1
|
Xia J, Li Y, Zhu H, Xue F, Shi F, Li N. A Bayesian Change Point Model for Dynamic Alternative Transcription Start Site Usage During Cellular Differentiation. J Comput Biol 2024; 31:445-457. [PMID: 38752891 DOI: 10.1089/cmb.2023.0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024] Open
Abstract
ABSTRACT An alternative transcription start site (ATSS) is a major driving force for increasing the complexity of transcripts in human tissues. As a transcriptional regulatory mechanism, ATSS has biological significance. Many studies have confirmed that ATSS plays an important role in diseases and cell development and differentiation. However, exploration of its dynamic mechanisms remains insufficient. Identifying ATSS change points during cell differentiation is critical for elucidating potential dynamic mechanisms. For relative ATSS usage as percentage data, the existing methods lack sensitivity to detect the change point for ATSS longitudinal data. In addition, some methods have strict requirements for data distribution and cannot be applied to deal with this problem. In this study, the Bayesian change point detection model was first constructed using reparameterization techniques for two parameters of a beta distribution for the percentage data type, and the posterior distributions of parameters and change points were obtained using Markov Chain Monte Carlo (MCMC) sampling. With comprehensive simulation studies, the performance of the Bayesian change point detection model is found to be consistently powerful and robust across most scenarios with different sample sizes and beta distributions. Second, differential ATSS events in the real data, whose change points were identified using our method, were clustered according to their change points. Last, for each change point, pathway and transcription factor motif analyses were performed on its differential ATSS events. The results of our analyses demonstrated the effectiveness of the Bayesian change point detection model and provided biological insights into cell differentiation.
Collapse
Affiliation(s)
- Juan Xia
- Department of Mathematics, College of Informatics, Huazhong Agricultural University, Wuhan, P.R. China
| | - Yuxia Li
- Department of Mathematics, College of Informatics, Huazhong Agricultural University, Wuhan, P.R. China
| | - Haotian Zhu
- College of Informatics, Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, P.R. China
| | - Feiyang Xue
- College of Informatics, Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, P.R. China
| | - Feng Shi
- Department of Mathematics, College of Informatics, Huazhong Agricultural University, Wuhan, P.R. China
| | - Nana Li
- Department of Mathematics, College of Informatics, Huazhong Agricultural University, Wuhan, P.R. China
| |
Collapse
|
2
|
Sánchez-Gaya V, Rada-Iglesias A. POSTRE: a tool to predict the pathological effects of human structural variants. Nucleic Acids Res 2023; 51:e54. [PMID: 36999617 PMCID: PMC10201441 DOI: 10.1093/nar/gkad225] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 04/01/2023] Open
Abstract
Understanding the pathological impact of non-coding genetic variation is a major challenge in medical genetics. Accumulating evidences indicate that a significant fraction of genetic alterations, including structural variants (SVs), can cause human disease by altering the function of non-coding regulatory elements, such as enhancers. In the case of SVs, described pathomechanisms include changes in enhancer dosage and long-range enhancer-gene communication. However, there is still a clear gap between the need to predict and interpret the medical impact of non-coding variants, and the existence of tools to properly perform these tasks. To reduce this gap, we have developed POSTRE (Prediction Of STRuctural variant Effects), a computational tool to predict the pathogenicity of SVs implicated in a broad range of human congenital disorders. By considering disease-relevant cellular contexts, POSTRE identifies SVs with either coding or long-range pathological consequences with high specificity and sensitivity. Furthermore, POSTRE not only identifies pathogenic SVs, but also predicts the disease-causative genes and the underlying pathological mechanism (e.g, gene deletion, enhancer disconnection, enhancer adoption, etc.). POSTRE is available at https://github.com/vicsanga/Postre.
Collapse
Affiliation(s)
- Víctor Sánchez-Gaya
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria, Albert Einstein 22, 39011 Santander, Spain
| | - Alvaro Rada-Iglesias
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria, Albert Einstein 22, 39011 Santander, Spain
| |
Collapse
|
3
|
Fong SL, Capra JA. Function and Constraint in Enhancer Sequences with Multiple Evolutionary Origins. Genome Biol Evol 2022; 14:evac159. [PMID: 36314566 PMCID: PMC9673499 DOI: 10.1093/gbe/evac159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2022] [Indexed: 11/04/2022] Open
Abstract
Thousands of human gene regulatory enhancers are composed of sequences with multiple evolutionary origins. These evolutionarily "complex" enhancers consist of older "core" sequences and younger "derived" sequences. However, the functional relationship between the sequences of different evolutionary origins within complex enhancers is poorly understood. We evaluated the function, selective pressures, and sequence variation across core and derived components of human complex enhancers. We find that both components are older than expected from the genomic background, and complex enhancers are enriched for core and derived sequences of similar evolutionary ages. Both components show strong evidence of biochemical activity in massively parallel report assays. However, core and derived sequences have distinct transcription factor (TF)-binding preferences that are largely similar across evolutionary origins. As expected, given these signatures of function, both core and derived sequences have substantial evidence of purifying selection. Nonetheless, derived sequences exhibit weaker purifying selection than adjacent cores. Derived sequences also tolerate more common genetic variation and are enriched compared with cores for expression quantitative trait loci associated with gene expression variability in human populations. In conclusion, both core and derived sequences have strong evidence of gene regulatory function, but derived sequences have distinct constraint profiles, TF-binding preferences, and tolerance to variation compared with cores. We propose that the step-wise integration of younger derived with older core sequences has generated regulatory substrates with robust activity and the potential for functional variation. Our analyses demonstrate that synthesizing study of enhancer evolution and function can aid interpretation of regulatory sequence activity and functional variation across human populations.
Collapse
Affiliation(s)
- Sarah L Fong
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, Tennessee
| | - John A Capra
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee
- Bakar Computational Health Sciences Institute and Department of Epidemiology and Biostatistics, University of California, San Francisco
| |
Collapse
|
4
|
Abstract
Enhancers control the establishment of spatiotemporal gene expression patterns throughout development. Over the past decade, the development of new technologies has improved our capacity to link enhancers with their target genes based on their colocalization within the same topological domains. However, the mechanisms that regulate how enhancers specifically activate some genes but not others within a given domain remain unclear. In this Review, we discuss recent insights into the factors controlling enhancer specificity, including the genetic composition of enhancers and promoters, the linear and 3D distance between enhancers and their target genes, and cell-type specific chromatin landscapes. We also discuss how elucidating the molecular principles of enhancer specificity might help us to better understand and predict the pathological consequences of human genetic, epigenetic and structural variants.
