1
|
Mattila ALK, Opedal ØH, Hällfors MH, Pietikäinen L, Koivusaari SHM, Hyvärinen MT. The potential for evolutionary rescue in an Arctic seashore plant threatened by climate change. Proc Biol Sci 2024; 291:20241351. [PMID: 39355964 PMCID: PMC11445713 DOI: 10.1098/rspb.2024.1351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/11/2024] [Accepted: 08/14/2024] [Indexed: 10/03/2024] Open
Abstract
The impacts of climate change may be particularly severe for geographically isolated populations, which must adjust through plastic responses or evolve. Here, we study an endangered Arctic plant, Primula nutans ssp. finmarchica, confined to Fennoscandian seashores and showing indications of maladaptation to warming climate. We evaluate the potential of these populations to evolve to facilitate survival in the rapidly warming Arctic (i.e. evolutionary rescue) by utilizing manual crossing experiments in a nested half-sibling breeding design. We estimate G-matrices, evolvability and genetic constraints in traits with potentially conflicting selection pressures. To explicitly evaluate the potential for climate change adaptation, we infer the expected time to evolve from a northern to a southern phenotype under different selection scenarios, using demographic and climatic data to relate expected evolutionary rates to projected rates of climate change. Our results indicate that, given the nearly 10-fold greater evolvability of vegetative than of floral traits, adaptation in these traits may take place nearly in concert with changing climate, given effective climate mitigation. However, the comparatively slow expected evolutionary modification of floral traits may hamper the evolution of floral traits to track climate-induced changes in pollination environment, compromising sexual reproduction and thus reducing the likelihood of evolutionary rescue.
Collapse
Affiliation(s)
- Anniina L K Mattila
- Botany and Mycology Unit, Finnish Museum of Natural History, University of Helsinki , Helsinki, Finland
| | | | - Maria H Hällfors
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, University of Helsinki , Helsinki, Finland
- Nature Solutions, Finnish Environment Institute (Syke) , Helsinki, Finland
| | - Laura Pietikäinen
- Botany and Mycology Unit, Finnish Museum of Natural History, University of Helsinki , Helsinki, Finland
| | - Susanna H M Koivusaari
- Botany and Mycology Unit, Finnish Museum of Natural History, University of Helsinki , Helsinki, Finland
- Department of Geosciences and Geography, University of Helsinki , Helsinki, Finland
| | - Marko-Tapio Hyvärinen
- Botany and Mycology Unit, Finnish Museum of Natural History, University of Helsinki , Helsinki, Finland
| |
Collapse
|
2
|
Olazcuaga L, Hufbauer RA. Evolution fails to rescue a population in an increasingly variable environment. Proc Natl Acad Sci U S A 2024; 121:e2414877121. [PMID: 39226367 PMCID: PMC11406268 DOI: 10.1073/pnas.2414877121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024] Open
Affiliation(s)
- Laure Olazcuaga
- Station d'Ecologie Théorique et Expérimentale, Centre National de la Recherche Scientifique, Moulis 09200, France
| | - Ruth A Hufbauer
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
3
|
Clark-Wolf TJ, Boersma PD, Plard F, Rebstock GA, Abrahms B. Increasing environmental variability inhibits evolutionary rescue in a long-lived vertebrate. Proc Natl Acad Sci U S A 2024; 121:e2406314121. [PMID: 39133852 PMCID: PMC11348156 DOI: 10.1073/pnas.2406314121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/06/2024] [Indexed: 08/29/2024] Open
Abstract
Evolutionary rescue, whereby adaptive evolutionary change rescues populations from extinction, is theorized to enable imperiled animal populations to persist under increasing anthropogenic change. Despite a large body of evidence in theoretical and laboratory settings, the potential for evolutionary rescue to be a viable adaptation process for free-ranging animals remains unknown. Here, we leverage a 38-year dataset following the fates of 53,959 Magellanic penguins (Spheniscus magellanicus) to investigate whether a free-ranging vertebrate species can morphologically adapt to long-term environmental change sufficiently to promote population persistence. Despite strong selective pressures, we found that penguins did not adapt morphologically to long-term environmental changes, leading to projected population extirpation. Fluctuating selection benefited larger penguins in some environmental contexts, and smaller penguins in others, ultimately mitigating their ability to adapt under increasing environmental variability. Under future climate projections, we found that the species cannot be rescued by adaptation, suggesting similar constraints for other long-lived species. Such results reveal how fluctuating selection driven by environmental variability can inhibit adaptation under long-term environmental change. Our eco-evolutionary approach helps explain the lack of adaptation and evolutionary rescue in response to environmental change observed in many animal species.
Collapse
Affiliation(s)
- T. J. Clark-Wolf
- Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, WA98195
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, UT84322
| | - P. Dee Boersma
- Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, WA98195
| | - Floriane Plard
- Independent Researcher, Barraque de la Pinatelle, Tremoulet, Molompize15500, France
| | - Ginger A. Rebstock
- Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, WA98195
| | - Briana Abrahms
- Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, WA98195
| |
Collapse
|
4
|
Park KY, Lucas M, Chaulk A, Matter SF, Roland J, Keyghobadi N. Immigration allows population persistence and maintains genetic diversity despite an attempted experimental extinction. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240557. [PMID: 39086829 PMCID: PMC11288673 DOI: 10.1098/rsos.240557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024]
Abstract
Widespread fragmentation and degradation of habitats make organisms increasingly vulnerable to declines in population size. Immigration is a key process potentially affecting the rescue and persistence of populations in the face of such pressures. Field research addressing severe demographic declines in the context of immigration among interconnected local populations is limited owing to difficulties in detecting such demographic events and the need for long-term monitoring of populations. In a 17-subpopulation metapopulation of the butterfly, Parnassius smintheus, all adults observed in two adjacent patches were removed over eight consecutive generations. Despite this severe and long-term reduction in survival and reproduction, the targeted populations did not go extinct. Here, we use genetic data to assess the role of immigration versus in situ reproduction in allowing the persistence of these populations. We genotyped 471 samples collected from the targeted populations throughout the removal experiment at 152 single nucleotide polymorphisms. We found no reduction in the genetic diversity of the targeted populations over time, but a decrease in the number of loci in Hardy-Weinberg equilibrium, consistent with a high level of immigration from multiple surrounding populations. Our results highlight the role of connectivity and movement in making metapopulations resilient to even severe and protracted localized population reductions.
Collapse
Affiliation(s)
- Keon Young Park
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| | - Mel Lucas
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| | - Andrew Chaulk
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada
- Department of Biology, Memorial University of Newfoundland, St John's, Newfoundland A1C 5S7, Canada
| | - Stephen F Matter
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jens Roland
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Nusha Keyghobadi
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| |
Collapse
|
5
|
Draghi JA, McGlothlin JW, Kindsvater HK. Demographic feedbacks during evolutionary rescue can slow or speed adaptive evolution. Proc Biol Sci 2024; 291:20231553. [PMID: 38351805 PMCID: PMC10865011 DOI: 10.1098/rspb.2023.1553] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
Populations declining toward extinction can persist via genetic adaptation in a process called evolutionary rescue. Predicting evolutionary rescue has applications ranging from conservation biology to medicine, but requires understanding and integrating the multiple effects of a stressful environmental change on population processes. Here we derive a simple expression for how generation time, a key determinant of the rate of evolution, varies with population size during evolutionary rescue. Change in generation time is quantitatively predicted by comparing how intraspecific competition and the source of maladaptation each affect the rates of births and deaths in the population. Depending on the difference between two parameters quantifying these effects, the model predicts that populations may experience substantial changes in their rate of adaptation in both positive and negative directions, or adapt consistently despite severe stress. These predictions were then tested by comparison to the results of individual-based simulations of evolutionary rescue, which validated that the tolerable rate of environmental change varied considerably as described by analytical results. We discuss how these results inform efforts to understand wildlife disease and adaptation to climate change, evolution in managed populations and treatment resistance in pathogens.
Collapse
Affiliation(s)
- Jeremy A. Draghi
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Joel W. McGlothlin
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Holly K. Kindsvater
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|
6
|
Pfenninger M, Foucault Q. Population Genomic Time Series Data of a Natural Population Suggests Adaptive Tracking of Fluctuating Environmental Changes. Integr Comp Biol 2022; 62:1812-1826. [PMID: 35762661 DOI: 10.1093/icb/icac098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/07/2022] [Accepted: 06/16/2022] [Indexed: 01/05/2023] Open
Abstract
Natural populations are constantly exposed to fluctuating environmental changes that negatively affect their fitness in unpredictable ways. While theoretical models show the possibility of counteracting these environmental changes through rapid evolutionary adaptations, there have been few empirical studies demonstrating such adaptive tracking in natural populations. Here, we analyzed environmental data, fitness-related phenotyping and genomic time-series data sampled over 3 years from a natural Chironomus riparius (Diptera, Insecta) population to address this question. We show that the population's environment varied significantly on the time scale of the sampling in many selectively relevant dimensions, independently of each other. Similarly, phenotypic fitness components evolved significantly on the same temporal scale (mean 0.32 Haldanes), likewise independent from each other. The allele frequencies of 367,446 SNPs across the genome showed evidence of positive selection. Using temporal correlation of spatially coherent allele frequency changes revealed 35,574 haplotypes with more than one selected SNP. The mean selection coefficient for these haplotypes was 0.30 (s.d. = 0.68). The frequency changes of these haplotypes clustered in 46 different temporal patterns, indicating concerted, independent evolution of many polygenic traits. Nine of these patterns were strongly correlated with measured environmental variables. Enrichment analysis of affected genes suggested the implication of a wide variety of biological processes. Thus, our results suggest overall that the natural population of C. riparius tracks environmental change through rapid polygenic adaptation in many independent dimensions. This is further evidence that natural selection is pervasive at the genomic level and that evolutionary and ecological time scales may not differ at all, at least in some organisms.
