africa. The enormous ethnolinguistic diversity in sub-Saharan African populations is largely paralleled by extensive genetic diversity and until a decade ago, little was known about detailed origins and divergence of these groups. Results from large-scale population genetic studies, and more recently whole genome sequence data, are unravelling the critical role of events like migration and admixture and environmental factors including diet, infectious diseases and climatic conditions in shaping current population diversity. It is now possible to start providing quantitative estimates of divergence times, population size and dynamic processes that have affected populations and their genetic risk for disease. Finally, the availability of ancient genomes from Africa provides historical insights of unprecedented depth. In this review, we highlight some key interpretations that have emerged from recent African genome studies.
Collapse
Affiliation(s)
- Ananyo Choudhury
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shaun Aron
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Dhriti Sengupta
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Scott Hazelhurst
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- School of Electrical & Information Engineering, University of the Witwatersrand, Johannesburg, South Africa
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
24
|
Mokhber M, Moradi-Shahrbabak M, Sadeghi M, Moradi-Shahrbabak H, Stella A, Nicolzzi E, Rahmaninia J, Williams JL. A genome-wide scan for signatures of selection in Azeri and Khuzestani buffalo breeds. BMC Genomics 2018; 19:449. [PMID: 29890939 PMCID: PMC5996463 DOI: 10.1186/s12864-018-4759-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 05/04/2018] [Indexed: 01/25/2023] Open
Abstract
Background Identification of genomic regions that have been targets of selection may shed light on the genetic history of livestock populations and help to identify variation controlling commercially important phenotypes. The Azeri and Kuzestani buffalos are the most common indigenous Iranian breeds which have been subjected to divergent selection and are well adapted to completely different regions. Examining the genetic structure of these populations may identify genomic regions associated with adaptation to the different environments and production goals. Results A set of 385 water buffalo samples from Azeri (N = 262) and Khuzestani (N = 123) breeds were genotyped using the Axiom® Buffalo Genotyping 90 K Array. The unbiased fixation index method (FST) was used to detect signatures of selection. In total, 13 regions with outlier FST values (0.1%) were identified. Annotation of these regions using the UMD3.1 Bos taurus Genome Assembly was performed to find putative candidate genes and QTLs within the selected regions. Putative candidate genes identified include FBXO9, NDFIP1, ACTR3, ARHGAP26, SERPINF2, BOLA-DRB3, BOLA-DQB, CLN8, and MYOM2. Conclusions Candidate genes identified in regions potentially under selection were associated with physiological pathways including milk production, cytoskeleton organization, growth, metabolic function, apoptosis and domestication-related changes include immune and nervous system development. The QTL identified are involved in economically important traits in buffalo related to milk composition, udder structure, somatic cell count, meat quality, and carcass and body weight. Electronic supplementary material The online version of this article (10.1186/s12864-018-4759-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mahdi Mokhber
- Department of Animal Science, Faculty of Agriculture, Urmia University, 11Km Sero Road, P. O. Box: 165, Urmia, 5756151818, Iran.
| | - Mohammad Moradi-Shahrbabak
- Department of Animal Science, Faculty of Agricultural Science and Engineering, University College of Agriculture and Natural Resources (UTCAN), University of Tehran, P. O. Box: 4111, Karaj, 1417614418, Iran
| | - Mostafa Sadeghi
- Department of Animal Science, Faculty of Agricultural Science and Engineering, University College of Agriculture and Natural Resources (UTCAN), University of Tehran, P. O. Box: 4111, Karaj, 1417614418, Iran
| | - Hossein Moradi-Shahrbabak
- Department of Animal Science, Faculty of Agricultural Science and Engineering, University College of Agriculture and Natural Resources (UTCAN), University of Tehran, P. O. Box: 4111, Karaj, 1417614418, Iran
| | - Alessandra Stella
- Parco Tecnologico Padano (PTP), Via Einstein, Cascina Codazza, 26900, Lodi, Italy
| | - Ezequiel Nicolzzi
- Parco Tecnologico Padano (PTP), Via Einstein, Cascina Codazza, 26900, Lodi, Italy
| | - Javad Rahmaninia
- Department of Animal Breeding and Genetics, Animal Science Research Institute of Iran (ASRI), Karaj, 3146618361, Iran
| | - John L Williams
- Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| |
Collapse
|
25
|
Okokhere P, Colubri A, Azubike C, Iruolagbe C, Osazuwa O, Tabrizi S, Chin E, Asad S, Ediale E, Rafiu M, Adomeh D, Odia I, Atafo R, Aire C, Okogbenin S, Pahlman M, Becker-Ziaja B, Asogun D, Fradet T, Fry B, Schaffner SF, Happi C, Akpede G, Günther S, Sabeti PC. Clinical and laboratory predictors of Lassa fever outcome in a dedicated treatment facility in Nigeria: a retrospective, observational cohort study. THE LANCET. INFECTIOUS DISEASES 2018; 18:684-695. [PMID: 29523497 PMCID: PMC5984133 DOI: 10.1016/s1473-3099(18)30121-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 12/01/2022]
Abstract
BACKGROUND Lassa fever is a viral haemorrhagic disease endemic to west Africa. No large-scale studies exist from Nigeria, where the Lassa virus (LASV) is most diverse. LASV diversity, coupled with host genetic and environmental factors, might cause differences in disease pathophysiology. Small-scale studies in Nigeria suggest that acute kidney injury is an important clinical feature and might be a determinant of survival. We aimed to establish the demographic, clinical, and laboratory factors associated with mortality in Nigerian patients with Lassa fever, and hypothesised that LASV was the direct cause of intrinsic renal damage for a subset of the patients with Lassa fever. METHODS We did a retrospective, observational cohort study of consecutive patients in Nigeria with Lassa fever, who tested positive for LASV with RT-PCR, and were treated in Irrua Specialist Teaching Hospital. We did univariate and multivariate statistical analyses, including logistic regression, of all demographic, clinical, and laboratory variables available at presentation to identify the factors associated with patient mortality. FINDINGS Of 291 patients treated in Irrua Specialist Teaching Hospital between Jan 3, 2011, and Dec 11, 2015, 284 (98%) had known outcomes (died or survived) and seven (2%) were discharged against medical advice. Overall case-fatality rate was 24% (68 of 284 patients), with a 1·4 times increase in mortality risk for each 10 years of age (p=0·00017), reaching 39% (22 of 57) for patients older than 50 years. Of 284 patients, 81 (28%) had acute kidney injury and 104 (37%) had CNS manifestations and thus both were considered important complications of acute Lassa fever in Nigeria. Acute kidney injury was strongly associated with poor outcome (case-fatality rate of 60% [49 of 81 patients]; odds ratio [OR] 15, p<0·00001). Compared with patients without acute kidney injury, those with acute kidney injury had higher incidence of proteinuria (32 [82%] of 39 patients) and haematuria (29 [76%] of 38) and higher mean serum potassium (4·63 [SD 1·04] mmol/L) and lower blood urea nitrogen to creatinine ratio (8·6 for patients without clinical history of fluid loss), suggesting intrinsic renal damage. Normalisation of creatinine concentration was associated with recovery. Elevated serum creatinine (OR 1·3; p=0·046), aspartate aminotransferase (OR 1·5; p=0·075), and potassium (OR 3·6; p=0·0024) were independent predictors of death. INTERPRETATION Our study presents detailed clinical and laboratory data for Nigerian patients with Lassa fever and provides strong evidence for intrinsic renal dysfunction in acute Lassa fever. Early recognition and treatment of acute kidney injury might significantly reduce mortality. FUNDING German Research Foundation, German Center for Infection Research, Howard Hughes Medical Institute, US National Institutes of Health, and World Bank.