Collapse
Affiliation(s)
- Tomás Pachano
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Albert Einstein 22, 39011 Santander, Spain
| | - Endika Haro
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Albert Einstein 22, 39011 Santander, Spain
| | - Alvaro Rada-Iglesias
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Albert Einstein 22, 39011 Santander, Spain
| |
Collapse
|
5
|
Chua EHZ, Yasar S, Harmston N. The importance of considering regulatory domains in genome-wide analyses - the nearest gene is often wrong! Biol Open 2022; 11:274931. [PMID: 35377406 PMCID: PMC9002814 DOI: 10.1242/bio.059091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The expression of a large number of genes is regulated by regulatory elements that are located far away from their promoters. Identifying which gene is the target of a specific regulatory element or is affected by a non-coding mutation is often accomplished by assigning these regions to the nearest gene in the genome. However, this heuristic ignores key features of genome organisation and gene regulation; in that the genome is partitioned into regulatory domains, which at some loci directly coincide with the span of topologically associated domains (TADs), and that genes are regulated by enhancers located throughout these regions, even across intervening genes. In this review, we examine the results from genome-wide studies using chromosome conformation capture technologies and from those dissecting individual gene regulatory domains, to highlight that the phenomenon of enhancer skipping is pervasive and affects multiple types of genes. We discuss how simply assigning a genomic region of interest to its nearest gene is problematic and often leads to incorrect predictions and highlight that where possible information on both the conservation and topological organisation of the genome should be used to generate better hypotheses. The article has an associated Future Leader to Watch interview. Summary: Identifying which gene is the target of an enhancer is often accomplished by assigning it to the nearest gene, here we discuss how this heuristic can lead to incorrect predictions.
Collapse
Affiliation(s)
| | - Samen Yasar
- Science Division, Yale-NUS College, Singapore 138527, Singapore
| | - Nathan Harmston
- Science Division, Yale-NUS College, Singapore 138527, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
6
|
Kong JH, Young CB, Pusapati GV, Espinoza FH, Patel CB, Beckert F, Ho S, Patel BB, Gabriel GC, Aravind L, Bazan JF, Gunn TM, Lo CW, Rohatgi R. Gene-teratogen interactions influence the penetrance of birth defects by altering Hedgehog signaling strength. Development 2021; 148:dev199867. [PMID: 34486668 PMCID: PMC8513608 DOI: 10.1242/dev.199867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/27/2021] [Indexed: 12/29/2022]
Abstract
Birth defects result from interactions between genetic and environmental factors, but the mechanisms remain poorly understood. We find that mutations and teratogens interact in predictable ways to cause birth defects by changing target cell sensitivity to Hedgehog (Hh) ligands. These interactions converge on a membrane protein complex, the MMM complex, that promotes degradation of the Hh transducer Smoothened (SMO). Deficiency of the MMM component MOSMO results in elevated SMO and increased Hh signaling, causing multiple birth defects. In utero exposure to a teratogen that directly inhibits SMO reduces the penetrance and expressivity of birth defects in Mosmo-/- embryos. Additionally, tissues that develop normally in Mosmo-/- embryos are refractory to the teratogen. Thus, changes in the abundance of the protein target of a teratogen can change birth defect outcomes by quantitative shifts in Hh signaling. Consequently, small molecules that re-calibrate signaling strength could be harnessed to rescue structural birth defects.
Collapse
Affiliation(s)
- Jennifer H. Kong
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cullen B. Young
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| | - Ganesh V. Pusapati
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - F. Hernán Espinoza
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chandni B. Patel
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Francis Beckert
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sebastian Ho
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| | - Bhaven B. Patel
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - George C. Gabriel
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | - Teresa M. Gunn
- McLaughlin Research Institute, Great Falls, MT 59405, USA
| | - Cecilia W. Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| | - Rajat Rohatgi
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Abstract
Shadow enhancers are seemingly redundant transcriptional cis-regulatory elements that regulate the same gene and drive overlapping expression patterns. Recent studies have shown that shadow enhancers are remarkably abundant and control most developmental gene expression in both invertebrates and vertebrates, including mammals. Shadow enhancers might provide an important mechanism for buffering gene expression against mutations in non-coding regulatory regions of genes implicated in human disease. Technological advances in genome editing and live imaging have shed light on how shadow enhancers establish precise gene expression patterns and confer phenotypic robustness. Shadow enhancers can interact in complex ways and may also help to drive the formation of transcriptional hubs within the nucleus. Despite their apparent redundancy, the prevalence and evolutionary conservation of shadow enhancers underscore their key role in emerging metazoan gene regulatory networks.
Collapse
|
8
|
Reed KSM, Ulici V, Kim C, Chubinskaya S, Loeser RF, Phanstiel DH. Transcriptional response of human articular chondrocytes treated with fibronectin fragments: an in vitro model of the osteoarthritis phenotype. Osteoarthritis Cartilage 2021; 29:235-247. [PMID: 33248223 PMCID: PMC7870543 DOI: 10.1016/j.joca.2020.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/19/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Fibronectin is a matrix protein that is fragmented during cartilage degradation in osteoarthritis (OA). Treatment of chondrocytes with fibronectin fragments (FN-f) has been used to model OA in vitro, but the system has not been fully characterized. This study sought to define the transcriptional response of chondrocytes to FN-f, and directly compare it to responses traditionally observed in OA. DESIGN Normal human femoral chondrocytes isolated from tissue donors were treated with either FN-f or PBS (control) for 3, 6, or 18 h. RNA-seq libraries were compared between time-matched FN-f and control samples in order to identify changes in gene expression over time. Differentially expressed genes were compared to a published OA gene set and used for pathway, transcription factor motif, and kinome analysis. RESULTS FN-f treatment resulted in 3,914 differentially expressed genes over the time course. Genes that are up- or downregulated in OA were significantly up- (P < 0.00001) or downregulated (P < 0.0004) in response to FN-f. Early response genes were involved in proinflammatory pathways, whereas many late response genes were involved in ferroptosis. The promoters of upregulated genes were enriched for NF-κB, AP-1, and IRF motifs. Highly upregulated kinases included CAMK1G, IRAK2, and the uncharacterized kinase DYRK3, while growth factor receptors TGFBR2 and FGFR2 were downregulated. CONCLUSIONS FN-f treatment of normal human articular chondrocytes recapitulated many key aspects of the OA chondrocyte phenotype. This in vitro model is promising for future OA studies, especially considering its compatibility with genomics and genome-editing techniques.