Collapse
Affiliation(s)
- Markus Pfenninger
- Department Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt am Main, Germany.,Institute for Molecular and Organismic Evolution, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 7, 55128 Mainz, Germany.,LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Quentin Foucault
- Department Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt am Main, Germany.,Institute for Molecular and Organismic Evolution, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 7, 55128 Mainz, Germany
| |
Collapse
|
7
|
Vedder D, Lens L, Martin CA, Pellikka P, Adhikari H, Heiskanen J, Engler JO, Sarmento Cabral J. Hybridization may aid evolutionary rescue of an endangered East African passerine. Evol Appl 2022; 15:1177-1188. [PMID: 35899253 PMCID: PMC9309464 DOI: 10.1111/eva.13440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/26/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022] Open
Abstract
Introgressive hybridization is a process that enables gene flow across species barriers through the backcrossing of hybrids into a parent population. This may make genetic material, potentially including relevant environmental adaptations, rapidly available in a gene pool. Consequently, it has been postulated to be an important mechanism for enabling evolutionary rescue, that is the recovery of threatened populations through rapid evolutionary adaptation to novel environments. However, predicting the likelihood of such evolutionary rescue for individual species remains challenging. Here, we use the example of Zosterops silvanus, an endangered East African highland bird species suffering from severe habitat loss and fragmentation, to investigate whether hybridization with its congener Zosterops flavilateralis might enable evolutionary rescue of its Taita Hills population. To do so, we employ an empirically parameterized individual-based model to simulate the species' behaviour, physiology and genetics. We test the population's response to different assumptions of mating behaviour and multiple scenarios of habitat change. We show that as long as hybridization does take place, evolutionary rescue of Z. silvanus is likely. Intermediate hybridization rates enable the greatest long-term population growth, due to trade-offs between adaptive and maladaptive introgressed alleles. Habitat change did not have a strong effect on population growth rates, as Z. silvanus is a strong disperser and landscape configuration is therefore not the limiting factor for hybridization. Our results show that targeted gene flow may be a promising avenue to help accelerate the adaptation of endangered species to novel environments, and demonstrate how to combine empirical research and mechanistic modelling to deliver species-specific predictions for conservation planning.
Collapse
Affiliation(s)
- Daniel Vedder
- Ecosystem Modelling Group, Center for Computational and Theoretical BiologyUniversity of WürzburgWürzburgGermany
- Department of Ecosystem ServicesHelmholtz Centre for Environmental Research – UFZLeipzigGermany
- Institute of BiodiversityFriedrich Schiller University JenaJenaGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Luc Lens
- Terrestrial Ecology Unit, Biology DepartmentGhent UniversityGhentBelgium
| | - Claudia A. Martin
- Terrestrial Ecology Unit, Biology DepartmentGhent UniversityGhentBelgium
| | - Petri Pellikka
- Department of Geosciences and GeographyUniversity of HelsinkiHelsinkiFinland
- State Key Laboratory for Information Engineering in Surveying, Mapping and Remote SensingWuhan UniversityWuhanChina
| | - Hari Adhikari
- Department of Geosciences and GeographyUniversity of HelsinkiHelsinkiFinland
| | - Janne Heiskanen
- Department of Geosciences and GeographyUniversity of HelsinkiHelsinkiFinland
| | - Jan O. Engler
- Terrestrial Ecology Unit, Biology DepartmentGhent UniversityGhentBelgium
- Landscape Research, Department of GeographyGhent UniversityGhentBelgium
- Computational Landscape EcologyTechnische Universität DresdenDresdenGermany
| | - Juliano Sarmento Cabral
- Ecosystem Modelling Group, Center for Computational and Theoretical BiologyUniversity of WürzburgWürzburgGermany
| |
Collapse
|
8
|
Tomasini M, Peischl S. The role of spatial structure in multi-deme models of evolutionary rescue. J Evol Biol 2022; 35:986-1001. [PMID: 35704340 DOI: 10.1111/jeb.14018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 11/30/2022]
Abstract
Genetic variation and population sizes are critical factors for successful adaptation to novel environmental conditions. Gene flow between sub-populations is a potent mechanism to provide such variation and can hence facilitate adaptation, for instance by increasing genetic variation or via the introduction of beneficial variants. On the other hand, if gene flow between different habitats is too strong, locally beneficial alleles may not be able to establish permanently. In the context of evolutionary rescue, intermediate levels of gene flow are therefore often optimal for maximizing a species chance for survival in metapopulations without spatial structure. To which extent and under which conditions gene flow facilitates or hinders evolutionary rescue in spatially structured populations remains unresolved. We address this question by studying the differences between evolutionary rescue in the island model and in the stepping stone model in a gradually deteriorating habitat. We show that evolutionary rescue is modulated by the rate of gene flow between different habitats, which in turn depends strongly on the spatial structure and the pattern of environmental deterioration. We use these insights to show that in many cases spatially structured models can be translated into a simpler island model using an appropriately scaled effective migration rate.
Collapse
Affiliation(s)
- Matteo Tomasini
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland.,Computational and Molecular Population Genetics Laboratory, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Stephan Peischl
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland.,Swiss Institute for Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
9
|
Impacts of climate change on reproductive phenology in tropical rainforests of Southeast Asia. Commun Biol 2022; 5:311. [PMID: 35449443 PMCID: PMC9023445 DOI: 10.1038/s42003-022-03245-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/09/2022] [Indexed: 11/09/2022] Open
Abstract
In humid forests in Southeast Asia, many species from dozens of plant families flower gregariously and fruit synchronously at irregular multi-year intervals1-4. Little is known about how climate change will impact these community-wide mass reproductive events. Here, we perform a comprehensive analysis of reproductive phenology and its environmental drivers based on a monthly reproductive phenology record from 210 species in 41 families in Peninsular Malaysia. We find that the proportion of flowering and fruiting species decreased from 1976 to 2010. Using a phenology model, we find that 57% of species in the Dipterocarpaceae family respond to both drought and low-temperature cues for flowering. We show that low-temperature flowering cues will become less available in the future in the RCP2.6 and 8.5 scenarios, leading to decreased flowering opportunities of these species in a wide region from Thailand to the island of Borneo. Our results highlight the vulnerability of and variability in phenological responses across species in tropical ecosystems that differ from temperate and boreal biomes.
Collapse
|
10
|
Schmid M, Paniw M, Postuma M, Ozgul A, Guillaume F. A tradeoff between robustness to environmental fluctuations and speed of evolution. Am Nat 2022; 200:E16-E35. [DOI: 10.1086/719654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Loria A, Cristescu ME, Gonzalez A. Genotype diversity promotes the persistence of Daphnia populations exposed to severe copper stress. J Evol Biol 2022; 35:265-277. [PMID: 35000231 DOI: 10.1111/jeb.13979] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022]
Abstract
When environmental stressors of high intensity are sustained for long periods of time, populations face high probabilities of being extirpated. However, depending on the intensity of the stressor, large populations with sufficient genetic diversity may persist. We report the results of an experiment that tracked the persistence of Daphnia populations exposed to copper contamination. We assessed whether genotypic diversity reduced the risk of extinction. We created monoclonal and multiclonal populations and monitored their population sizes during a 32-week experiment. Cu was applied at a sub-lethal concentration and then increased every week until the population sizes dropped to about 10% of the carrying capacity (Cu at 180 μg/L). The concentration was then increased up to 186 μg/L and held stable until the end of the experiment. A survival analysis showed that clonal diversity extended the persistence of Daphnia populations, but copper contamination caused a substantial genetic erosion followed by population extirpation. However, some Cu-treated populations, mostly multiclonal, showed U-shaped patterns of growth consistent with evolutionary rescue but these did not lead to lasting population recovery. These results highlight the importance of genetic variation for population persistence, but they also show how quickly it can be lost in contaminated environments.
Collapse
Affiliation(s)
| | | | - Andrew Gonzalez
- Department of Biology, McGill University, Montreal, QC, Canada
| |
Collapse
|
12
|
Abstract
AbstractThe transformation of ecosystems proceeds at unprecedented rates. Recent studies suggest that high rates of environmental change can cause rate-induced tipping. In ecological models, the associated rate-induced critical transition manifests during transient dynamics in which populations drop to dangerously low densities. In this work, we study how indirect evolutionary rescue—due to the rapid evolution of a predator’s trait—can save a prey population from the rate-induced collapse. Therefore, we explicitly include the time-dependent dynamics of environmental change and evolutionary adaptation in an eco-evolutionary system. We then examine how fast the evolutionary adaptation needs to be to counteract the response to environmental degradation and express this relationship by means of a critical rate. Based on this critical rate, we conclude that indirect evolutionary rescue is more probable if the predator population possesses a high genetic variation and, simultaneously, the environmental change is slow. Hence, our results strongly emphasize that the maintenance of biodiversity requires a deceleration of the anthropogenic degradation of natural habitats.
Collapse
|
13
|
Hansen TF, Pélabon C. Evolvability: A Quantitative-Genetics Perspective. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-011121-021241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The concept of evolvability emerged in the early 1990s and soon became fashionable as a label for different streams of research in evolutionary biology. In evolutionary quantitative genetics, evolvability is defined as the ability of a population to respond to directional selection. This differs from other fields by treating evolvability as a property of populations rather than organisms or lineages and in being focused on quantification and short-term prediction rather than on macroevolution. While the term evolvability is new to quantitative genetics, many of the associated ideas and research questions have been with the field from its inception as biometry. Recent research on evolvability is more than a relabeling of old questions, however. New operational measures of evolvability have opened possibilities for understanding adaptation to rapid environmental change, assessing genetic constraints, and linking micro- and macroevolution.