Collapse
Affiliation(s)
- Peter Okokhere
- Department of Medicine, Irrua Specialist Teaching Hospital, Irrua, Nigeria; Institute of Lassa fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria; Department of Medicine, Faculty of Clinical Sciences, Ambrose Alli University, Ekpoma, Edo, Nigeria.
| | - Andres Colubri
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, Maryland, MD, USA.
| | | | | | - Omoregie Osazuwa
- Department of Medicine, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | | | - Elizabeth Chin
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA; University of California, Los Angeles, CA, USA; Department of Bioinformatics, Los Angeles, CA, USA
| | - Sara Asad
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ehi Ediale
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mojeed Rafiu
- Department of Medicine, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Donatus Adomeh
- Institute of Lassa fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Ikponmwosa Odia
- Institute of Lassa fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Rebecca Atafo
- Lassa fever Ward, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Chris Aire
- Institute of Lassa fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Sylvanus Okogbenin
- Department of Obstetrics and Gynaecology, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Meike Pahlman
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Centre for Infection Research, Partner site, Hamburg, Germany
| | - Beate Becker-Ziaja
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Centre for Infection Research, Partner site, Hamburg, Germany
| | - Danny Asogun
- Institute of Lassa fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | | | - Ben Fry
- Fathom Information Design, Boston, MA, USA
| | - Stephen F Schaffner
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard School of Public Health, Boston, MA, USA
| | - Christian Happi
- Department of Biological Sciences and African Center of Excellence for Genomics of Infectious Diseases, Redeemer's University, Edo, Nigeria
| | - George Akpede
- Department of Paediatrics, Irrua Specialist Teaching Hospital, Irrua, Nigeria; Department of Paediatrics, Faculty of Clinical Sciences, Ambrose Alli University, Ekpoma, Edo, Nigeria
| | - Stephan Günther
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Centre for Infection Research, Partner site, Hamburg, Germany
| | - Pardis C Sabeti
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, Maryland, MD, USA; Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|
26
|
Fedeli C, Moreno H, Kunz S. Novel Insights into Cell Entry of Emerging Human Pathogenic Arenaviruses. J Mol Biol 2018; 430:1839-1852. [PMID: 29705070 DOI: 10.1016/j.jmb.2018.04.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/19/2018] [Accepted: 04/21/2018] [Indexed: 12/14/2022]
Abstract
Viral hemorrhagic fevers caused by emerging RNA viruses of the Arenavirus family are among the most devastating human diseases. Climate change, global trade, and increasing urbanization promote the emergence and re-emergence of these human pathogenic viruses. Emerging pathogenic arenaviruses are of zoonotic origin and reservoir-to-human transmission is crucial for spillover into human populations. Host cell attachment and entry are the first and most fundamental steps of every virus infection and represent major barriers for zoonotic transmission. During host cell invasion, viruses critically depend on cellular factors, including receptors, co-receptors, and regulatory proteins of endocytosis. An in-depth understanding of the complex interaction of a virus with cellular factors implicated in host cell entry is therefore crucial to predict the risk of zoonotic transmission, define the tissue tropism, and assess disease potential. Over the past years, investigation of the molecular and cellular mechanisms underlying host cell invasion of human pathogenic arenaviruses uncovered remarkable viral strategies and provided novel insights into viral adaptation and virus-host co-evolution that will be covered in the present review.
Collapse
Affiliation(s)
- Chiara Fedeli
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne CH-1011, Switzerland
| | - Héctor Moreno
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne CH-1011, Switzerland
| | - Stefan Kunz
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne CH-1011, Switzerland.
| |
Collapse
|
27
|
Fedeli C, Torriani G, Galan-Navarro C, Moraz ML, Moreno H, Gerold G, Kunz S. Axl Can Serve as Entry Factor for Lassa Virus Depending on the Functional Glycosylation of Dystroglycan. J Virol 2018; 92:e01613-17. [PMID: 29237830 PMCID: PMC5809728 DOI: 10.1128/jvi.01613-17] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/04/2017] [Indexed: 11/20/2022] Open
Abstract
Fatal infection with the highly pathogenic Lassa virus (LASV) is characterized by extensive viral dissemination, indicating broad tissue tropism. The major cellular receptor for LASV is the highly conserved extracellular matrix receptor dystroglycan (DG). Binding of LASV depends on DG's tissue-specific posttranslational modification with the unusual O-linked polysaccharide matriglycan. Interestingly, functional glycosylation of DG does not always correlate with viral tropism observed in vivo The broadly expressed phosphatidylserine (PS) receptors Axl and Tyro3 were recently identified as alternative LASV receptor candidates. However, their role in LASV entry is not entirely understood. Here, we examine LASV receptor candidates in primary human cells and found coexpression of Axl with differentially glycosylated DG. To study LASV receptor use in the context of productive arenavirus infection, we employed recombinant lymphocytic choriomeningitis virus expressing LASV glycoprotein (rLCMV-LASV GP) as a validated biosafety level 2 (BSL2) model. We confirm and extend previous work showing that Axl can contribute to LASV entry in the absence of functional DG using "apoptotic mimicry" in a way similar to that of other enveloped viruses. We further show that Axl-dependent LASV entry requires receptor activation and involves a pathway resembling macropinocytosis. Axl-mediated LASV entry is facilitated by heparan sulfate and critically depends on the late endosomal protein LAMP-1 as an intracellular entry factor. In endothelial cells expressing low levels of functional DG, both receptors are engaged by the virus and can contribute to productive entry. In sum, we characterize the role of Axl in LASV entry and provide a rationale for targeting Axl in antiviral therapy.IMPORTANCE The highly pathogenic arenavirus Lassa virus (LASV) represents a serious public health problem in Africa. Although the principal LASV receptor, dystroglycan (DG), is ubiquitously expressed, virus binding critically depends on DG's posttranslational modification, which does not always correlate with tissue tropism. The broadly expressed phosphatidylserine receptor Axl was recently identified as an alternative LASV receptor candidate, but its role in LASV entry is unclear. Here, we investigate the exact role of Axl in LASV entry as a function of DG's posttranslational modification. We found that in the absence of functional DG, Axl can mediate LASV entry via apoptotic mimicry. Productive entry requires virus-induced receptor activation, involves macropinocytosis, and critically depends on LAMP-1. In endothelial cells that express low levels of glycosylated DG, both receptors can promote LASV entry. In sum, our study defines the roles of Axl in LASV entry and provides a rationale for targeting Axl in antiviral therapy.