Collapse
Affiliation(s)
- K S M Reed
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - V Ulici
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA; Division of Rheumatology, Allergy and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| | - C Kim
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA; Division of Rheumatology, Allergy and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| | - S Chubinskaya
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA.
| | - R F Loeser
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA; Division of Rheumatology, Allergy and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| | - D H Phanstiel
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
9
|
Kvon EZ, Zhu Y, Kelman G, Novak CS, Plajzer-Frick I, Kato M, Garvin TH, Pham Q, Harrington AN, Hunter RD, Godoy J, Meky EM, Akiyama JA, Afzal V, Tran S, Escande F, Gilbert-Dussardier B, Jean-Marçais N, Hudaiberdiev S, Ovcharenko I, Dobbs MB, Gurnett CA, Manouvrier-Hanu S, Petit F, Visel A, Dickel DE, Pennacchio LA. Comprehensive In Vivo Interrogation Reveals Phenotypic Impact of Human Enhancer Variants. Cell 2020; 180:1262-1271.e15. [PMID: 32169219 PMCID: PMC7179509 DOI: 10.1016/j.cell.2020.02.031] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/13/2020] [Accepted: 02/12/2020] [Indexed: 12/17/2022]
Abstract
Establishing causal links between non-coding variants and human phenotypes is an increasing challenge. Here, we introduce a high-throughput mouse reporter assay for assessing the pathogenic potential of human enhancer variants in vivo and examine nearly a thousand variants in an enhancer repeatedly linked to polydactyly. We show that 71% of all rare non-coding variants previously proposed as causal lead to reporter gene expression in a pattern consistent with their pathogenic role. Variants observed to alter enhancer activity were further confirmed to cause polydactyly in knockin mice. We also used combinatorial and single-nucleotide mutagenesis to evaluate the in vivo impact of mutations affecting all positions of the enhancer and identified additional functional substitutions, including potentially pathogenic variants hitherto not observed in humans. Our results uncover the functional consequences of hundreds of mutations in a phenotype-associated enhancer and establish a widely applicable strategy for systematic in vivo evaluation of human enhancer variants.
Collapse
Affiliation(s)
- Evgeny Z Kvon
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yiwen Zhu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Guy Kelman
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Catherine S Novak
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ingrid Plajzer-Frick
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Momoe Kato
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Tyler H Garvin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Quan Pham
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anne N Harrington
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Riana D Hunter
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Janeth Godoy
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Eman M Meky
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jennifer A Akiyama
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Veena Afzal
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Stella Tran
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | | - Sanjarbek Hudaiberdiev
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ivan Ovcharenko
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew B Dobbs
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christina A Gurnett
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Florence Petit
- CHU Lille, University of Lille, EA7364, F-59000, Lille, France
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA; School of Natural Sciences, University of California, Merced, CA 95343, USA.
| | - Diane E Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Len A Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA; Comparative Biochemistry Program, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
10
|
Potuijt JWP, Galjaard RJH, van der Spek PJ, van Nieuwenhoven CA, Ahituv N, Oberg KC, Hovius SER. A multidisciplinary review of triphalangeal thumb. J Hand Surg Eur Vol 2019; 44:59-68. [PMID: 30318985 PMCID: PMC6297887 DOI: 10.1177/1753193418803521] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Despite being a rare congenital limb anomaly, triphalangeal thumb is a subject of research in various scientific fields, providing new insights in clinical research and evolutionary biology. The findings of triphalangeal thumb can be predictive for other congenital anomalies as part of an underlying syndrome. Furthermore, triphalangeal thumb is still being used as a model in molecular genetics to study gene regulation by long-range regulatory elements. We present a review that summarizes a number of scientifically relevant topics that involve the triphalangeal thumb phenotype. Future initiatives involving multidisciplinary teams collaborating in the field of triphalangeal thumb research can lead to a better understanding of the pathogenesis and molecular mechanisms of this condition as well as other congenital upper limb anomalies.
Collapse
Affiliation(s)
- Jacob W. P. Potuijt
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands,Jacob W. P. Potuijt, Department of Plastic, Reconstructive and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, Ee-1589 Postbus 2040, 3015 GE Rotterdam, The Netherlands.