Collapse
Affiliation(s)
- Thomas F. Hansen
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Christophe Pélabon
- Center for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| |
Collapse
|
14
|
Golas BD, Goodell B, Webb CT. Host adaptation to novel pathogen introduction: Predicting conditions that promote evolutionary rescue. Ecol Lett 2021; 24:2238-2255. [PMID: 34310798 DOI: 10.1111/ele.13845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/04/2021] [Accepted: 06/09/2021] [Indexed: 02/02/2023]
Abstract
Novel pathogen introduction can have drastic consequences for naive host populations, and outcomes can be difficult to predict. Evolutionary rescue (ER) provides a foundation for understanding whether hosts are driven to extinction or survive via adaptation. Currently, patterns of host population dynamics alongside evidence of adaptation are used to infer ER. However, the gap between established ER theory and complexity inherent in natural systems makes interpreting empirical patterns difficult because they can be confounded with ecological drivers of survival under current theory. To bridge this gap, we expand ER theory to include biological selective agents, such as pathogens. We find birth processes to be more important than previously theorised in determining ER potential. We employ a novel framework evaluating ER potential within natural systems and gain ability to identify system characteristics that make ER possible. Identifying these characteristics allows a shift from retrospective observation to a predictive mindset, and our findings suggest that ER occurrence may be more limited than previously thought. We use the plague system of Yersinia pestis infecting Cynomys ludovicianus (black-tailed prairie dogs) and Spermophilus beecheyi (California ground squirrels) as a case study.
Collapse
|
15
|
Czuppon P, Blanquart F, Uecker H, Débarre F. The Effect of Habitat Choice on Evolutionary Rescue in Subdivided Populations. Am Nat 2021; 197:625-643. [PMID: 33989144 DOI: 10.1086/714034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractEvolutionary rescue is the process by which a population, in response to an environmental change, successfully avoids extinction through adaptation. In spatially structured environments, dispersal can affect the probability of rescue. Here, we model an environment consisting of patches that degrade one after another, and we investigate the probability of rescue by a mutant adapted to the degraded habitat. We focus on the effects of dispersal and of immigration biases. We identify up to three regions delimiting the effect of dispersal on the probability of evolutionary rescue: (i) starting from low dispersal rates, the probability of rescue increases with dispersal; (ii) at intermediate dispersal rates, it decreases; and (iii) at large dispersal rates, it increases again with dispersal, except if mutants are too counterselected in not-yet-degraded patches. The probability of rescue is generally highest when mutant and wild-type individuals preferentially immigrate into patches that have already undergone environmental change. Additionally, we find that mutants that will eventually rescue the population most likely first appear in nondegraded patches. Overall, our results show that habitat choice, compared with the often-studied unbiased immigration scheme, can substantially alter the dynamics of population survival and adaptation to new environments.
Collapse
|
16
|
Harmon EA, Pfennig DW. Evolutionary rescue via transgenerational plasticity: Evidence and implications for conservation. Evol Dev 2021; 23:292-307. [PMID: 33522673 DOI: 10.1111/ede.12373] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/10/2020] [Accepted: 01/13/2021] [Indexed: 01/26/2023]
Abstract
When a population experiences severe stress from a changing environment, evolution by natural selection can prevent its extinction, a process dubbed "evolutionary rescue." However, evolution may be unable to track the sort of rapid environmental change being experienced by many modern-day populations. A potential solution is for organisms to respond to environmental change through phenotypic plasticity, which can buffer populations against change and thereby buy time for evolutionary rescue. In this review, we examine whether this process extends to situations in which the environmentally induced response is passed to offspring. As we describe, theoretical and empirical studies suggest that such "transgenerational plasticity" can increase population persistence. We discuss the implications of this process for conservation biology, outline potential limitations, and describe some applications. Generally, transgenerational plasticity may be effective at buying time for evolutionary rescue to occur.
Collapse
Affiliation(s)
- Emily A Harmon
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - David W Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
17
|
Gignoux-Wolfsohn SA, Pinsky ML, Kerwin K, Herzog C, Hall M, Bennett AB, Fefferman NH, Maslo B. Genomic signatures of selection in bats surviving white-nose syndrome. Mol Ecol 2021; 30:5643-5657. [PMID: 33476441 DOI: 10.1111/mec.15813] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
Abstract
Rapid evolution of advantageous traits following abrupt environmental change can help populations recover from demographic decline. However, for many introduced diseases affecting longer-lived, slower reproducing hosts, mortality is likely to outpace the acquisition of adaptive de novo mutations. Adaptive alleles must therefore be selected from standing genetic variation, a process that leaves few detectable genomic signatures. Here, we present whole genome evidence for selection in bat populations that are recovering from white-nose syndrome (WNS). We collected samples both during and after a WNS-induced mass mortality event in two little brown bat populations that are beginning to show signs of recovery and found signatures of soft sweeps from standing genetic variation at multiple loci throughout the genome. We identified one locus putatively under selection in a gene associated with the immune system. Multiple loci putatively under selection were located within genes previously linked to host response to WNS as well as to changes in metabolism during hibernation. Results from two additional populations suggested that loci under selection may differ somewhat among populations. Through these findings, we suggest that WNS-induced selection may contribute to genetic resistance in this slowly reproducing species threatened with extinction.
Collapse
Affiliation(s)
- Sarah A Gignoux-Wolfsohn
- Department of Ecology, Evolution, and Natural Resources, Rutgers The State University of New Jersey, New Brunswick, NJ, USA
| | - Malin L Pinsky
- Department of Ecology, Evolution, and Natural Resources, Rutgers The State University of New Jersey, New Brunswick, NJ, USA
| | - Kathleen Kerwin
- Department of Ecology, Evolution, and Natural Resources, Rutgers The State University of New Jersey, New Brunswick, NJ, USA
| | - Carl Herzog
- New York State Department of Environmental Conservation, Albany, NY, USA
| | - MacKenzie Hall
- Endangered and Nongame Species Program, New Jersey Department of Environmental Protection, Trenton, NJ, USA
| | | | - Nina H Fefferman
- Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA.,National Institute for Mathematical and Biological Synthesis, University of Tennessee, Tennessee, TN, USA
| | - Brooke Maslo
- Department of Ecology, Evolution, and Natural Resources, Rutgers The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
18
|
Cones AG, Liebl AL, Houslay TM, Russell AF. Temperature-mediated plasticity in incubation schedules is unlikely to evolve to buffer embryos from climatic challenges in a seasonal songbird. J Evol Biol 2020; 34:465-476. [PMID: 33325597 DOI: 10.1111/jeb.13743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 11/28/2022]
Abstract
Phenotypic plasticity is hypothesized to facilitate adaptive responses to challenging conditions, such as those resulting from climate change. However, tests of the key predictions of this 'rescue hypothesis', that variation in plasticity exists and can evolve to buffer unfavourable conditions, remain rare. Here, we investigate among-female variation in temperature-mediated plasticity of incubation schedules and consequences for egg temperatures using the chestnut-crowned babbler (Pomatostomus ruficeps) from temperate regions of inland south-eastern Australia. Given recent phenological advances in this seasonal breeder and thermal requirements of developing embryos (>~25°C, optimally ~38°C), support for evolutionary rescue-perhaps paradoxically-requires that plasticity serves to buffer embryos more from sub-optimally low temperatures. We found significant variation in the duration of incubation bouts (mean ± SD = 27 ± 22 min) and foraging bouts (mean ± SD = 17 ± 11 min) in this maternal-only incubator. However, variation in each arose because of variation in the extent to which mothers increased on- and off-bout durations when temperatures (0-36°C) were more favourable rather than unfavourable as required under rescue. In addition, there was a strong positive intercept-slope correlation in on-bout durations, indicating that those with stronger plastic responses incubated more at average temperatures (~19°C). Combined, these effects reduced the functional significance of plastic responses: an individual's plasticity was neither associated with daily contributions to incubation (i.e. attentiveness) nor average egg temperatures. Our results highlight that despite significant among-individual variation in environmental-sensitivity, plasticity in parental care traits need not evolve to facilitate buffering against unfavourable conditions.
Collapse
Affiliation(s)
- Alexandra G Cones
- Centre for Ecology & Conservation, University of Exeter, Penryn, Cornwall, UK.,Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Andrea L Liebl
- Centre for Ecology & Conservation, University of Exeter, Penryn, Cornwall, UK.,Department of Biology, University of South Dakota, Vermillion, SD, USA
| | - Thomas M Houslay
- Centre for Ecology & Conservation, University of Exeter, Penryn, Cornwall, UK
| | - Andrew F Russell
- Centre for Ecology & Conservation, University of Exeter, Penryn, Cornwall, UK.,Fowlers Gap Arid Zone Research Station, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
19
|
O'Connor LMJ, Fugère V, Gonzalez A. Evolutionary Rescue Is Mediated by the History of Selection and Dispersal in Diversifying Metacommunities. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.517434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rapid evolution can sometimes prevent population extirpation in stressful environments, but the conditions leading to “evolutionary rescue” in metacommunities are unclear. Here we studied the eco-evolutionary response of microbial metacommunities adapting to selection by the antibiotic streptomycin. Our experiment tested how the history of antibiotic selection and contrasting modes of dispersal influenced diversification and subsequent evolutionary rescue in microbial metacommunities undergoing adaptive radiation. We first tracked the change in diversity and density of Pseudomonas fluorescens morphotypes selected on a gradient of antibiotic stress. We then examined the recovery of these metacommunities following abrupt application of a high concentration of streptomycin lethal to the ancestral organisms. We show that dispersal increases diversity within the stressed metacommunities, that exposure to stress alters diversification dynamics, and that community composition, dispersal, and past exposure to stress mediate the speed at which evolutionary rescue occurs, but not the final outcome of recovery in abundance and diversity. These findings extend recent experiments on evolutionary rescue to the case of metacommunities undergoing adaptive diversification, and should motivate new theory on this question. Our findings are also relevant to evolutionary conservation biology and research on antimicrobial resistance.