Collapse
Affiliation(s)
- Chiara Fedeli
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Giulia Torriani
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Clara Galan-Navarro
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
- Laboratory of Lymphatic and Cancer Bioengineering, Institute of Bioengineering, École Polytechnique Féderale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Hector Moreno
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Gisa Gerold
- TWINCORE, Center for Experimental and Clinical Infection Research, Institute for Experimental Virology, Hannover, Germany
| | - Stefan Kunz
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
28
|
Kanitz R, Guillot EG, Antoniazza S, Neuenschwander S, Goudet J. Complex genetic patterns in human arise from a simple range-expansion model over continental landmasses. PLoS One 2018; 13:e0192460. [PMID: 29466398 PMCID: PMC5821356 DOI: 10.1371/journal.pone.0192460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/23/2018] [Indexed: 12/21/2022] Open
Abstract
Although it is generally accepted that geography is a major factor shaping human genetic differentiation, it is still disputed how much of this differentiation is a result of a simple process of isolation-by-distance, and if there are factors generating distinct clusters of genetic similarity. We address this question using a geographically explicit simulation framework coupled with an Approximate Bayesian Computation approach. Based on six simple summary statistics only, we estimated the most probable demographic parameters that shaped modern human evolution under an isolation by distance scenario, and found these were the following: an initial population in East Africa spread and grew from 4000 individuals to 5.7 million in about 132 000 years. Subsequent simulations with these estimates followed by cluster analyses produced results nearly identical to those obtained in real data. Thus, a simple diffusion model from East Africa explains a large portion of the genetic diversity patterns observed in modern humans. We argue that a model of isolation by distance along the continental landmasses might be the relevant null model to use when investigating selective effects in humans and probably many other species.
Collapse
Affiliation(s)
- Ricardo Kanitz
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Elsa G. Guillot
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | | | - Samuel Neuenschwander
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Vital-IT, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Jérôme Goudet
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
29
|
Rotimi CN, Bentley AR, Doumatey AP, Chen G, Shriner D, Adeyemo A. The genomic landscape of African populations in health and disease. Hum Mol Genet 2017; 26:R225-R236. [PMID: 28977439 PMCID: PMC6075021 DOI: 10.1093/hmg/ddx253] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/19/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022] Open
Abstract
A deeper appreciation of the complex architecture of African genomes is critical to the global effort to understand human history, biology and differential distribution of disease by geography and ancestry. Here, we report on how the growing engagement of African populations in genome science is providing new insights into the forces that shaped human genomes before and after the Out-of-Africa migrations. As a result of this human evolutionary history, African ancestry populations have the greatest genomic diversity in the world, and this diversity has important ramifications for genomic research. In the case of pharmacogenomics, for instance, variants of consequence are not limited to those identified in other populations, and diversity within African ancestry populations precludes summarizing risk across different African ethnic groups. Exposure of Africans to fatal pathogens, such as Plasmodium falciparum, Lassa Virus and Trypanosoma brucei rhodesiense, has resulted in elevated frequencies of alleles conferring survival advantages for infectious diseases, but that are maladaptive in modern-day environments. Illustrating with cardiometabolic traits, we show that while genomic research in African ancestry populations is still in early stages, there are already many examples of novel and African ancestry-specific disease loci that have been discovered. Furthermore, the shorter haplotypes in African genomes have facilitated fine-mapping of loci discovered in other human ancestry populations. Given the insights already gained from the interrogation of African genomes, it is imperative to continue and increase our efforts to describe genomic risk in and across African ancestry populations.
Collapse
Affiliation(s)
- Charles N. Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Amy R. Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Ayo P. Doumatey
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Guanjie Chen
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Daniel Shriner
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Adebowale Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, Bethesda, MD 20892, USA
| |
Collapse
|
30
|
QnAs with Pardis Sabeti. Proc Natl Acad Sci U S A 2017; 114:9757-9758. [DOI: 10.1073/pnas.1714015114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
31
|
Gibb R, Moses LM, Redding DW, Jones KE. Understanding the cryptic nature of Lassa fever in West Africa. Pathog Glob Health 2017; 111:276-288. [PMID: 28875769 PMCID: PMC5694855 DOI: 10.1080/20477724.2017.1369643] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lassa fever (LF) is increasingly recognized by global health institutions as an important rodent-borne disease with severe impacts on some of West Africa's poorest communities. However, our knowledge of LF ecology, epidemiology and distribution is limited, which presents barriers to both short-term disease forecasting and prediction of long-term impacts of environmental change on Lassa virus (LASV) zoonotic transmission dynamics. Here, we synthesize current knowledge to show that extrapolations from past research have produced an incomplete picture of the incidence and distribution of LF, with negative consequences for policy planning, medical treatment and management interventions. Although the recent increase in LF case reports is likely due to improved surveillance, recent studies suggest that future socio-ecological changes in West Africa may drive increases in LF burden. Future research should focus on the geographical distribution and disease burden of LF, in order to improve its integration into public policy and disease control strategies.
Collapse
Affiliation(s)
- Rory Gibb
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Lina M. Moses
- Department of Global Community Health and Behavioral Sciences, Tulane University, New Orleans, LA, USA
| | - David W. Redding
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Kate E. Jones
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
- Institute of Zoology, Zoological Society of London, London, UK
| |
Collapse
|
32
|
Hermisson J, Pennings PS. Soft sweeps and beyond: understanding the patterns and probabilities of selection footprints under rapid adaptation. Methods Ecol Evol 2017. [DOI: 10.1111/2041-210x.12808] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Joachim Hermisson
- Department of Mathematics and Max F. Perutz Laboratories University of Vienna Vienna Austria
| | - Pleuni S. Pennings
- Department of Biology San Francisco State University San Francisco CA USA
| |
Collapse
|
33
|
Quach H, Quintana-Murci L. Living in an adaptive world: Genomic dissection of the genus Homo and its immune response. J Exp Med 2017; 214:877-894. [PMID: 28351985 PMCID: PMC5379985 DOI: 10.1084/jem.20161942] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 02/14/2017] [Accepted: 03/06/2017] [Indexed: 12/14/2022] Open
Abstract
More than a decade after the sequencing of the human genome, a deluge of genome-wide population data are generating a portrait of human genetic diversity at an unprecedented level of resolution. Genomic studies have provided new insight into the demographic and adaptive history of our species, Homo sapiens, including its interbreeding with other hominins, such as Neanderthals, and the ways in which natural selection, in its various guises, has shaped genome diversity. These studies, combined with functional genomic approaches, such as the mapping of expression quantitative trait loci, have helped to identify genes, functions, and mechanisms of prime importance for host survival and involved in phenotypic variation and differences in disease risk. This review summarizes new findings in this rapidly developing field, focusing on the human immune response. We discuss the importance of defining the genetic and evolutionary determinants driving immune response variation, and highlight the added value of population genomic approaches in settings relevant to immunity and infection.