| | - Robert-Jan H. Galjaard
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Peter J. van der Spek
- Department of Bioinformatics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands,Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Christianne A. van Nieuwenhoven
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, SF, USA,Institute for Human Genetics, University of California San Francisco, SF, USA
| | - Kerby C. Oberg
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, USA
| | - Steven E. R. Hovius
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
11
|
Xu C, Park JK, Zhang J. Evidence that alternative transcriptional initiation is largely nonadaptive. PLoS Biol 2019; 17:e3000197. [PMID: 30883542 PMCID: PMC6438578 DOI: 10.1371/journal.pbio.3000197] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/28/2019] [Accepted: 03/12/2019] [Indexed: 12/22/2022] Open
Abstract
Alternative transcriptional initiation (ATI) refers to the frequent observation that one gene has multiple transcription start sites (TSSs). Although this phenomenon is thought to be adaptive, the specific advantage is rarely known. Here, we propose that each gene has one optimal TSS and that ATI arises primarily from imprecise transcriptional initiation that could be deleterious. This error hypothesis predicts that (i) the TSS diversity of a gene reduces with its expression level; (ii) the fractional use of the major TSS increases, but that of each minor TSS decreases, with the gene expression level; and (iii) cis-elements for major TSSs are selectively constrained, while those for minor TSSs are not. By contrast, the adaptive hypothesis does not make these predictions a priori. Our analysis of human and mouse transcriptomes confirms each of the three predictions. These and other findings strongly suggest that ATI predominantly results from molecular errors, requiring a major revision of our understanding of the precision and regulation of transcription. The transcription of a gene may start from one of several transcription start sites, a phenomenon known as alternative transcriptional initiation. Contrary to common belief, this study shows that variation of the transcription start site of a given gene is nonadaptive and is largely attributable to transcriptional initiation error that is typically deleterious. Multiple surveys of transcriptional initiation showed that mammalian genes typically have multiple transcription start sites such that transcription is initiated from any one of these sites. Many researchers believe that this phenomenon is adaptive because it allows production of multiple transcripts, from the same gene, that potentially vary in function or post-transcriptional regulation. Nevertheless, it is also possible that each gene has only one optimal transcription start site and that alternative transcriptional initiation arises primarily from molecular errors that are slightly deleterious. This error hypothesis makes a series of predictions about the amount of transcription start site diversity per gene, relative uses of the various start sites of a gene, among-tissue and across-species differences in start site usage, and the evolutionary conservation of cis-regulatory elements of various start sites, all of which are verified in our analyses of genome-wide transcription start site data from the human and mouse. These findings strongly suggest that alternative transcriptional initiation largely reflects molecular errors instead of molecular adaptations and require a rethink of the precision and regulation of transcription.
Collapse
Affiliation(s)
- Chuan Xu
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Joong-Ki Park
- Division of EcoScience, Ewha Womans University, Seoul, Republic of Korea
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
12
|
Oberg KC. Classification of congenital upper limb anomalies: towards improved communication, diagnosis, and discovery. J Hand Surg Eur Vol 2019; 44:4-14. [PMID: 30269619 DOI: 10.1177/1753193418801280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Recently the International Federation of Societies for Surgery of the Hand replaced the Swanson scheme for classifying congenital upper limb anomalies with the Oberg, Manske, Tonkin (OMT) classification. This review explores the reasons for this change after nearly 50 years of using the Swanson classification. In particular, it documents the state of our understanding regarding genetics and limb development at the time Swanson generated his classification. It also describes the continued progress in clinical genetics and developmental biology. Such progress drives the need to embrace and incorporate these changes within a new classification scheme; one that will improve communication, diagnosis, and support further discovery of the pathogenesis of congenital hand anomalies.
Collapse
Affiliation(s)
- Kerby C Oberg
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
13
|
Mesquita TR, Auguste G, Falcón D, Ruiz-Hurtado G, Salazar-Enciso R, Sabourin J, Lefebvre F, Viengchareun S, Kobeissy H, Lechène P, Nicolas V, Fernandez-Celis A, Gómez S, Lauton Santos S, Morel E, Rueda A, López-Andrés N, Gómez AM, Lombès M, Benitah JP. Specific Activation of the Alternative Cardiac Promoter of
Cacna1c
by the Mineralocorticoid Receptor. Circ Res 2018; 122:e49-e61. [DOI: 10.1161/circresaha.117.312451] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 11/16/2022]
Affiliation(s)
- Thassio R. Mesquita
- From the Signalisation et Physiopathologie Cardiovasculaire - UMR-S 1180, (T.R.M., G.A., D.F., G.R.-H., J.S., F.L., P.L., S.G., E.M., A.M.G., J.-P.B.), EA 4043 UBaPS (H.K.), and UMS-IPSIT, MIPSIT_Microscopy Facility (V.N.), Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296, Châtenay-Malabry, France; Department of Physiology, Federal University of Sergipe, Brazil (T.R.M., S.L.S.); Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, D.F., México (R.S
| | - Gaëlle Auguste
- From the Signalisation et Physiopathologie Cardiovasculaire - UMR-S 1180, (T.R.M., G.A., D.F., G.R.-H., J.S., F.L., P.L., S.G., E.M., A.M.G., J.-P.B.), EA 4043 UBaPS (H.K.), and UMS-IPSIT, MIPSIT_Microscopy Facility (V.N.), Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296, Châtenay-Malabry, France; Department of Physiology, Federal University of Sergipe, Brazil (T.R.M., S.L.S.); Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, D.F., México (R.S
| | - Débora Falcón
- From the Signalisation et Physiopathologie Cardiovasculaire - UMR-S 1180, (T.R.M., G.A., D.F., G.R.-H., J.S., F.L., P.L., S.G., E.M., A.M.G., J.-P.B.), EA 4043 UBaPS (H.K.), and UMS-IPSIT, MIPSIT_Microscopy Facility (V.N.), Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296, Châtenay-Malabry, France; Department of Physiology, Federal University of Sergipe, Brazil (T.R.M., S.L.S.); Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, D.F., México (R.S
| | - Gema Ruiz-Hurtado
- From the Signalisation et Physiopathologie Cardiovasculaire - UMR-S 1180, (T.R.M., G.A., D.F., G.R.-H., J.S., F.L., P.L., S.G., E.M., A.M.G., J.-P.B.), EA 4043 UBaPS (H.K.), and UMS-IPSIT, MIPSIT_Microscopy Facility (V.N.), Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296, Châtenay-Malabry, France; Department of Physiology, Federal University of Sergipe, Brazil (T.R.M., S.L.S.); Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, D.F., México (R.S