Collapse
|
20
|
Niemeier S, Müller J, Struck U, Rödel MO. Superfrogs in the city: 150 year impact of urbanization and agriculture on the European Common Frog. GLOBAL CHANGE BIOLOGY 2020; 26:6729-6741. [PMID: 32975007 DOI: 10.1111/gcb.15337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Despite growing pressure on biodiversity deriving from increasing anthropogenic disturbances, some species successfully persist in altered ecosystems. However, these species' characteristics and thresholds, as well as the environmental frame behind that process are usually unknown. We collected data on body size, fluctuating asymmetry (FA), as well as nitrogen stable isotopes (δ15 N) from museum specimens of the European Common Frog, Rana temporaria, all originating from the Berlin-Brandenburg area, Germany, in order to test: (a) if specimens have changed over the last 150 years (1868-2018); and (b) if changes could be attributed to increasing urbanization and agricultural intensity. We detected that after the Second World War, frogs were larger than in pre-war Berlin. In rural Brandenburg, we observed no such size change. FA analysis revealed a similar tendency with lower levels in Berlin after the war and higher levels in Brandenburg. Enrichment of δ15 N decreased over time in both regions but was generally higher and less variable in sites with agricultural land use. Frogs thus seem to encounter favorable habitat conditions after pollution in postwar Berlin improved, but no such tendencies were observable in the predominantly agricultural landscape of Brandenburg. Urbanization, characterized by the proportion of built-up area, was not the main associated factor for the observed trait changes. However, we detected a relationship with the amount of urban greenspace. Our study exemplifies that increasing urbanization must not necessarily worsen conditions for species living in urban habitats. The Berlin example demonstrates that public parks and other urban greenspaces have the potential to serve as suitable refuges for some species. These findings underline the urgency of establishing, maintaining, and connecting such habitats, and generally consider their importance for future urban planning.
Collapse
Affiliation(s)
- Stephanie Niemeier
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research - BBIB, Berlin, Germany
| | - Johannes Müller
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research - BBIB, Berlin, Germany
| | - Ulrich Struck
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Mark-Oliver Rödel
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research - BBIB, Berlin, Germany
| |
Collapse
|
21
|
Kumar AV, Zimova M, Sparks JR, Mills LS. Snow-mediated plasticity does not prevent camouflage mismatch. Oecologia 2020; 194:301-310. [PMID: 32583125 PMCID: PMC7644448 DOI: 10.1007/s00442-020-04680-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/03/2020] [Indexed: 12/30/2022]
Abstract
Global reduction in snow cover duration is one of the most consistent and widespread climate change outcomes. Declining snow duration has severe negative consequences for diverse taxa including seasonally color molting species, which rely on snow for camouflage. However, phenotypic plasticity may facilitate adaptation to reduced snow duration. Plastic responses could occur in the color molt phenology or through behavior that minimizes coat color mismatch or its consequences. We quantified molt phenology of 200 wild snowshoe hares (Lepus americanus), and measured microhabitat choice and local snow cover. Similar to other studies, we found that hares did not show behavioral plasticity to minimize coat color mismatch via background matching; instead they preferred colder, snow free areas regardless of their coat color. Furthermore, hares did not behaviorally mitigate the negative consequences of mismatch by choosing resting sites with denser vegetation cover when mismatched. Importantly, we demonstrated plasticity in the initiation and the rate of the molt and established the direct effect of snow on molt phenology; greater snow cover was associated with whiter hares and this association was not due to whiter hares preferring snowier areas. However, despite the observed snow-mediated plasticity in molt phenology, camouflage mismatch with white hares on brown snowless ground persisted and was more frequent during early snowmelt. Thus, we find no evidence that phenotypic plasticity in snowshoe hares is sufficient to facilitate adaptive rescue to camouflage mismatch under climate change.
Collapse
Affiliation(s)
- Alexander V Kumar
- Wildlife Biology Program, University of Montana, Missoula, MT, 59812, USA.
- Department of Forestry and Environmental Resources, Program in Fisheries, Wildlife and Conservation Biology, North Carolina State University, Raleigh, NC, 27695-7617, USA.
| | - Marketa Zimova
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, 49109, USA
| | - James R Sparks
- Missoula Field Office, Bureau of Land Management, Missoula, MT, 59804, USA
| | - L Scott Mills
- Department of Forestry and Environmental Resources, Program in Fisheries, Wildlife and Conservation Biology, North Carolina State University, Raleigh, NC, 27695-7617, USA
- Wildlife Biology Program and Office of the Vice President for Research and Creative Scholarship, University of Montana, Missoula, MT, 59812, USA
| |
Collapse
|
22
|
Fogarty L, Kandler A. The fundamentals of cultural adaptation: implications for human adaptation. Sci Rep 2020; 10:14318. [PMID: 32868809 PMCID: PMC7459347 DOI: 10.1038/s41598-020-70475-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 06/11/2020] [Indexed: 11/08/2022] Open
Abstract
The process of human adaptation to novel environments is a uniquely complex interplay between cultural and genetic changes. However, mechanistically, we understand little about these processes. To begin to untangle these threads of human adaptation we use mathematical models to describe and investigate cultural selective sweeps. We show that cultural sweeps differ in important ways from the genetic equivalents. The models show that the dynamics of cultural selective sweeps and, consequently, their differences from genetic sweeps depend critically on cultural transmission mechanisms. Further, we consider the effect of processes unique to culture such as foresight and innovations in response to an environmental change on adaptation. Finally we show that a 'cultural evolutionary rescue', or the survival of an endangered population by means of cultural adaptation, is possible. We suggest that culture might make a true, genetic, evolutionary rescue plausible for human populations.
Collapse
Affiliation(s)
- Laurel Fogarty
- Theory in Cultural Evolution Lab, Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Anne Kandler
- Theory in Cultural Evolution Lab, Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
23
|
Tomasini M, Peischl S. When does gene flow facilitate evolutionary rescue? Evolution 2020; 74:1640-1653. [DOI: 10.1111/evo.14038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Matteo Tomasini
- Interfaculty Bioinformatics UnitUniversity of Bern Bern 3012 Switzerland
- Computational and Molecular Population Genetics Laboratory, Institute of Ecology and EvolutionUniversity of Bern Bern 3012 Switzerland
- Swiss Institute for Bioinformatics Lausanne 1015 Switzerland
- Current Address: Department of Integrative BiologyMichigan State University East Lansing Michigan 48824
| | - Stephan Peischl
- Interfaculty Bioinformatics UnitUniversity of Bern Bern 3012 Switzerland
- Swiss Institute for Bioinformatics Lausanne 1015 Switzerland
| |
Collapse
|
24
|
Fuller NW, McGuire LP, Pannkuk EL, Blute T, Haase CG, Mayberry HW, Risch TS, Willis CKR. Disease recovery in bats affected by white-nose syndrome. J Exp Biol 2020; 223:jeb211912. [PMID: 32054681 DOI: 10.1242/jeb.211912] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/10/2020] [Indexed: 12/28/2022]
Abstract
Processes associated with recovery of survivors are understudied components of wildlife infectious diseases. White-nose syndrome (WNS) in bats provides an opportunity to study recovery of disease survivors, understand implications of recovery for individual energetics, and assess the role of survivors in pathogen transmission. We documented temporal patterns of recovery from WNS in little brown bats (Myotis lucifugus) following hibernation to test the hypotheses that: (1) recovery of wing structure from WNS matches a rapid time scale (i.e. approximately 30 days) suggested by data from free-ranging bats; (2) torpor expression plays a role in recovery; (3) wing physiological function returns to normal alongside structural recovery; and (4) pathogen loads decline quickly during recovery. We collected naturally infected bats at the end of hibernation, brought them into captivity, and quantified recovery over 40 days by monitoring body mass, wing damage, thermoregulation, histopathology of wing biopsies, skin surface lipids and fungal load. Most metrics returned to normal within 30 days, although wing damage was still detectable at the end of the study. Torpor expression declined overall throughout the study, but bats expressed relatively shallow torpor bouts - with a plateau in minimum skin temperature - during intensive healing between approximately days 8 and 15. Pathogen loads were nearly undetectable after the first week of the study, but some bats were still detectably infected at day 40. Our results suggest that healing bats face a severe energetic imbalance during early recovery from direct costs of healing and reduced foraging efficiency. Management of WNS should not rely solely on actions during winter, but should also aim to support energy balance of recovering bats during spring and summer.