Collapse
Affiliation(s)
- Hélène Quach
- Human Evolutionary Genetics Unit, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France.,Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, 75015 Paris, France.,Centre National de la Recherche Scientifique, URA3012, 75015 Paris, France
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France .,Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, 75015 Paris, France.,Centre National de la Recherche Scientifique, URA3012, 75015 Paris, France
| |
Collapse
|
34
|
Technologies for Proteome-Wide Discovery of Extracellular Host-Pathogen Interactions. J Immunol Res 2017; 2017:2197615. [PMID: 28321417 PMCID: PMC5340944 DOI: 10.1155/2017/2197615] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/19/2017] [Indexed: 12/26/2022] Open
Abstract
Pathogens have evolved unique mechanisms to breach the cell surface barrier and manipulate the host immune response to establish a productive infection. Proteins exposed to the extracellular environment, both cell surface-expressed receptors and secreted proteins, are essential targets for initial invasion and play key roles in pathogen recognition and subsequent immunoregulatory processes. The identification of the host and pathogen extracellular molecules and their interaction networks is fundamental to understanding tissue tropism and pathogenesis and to inform the development of therapeutic strategies. Nevertheless, the characterization of the proteins that function in the host-pathogen interface has been challenging, largely due to the technical challenges associated with detection of extracellular protein interactions. This review discusses available technologies for the high throughput study of extracellular protein interactions between pathogens and their hosts, with a focus on mammalian viruses and bacteria. Emerging work illustrates a rich landscape for extracellular host-pathogen interaction and points towards the evolution of multifunctional pathogen-encoded proteins. Further development and application of technologies for genome-wide identification of extracellular protein interactions will be important in deciphering functional host-pathogen interaction networks, laying the foundation for development of novel therapeutics.
Collapse
|
35
|
Abstract
Viral entry represents the first step of every viral infection and is a determinant for the host range and disease potential of a virus. Here, we review the latest developments on cell entry of the highly pathogenic Old World arenavirus Lassa virus, providing novel insights into the complex virus-host cell interaction of this important human pathogen. We will cover new discoveries on the molecular mechanisms of receptor recognition, endocytosis, and the use of late endosomal entry factors.
Collapse
|
36
|
Abstract
The wealth of available genetic information is allowing the reconstruction of human demographic and adaptive history. Demography and purifying selection affect the purge of rare, deleterious mutations from the human population, whereas positive and balancing selection can increase the frequency of advantageous variants, improving survival and reproduction in specific environmental conditions. In this review, I discuss how theoretical and empirical population genetics studies, using both modern and ancient DNA data, are a powerful tool for obtaining new insight into the genetic basis of severe disorders and complex disease phenotypes, rare and common, focusing particularly on infectious disease risk.
Collapse
Affiliation(s)
- Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Department of Genomes & Genetics, Institut Pasteur, Paris, 75015, France.
- Centre National de la Recherche Scientifique, URA3012, Paris, 75015, France.
- Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris, 75015, France.
| |
Collapse
|
37
|
Pharmacogenomic implications of the evolutionary history of infectious diseases in Africa. THE PHARMACOGENOMICS JOURNAL 2016; 17:112-120. [PMID: 27779243 PMCID: PMC5380847 DOI: 10.1038/tpj.2016.78] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/06/2016] [Accepted: 07/19/2016] [Indexed: 12/20/2022]
Abstract
As the common birthplace of all human populations, modern humans have lived longer on the African continent than in any other geographical region of the world. This long history, along with the evolutionary need to adapt to environmental challenges such as exposure to infectious agents, has led to greater genetic variation in Africans. The vast genetic variation in Africans also extends to genes involved in the absorption, distribution, metabolism and excretion of pharmaceuticals. Ongoing cataloging of these clinically relevant variants reveals huge allele-frequency differences within and between African populations. Here, we examine Africa's large burden of infectious disease, discuss key examples of known genetic variation modulating disease risk, and provide examples of clinically relevant variants critical for establishing dosing guidelines. We propose that a more systematic characterization of the genetic diversity of African ancestry populations is required if the current benefits of precision medicine are to be extended to these populations.
Collapse
|
38
|
Rotimi CN, Tekola-Ayele F, Baker JL, Shriner D. The African diaspora: history, adaptation and health. Curr Opin Genet Dev 2016; 41:77-84. [PMID: 27644073 DOI: 10.1016/j.gde.2016.08.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 06/30/2016] [Accepted: 08/02/2016] [Indexed: 01/13/2023]
Abstract
The trans-Atlantic slave trade brought millions of Africans to the New World. Advances in genomics are providing novel insights into the history and health of Africans and the diasporan populations. Recent examples reviewed here include the unraveling of substantial hunter-gatherer and 'Eurasian' admixtures across sub-Saharan Africa, expanding our understanding of ancestral African genetics; the global ubiquity of mixed ancestry; the revealing of African ancestry in Latin Americans that likely derived from the slave trade; and understanding of the ancestral backgrounds of APOL1 and LPL found to influence kidney disease and lipid levels, respectively, providing specific insights into disease etiology and health disparities.
Collapse
Affiliation(s)
- Charles N Rotimi
- Center for Research on Genomics and Global Health National Human Genome Research Institute, Building 12A, Room 4047 12 South Drive, Bethesda, MD 20892, USA.
| | - Fasil Tekola-Ayele
- Center for Research on Genomics and Global Health National Human Genome Research Institute, Building 12A, Room 4047 12 South Drive, Bethesda, MD 20892, USA
| | - Jennifer L Baker
- Center for Research on Genomics and Global Health National Human Genome Research Institute, Building 12A, Room 4047 12 South Drive, Bethesda, MD 20892, USA
| | - Daniel Shriner
- Center for Research on Genomics and Global Health National Human Genome Research Institute, Building 12A, Room 4047 12 South Drive, Bethesda, MD 20892, USA
| |
Collapse
|
39
|
Abstract
INTRODUCTION Lassa virus (LASV), the most prominent human pathogen of the Arenaviridae, is transmitted to humans from infected rodents and can cause Lassa Fever (LF). The sizeable disease burden in West Africa, numerous imported LF cases worldwide, and the possibility that LASV can be used as an agent of biological warfare make a strong case for vaccine development. There are no licensed LASV vaccines and the antiviral treatment is limited to an off-label use of ribavirin that is only partially effective. AREAS COVERED LASV vaccine development is hampered by high cost of biocontainment requirement, the absence of appropriate small animal models, genetic diversity of LASV species, and by high HIV-1 prevalence in LASV endemic areas. Over the past 15 years several vaccine platforms have been developed. Natural history of LASV and pathogenesis of the disease provide strong justification for replication-competent (RC) vaccine as one of the most feasible approaches to control LF. Development of LASV vaccine candidates based on reassortant, recombinant, and alphavirus replicon technologies is covered in this review. Expert commentary: Two lead RC vaccine candidates, reassortant ML29 and recombinant VSV/LASV, have been successfully tested in non-human primates and have been recommended by international vaccine experts for rapid clinical development. Both platforms have powerful molecular tools to further secure safety, improve immunogenicity, and cross-protection. These platforms are well positioned to design multivalent vaccines to protect against all LASV strains citculatrd in West Africa. The regulatory pathway of Candid #1, the first live-attenuated arenaviral vaccine against Argentine hemorrhagic, will be a reasonable guideline for LASV vaccine efficacy trials.