| | - Rogelio Salazar-Enciso
- From the Signalisation et Physiopathologie Cardiovasculaire - UMR-S 1180, (T.R.M., G.A., D.F., G.R.-H., J.S., F.L., P.L., S.G., E.M., A.M.G., J.-P.B.), EA 4043 UBaPS (H.K.), and UMS-IPSIT, MIPSIT_Microscopy Facility (V.N.), Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296, Châtenay-Malabry, France; Department of Physiology, Federal University of Sergipe, Brazil (T.R.M., S.L.S.); Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, D.F., México (R.S
| | - Jessica Sabourin
- From the Signalisation et Physiopathologie Cardiovasculaire - UMR-S 1180, (T.R.M., G.A., D.F., G.R.-H., J.S., F.L., P.L., S.G., E.M., A.M.G., J.-P.B.), EA 4043 UBaPS (H.K.), and UMS-IPSIT, MIPSIT_Microscopy Facility (V.N.), Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296, Châtenay-Malabry, France; Department of Physiology, Federal University of Sergipe, Brazil (T.R.M., S.L.S.); Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, D.F., México (R.S
| | - Florence Lefebvre
- From the Signalisation et Physiopathologie Cardiovasculaire - UMR-S 1180, (T.R.M., G.A., D.F., G.R.-H., J.S., F.L., P.L., S.G., E.M., A.M.G., J.-P.B.), EA 4043 UBaPS (H.K.), and UMS-IPSIT, MIPSIT_Microscopy Facility (V.N.), Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296, Châtenay-Malabry, France; Department of Physiology, Federal University of Sergipe, Brazil (T.R.M., S.L.S.); Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, D.F., México (R.S
| | - Say Viengchareun
- From the Signalisation et Physiopathologie Cardiovasculaire - UMR-S 1180, (T.R.M., G.A., D.F., G.R.-H., J.S., F.L., P.L., S.G., E.M., A.M.G., J.-P.B.), EA 4043 UBaPS (H.K.), and UMS-IPSIT, MIPSIT_Microscopy Facility (V.N.), Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296, Châtenay-Malabry, France; Department of Physiology, Federal University of Sergipe, Brazil (T.R.M., S.L.S.); Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, D.F., México (R.S
| | - Hussein Kobeissy
- From the Signalisation et Physiopathologie Cardiovasculaire - UMR-S 1180, (T.R.M., G.A., D.F., G.R.-H., J.S., F.L., P.L., S.G., E.M., A.M.G., J.-P.B.), EA 4043 UBaPS (H.K.), and UMS-IPSIT, MIPSIT_Microscopy Facility (V.N.), Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296, Châtenay-Malabry, France; Department of Physiology, Federal University of Sergipe, Brazil (T.R.M., S.L.S.); Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, D.F., México (R.S
| | - Patrick Lechène
- From the Signalisation et Physiopathologie Cardiovasculaire - UMR-S 1180, (T.R.M., G.A., D.F., G.R.-H., J.S., F.L., P.L., S.G., E.M., A.M.G., J.-P.B.), EA 4043 UBaPS (H.K.), and UMS-IPSIT, MIPSIT_Microscopy Facility (V.N.), Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296, Châtenay-Malabry, France; Department of Physiology, Federal University of Sergipe, Brazil (T.R.M., S.L.S.); Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, D.F., México (R.S
| | - Valérie Nicolas
- From the Signalisation et Physiopathologie Cardiovasculaire - UMR-S 1180, (T.R.M., G.A., D.F., G.R.-H., J.S., F.L., P.L., S.G., E.M., A.M.G., J.-P.B.), EA 4043 UBaPS (H.K.), and UMS-IPSIT, MIPSIT_Microscopy Facility (V.N.), Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296, Châtenay-Malabry, France; Department of Physiology, Federal University of Sergipe, Brazil (T.R.M., S.L.S.); Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, D.F., México (R.S
| | - Amaya Fernandez-Celis
- From the Signalisation et Physiopathologie Cardiovasculaire - UMR-S 1180, (T.R.M., G.A., D.F., G.R.-H., J.S., F.L., P.L., S.G., E.M., A.M.G., J.-P.B.), EA 4043 UBaPS (H.K.), and UMS-IPSIT, MIPSIT_Microscopy Facility (V.N.), Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296, Châtenay-Malabry, France; Department of Physiology, Federal University of Sergipe, Brazil (T.R.M., S.L.S.); Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, D.F., México (R.S
| | - Susana Gómez
- From the Signalisation et Physiopathologie Cardiovasculaire - UMR-S 1180, (T.R.M., G.A., D.F., G.R.-H., J.S., F.L., P.L., S.G., E.M., A.M.G., J.-P.B.), EA 4043 UBaPS (H.K.), and UMS-IPSIT, MIPSIT_Microscopy Facility (V.N.), Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296, Châtenay-Malabry, France; Department of Physiology, Federal University of Sergipe, Brazil (T.R.M., S.L.S.); Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, D.F., México (R.S
| | - Sandra Lauton Santos
- From the Signalisation et Physiopathologie Cardiovasculaire - UMR-S 1180, (T.R.M., G.A., D.F., G.R.-H., J.S., F.L., P.L., S.G., E.M., A.M.G., J.-P.B.), EA 4043 UBaPS (H.K.), and UMS-IPSIT, MIPSIT_Microscopy Facility (V.N.), Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296, Châtenay-Malabry, France; Department of Physiology, Federal University of Sergipe, Brazil (T.R.M., S.L.S.); Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, D.F., México (R.S
| | - Eric Morel
- From the Signalisation et Physiopathologie Cardiovasculaire - UMR-S 1180, (T.R.M., G.A., D.F., G.R.-H., J.S., F.L., P.L., S.G., E.M., A.M.G., J.-P.B.), EA 4043 UBaPS (H.K.), and UMS-IPSIT, MIPSIT_Microscopy Facility (V.N.), Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296, Châtenay-Malabry, France; Department of Physiology, Federal University of Sergipe, Brazil (T.R.M., S.L.S.); Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, D.F., México (R.S
| | - Angelica Rueda
- From the Signalisation et Physiopathologie Cardiovasculaire - UMR-S 1180, (T.R.M., G.A., D.F., G.R.-H., J.S., F.L., P.L., S.G., E.M., A.M.G., J.-P.B.), EA 4043 UBaPS (H.K.), and UMS-IPSIT, MIPSIT_Microscopy Facility (V.N.), Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296, Châtenay-Malabry, France; Department of Physiology, Federal University of Sergipe, Brazil (T.R.M., S.L.S.); Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, D.F., México (R.S
| | - Natalia López-Andrés
- From the Signalisation et Physiopathologie Cardiovasculaire - UMR-S 1180, (T.R.M., G.A., D.F., G.R.-H., J.S., F.L., P.L., S.G., E.M., A.M.G., J.-P.B.), EA 4043 UBaPS (H.K.), and UMS-IPSIT, MIPSIT_Microscopy Facility (V.N.), Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296, Châtenay-Malabry, France; Department of Physiology, Federal University of Sergipe, Brazil (T.R.M., S.L.S.); Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, D.F., México (R.S
| | - Ana Maria Gómez
- From the Signalisation et Physiopathologie Cardiovasculaire - UMR-S 1180, (T.R.M., G.A., D.F., G.R.-H., J.S., F.L., P.L., S.G., E.M., A.M.G., J.-P.B.), EA 4043 UBaPS (H.K.), and UMS-IPSIT, MIPSIT_Microscopy Facility (V.N.), Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296, Châtenay-Malabry, France; Department of Physiology, Federal University of Sergipe, Brazil (T.R.M., S.L.S.); Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, D.F., México (R.S
| | - Marc Lombès
- From the Signalisation et Physiopathologie Cardiovasculaire - UMR-S 1180, (T.R.M., G.A., D.F., G.R.-H., J.S., F.L., P.L., S.G., E.M., A.M.G., J.-P.B.), EA 4043 UBaPS (H.K.), and UMS-IPSIT, MIPSIT_Microscopy Facility (V.N.), Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296, Châtenay-Malabry, France; Department of Physiology, Federal University of Sergipe, Brazil (T.R.M., S.L.S.); Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, D.F., México (R.S