Collapse
Affiliation(s)
- Nathan W Fuller
- Department of Biological Sciences, Texas Tech University, 2901 Main Street, Lubbock, TX 79409, USA
| | - Liam P McGuire
- Department of Biological Sciences, Texas Tech University, 2901 Main Street, Lubbock, TX 79409, USA
| | - Evan L Pannkuk
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington, DC 20057, USA
| | - Todd Blute
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Catherine G Haase
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Heather W Mayberry
- Department of Ecology and Evolutionary Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, Canada L5L 1C6
| | - Thomas S Risch
- Arkansas Biosciences Institute, Arkansas State University, P.O. Box 847, Jonesboro, AR 72467, USA
| | - Craig K R Willis
- Department of Biology and Centre for Forest Inter-Disciplinary Research (C-FIR), University of Winnipeg, 515 Portage Avenue, Winnipeg, MB, Canada R3B 2E9
| |
Collapse
|
25
|
News Feature: Probing the limits of "evolutionary rescue". Proc Natl Acad Sci U S A 2020; 116:12116-12120. [PMID: 31213579 DOI: 10.1073/pnas.1907565116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
26
|
Cayuela H, Valenzuela-Sánchez A, Teulier L, Martínez-Solano Í, Léna JP, Merilä J, Muths E, Shine R, Quay L, Denoël M, Clobert J, Schmidt BR. Determinants and Consequences of Dispersal in Vertebrates with Complex Life Cycles: A Review of Pond-Breeding Amphibians. QUARTERLY REVIEW OF BIOLOGY 2020. [DOI: 10.1086/707862] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
27
|
Kelly M. Adaptation to climate change through genetic accommodation and assimilation of plastic phenotypes. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180176. [PMID: 30966963 DOI: 10.1098/rstb.2018.0176] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Theory suggests that evolutionary changes in phenotypic plasticity could either hinder or facilitate evolutionary rescue in a changing climate. Nevertheless, the actual role of evolving plasticity in the responses of natural populations to climate change remains unresolved. Direct observations of evolutionary change in nature are rare, making it difficult to assess the relative contributions of changes in trait means versus changes in plasticity to climate change responses. To address this gap, this review explores several proxies that can be used to understand evolving plasticity in the context of climate change, including space for time substitutions, experimental evolution and tests for genomic divergence at environmentally responsive loci. Comparisons among populations indicate a prominent role for divergence in environmentally responsive traits in local adaptation to climatic gradients. Moreover, genomic comparisons among such populations have identified pervasive divergence in the regulatory regions of environmentally responsive loci. Taken together, these lines of evidence suggest that divergence in plasticity plays a prominent role in adaptation to climatic gradients over space, indicating that evolving plasticity is also likely to play a key role in adaptive responses to climate change through time. This suggests that genetic variation in plastic responses to the environment (G × E) might be an important predictor of species' vulnerabilities to climate-driven decline or extinction. This article is part of the theme issue 'The role of plasticity in phenotypic adaptation to rapid environmental change'.
Collapse
Affiliation(s)
- Morgan Kelly
- Biological Sciences, Louisiana State University , Baton Rouge, LA 70808 , USA
| |
Collapse
|
28
|
Mueller EA, Wisnoski NI, Peralta AL, Lennon JT. Microbial rescue effects: How microbiomes can save hosts from extinction. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13493] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | | | | | - Jay T. Lennon
- Department of Biology Indiana University Bloomington IN USA
| |
Collapse
|
29
|
Behrooz R, Kaboli M, Arnal V, Nazarizadeh M, Asadi A, Salmanian A, Ahmadi M, Montgelard C. Conservation Below the Species Level: Suitable Evolutionarily Significant Units among Mountain Vipers (the Montivipera raddei complex) in Iran. J Hered 2019; 109:416-425. [PMID: 29401236 DOI: 10.1093/jhered/esy005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 01/23/2018] [Indexed: 02/05/2023] Open
Abstract
Northern and western mountains of Iran are among the most important biodiversity and endemism hot spots for reptiles in the Middle East. Among herpetofauna, the montivipers represent an emblematic and fragmented endemic group for which estimating their level of genetic differentiation and defining conservation priorities is urgently needed. Here, we present the most comprehensive phylogenetic study on the Montivipera raddei species group comprising all 5 known taxa, among which 3 are endemic to Iran. Based on 2 mitochondrial genes, phylogenetic and phylogeographic analyses revealed 3 major lineages each presenting very contrasting distribution areas. The Iranian montivipers are highly structured in clades showing low genetic diversity and corresponding to high altitude summits. Molecular dating revealed the role of Quaternary paleo-climatic oscillations and altitudinal movements of montivipers in shaping genetic diversity and differentiation of these sky-island taxa. In addition, the best scenario of historical biogeography allowed identifying 3 possible refugial areas in Iran most likely arising by vicariance. Based on our mitochondrial results and pending additional data, we recognize 3 candidate species among the M. raddei complex: M. raddei, Montivipera latifii, and Montivipera kuhrangica that are coherent with their geographical distribution. We propose that the most appropriate evolutionary significant units for conservation of the montivipers are represented by 13 units among which 6 are recognized as high priority. Finally, we suggest some recommendations to the IUCN as well as to the Iranian conservation policies with respect to conservation prioritization.
Collapse
Affiliation(s)
- Roozbeh Behrooz
- CEFE, PSL-EPHE (Biogéographie et Ecologie des Vertébrés), CNRS, Univ. Montpellier, Univ Paul Valéry Montpellier, IRD, Montpellier, France
| | - Mohammad Kaboli
- Department of Environmental Science, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Véronique Arnal
- CEFE, PSL-EPHE (Biogéographie et Ecologie des Vertébrés), CNRS, Univ. Montpellier, Univ Paul Valéry Montpellier, IRD, Montpellier, France
| | - Masoud Nazarizadeh
- Department of Environmental Science, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Atefeh Asadi
- CEFE, PSL-EPHE (Biogéographie et Ecologie des Vertébrés), CNRS, Univ. Montpellier, Univ Paul Valéry Montpellier, IRD, Montpellier, France
| | - Amin Salmanian
- Department of Natural Resources Engineering (Habitats and Biodiversity), Faculty of Environment and Energy (FEE), Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Ahmadi
- Department of Natural Resources, Isfahan University of Technology, Isfahan, Iran
| | - Claudine Montgelard
- CEFE, PSL-EPHE (Biogéographie et Ecologie des Vertébrés), CNRS, Univ. Montpellier, Univ Paul Valéry Montpellier, IRD, Montpellier, France.,Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
30
|
Derry AM, Fraser DJ, Brady SP, Astorg L, Lawrence ER, Martin GK, Matte J, Negrín Dastis JO, Paccard A, Barrett RDH, Chapman LJ, Lane JE, Ballas CG, Close M, Crispo E. Conservation through the lens of (mal)adaptation: Concepts and meta-analysis. Evol Appl 2019; 12:1287-1304. [PMID: 31417615 PMCID: PMC6691223 DOI: 10.1111/eva.12791] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/24/2019] [Accepted: 03/07/2019] [Indexed: 12/25/2022] Open
Abstract
Evolutionary approaches are gaining popularity in conservation science, with diverse strategies applied in efforts to support adaptive population outcomes. Yet conservation strategies differ in the type of adaptive outcomes they promote as conservation goals. For instance, strategies based on genetic or demographic rescue implicitly target adaptive population states whereas strategies utilizing transgenerational plasticity or evolutionary rescue implicitly target adaptive processes. These two goals are somewhat polar: adaptive state strategies optimize current population fitness, which should reduce phenotypic and/or genetic variance, reducing adaptability in changing or uncertain environments; adaptive process strategies increase genetic variance, causing maladaptation in the short term, but increase adaptability over the long term. Maladaptation refers to suboptimal population fitness, adaptation refers to optimal population fitness, and (mal)adaptation refers to the continuum of fitness variation from maladaptation to adaptation. Here, we present a conceptual classification for conservation that implicitly considers (mal)adaptation in the short-term and long-term outcomes of conservation strategies. We describe cases of how (mal)adaptation is implicated in traditional conservation strategies, as well as strategies that have potential as a conservation tool but are relatively underutilized. We use a meta-analysis of a small number of available studies to evaluate whether the different conservation strategies employed are better suited toward increasing population fitness across multiple generations. We found weakly increasing adaptation over time for transgenerational plasticity, genetic rescue, and evolutionary rescue. Demographic rescue was generally maladaptive, both immediately after conservation intervention and after several generations. Interspecific hybridization was adaptive only in the F1 generation, but then rapidly leads to maladaptation. Management decisions that are made to support the process of adaptation must adequately account for (mal)adaptation as a potential outcome and even as a tool to bolster adaptive capacity to changing conditions.
Collapse
Affiliation(s)
- Alison Margaret Derry
- Département des sciences biologiquesUniversité du Québec à MontréalMontrealQuebecCanada
- Quebec Center for Biodiversity ScienceMontrealQuebecCanada
| | - Dylan J. Fraser
- Quebec Center for Biodiversity ScienceMontrealQuebecCanada
- Biology DepartmentConcordia UniversityMontrealQuebecCanada
| | - Steven P. Brady
- Biology DepartmentSouthern Connecticut State UniversityNew HavenConnecticut
| | - Louis Astorg
- Département des sciences biologiquesUniversité du Québec à MontréalMontrealQuebecCanada
| | | | - Gillian K. Martin
- Département des sciences biologiquesUniversité du Québec à MontréalMontrealQuebecCanada
| | | | | | - Antoine Paccard
- Redpath Museum and Department of BiologyMcGill UniversityMontrealQuebecCanada
| | - Rowan D. H. Barrett
- Quebec Center for Biodiversity ScienceMontrealQuebecCanada
- Redpath Museum and Department of BiologyMcGill UniversityMontrealQuebecCanada
| | - Lauren J. Chapman
- Quebec Center for Biodiversity ScienceMontrealQuebecCanada
- Redpath Museum and Department of BiologyMcGill UniversityMontrealQuebecCanada
| | - Jeffrey E. Lane
- Department of BiologyUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | | | - Marissa Close
- Department of BiologyPace UniversityNew YorkNew York
| | - Erika Crispo
- Department of BiologyPace UniversityNew YorkNew York
| |
Collapse
|
31
|
Poirier M, Coltman DW, Pelletier F, Jorgenson J, Festa‐Bianchet M. Genetic decline, restoration and rescue of an isolated ungulate population. Evol Appl 2019; 12:1318-1328. [PMID: 31417617 PMCID: PMC6691324 DOI: 10.1111/eva.12706] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/19/2018] [Accepted: 08/27/2018] [Indexed: 01/08/2023] Open
Abstract
Isolation of small populations is expected to reduce fitness through inbreeding and loss of genetic variation, impeding population growth and compromising population persistence. Species with long generation time are the least likely to be rescued by evolution alone. Management interventions that maintain or restore genetic variation to assure population viability are consequently of significant importance. We investigated, over 27 years, the genetic and demographic consequences of a demographic bottleneck followed by artificial supplementation in an isolated population of bighorn sheep (Ovis canadensis). Based on a long-term pedigree and individual monitoring, we documented the genetic decline, restoration and rescue of the population. Microsatellite analyses revealed that the demographic bottleneck reduced expected heterozygosity and allelic diversity by 6.2% and 11.3%, respectively, over two generations. Following supplementation, first-generation admixed lambs were 6.4% heavier at weaning and had 28.3% higher survival to 1 year compared to lambs of endemic ancestry. Expected heterozygosity and allelic diversity increased by 4.6% and 14.3% after two generations through new alleles contributed by translocated individuals. We found no evidence for outbreeding depression and did not see immediate evidence of swamping of local genes. Rapid intervention following the demographic bottleneck allowed the genetic restoration and rescue of this bighorn sheep population, likely preventing further losses at both the genetic and demographic levels. Our results provide further empirical evidence that translocation can be used to reduce inbreeding depression in nature and has the potential to mitigate the effect of human-driven environmental changes on wild populations.