Collapse
Affiliation(s)
- Igor S Lukashevich
- a Department of Pharmacology and Toxicology, School of Medicine, and the Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases , University of Louisville , Louisville , KY , USA
| | | |
Collapse
|
40
|
Andersen KG, Shapiro BJ, Matranga CB, Sealfon R, Lin AE, Moses LM, Folarin OA, Goba A, Odia I, Ehiane PE, Momoh M, England EM, Winnicki S, Branco LM, Gire SK, Phelan E, Tariyal R, Tewhey R, Omoniwa O, Fullah M, Fonnie R, Fonnie M, Kanneh L, Jalloh S, Gbakie M, Saffa S, Karbo K, Gladden AD, Qu J, Stremlau M, Nekoui M, Finucane HK, Tabrizi S, Vitti JJ, Birren B, Fitzgerald M, McCowan C, Ireland A, Berlin AM, Bochicchio J, Tazon-Vega B, Lennon NJ, Ryan EM, Bjornson Z, Milner DA, Lukens AK, Broodie N, Rowland M, Heinrich M, Akdag M, Schieffelin JS, Levy D, Akpan H, Bausch DG, Rubins K, McCormick JB, Lander ES, Günther S, Hensley L, Okogbenin S, Schaffner SF, Okokhere PO, Khan SH, Grant DS, Akpede GO, Asogun DA, Gnirke A, Levin JZ, Happi CT, Garry RF, Sabeti PC. Clinical Sequencing Uncovers Origins and Evolution of Lassa Virus. Cell 2016; 162:738-50. [PMID: 26276630 DOI: 10.1016/j.cell.2015.07.020] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/26/2015] [Accepted: 06/12/2015] [Indexed: 12/25/2022]
Abstract
The 2013-2015 West African epidemic of Ebola virus disease (EVD) reminds us of how little is known about biosafety level 4 viruses. Like Ebola virus, Lassa virus (LASV) can cause hemorrhagic fever with high case fatality rates. We generated a genomic catalog of almost 200 LASV sequences from clinical and rodent reservoir samples. We show that whereas the 2013-2015 EVD epidemic is fueled by human-to-human transmissions, LASV infections mainly result from reservoir-to-human infections. We elucidated the spread of LASV across West Africa and show that this migration was accompanied by changes in LASV genome abundance, fatality rates, codon adaptation, and translational efficiency. By investigating intrahost evolution, we found that mutations accumulate in epitopes of viral surface proteins, suggesting selection for immune escape. This catalog will serve as a foundation for the development of vaccines and diagnostics. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Kristian G Andersen
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute, Cambridge, MA 02142, USA; The Scripps Research Institute, Scripps Translational Science Institute, La Jolla, CA 92037, USA.
| | - B Jesse Shapiro
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute, Cambridge, MA 02142, USA; Department of Biological Sciences, University of Montréal, Montréal, QC H2V 2S9, Canada
| | | | - Rachel Sealfon
- Broad Institute, Cambridge, MA 02142, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aaron E Lin
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute, Cambridge, MA 02142, USA
| | - Lina M Moses
- Tulane Health Sciences Center, Tulane University, New Orleans, LA 70118, USA
| | - Onikepe A Folarin
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria; Department of Biological Sciences, College of Natural Sciences, Redeemer's University, Redemption City, Osun State, Nigeria
| | - Augustine Goba
- Lassa Fever Laboratory, Kenema Government Hospital, Kenema, Eastern Province, Sierra Leone
| | - Ikponmwonsa Odia
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Philomena E Ehiane
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Mambu Momoh
- Lassa Fever Laboratory, Kenema Government Hospital, Kenema, Eastern Province, Sierra Leone; Eastern Polytechnic College, Kenema, Eastern Province, Sierra Leone
| | | | - Sarah Winnicki
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute, Cambridge, MA 02142, USA
| | | | - Stephen K Gire
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute, Cambridge, MA 02142, USA
| | | | | | - Ryan Tewhey
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute, Cambridge, MA 02142, USA
| | - Omowunmi Omoniwa
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Mohammed Fullah
- Lassa Fever Laboratory, Kenema Government Hospital, Kenema, Eastern Province, Sierra Leone; Eastern Polytechnic College, Kenema, Eastern Province, Sierra Leone
| | - Richard Fonnie
- Lassa Fever Laboratory, Kenema Government Hospital, Kenema, Eastern Province, Sierra Leone
| | - Mbalu Fonnie
- Lassa Fever Laboratory, Kenema Government Hospital, Kenema, Eastern Province, Sierra Leone
| | - Lansana Kanneh
- Lassa Fever Laboratory, Kenema Government Hospital, Kenema, Eastern Province, Sierra Leone
| | - Simbirie Jalloh
- Lassa Fever Laboratory, Kenema Government Hospital, Kenema, Eastern Province, Sierra Leone
| | - Michael Gbakie
- Lassa Fever Laboratory, Kenema Government Hospital, Kenema, Eastern Province, Sierra Leone
| | - Sidiki Saffa
- Lassa Fever Laboratory, Kenema Government Hospital, Kenema, Eastern Province, Sierra Leone
| | - Kandeh Karbo
- Lassa Fever Laboratory, Kenema Government Hospital, Kenema, Eastern Province, Sierra Leone
| | | | - James Qu
- Broad Institute, Cambridge, MA 02142, USA
| | - Matthew Stremlau
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute, Cambridge, MA 02142, USA
| | - Mahan Nekoui
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute, Cambridge, MA 02142, USA
| | | | - Shervin Tabrizi
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute, Cambridge, MA 02142, USA
| | - Joseph J Vitti
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | | | | | | | | | | - Zach Bjornson
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Danny A Milner
- Department of Immunology and Infectious Disease, Harvard School of Public Health, Boston, MA 02115, USA
| | - Amanda K Lukens
- Department of Immunology and Infectious Disease, Harvard School of Public Health, Boston, MA 02115, USA
| | - Nisha Broodie
- College of Medicine, Columbia University, New York, NY 10032, USA
| | | | | | | | - John S Schieffelin
- Tulane Health Sciences Center, Tulane University, New Orleans, LA 70118, USA
| | - Danielle Levy
- Tulane Health Sciences Center, Tulane University, New Orleans, LA 70118, USA
| | - Henry Akpan
- Nigerian Federal Ministry of Health, Abuja, Federal Capital Territory, Nigeria
| | - Daniel G Bausch
- Tulane Health Sciences Center, Tulane University, New Orleans, LA 70118, USA
| | - Kathleen Rubins
- The National Aeronautics and Space Administration, Johnson Space Center, Houston, TX 77058, USA
| | - Joseph B McCormick
- The University of Texas School of Public Health, Brownsville, TX 77030, USA
| | | | - Stephan Günther
- Department of Virology, Bernhard-Nocht-Institute for Tropical Medicine, 20259 Hamburg, Germany
| | - Lisa Hensley
- NIAID Integrated Research Facility, Frederick, MD 21702, USA
| | - Sylvanus Okogbenin
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | | | | | - Peter O Okokhere
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - S Humarr Khan
- Lassa Fever Laboratory, Kenema Government Hospital, Kenema, Eastern Province, Sierra Leone
| | - Donald S Grant
- Lassa Fever Laboratory, Kenema Government Hospital, Kenema, Eastern Province, Sierra Leone
| | - George O Akpede
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Danny A Asogun
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | | | | | - Christian T Happi
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria; Department of Biological Sciences, College of Natural Sciences, Redeemer's University, Redemption City, Osun State, Nigeria.