| | - Jean-Pierre Benitah
- From the Signalisation et Physiopathologie Cardiovasculaire - UMR-S 1180, (T.R.M., G.A., D.F., G.R.-H., J.S., F.L., P.L., S.G., E.M., A.M.G., J.-P.B.), EA 4043 UBaPS (H.K.), and UMS-IPSIT, MIPSIT_Microscopy Facility (V.N.), Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296, Châtenay-Malabry, France; Department of Physiology, Federal University of Sergipe, Brazil (T.R.M., S.L.S.); Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, D.F., México (R.S
| |
Collapse
|
14
|
Short PJ, McRae JF, Gallone G, Sifrim A, Won H, Geschwind DH, Wright CF, Firth HV, FitzPatrick DR, Barrett JC, Hurles ME. De novo mutations in regulatory elements in neurodevelopmental disorders. Nature 2018; 555:611-616. [PMID: 29562236 PMCID: PMC5912909 DOI: 10.1038/nature25983] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 01/24/2018] [Indexed: 12/23/2022]
Abstract
We previously estimated that 42% of patients with severe developmental disorders carry pathogenic de novo mutations in coding sequences. The role of de novo mutations in regulatory elements affecting genes associated with developmental disorders, or other genes, has been essentially unexplored. We identified de novo mutations in three classes of putative regulatory elements in almost 8,000 patients with developmental disorders. Here we show that de novo mutations in highly evolutionarily conserved fetal brain-active elements are significantly and specifically enriched in neurodevelopmental disorders. We identified a significant twofold enrichment of recurrently mutated elements. We estimate that, genome-wide, 1-3% of patients without a diagnostic coding variant carry pathogenic de novo mutations in fetal brain-active regulatory elements and that only 0.15% of all possible mutations within highly conserved fetal brain-active elements cause neurodevelopmental disorders with a dominant mechanism. Our findings represent a robust estimate of the contribution of de novo mutations in regulatory elements to this genetically heterogeneous set of disorders, and emphasize the importance of combining functional and evolutionary evidence to identify regulatory causes of genetic disorders.
Collapse
Affiliation(s)
- Patrick J Short
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Jeremy F McRae
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Giuseppe Gallone
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Alejandro Sifrim
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Hyejung Won
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Daniel H Geschwind
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
- Center for Autism Research and Treatment, Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Caroline F Wright
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Level 4, Royal Devon & Exeter Hospital, Barrack Road, Exeter EX2 5DW, UK
| | - Helen V Firth
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- East Anglian Medical Genetics Service, Box 134, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - David R FitzPatrick
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Jeffrey C Barrett
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Matthew E Hurles
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| |
Collapse
|
15
|
Vacik T, Raska I. Alternative intronic promoters in development and disease. PROTOPLASMA 2017; 254:1201-1206. [PMID: 28078440 DOI: 10.1007/s00709-016-1071-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/22/2016] [Indexed: 06/06/2023]
Abstract
Approximately 20,000 mammalian genes are estimated to encode between 250 thousand and 1 million different proteins. This enormous diversity of the mammalian proteome is caused by the ability of a single-gene locus to encode multiple protein isoforms. Protein isoforms encoded by one gene locus can be functionally distinct, and they can even have antagonistic functions. One of the mechanisms involved in creating this proteome complexity is alternative promoter usage. Alternative intronic promoters are located downstream from their canonical counterparts and drive the expression of alternative RNA isoforms that lack upstream exons. These upstream exons can encode some important functional domains, and proteins encoded by alternative mRNA isoforms can be thus functionally distinct from the full-length protein encoded by canonical mRNA isoforms. Since any misbalance of functionally distinct protein isoforms is likely to have detrimental consequences for the cell and the whole organism, their expression must be precisely regulated. Misregulation of alternative intronic promoters is frequently associated with various developmental defects and diseases including cancer, and it is becoming increasingly clear that this phenomenon deserves more attention.
Collapse
Affiliation(s)
- Tomas Vacik
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, Praha 2, Czech Republic.
| | - Ivan Raska
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, Praha 2, Czech Republic
| |
Collapse
|
16
|
Tickle C, Towers M. Sonic Hedgehog Signaling in Limb Development. Front Cell Dev Biol 2017; 5:14. [PMID: 28293554 PMCID: PMC5328949 DOI: 10.3389/fcell.2017.00014] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/08/2017] [Indexed: 02/04/2023] Open
Abstract
The gene encoding the secreted protein Sonic hedgehog (Shh) is expressed in the polarizing region (or zone of polarizing activity), a small group of mesenchyme cells at the posterior margin of the vertebrate limb bud. Detailed analyses have revealed that Shh has the properties of the long sought after polarizing region morphogen that specifies positional values across the antero-posterior axis (e.g., thumb to little finger axis) of the limb. Shh has also been shown to control the width of the limb bud by stimulating mesenchyme cell proliferation and by regulating the antero-posterior length of the apical ectodermal ridge, the signaling region required for limb bud outgrowth and the laying down of structures along the proximo-distal axis (e.g., shoulder to digits axis) of the limb. It has been shown that Shh signaling can specify antero-posterior positional values in limb buds in both a concentration- (paracrine) and time-dependent (autocrine) fashion. Currently there are several models for how Shh specifies positional values over time in the limb buds of chick and mouse embryos and how this is integrated with growth. Extensive work has elucidated downstream transcriptional targets of Shh signaling. Nevertheless, it remains unclear how antero-posterior positional values are encoded and then interpreted to give the particular structure appropriate to that position, for example, the type of digit. A distant cis-regulatory enhancer controls limb-bud-specific expression of Shh and the discovery of increasing numbers of interacting transcription factors indicate complex spatiotemporal regulation. Altered Shh signaling is implicated in clinical conditions with congenital limb defects and in the evolution of the morphological diversity of vertebrate limbs.