Collapse
Affiliation(s)
- Marc‐Antoine Poirier
- Département de BiologieUniversité de SherbrookeSherbrookeQuébecCanada
- Centre d’Études Nordiques (CEN)Université LavalQuebec CityQuébecCanada
| | - David W. Coltman
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | - Fanie Pelletier
- Département de BiologieUniversité de SherbrookeSherbrookeQuébecCanada
| | | | - Marco Festa‐Bianchet
- Département de BiologieUniversité de SherbrookeSherbrookeQuébecCanada
- Centre d’Études Nordiques (CEN)Université LavalQuebec CityQuébecCanada
| |
Collapse
|
32
|
Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proc Natl Acad Sci U S A 2019; 116:10418-10423. [PMID: 31061126 PMCID: PMC6535011 DOI: 10.1073/pnas.1820663116] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Forecasts of species vulnerability and extinction risk under future climate change commonly ignore local adaptations despite their importance for determining the potential of populations to respond to future changes. We present an approach to assess the impacts of global climate change on biodiversity that takes into account adaptive genetic variation and evolutionary potential. We show that considering local climatic adaptations reduces range loss projections but increases the potential for competition between species. Our findings suggest that failure to account for within-species variability can result in overestimation of future biodiversity losses. Therefore, it is important to identify the climate-adaptive potential of populations and to increase landscape connectivity between populations to enable the spread of adaptive genetic variation. Local adaptations can determine the potential of populations to respond to environmental changes, yet adaptive genetic variation is commonly ignored in models forecasting species vulnerability and biogeographical shifts under future climate change. Here we integrate genomic and ecological modeling approaches to identify genetic adaptations associated with climate in two cryptic forest bats. We then incorporate this information directly into forecasts of range changes under future climate change and assessment of population persistence through the spread of climate-adaptive genetic variation (evolutionary rescue potential). Considering climate-adaptive potential reduced range loss projections, suggesting that failure to account for intraspecific variability can result in overestimation of future losses. On the other hand, range overlap between species was projected to increase, indicating that interspecific competition is likely to play an important role in limiting species’ future ranges. We show that although evolutionary rescue is possible, it depends on a population’s adaptive capacity and connectivity. Hence, we stress the importance of incorporating genomic data and landscape connectivity in climate change vulnerability assessments and conservation management.
Collapse
|
33
|
Rêgo A, Messina FJ, Gompert Z. Dynamics of genomic change during evolutionary rescue in the seed beetle
Callosobruchus maculatus. Mol Ecol 2019; 28:2136-2154. [DOI: 10.1111/mec.15085] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Alexandre Rêgo
- Department of Biology Utah State University Logan Utah
- Ecology Center Utah State University Logan Utah
| | - Frank J. Messina
- Department of Biology Utah State University Logan Utah
- Ecology Center Utah State University Logan Utah
| | - Zachariah Gompert
- Department of Biology Utah State University Logan Utah
- Ecology Center Utah State University Logan Utah
| |
Collapse
|
34
|
Xu S, Stapley J, Gablenz S, Boyer J, Appenroth KJ, Sree KS, Gershenzon J, Widmer A, Huber M. Low genetic variation is associated with low mutation rate in the giant duckweed. Nat Commun 2019; 10:1243. [PMID: 30886148 PMCID: PMC6423293 DOI: 10.1038/s41467-019-09235-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/27/2019] [Indexed: 12/30/2022] Open
Abstract
Mutation rate and effective population size (Ne) jointly determine intraspecific genetic diversity, but the role of mutation rate is often ignored. Here we investigate genetic diversity, spontaneous mutation rate and Ne in the giant duckweed (Spirodela polyrhiza). Despite its large census population size, whole-genome sequencing of 68 globally sampled individuals reveals extremely low intraspecific genetic diversity. Assessed under natural conditions, the genome-wide spontaneous mutation rate is at least seven times lower than estimates made for other multicellular eukaryotes, whereas Ne is large. These results demonstrate that low genetic diversity can be associated with large-Ne species, where selection can reduce mutation rates to very low levels. This study also highlights that accurate estimates of mutation rate can help to explain seemingly unexpected patterns of genome-wide variation.
Collapse
Affiliation(s)
- Shuqing Xu
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149, Münster, Germany.
| | - Jessica Stapley
- Center for Adaptation to a Changing Environment, ETH Zurich, Universitätstrasse 16, 8092, Zürich, Switzerland
| | - Saskia Gablenz
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745, Jena, Germany
| | - Justin Boyer
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745, Jena, Germany
| | - Klaus J Appenroth
- Matthias-Schleiden-Institute, Plant Physiology, Friedrich Schiller University of Jena, Dornburgerstraße 159, 07743, Jena, Germany
| | - K Sowjanya Sree
- Department of Environmental Science, Central University of Kerala, Periye, 671316, India
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745, Jena, Germany
| | - Alex Widmer
- Institute of Integrative Biology, ETH Zurich, Universitätstrasse 16, 8092, Zürich, Switzerland
| | - Meret Huber
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745, Jena, Germany.
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 7, 48143, Münster, Germany.
| |
Collapse
|
35
|
DeLong JP, Belmaker J. Ecological pleiotropy and indirect effects alter the potential for evolutionary rescue. Evol Appl 2019; 12:636-654. [PMID: 30828379 PMCID: PMC6383740 DOI: 10.1111/eva.12745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/25/2018] [Indexed: 11/29/2022] Open
Abstract
Invading predators can negatively affect naïve prey populations due to a lack of evolved defenses. Many species therefore may be at risk of extinction due to overexploitation by exotic predators. Yet the strong selective effect of predation might drive evolution of imperiled prey toward more resistant forms, potentially allowing the prey to persist. We evaluated the potential for evolutionary rescue in an imperiled prey using Gillespie eco-evolutionary models (GEMs). We focused on a system parameterized for protists where changes in prey body size may influence intrinsic rate of population growth, space clearance rate (initial slope of the functional response), and the energetic benefit to predators. Our results show that the likelihood of rescue depends on (a) whether multiple parameters connected to the same evolving trait (i.e., ecological pleiotropy) combine to magnify selection, (b) whether the evolving trait causes negative indirect effects on the predator population by altering the energy gain per prey, (c) whether heritable trait variation is sufficient to foster rapid evolution, and (d) whether prey abundances are stable enough to avoid very rapid extinction. We also show that when evolution fosters rescue by increasing the prey equilibrium abundance, invasive predator populations also can be rescued, potentially leading to additional negative effects on other species. Thus, ecological pleiotropy, indirect effects, and system dynamics may be important factors influencing the potential for evolutionary rescue for both imperiled prey and invading predators. These results suggest that bolstering trait variation may be key to fostering evolutionary rescue, but also that the myriad direct and indirect effects of trait change could either make rescue outcomes unpredictable or, if they occur, cause rescue to have side effects such as bolstering the populations of invasive species.
Collapse
Affiliation(s)
| | - Jonathan Belmaker
- School of Zoology, George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
- The Steinhardt Museum of Natural HistoryTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
36
|
Loeuille N. Eco-evolutionary dynamics in a disturbed world: implications for the maintenance of ecological networks. F1000Res 2019; 8:F1000 Faculty Rev-97. [PMID: 30728953 PMCID: PMC6347037 DOI: 10.12688/f1000research.15629.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/17/2019] [Indexed: 11/20/2022] Open
Abstract
Past management of exploited species and of conservation issues has often ignored the evolutionary dynamics of species. During the 70s and 80s, evolution was mostly considered a slow process that may be safely ignored for most management issues. However, in recent years, examples of fast evolution have accumulated, suggesting that time scales of evolutionary dynamics (variations in genotype frequencies) and of ecological dynamics (variations in species densities) are often largely comparable, so that complex feedbacks commonly exist between the ecological and the evolutionary context ("eco-evolutionary dynamics"). While a first approach is of course to consider the evolution of a given species, in ecological communities, species are interlinked by interaction networks. In the present article, I discuss how species (co)evolution in such a network context may alter our understanding and predictions for species coexistence, given the disturbed world we live in. I review some concepts and examples suggesting that evolution may enhance the robustness of ecological networks and then show that, in many situations, the reverse may also happen, as evolutionary dynamics can harm diversity maintenance in various ways. I particularly focus on how evolution modifies indirect effects in ecological networks, then move to coevolution and discuss how the outcome of coevolution for species coexistence depends on the type of interaction (mutualistic or antagonistic) that is considered. I also review examples of phenotypes that are known to be important for ecological networks and shown to vary rapidly given global changes. Given all these components, evolution produces indirect eco-evolutionary effects within networks that will ultimately influence the optimal management of the current biodiversity crisis.