| | - Robert F Garry
- Tulane Health Sciences Center, Tulane University, New Orleans, LA 70118, USA
| | - Pardis C Sabeti
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute, Cambridge, MA 02142, USA; Department of Immunology and Infectious Disease, Harvard School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
41
|
Oldstone MBA. The Anatomy of a Career in Science. DNA Cell Biol 2016; 35:109-17. [PMID: 26836569 DOI: 10.1089/dna.2016.3232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Michael B A Oldstone
- Viral-Immunobiology Laboratory, The Scripps Research Institute , La Jolla, California
| |
Collapse
|
42
|
Vatsiou AI, Bazin E, Gaggiotti OE. Detection of selective sweeps in structured populations: a comparison of recent methods. Mol Ecol 2015; 25:89-103. [DOI: 10.1111/mec.13360] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 07/27/2015] [Accepted: 08/25/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Alexandra I. Vatsiou
- Laboratoire d'Ecologie Alpine UMR CNRS 5553 Université Joseph Fourier Grenoble France
- Scottish Oceans Institute East Sands University of St Andrews St Andrews KY16 8LB UK
| | - Eric Bazin
- Laboratoire d'Ecologie Alpine UMR CNRS 5553 Université Joseph Fourier Grenoble France
| | - Oscar E. Gaggiotti
- Laboratoire d'Ecologie Alpine UMR CNRS 5553 Université Joseph Fourier Grenoble France
- Scottish Oceans Institute East Sands University of St Andrews St Andrews KY16 8LB UK
| |
Collapse
|
43
|
Haasl RJ, Payseur BA. Fifteen years of genomewide scans for selection: trends, lessons and unaddressed genetic sources of complication. Mol Ecol 2015. [PMID: 26224644 DOI: 10.1111/mec.13339] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genomewide scans for natural selection (GWSS) have become increasingly common over the last 15 years due to increased availability of genome-scale genetic data. Here, we report a representative survey of GWSS from 1999 to present and find that (i) between 1999 and 2009, 35 of 49 (71%) GWSS focused on human, while from 2010 to present, only 38 of 83 (46%) of GWSS focused on human, indicating increased focus on nonmodel organisms; (ii) the large majority of GWSS incorporate interpopulation or interspecific comparisons using, for example F(ST), cross-population extended haplotype homozygosity or the ratio of nonsynonymous to synonymous substitutions; (iii) most GWSS focus on detection of directional selection rather than other modes such as balancing selection; and (iv) in human GWSS, there is a clear shift after 2004 from microsatellite markers to dense SNP data. A survey of GWSS meant to identify loci positively selected in response to severe hypoxic conditions support an approach to GWSS in which a list of a priori candidate genes based on potential selective pressures are used to filter the list of significant hits a posteriori. We also discuss four frequently ignored determinants of genomic heterogeneity that complicate GWSS: mutation, recombination, selection and the genetic architecture of adaptive traits. We recommend that GWSS methodology should better incorporate aspects of genomewide heterogeneity using empirical estimates of relevant parameters and/or realistic, whole-chromosome simulations to improve interpretation of GWSS results. Finally, we argue that knowledge of potential selective agents improves interpretation of GWSS results and that new methods focused on correlations between environmental variables and genetic variation can help automate this approach.
Collapse
Affiliation(s)
- Ryan J Haasl
- Department of Biology, University of Wisconsin-Platteville, 1 University Plaza, Platteville, WI, 53818, USA
| | - Bret A Payseur
- Laboratory of Genetics, University of Wisconsin-Madison, 425 Henry Mall, Madison, WI, 53706, USA
| |
Collapse
|
44
|
Human hemorrhagic Fever causing arenaviruses: molecular mechanisms contributing to virus virulence and disease pathogenesis. Pathogens 2015; 4:283-306. [PMID: 26011826 PMCID: PMC4493475 DOI: 10.3390/pathogens4020283] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/11/2015] [Accepted: 05/14/2015] [Indexed: 12/22/2022] Open
Abstract
Arenaviruses include multiple human pathogens ranging from the low-risk lymphocytic choriomeningitis virus (LCMV) to highly virulent hemorrhagic fever (HF) causing viruses such as Lassa (LASV), Junin (JUNV), Machupo (MACV), Lujo (LUJV), Sabia (SABV), Guanarito (GTOV), and Chapare (CHPV), for which there are limited preventative and therapeutic measures. Why some arenaviruses can cause virulent human infections while others cannot, even though they are isolated from the same rodent hosts, is an enigma. Recent studies have revealed several potential pathogenic mechanisms of arenaviruses, including factors that increase viral replication capacity and suppress host innate immunity, which leads to high viremia and generalized immune suppression as the hallmarks of severe and lethal arenaviral HF diseases. This review summarizes current knowledge of the roles of each of the four viral proteins and some known cellular factors in the pathogenesis of arenaviral HF as well as of some human primary cell-culture and animal models that lend themselves to studying arenavirus-induced HF disease pathogenesis. Knowledge gained from these studies can be applied towards the development of novel therapeutics and vaccines against these deadly human pathogens.
Collapse
|
45
|
Yoshida-Moriguchi T, Campbell KP. Matriglycan: a novel polysaccharide that links dystroglycan to the basement membrane. Glycobiology 2015; 25:702-13. [PMID: 25882296 PMCID: PMC4453867 DOI: 10.1093/glycob/cwv021] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 04/08/2015] [Indexed: 01/01/2023] Open
Abstract
Associations between cells and the basement membrane are critical for a variety of biological events including cell proliferation, cell migration, cell differentiation and the maintenance of tissue integrity. Dystroglycan is a highly glycosylated basement membrane receptor, and is involved in physiological processes that maintain integrity of the skeletal muscle, as well as development and function of the central nervous system. Aberrant O-glycosylation of the α subunit of this protein, and a concomitant loss of dystroglycan's ability to function as a receptor for extracellular matrix (ECM) ligands that bear laminin globular (LG) domains, occurs in several congenital/limb-girdle muscular dystrophies (also referred to as dystroglycanopathies). Recent genetic studies revealed that mutations in DAG1 (which encodes dystroglycan) and at least 17 other genes disrupt the ECM receptor function of dystroglycan and cause disease. Here, we summarize recent advances in our understanding of the enzymatic functions of two of these disease genes: the like-glycosyltransferase (LARGE) and protein O-mannose kinase (POMK, previously referred to as SGK196). In addition, we discuss the structure of the glycan that directly binds the ECM ligands and the mechanisms by which this functional motif is linked to dystroglycan. In light of the fact that dystroglycan functions as a matrix receptor and the polysaccharide synthesized by LARGE is the binding motif for matrix proteins, we propose to name this novel polysaccharide structure matriglycan.