Collapse
Affiliation(s)
- Cheryll Tickle
- Department of Biology and Biochemistry, University of BathBath, UK
| | - Matthew Towers
- Department of Biomedical Science, The Bateson Centre, University of SheffieldWestern Bank, Sheffield, UK
| |
Collapse
|
17
|
Kvon EZ, Kamneva OK, Melo US, Barozzi I, Osterwalder M, Mannion BJ, Tissières V, Pickle CS, Plajzer-Frick I, Lee EA, Kato M, Garvin TH, Akiyama JA, Afzal V, Lopez-Rios J, Rubin EM, Dickel DE, Pennacchio LA, Visel A. Progressive Loss of Function in a Limb Enhancer during Snake Evolution. Cell 2016; 167:633-642.e11. [PMID: 27768887 DOI: 10.1016/j.cell.2016.09.028] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/07/2016] [Accepted: 09/15/2016] [Indexed: 01/08/2023]
Abstract
The evolution of body shape is thought to be tightly coupled to changes in regulatory sequences, but specific molecular events associated with major morphological transitions in vertebrates have remained elusive. We identified snake-specific sequence changes within an otherwise highly conserved long-range limb enhancer of Sonic hedgehog (Shh). Transgenic mouse reporter assays revealed that the in vivo activity pattern of the enhancer is conserved across a wide range of vertebrates, including fish, but not in snakes. Genomic substitution of the mouse enhancer with its human or fish ortholog results in normal limb development. In contrast, replacement with snake orthologs caused severe limb reduction. Synthetic restoration of a single transcription factor binding site lost in the snake lineage reinstated full in vivo function to the snake enhancer. Our results demonstrate changes in a regulatory sequence associated with a major body plan transition and highlight the role of enhancers in morphological evolution. PAPERCLIP.
Collapse
Affiliation(s)
- Evgeny Z Kvon
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Olga K Kamneva
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Uirá S Melo
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Iros Barozzi
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Marco Osterwalder
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Brandon J Mannion
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Catherine S Pickle
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Elizabeth A Lee
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Momoe Kato
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Tyler H Garvin
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jennifer A Akiyama
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Veena Afzal
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Javier Lopez-Rios
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Edward M Rubin
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Diane E Dickel
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Len A Pennacchio
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA.
| | - Axel Visel
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; School of Natural Sciences, University of California, Merced, CA 95343, USA.
| |
Collapse
|
18
|
Ramsbottom SA, Pownall ME, Roelink H, Conway SJ. Regulation of Hedgehog Signalling Inside and Outside the Cell. J Dev Biol 2016; 4:23. [PMID: 27547735 PMCID: PMC4990124 DOI: 10.3390/jdb4030023] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The hedgehog (Hh) signalling pathway is conserved throughout metazoans and plays an important regulatory role in both embryonic development and adult homeostasis. Many levels of regulation exist that control the release, reception, and interpretation of the hedgehog signal. The fatty nature of the Shh ligand means that it tends to associate tightly with the cell membrane, and yet it is known to act as a morphogen that diffuses to elicit pattern formation. Heparan sulfate proteoglycans (HSPGs) play a major role in the regulation of Hh distribution outside the cell. Inside the cell, the primary cilium provides an important hub for processing the Hh signal in vertebrates. This review will summarise the current understanding of how the Hh pathway is regulated from ligand production, release, and diffusion, through to signal reception and intracellular transduction.
Collapse
Affiliation(s)
- Simon A. Ramsbottom
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, NE1 3BZ Newcastle upon Tyne, UK
- Correspondence: ; Tel.: +44-(0)191-241-8612
| | | | | | | |
Collapse
|
19
|
Kinsella E, Dora N, Mellis D, Lettice L, Deveney P, Hill R, Ditzel M. Use of a Conditional Ubr5 Mutant Allele to Investigate the Role of an N-End Rule Ubiquitin-Protein Ligase in Hedgehog Signalling and Embryonic Limb Development. PLoS One 2016; 11:e0157079. [PMID: 27299863 PMCID: PMC4907512 DOI: 10.1371/journal.pone.0157079] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 05/24/2016] [Indexed: 01/16/2023] Open
Abstract
Hedgehog (Hh) signalling is a potent regulator of cell fate and function. While much is known about the events within a Hh-stimulated cell, far less is known about the regulation of Hh-ligand production. Drosophila Hyperplastic Discs (Hyd), a ubiquitin-protein ligase, represents one of the few non-transcription factors that independently regulates both hh mRNA expression and pathway activity. Using a murine embryonic stem cell system, we revealed that shRNAi of the mammalian homologue of hyd, Ubr5, effectively prevented retinoic-acid-induced Sonic hedgehog (Shh) expression. We next investigated the UBR5:Hh signalling relationship in vivo by generating and validating a mouse bearing a conditional Ubr5 loss-of-function allele. Conditionally deleting Ubr5 in the early embryonic limb-bud mesenchyme resulted in a transient decrease in Indian hedgehog ligand expression and decreased Hh pathway activity, around E13.5. Although Ubr5-deficient limbs and digits were, on average, shorter than control limbs, the effects were not statistically significant. Hence, while loss of UBR5 perturbed Hedgehog signalling in the developing limb, there were no obvious morphological defects. In summary, we report the first conditional Ubr5 mutant mouse and provide evidence for a role for UBR5 in influencing Hh signalling, but are uncertain to whether the effects on Hedgehog signaling were direct (cell autonomous) or indirect (non-cell-autonomous). Elaboration of the cellular/molecular mechanism(s) involved may help our understanding on diseases and developmental disorders associated with aberrant Hh signalling.