Collapse
Affiliation(s)
- Nicolas Loeuille
- iEES Paris (UMR7618), Sorbonne Université, CNRS, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
37
|
Affiliation(s)
- Andrew P. Hendry
- Redpath Museum and Department of BiologyMcGill University Montreal Quebec Canada
| |
Collapse
|
38
|
DiRenzo GV, Zipkin EF, Grant EHC, Royle JA, Longo AV, Zamudio KR, Lips KR. Eco-evolutionary rescue promotes host-pathogen coexistence. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2018; 28:1948-1962. [PMID: 30368999 DOI: 10.1002/eap.1792] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/12/2018] [Accepted: 06/22/2018] [Indexed: 06/08/2023]
Abstract
Emerging infectious pathogens are responsible for some of the most severe host mass mortality events in wild populations. Yet, effective pathogen control strategies are notoriously difficult to identify, in part because quantifying and forecasting pathogen spread and disease dynamics is challenging. Following an outbreak, hosts must cope with the presence of the pathogen, leading to host-pathogen coexistence or extirpation. Despite decades of research, little is known about host-pathogen coexistence post-outbreak when low host abundances and cryptic species make these interactions difficult to study. Using a novel disease-structured N-mixture model, we evaluate empirical support for three host-pathogen coexistence hypotheses (source-sink, eco-evolutionary rescue, and spatial variation in pathogen transmission) in a Neotropical amphibian community decimated by Batrachochytrium dendrobatidis (Bd) in 2004. During 2010-2014, we surveyed amphibians in Parque Nacional G. D. Omar Torríjos Herrera, Coclé Province, El Copé, Panama. We found that the primary driver of host-pathogen coexistence was eco-evolutionary rescue, as evidenced by similar amphibian survival and recruitment rates between infected and uninfected hosts. Average apparent monthly survival rates of uninfected and infected hosts were both close to 96%, and the expected number of uninfected and infected hosts recruited (via immigration/reproduction) was less than one host per disease state per 20-m site. The secondary driver of host-pathogen coexistence was spatial variation in pathogen transmission as we found that transmission was highest in areas of low abundance but there was no support for the source-sink hypothesis. Our results indicate that changes in the host community (i.e., through genetic or species composition) can reduce the impacts of emerging infectious disease post-outbreak. Our disease-structured N-mixture model represents a valuable advancement for conservation managers trying to understand underlying host-pathogen interactions and provides new opportunities to study disease dynamics in remnant host populations decimated by virulent pathogens.
Collapse
Affiliation(s)
- Graziella V DiRenzo
- Department of Biology, University of Maryland, College Park, Maryland, 20744, USA
- Department of Integrative Biology and Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Elise F Zipkin
- Department of Integrative Biology and Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Evan H Campbell Grant
- U.S. Geological Survey, Patuxent Wildlife Research Center, SO Conte Anadromous Fish Research Lab, Turners Falls, Massachusetts, 01376, USA
| | - J Andrew Royle
- U.S. Geological Survey, Patuxent Wildlife Research Center, Laurel, Maryland, 20708-4017, USA
| | - Ana V Longo
- Department of Biology, University of Maryland, College Park, Maryland, 20744, USA
| | - Kelly R Zamudio
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, New York, 14583, USA
| | - Karen R Lips
- Department of Biology, University of Maryland, College Park, Maryland, 20744, USA
| |
Collapse
|
39
|
Hendry AP, Schoen DJ, Wolak ME, Reid JM. The Contemporary Evolution of Fitness. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2018. [DOI: 10.1146/annurev-ecolsys-110617-062358] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The rate of evolution of population mean fitness informs how selection acting in contemporary populations can counteract environmental change and genetic degradation (mutation, gene flow, drift, recombination). This rate influences population increases (e.g., range expansion), population stability (e.g., cryptic eco-evolutionary dynamics), and population recovery (i.e., evolutionary rescue). We review approaches for estimating such rates, especially in wild populations. We then review empirical estimates derived from two approaches: mutation accumulation (MA) and additive genetic variance in fitness (IAw). MA studies inform how selection counters genetic degradation arising from deleterious mutations, typically generating estimates of <1% per generation. IAw studies provide an integrated prediction of proportional change per generation, nearly always generating estimates of <20% and, more typically, <10%. Overall, considerable, but not unlimited, evolutionary potential exists in populations facing detrimental environmental or genetic change. However, further studies with diverse methods and species are required for more robust and general insights.
Collapse
Affiliation(s)
- Andrew P. Hendry
- Redpath Museum, McGill University, Montréal, Québec H3A 0C4, Canada
- Department of Biology, McGill University, Montréal, Québec H3A 1B1, Canada
| | - Daniel J. Schoen
- Department of Biology, McGill University, Montréal, Québec H3A 1B1, Canada
| | - Matthew E. Wolak
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849, USA
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Jane M. Reid
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| |
Collapse
|
40
|
MEESTER LD, STOKS R, BRANS KI. Genetic adaptation as a biological buffer against climate change: Potential and limitations. Integr Zool 2018; 13:372-391. [PMID: 29168625 PMCID: PMC6221008 DOI: 10.1111/1749-4877.12298] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Climate change profoundly impacts ecosystems and their biota, resulting in range shifts, novel interactions, food web alterations, changed intensities of host-parasite interactions, and extinctions. An increasing number of studies have documented evolutionary changes in traits such as phenology and thermal tolerance. In this opinion paper, we argue that, while evolutionary responses have the potential to provide a buffer against extinctions or range shifts, a number of constraints and complexities blur this simple prediction. First, there are limits to evolutionary potential both in terms of genetic variation and demographic effects, and these limits differ strongly among taxa and populations. Second, there can be costs associated with genetic adaptation, such as a reduced evolutionary potential towards other (human-induced) environmental stressors or direct fitness costs due to tradeoffs. Third, the differential capacity of taxa to genetically respond to climate change results in novel interactions because different organism groups respond to a different degree with local compared to regional (dispersal and range shift) responses. These complexities result in additional changes in the selection pressures on populations. We conclude that evolution can provide an initial buffer against climate change for some taxa and populations but does not guarantee their survival. It does not necessarily result in reduced extinction risks across the range of taxa in a region or continent. Yet, considering evolution is crucial, as it is likely to strongly change how biota will respond to climate change and will impact which taxa will be the winners or losers at the local, metacommunity and regional scales.
Collapse
Affiliation(s)
- Luc De MEESTER
- Laboratory of Aquatic Ecology, Evolution and ConservationLeuvenBelgium
| | - Robby STOKS
- Evolutionary Stress Ecology and EcotoxicologyLeuvenBelgium
| | - Kristien I. BRANS
- Laboratory of Aquatic Ecology, Evolution and ConservationLeuvenBelgium
| |
Collapse
|
41
|
Mills LS, Bragina EV, Kumar AV, Zimova M, Lafferty DJR, Feltner J, Davis BM, Hackländer K, Alves PC, Good JM, Melo-Ferreira J, Dietz A, Abramov AV, Lopatina N, Fay K. Winter color polymorphisms identify global hot spots for evolutionary rescue from climate change. Science 2018; 359:1033-1036. [DOI: 10.1126/science.aan8097] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 01/02/2018] [Indexed: 12/13/2022]
|
42
|
Coalescence Models Reveal the Rise of the White-Bellied Rat (Niviventer confucianus) Following the Loss of Asian Megafauna. J MAMM EVOL 2018. [DOI: 10.1007/s10914-018-9428-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Razgour O, Taggart JB, Manel S, Juste J, Ibáñez C, Rebelo H, Alberdi A, Jones G, Park K. An integrated framework to identify wildlife populations under threat from climate change. Mol Ecol Resour 2018; 18:18-31. [PMID: 28649779 PMCID: PMC6849758 DOI: 10.1111/1755-0998.12694] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/14/2017] [Accepted: 06/16/2017] [Indexed: 11/29/2022]
Abstract
Climate change is a major threat to global biodiversity that will produce a range of new selection pressures. Understanding species responses to climate change requires an interdisciplinary perspective, combining ecological, molecular and environmental approaches. We propose an applied integrated framework to identify populations under threat from climate change based on their extent of exposure, inherent sensitivity due to adaptive and neutral genetic variation and range shift potential. We consider intraspecific vulnerability and population-level responses, an important but often neglected conservation research priority. We demonstrate how this framework can be applied to vertebrates with limited dispersal abilities using empirical data for the bat Plecotus austriacus. We use ecological niche modelling and environmental dissimilarity analysis to locate areas at high risk of exposure to future changes. Combining outlier tests with genotype-environment association analysis, we identify potential climate-adaptive SNPs in our genomic data set and differences in the frequency of adaptive and neutral variation between populations. We assess landscape connectivity and show that changing environmental suitability may limit the future movement of individuals, thus affecting both the ability of populations to shift their distribution to climatically suitable areas and the probability of evolutionary rescue through the spread of adaptive genetic variation among populations. Therefore, a better understanding of movement ecology and landscape connectivity is needed for predicting population persistence under climate change. Our study highlights the importance of incorporating genomic data to determine sensitivity, adaptive potential and range shift potential, instead of relying solely on exposure to guide species vulnerability assessments and conservation planning.