Collapse
Affiliation(s)
- Takako Yoshida-Moriguchi
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, 4283 Carver Biomedical Research Building, 285 Newton Road, Iowa City, IA 52242-1101, USA
| | - Kevin P Campbell
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, 4283 Carver Biomedical Research Building, 285 Newton Road, Iowa City, IA 52242-1101, USA
| |
Collapse
|
46
|
Mapping Bias Overestimates Reference Allele Frequencies at the HLA Genes in the 1000 Genomes Project Phase I Data. G3-GENES GENOMES GENETICS 2015; 5:931-41. [PMID: 25787242 PMCID: PMC4426377 DOI: 10.1534/g3.114.015784] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Next-generation sequencing (NGS) technologies have become the standard for data generation in studies of population genomics, as the 1000 Genomes Project (1000G). However, these techniques are known to be problematic when applied to highly polymorphic genomic regions, such as the human leukocyte antigen (HLA) genes. Because accurate genotype calls and allele frequency estimations are crucial to population genomics analyses, it is important to assess the reliability of NGS data. Here, we evaluate the reliability of genotype calls and allele frequency estimates of the single-nucleotide polymorphisms (SNPs) reported by 1000G (phase I) at five HLA genes (HLA-A, -B, -C, -DRB1, and -DQB1). We take advantage of the availability of HLA Sanger sequencing of 930 of the 1092 1000G samples and use this as a gold standard to benchmark the 1000G data. We document that 18.6% of SNP genotype calls in HLA genes are incorrect and that allele frequencies are estimated with an error greater than ±0.1 at approximately 25% of the SNPs in HLA genes. We found a bias toward overestimation of reference allele frequency for the 1000G data, indicating mapping bias is an important cause of error in frequency estimation in this dataset. We provide a list of sites that have poor allele frequency estimates and discuss the outcomes of including those sites in different kinds of analyses. Because the HLA region is the most polymorphic in the human genome, our results provide insights into the challenges of using of NGS data at other genomic regions of high diversity.
Collapse
|
47
|
Zapata JC, Salvato MS. Genomic profiling of host responses to Lassa virus: therapeutic potential from primate to man. Future Virol 2015; 10:233-256. [PMID: 25844088 DOI: 10.2217/fvl.15.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lassa virus infection elicits distinctive changes in host gene expression and metabolism. We focus on changes in host gene expression that may be biomarkers that discriminate individual pathogens or may help to provide a prognosis for disease. In addition to assessing mRNA changes, functional studies are also needed to discriminate causes of disease from mechanisms of host resistance. Host responses that drive pathogenesis are likely to be targets for prevention or therapy. Host responses to Lassa or its related arenaviruses have been monitored in cell culture, in animal models of hemorrhagic fever, in Lassa-infected nonhuman primates and, to a limited extent, in infected human beings. Here, we describe results from those studies and discuss potential targets for reducing virus replication and mitigating disease.
Collapse
Affiliation(s)
- Juan C Zapata
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Maria S Salvato
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
48
|
Gurdasani D, Carstensen T, Tekola-Ayele F, Pagani L, Tachmazidou I, Hatzikotoulas K, Karthikeyan S, Iles L, Pollard MO, Choudhury A, Ritchie GRS, Xue Y, Asimit J, Nsubuga RN, Young EH, Pomilla C, Kivinen K, Rockett K, Kamali A, Doumatey AP, Asiki G, Seeley J, Sisay-Joof F, Jallow M, Tollman S, Mekonnen E, Ekong R, Oljira T, Bradman N, Bojang K, Ramsay M, Adeyemo A, Bekele E, Motala A, Norris SA, Pirie F, Kaleebu P, Kwiatkowski D, Tyler-Smith C, Rotimi C, Zeggini E, Sandhu MS. The African Genome Variation Project shapes medical genetics in Africa. Nature 2014; 517:327-32. [PMID: 25470054 PMCID: PMC4297536 DOI: 10.1038/nature13997] [Citation(s) in RCA: 378] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/23/2014] [Indexed: 12/27/2022]
Abstract
Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterization of African genetic diversity is needed. The African Genome Variation Project provides a resource with which to design, implement and interpret genomic studies in sub-Saharan Africa and worldwide. The African Genome Variation Project represents dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across sub-Saharan Africa. We identify new loci under selection, including loci related to malaria susceptibility and hypertension. We show that modern imputation panels (sets of reference genotypes from which unobserved or missing genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in sub-Saharan Africa. Using whole-genome sequencing, we demonstrate further improvements in imputation accuracy, strengthening the case for large-scale sequencing efforts of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa.
Collapse
Affiliation(s)
- Deepti Gurdasani
- 1] Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] Department of Public Health and Primary Care, University of Cambridge, 2 Wort's Causeway, Cambridge, CB1 8RN, UK
| | - Tommy Carstensen
- 1] Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] Department of Public Health and Primary Care, University of Cambridge, 2 Wort's Causeway, Cambridge, CB1 8RN, UK
| | - Fasil Tekola-Ayele
- Centre for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, MSC 5635, Bethesda, Maryland 20891-5635, USA
| | - Luca Pagani
- 1] Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Ioanna Tachmazidou
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | | | - Savita Karthikeyan
- 1] Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] Department of Public Health and Primary Care, University of Cambridge, 2 Wort's Causeway, Cambridge, CB1 8RN, UK
| | - Louise Iles
- 1] Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] Department of Public Health and Primary Care, University of Cambridge, 2 Wort's Causeway, Cambridge, CB1 8RN, UK [3] Department of Archaeology, University of York, King's Manor, York YO1 7EP, UK
| | - Martin O Pollard
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Ananyo Choudhury
- Sydney Brenner Institute of Molecular Bioscience (SBIMB), University of the Witwatersrand, The Mount, 9 Jubilee Road, Parktown 2193, Johannesburg, Gauteng, South Africa
| | - Graham R S Ritchie
- 1] Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] Vertebrate Genomics, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Yali Xue
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Jennifer Asimit
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Rebecca N Nsubuga
- Medical Research Council/Uganda Virus Research Institute, Plot 51-57 Nakiwogo Road, Uganda
| | - Elizabeth H Young
- 1] Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] Department of Public Health and Primary Care, University of Cambridge, 2 Wort's Causeway, Cambridge, CB1 8RN, UK
| | - Cristina Pomilla
- 1] Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] Department of Public Health and Primary Care, University of Cambridge, 2 Wort's Causeway, Cambridge, CB1 8RN, UK
| | - Katja Kivinen
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Kirk Rockett
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7BN, UK
| | - Anatoli Kamali
- Medical Research Council/Uganda Virus Research Institute, Plot 51-57 Nakiwogo Road, Uganda
| | - Ayo P Doumatey
- Centre for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, MSC 5635, Bethesda, Maryland 20891-5635, USA
| | - Gershim Asiki
- Medical Research Council/Uganda Virus Research Institute, Plot 51-57 Nakiwogo Road, Uganda
| | - Janet Seeley