Collapse
Affiliation(s)
- Elaine Kinsella
- Edinburgh CRUK Cancer Research Centre, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Natalie Dora
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - David Mellis
- Edinburgh CRUK Cancer Research Centre, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Laura Lettice
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Paul Deveney
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Robert Hill
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Mark Ditzel
- Edinburgh CRUK Cancer Research Centre, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital, Edinburgh, UK
| |
Collapse
|
20
|
Towards understanding pre-mRNA splicing mechanisms and the role of SR proteins. Gene 2016; 587:107-19. [PMID: 27154819 DOI: 10.1016/j.gene.2016.04.057] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 04/30/2016] [Indexed: 01/04/2023]
Abstract
Alternative pre-mRNA splicing provides a source of vast protein diversity by removing non-coding sequences (introns) and accurately linking different exonic regions in the correct reading frame. The regulation of alternative splicing is essential for various cellular functions in both pathological and physiological conditions. In eukaryotic cells, this process is commonly used to increase proteomic diversity and to control gene expression either co- or post-transcriptionally. Alternative splicing occurs within a megadalton-sized, multi-component machine consisting of RNA and proteins; during the splicing process, this complex undergoes dynamic changes via RNA-RNA, protein-protein and RNA-protein interactions. Co-transcriptional splicing functionally integrates the transcriptional machinery, thereby enabling the two processes to influence one another, whereas post-transcriptional splicing facilitates the coupling of RNA splicing with post-splicing events. This review addresses the structural aspects of spliceosomes and the mechanistic implications of their stepwise assembly on the regulation of pre-mRNA splicing. Moreover, the role of phosphorylation-based, signal-induced changes in the regulation of the splicing process is demonstrated.
Collapse
|
21
|
Deng H, Tan T. Advances in the Molecular Genetics of Non-syndromic Syndactyly. Curr Genomics 2015; 16:183-93. [PMID: 26069458 PMCID: PMC4460222 DOI: 10.2174/1389202916666150317233103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/18/2015] [Accepted: 03/16/2015] [Indexed: 12/16/2022] Open
Abstract
Syndactyly, webbing of adjacent digits with or without bony fusion, is one of the most common hereditary limb malformations. It occurs either as an isolated abnormality or as a component of more than 300 syndromic anomalies. There are currently nine types of phenotypically diverse nonsyndromic syndactyly. Non-syndromic syndactyly is usually inherited as an autosomal dominant trait, although the more severe presenting types and subtypes may show autosomal recessive or X-linked pattern of inheritance. The phenotype appears to be not only caused by a main gene, but also dependant on genetic background and subsequent signaling pathways involved in limb formation. So far, the principal genes identified to be involved in congenital syndactyly are mainly involved in the zone of polarizing activity and sonic hedgehog pathway. This review summarizes the recent progress made in the molecular genetics, including known genes and loci responsible for non-syndromic syndactyly, and the signaling pathways those genetic factors involved in, as well as clinical features and animal models. We hope our review will contribute to the understanding of underlying pathogenesis of this complicated disorder and have implication on genetic counseling.
Collapse
Affiliation(s)
- Hao Deng
- Center for Experimental Medicine ; Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Ting Tan
- Center for Experimental Medicine
| |
Collapse
|
22
|
de Klerk E, 't Hoen PAC. Alternative mRNA transcription, processing, and translation: insights from RNA sequencing. Trends Genet 2015; 31:128-39. [PMID: 25648499 DOI: 10.1016/j.tig.2015.01.001] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 12/22/2014] [Accepted: 01/05/2015] [Indexed: 12/13/2022]
Abstract
The human transcriptome comprises >80,000 protein-coding transcripts and the estimated number of proteins synthesized from these transcripts is in the range of 250,000 to 1 million. These transcripts and proteins are encoded by less than 20,000 genes, suggesting extensive regulation at the transcriptional, post-transcriptional, and translational level. Here we review how RNA sequencing (RNA-seq) technologies have increased our understanding of the mechanisms that give rise to alternative transcripts and their alternative translation. We highlight four different regulatory processes: alternative transcription initiation, alternative splicing, alternative polyadenylation, and alternative translation initiation. We discuss their transcriptome-wide distribution, their impact on protein expression, their biological relevance, and the possible molecular mechanisms leading to their alternative regulation. We conclude with a discussion of the coordination and the interdependence of these four regulatory layers.
Collapse
Affiliation(s)
- Eleonora de Klerk
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter A C 't Hoen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
23
|
Girisha KM, Bidchol AM, Kamath PS, Shah KH, Mortier GR, Mundlos S, Shah H. A novel mutation (g.106737G>T) in zone of polarizing activity regulatory sequence (ZRS) causes variable limb phenotypes in Werner mesomelia. Am J Med Genet A 2014; 164A:898-906. [PMID: 24478176 DOI: 10.1002/ajmg.a.36367] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 10/22/2013] [Indexed: 12/12/2022]
Abstract
Werner mesomelia is characterized by a sequence variation in the specific region (position 404) of the enhancer ZRS of SHH. The phenotype comprises variable mesomelia, abnormalities of the thumb and great toe and supernumerary digits. We describe extensive variation in limb phenotype in a large family and report on a novel sequence variation NG_009240.1: g.106737G>T (traditional nomenclature: ZRS404G>T) in the ZRS within the LMBR1 gene. The newly recognized clinical features in this family include small thenar eminence, sandal gap, broad first metatarsals, mesoaxial polydactyly, and postaxial polydactyly. We provide information on 12 affected family members. We review the literature on how a sequence variation in ZRS may cause such diverse phenotypes.
Collapse
Affiliation(s)
- Katta M Girisha
- Division of Medical Genetics, Department of Pediatrics, Kasturba Medical College, Manipal University, Manipal, India
| | | | | | | | | | | | | |
Collapse
|
24
|
van Heyningen V, Bickmore W. Regulation from a distance: long-range control of gene expression in development and disease. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120372. [PMID: 23650642 DOI: 10.1098/rstb.2012.0372] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Veronica van Heyningen
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| | | |
Collapse
|