Collapse
Affiliation(s)
- Orly Razgour
- Biological SciencesUniversity of SouthamptonSouthamptonUK
- School of Biological SciencesUniversity of BristolBristolUK
- Biological & Environmental SciencesUniversity of StirlingStirlingUK
| | | | - Stephanie Manel
- EPHEPSL Research UniversityCNRSUMSupAgroINDINRAUMR 5175 CEFEMontpellierFrance
| | | | | | - Hugo Rebelo
- School of Biological SciencesUniversity of BristolBristolUK
- Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto (CIBIO/UP)VairãoPortugal
| | - Antton Alberdi
- Natural History Museum of DenmarkUniversity of CopenhagenCopenhagen KDenmark
| | - Gareth Jones
- School of Biological SciencesUniversity of BristolBristolUK
| | - Kirsty Park
- Biological & Environmental SciencesUniversity of StirlingStirlingUK
| |
Collapse
|
44
|
Webber QMR, Vander Wal E. An evolutionary framework outlining the integration of individual social and spatial ecology. J Anim Ecol 2017; 87:113-127. [PMID: 29055050 DOI: 10.1111/1365-2656.12773] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 10/08/2017] [Indexed: 11/29/2022]
Abstract
Behaviour is the interface between an organism and its environment, and behavioural plasticity is important for organisms to cope with environmental change. Social behaviour is particularly important because sociality is a dynamic process, where environmental variation influences group dynamics and social plasticity can mediate resource acquisition. Heterogeneity in the ecological environment can therefore influence the social environment. The combination of the ecological and social environments may be interpreted collectively as the "socioecological environment," which could explain variation in fitness. Our objective was to outline a framework through which individual social and spatial phenotypes can be integrated and interpreted as phenotypes that covary as a function of changes in the socioecological environment. We propose the socioecological environment is composed of individual behavioural traits, including sociality and habitat selection, both of which are repeatable, potentially heritable and may reflect animal personality traits. We also highlight how ecological and social niche theory can be applied to the socioecological environment framework, where individuals occupy different socioecological niches. Individual sociality and habitat selection are also density-dependent, and theory predicts that density-dependent traits should affect reproduction, survival, and therefore fitness and population dynamics. We then illustrate the proximate links between sociality, habitat selection and fitness as well as the ultimate, and possibly adaptive, consequences associated with changes in population density. The ecological, evolutionary and applied implications of our proposed socioecological environment framework are broad and changes in density could influence individual fitness and population dynamics. For instance, human-induced environmental changes can influence population density, which can affect the distribution of social and spatial phenotypes within a population. In summary, we outline a conceptual framework that incorporates individual social and spatial behavioural traits with fitness and we highlight a range of ecological and evolutionary processes that are likely associated with the socioecological environment.
Collapse
Affiliation(s)
- Quinn M R Webber
- Cognitive and Behavioural Ecology Interdisciplinary Program, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Eric Vander Wal
- Cognitive and Behavioural Ecology Interdisciplinary Program, Memorial University of Newfoundland, St. John's, NL, Canada.,Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
45
|
Runcie DE, Dorey N, Garfield DA, Stumpp M, Dupont S, Wray GA. Genomic Characterization of the Evolutionary Potential of the Sea Urchin Strongylocentrotus droebachiensis Facing Ocean Acidification. Genome Biol Evol 2017; 8:3672-3684. [PMID: 28082601 PMCID: PMC5521728 DOI: 10.1093/gbe/evw272] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2016] [Indexed: 12/19/2022] Open
Abstract
Ocean acidification (OA) is increasing due to anthropogenic CO2 emissions and poses a threat to marine species and communities worldwide. To better project the effects of acidification on organisms’ health and persistence, an understanding is needed of the 1) mechanisms underlying developmental and physiological tolerance and 2) potential populations have for rapid evolutionary adaptation. This is especially challenging in nonmodel species where targeted assays of metabolism and stress physiology may not be available or economical for large-scale assessments of genetic constraints. We used mRNA sequencing and a quantitative genetics breeding design to study mechanisms underlying genetic variability and tolerance to decreased seawater pH (-0.4 pH units) in larvae of the sea urchin Strongylocentrotus droebachiensis. We used a gene ontology-based approach to integrate expression profiles into indirect measures of cellular and biochemical traits underlying variation in larval performance (i.e., growth rates). Molecular responses to OA were complex, involving changes to several functions such as growth rates, cell division, metabolism, and immune activities. Surprisingly, the magnitude of pH effects on molecular traits tended to be small relative to variation attributable to segregating functional genetic variation in this species. We discuss how the application of transcriptomics and quantitative genetics approaches across diverse species can enrich our understanding of the biological impacts of climate change.
Collapse
Affiliation(s)
- Daniel E Runcie
- Department of Biology, Duke University, Durham, NC, USA.,Department of Plant Sciences, University of California, Davis, USA
| | - Narimane Dorey
- Department of Biological and Environmental Sciences, University of Gothenburg, Fiskebäckskil, Sweden
| | - David A Garfield
- Department of Biology, Duke University, Durham, NC, USA.,Integrative Research Institute for the Life Sciences, Humboldt University, Berlin, Germany
| | - Meike Stumpp
- Department of Biological and Environmental Sciences, University of Gothenburg, Fiskebäckskil, Sweden.,Helmholtz Centre for Ocean Sciences (GEOMAR), Kiel, Germany
| | - Sam Dupont
- Department of Biological and Environmental Sciences, University of Gothenburg, Fiskebäckskil, Sweden
| | - Gregory A Wray
- Department of Biology, Duke University, Durham, NC, USA.,Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| |
Collapse
|
46
|
Rudman SM, Kreitzman M, Chan KMA, Schluter D. Evosystem Services: Rapid Evolution and the Provision of Ecosystem Services. Trends Ecol Evol 2017; 32:403-415. [PMID: 28336183 DOI: 10.1016/j.tree.2017.02.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 12/21/2022]
Abstract
Evolution is recognized as the source of all organisms, and hence many ecosystem services. However, the role that contemporary evolution might play in maintaining and enhancing specific ecosystem services has largely been overlooked. Recent advances at the interface of ecology and evolution have demonstrated how contemporary evolution can shape ecological communities and ecosystem functions. We propose a definition and quantitative criteria to study how rapid evolution affects ecosystem services (here termed contemporary evosystem services) and present plausible scenarios where such services might exist. We advocate for the direct measurement of contemporary evosystem services to improve understanding of how changing environments will alter resource availability and human well-being, and highlight the potential utility of managing rapid evolution for future ecosystem services.
Collapse
Affiliation(s)
- Seth M Rudman
- Department of Zoology, University of British Columbia, 4200-6270 University Blvd, Vancouver, BC V6T 1Z4, Canada.
| | - Maayan Kreitzman
- Institute for Resources, Environment, and Sustainability, University of British Columbia, 429-2202 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Kai M A Chan
- Institute for Resources, Environment, and Sustainability, University of British Columbia, 429-2202 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Dolph Schluter
- Department of Zoology, University of British Columbia, 4200-6270 University Blvd, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
47
|
|
48
|
Abstract
Genetic polymorphism varies among species and within genomes, and has important implications for the evolution and conservation of species. The determinants of this variation have been poorly understood, but population genomic data from a wide range of organisms now make it possible to delineate the underlying evolutionary processes, notably how variation in the effective population size (Ne) governs genetic diversity. Comparative population genomics is on its way to providing a solution to 'Lewontin's paradox' - the discrepancy between the many orders of magnitude of variation in population size and the much narrower distribution of diversity levels. It seems that linked selection plays an important part both in the overall genetic diversity of a species and in the variation in diversity within the genome. Genetic diversity also seems to be predictable from the life history of a species.
Collapse
|
49
|
Dool SE, O’Donnell CFJ, Monks JM, Puechmaille SJ, Kerth G. Phylogeographic-based conservation implications for the New Zealand long-tailed bat, (Chalinolobus tuberculatus): identification of a single ESU and a candidate population for genetic rescue. CONSERV GENET 2016. [DOI: 10.1007/s10592-016-0844-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Chapman CA, Schoof VAM, Bonnell TR, Gogarten JF, Calmé S. Competing pressures on populations: long-term dynamics of food availability, food quality, disease, stress and animal abundance. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0112. [PMID: 25870398 DOI: 10.1098/rstb.2014.0112] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite strong links between sociality and fitness that ultimately affect the size of animal populations, the particular social and ecological factors that lead to endangerment are not well understood. Here, we synthesize approximately 25 years of data and present new analyses that highlight dynamics in forest composition, food availability, the nutritional quality of food, disease, physiological stress and population size of endangered folivorous red colobus monkeys (Procolobus rufomitratus). There is a decline in the quality of leaves 15 and 30 years following two previous studies in an undisturbed area of forest. The consumption of a low-quality diet in one month was associated with higher glucocorticoid levels in the subsequent month and stress levels in groups living in degraded forest fragments where diet was poor was more than twice those in forest groups. In contrast, forest composition has changed and when red colobus food availability was weighted by the protein-to-fibre ratio, which we have shown positively predicts folivore biomass, there was an increase in the availability of high-quality trees. Despite these changing social and ecological factors, the abundance of red colobus has remained stable, possibly through a combination of increasing group size and behavioural flexibility.
Collapse
Affiliation(s)
- Colin A Chapman
- McGill School of Environment, McGill University, Montreal, Quebec, Canada H3A 2T7 Department of Anthropology, McGill University, Montreal, Quebec, Canada H3A 2T7 Wildlife Conservation Society, Bronx, NY 10460, USA
| | - Valérie A M Schoof
- Department of Anthropology, McGill University, Montreal, Quebec, Canada H3A 2T7
| | - Tyler R Bonnell
- Department of Psychology, University Hall, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | - Jan F Gogarten
- Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1 Department of Primatology, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany Research group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, 13353 Berlin, Germany
| | - Sophie Calmé
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1 Departamento de Conservacion de la Biodiversidad, El Colegio de la Frontera Sur, Chetumal, Mexico
| |
Collapse
|