- Medical Research Council/Uganda Virus Research Institute, Plot 51-57 Nakiwogo Road, Uganda
| | - Fatoumatta Sisay-Joof
- Medical Research Council Unit, Atlantic Boulevard, SerrekundaPO Box 273, Banjul, The Gambia
| | - Muminatou Jallow
- Medical Research Council Unit, Atlantic Boulevard, SerrekundaPO Box 273, Banjul, The Gambia
| | - Stephen Tollman
- 1] Medical Research Council/Wits Rural Public Health and Health Transitions Unit, School of Public Health, Education Campus, 27 St Andrew's Road, Parktown 2192, Johannesburg, Gauteng, South Africa [2] INDEPTH Network, 38/40 Mensah Wood Street, East Legon, PO Box KD 213, Kanda, Accra, Ghana
| | - Ephrem Mekonnen
- Institute of Biotechnology, Addis Ababa University, Entoto Avenue, Arat Kilo, 16087 Addis Ababa, Ethiopia
| | - Rosemary Ekong
- Department of Genetics Evolution and Environment, University College, London, Gower Street, London WC1E 6BT, UK
| | - Tamiru Oljira
- University of Haramaya, Department of Biology, PO Box 138, Dire Dawa, Ethiopia
| | - Neil Bradman
- Henry Stewart Group, 28/30 Little Russell Street, London WC1A 2HN, UK
| | - Kalifa Bojang
- Medical Research Council Unit, Atlantic Boulevard, SerrekundaPO Box 273, Banjul, The Gambia
| | - Michele Ramsay
- 1] Sydney Brenner Institute of Molecular Bioscience (SBIMB), University of the Witwatersrand, The Mount, 9 Jubilee Road, Parktown 2193, Johannesburg, Gauteng, South Africa [2] Division of Human Genetics, National Health Laboratory Service, C/O Hospital and de Korte Streets, Braamfontein 2000, Johannesburg, South Africa [3] School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Braamfontein 2000, Johannesburg, South Africa
| | - Adebowale Adeyemo
- Centre for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, MSC 5635, Bethesda, Maryland 20891-5635, USA
| | - Endashaw Bekele
- Department of Microbial, Cellular and Molecular Biology, College of Natural Sciences, Arat Kilo Campus, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia
| | - Ayesha Motala
- Department of Diabetes and Endocrinology, University of KwaZulu-Natal, 719 Umbilo Road, Congella, Durban 4013, South Africa
| | - Shane A Norris
- Department of Paediatrics, University of Witwatersrand, 7 York Road, Parktown 2198, Johannesburg, Gauteng, South Africa
| | - Fraser Pirie
- Department of Diabetes and Endocrinology, University of KwaZulu-Natal, 719 Umbilo Road, Congella, Durban 4013, South Africa
| | - Pontiano Kaleebu
- Medical Research Council/Uganda Virus Research Institute, Plot 51-57 Nakiwogo Road, Uganda
| | - Dominic Kwiatkowski
- 1] Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7BN, UK
| | - Chris Tyler-Smith
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Charles Rotimi
- Centre for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, MSC 5635, Bethesda, Maryland 20891-5635, USA
| | - Eleftheria Zeggini
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Manjinder S Sandhu
- 1] Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] Department of Public Health and Primary Care, University of Cambridge, 2 Wort's Causeway, Cambridge, CB1 8RN, UK
| |
Collapse
|
49
|
Lv FH, Agha S, Kantanen J, Colli L, Stucki S, Kijas JW, Joost S, Li MH, Ajmone Marsan P. Adaptations to climate-mediated selective pressures in sheep. Mol Biol Evol 2014; 31:3324-43. [PMID: 25249477 PMCID: PMC4245822 DOI: 10.1093/molbev/msu264] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Following domestication, sheep (Ovis aries) have become essential farmed animals across the world through adaptation to a diverse range of environments and varied production systems. Climate-mediated selective pressure has shaped phenotypic variation and has left genetic "footprints" in the genome of breeds raised in different agroecological zones. Unlike numerous studies that have searched for evidence of selection using only population genetics data, here, we conducted an integrated coanalysis of environmental data with single nucleotide polymorphism (SNP) variation. By examining 49,034 SNPs from 32 old, autochthonous sheep breeds that are adapted to a spectrum of different regional climates, we identified 230 SNPs with evidence for selection that is likely due to climate-mediated pressure. Among them, 189 (82%) showed significant correlation (P ≤ 0.05) between allele frequency and climatic variables in a larger set of native populations from a worldwide range of geographic areas and climates. Gene ontology analysis of genes colocated with significant SNPs identified 17 candidates related to GTPase regulator and peptide receptor activities in the biological processes of energy metabolism and endocrine and autoimmune regulation. We also observed high linkage disequilibrium and significant extended haplotype homozygosity for the core haplotype TBC1D12-CH1 of TBC1D12. The global frequency distribution of the core haplotype and allele OAR22_18929579-A showed an apparent geographic pattern and significant (P ≤ 0.05) correlations with climatic variation. Our results imply that adaptations to local climates have shaped the spatial distribution of some variants that are candidates to underpin adaptive variation in sheep.
Collapse
Affiliation(s)
- Feng-Hua Lv
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Saif Agha
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland Department of Animal Science, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Juha Kantanen
- Biotechnology and Food Research, MTT Agrifood Research Finland, Jokioinen, Finland Department of Biology, University of Eastern Finland, Kuopio, Finland
| | - Licia Colli
- Istituto di Zootecnica, Facoltà di Agraria, Università Cattolica del Sacro Cuore, Piacenza, Italy Biodiversity and Ancient DNA Research Center-BioDNA, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Sylvie Stucki
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - James W Kijas
- CSIRO Livestock Industries, St Lucia, Brisbane, Qld, Australia
| | - Stéphane Joost
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Meng-Hua Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Paolo Ajmone Marsan
- Istituto di Zootecnica, Facoltà di Agraria, Università Cattolica del Sacro Cuore, Piacenza, Italy Biodiversity and Ancient DNA Research Center-BioDNA, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
50
|
Brinkworth JF, Barreiro LB. The contribution of natural selection to present-day susceptibility to chronic inflammatory and autoimmune disease. Curr Opin Immunol 2014; 31:66-78. [PMID: 25458997 DOI: 10.1016/j.coi.2014.09.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/08/2014] [Accepted: 09/29/2014] [Indexed: 12/20/2022]
Abstract
Chronic inflammatory and autoimmune diseases have been the focus of many genome-wide association studies (GWAS) because they represent a significant cause of illness and morbidity, and many are heritable. Almost a decade of GWAS studies suggests that the pathological inflammation associated with these diseases is controlled by a limited number of networked immune system genes. Chronic inflammatory and autoimmune diseases are enigmatic from an evolutionary perspective because they exert a negative affect on reproductive fitness. The persistence of these conditions may be partially explained by the important roles the implicated immune genes play in pathogen defense and other functions thought to be under strong natural selection in humans. The evolutionary reasons for chronic inflammatory and autoimmune disease persistence and uneven distribution across populations are the focus of this review.
Collapse
Affiliation(s)
- Jessica F Brinkworth
- Sainte-Justine Hospital Research Centre, Montréal, Quebec H3T 1C5, Canada; Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Luis B Barreiro
- Sainte-Justine Hospital Research Centre, Montréal, Quebec H3T 1C5, Canada; Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada.
| |
Collapse
|