1
|
Kauai F, Mortier F, Milosavljevic S, Van de Peer Y, Bonte D. Neutral processes underlying the macro eco-evolutionary dynamics of mixed-ploidy systems. Proc Biol Sci 2023; 290:20222456. [PMID: 36946113 PMCID: PMC10031433 DOI: 10.1098/rspb.2022.2456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/24/2023] [Indexed: 03/23/2023] Open
Abstract
Polyploidy, i.e. the occurrence of multiple sets of chromosomes, is regarded as an important phenomenon in plant ecology and evolution, with all flowering plants likely having a polyploid ancestry. Owing to genome shock, minority cytotype exclusion and reduced fertility, polyploids emerging in diploid populations are expected to face significant challenges to successful establishment. Their establishment and persistence are often explained by possible fitness or niche differences that would relieve the competitive pressure with diploid progenitors. Experimental evidence for such advantages is, however, not unambiguous, and considerable niche overlap exists among most polyploid species and their diploid counterparts. Here, we develop a neutral spatially explicit eco-evolutionary model to understand whether neutral processes can explain the eco-evolutionary patterns of polyploids. We present a general mechanism for polyploid establishment by showing that sexually reproducing organisms assemble in space in an iterative manner, reducing frequency-dependent mating disadvantages and overcoming potential reduced fertility issues. Moreover, we construct a mechanistic theoretical framework that allows us to understand the long-term evolution of mixed-ploidy populations and show that our model is remarkably consistent with recent phylogenomic estimates of species extinctions in the Brassicaceae family.
Collapse
Affiliation(s)
- Felipe Kauai
- Department of Biology, Terrestrial Ecology Unit, Ghent University, BE-9000 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, BE-9000 Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium
| | - Frederik Mortier
- Department of Biology, Terrestrial Ecology Unit, Ghent University, BE-9000 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, BE-9000 Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium
| | - Silvija Milosavljevic
- Department of Biology, Terrestrial Ecology Unit, Ghent University, BE-9000 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, BE-9000 Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, BE-9000 Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Dries Bonte
- Department of Biology, Terrestrial Ecology Unit, Ghent University, BE-9000 Ghent, Belgium
| |
Collapse
|
2
|
Paúl MJ, Rosauer D, Tarroso P, Velo‐Antón G, Carvalho SB. Environmental and topographic drivers of amphibian phylogenetic diversity and endemism in the Iberian Peninsula. Ecol Evol 2023; 13:e9666. [PMID: 36620407 PMCID: PMC9817204 DOI: 10.1002/ece3.9666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 01/09/2023] Open
Abstract
Understanding the ecological and evolutionary processes driving biodiversity patterns and allowing their persistence is of utmost importance. Many hypotheses have been proposed to explain spatial diversity patterns, including water-energy availability, habitat heterogeneity, and historical climatic refugia. The main goal of this study is to identify if general spatial drivers of species diversity patterns of phylogenetic diversity (PD) and phylogenetic endemism (PE) at the global scale are also predictive of PD and PE at regional scales, using Iberian amphibians as a case study. Our main hypothesis assumes that topography along with contemporary and historical climate are drivers of phylogenetic diversity and endemism, but that the strength of these predictors may be weaker at the regional scale than it tends to be at the global scale. We mapped spatial patterns of Iberian amphibians' phylogenetic diversity and endemism, using previously published phylogenetic and distribution data. Furthermore, we compiled spatial data on topographic and climatic variables related to the water-energy availability, topography, and historical climatic instability hypotheses. To test our hypotheses, we used Spatial Autoregressive Models and selected the best model to explain diversity patterns based on Akaike Information Criterion. Our results show that, out of the variables tested in our study, water-energy availability and historical climate instability are the most important drivers of amphibian diversity in Iberia. However, as predicted, the strength of these predictors in our case study is weaker than it tends to be at global scales. Thus, additional drivers should also be investigated and we suggest caution when interpreting these predictors as surrogates for different components of diversity.
Collapse
Affiliation(s)
- Maria João Paúl
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de VairãoUniversidade do PortoVairãoPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land PlanningCIBIOVairãoPortugal
- Departamento de Biologia, Faculdade de CiênciasUniversidade do PortoPortoPortugal
| | - Dan Rosauer
- Division of Ecology and Evolution, Research School of Biology and Centre for Biodiversity AnalysisThe Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Pedro Tarroso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de VairãoUniversidade do PortoVairãoPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land PlanningCIBIOVairãoPortugal
| | - Guillermo Velo‐Antón
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de VairãoUniversidade do PortoVairãoPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land PlanningCIBIOVairãoPortugal
- Departamento de Ecoloxía e Bioloxía Animal, Grupo de Ecoloxía Animal, Torre Cacti (Lab 97)Universidade de VigoVigoSpain
| | - Sílvia B. Carvalho
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de VairãoUniversidade do PortoVairãoPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land PlanningCIBIOVairãoPortugal
| |
Collapse
|
3
|
Thakur MP, Phillips HRP, Brose U, De Vries FT, Lavelle P, Loreau M, Mathieu J, Mulder C, Van der Putten WH, Rillig MC, Wardle DA, Bach EM, Bartz MLC, Bennett JM, Briones MJI, Brown G, Decaëns T, Eisenhauer N, Ferlian O, Guerra CA, König‐Ries B, Orgiazzi A, Ramirez KS, Russell DJ, Rutgers M, Wall DH, Cameron EK. Towards an integrative understanding of soil biodiversity. Biol Rev Camb Philos Soc 2020; 95:350-364. [PMID: 31729831 PMCID: PMC7078968 DOI: 10.1111/brv.12567] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 12/25/2022]
Abstract
Soil is one of the most biodiverse terrestrial habitats. Yet, we lack an integrative conceptual framework for understanding the patterns and mechanisms driving soil biodiversity. One of the underlying reasons for our poor understanding of soil biodiversity patterns relates to whether key biodiversity theories (historically developed for aboveground and aquatic organisms) are applicable to patterns of soil biodiversity. Here, we present a systematic literature review to investigate whether and how key biodiversity theories (species-energy relationship, theory of island biogeography, metacommunity theory, niche theory and neutral theory) can explain observed patterns of soil biodiversity. We then discuss two spatial compartments nested within soil at which biodiversity theories can be applied to acknowledge the scale-dependent nature of soil biodiversity.
Collapse
Affiliation(s)
- Madhav P. Thakur
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenGelderland, The Netherlands
- German Centre for Integrative Biodiversity Research (iDiv), Halle‐Jena‐LeipzigLeipzigSaxony, Germany
- Institute of Biology, Leipzig UniversityLeipzigSaxony, Germany
| | - Helen R. P. Phillips
- German Centre for Integrative Biodiversity Research (iDiv), Halle‐Jena‐LeipzigLeipzigSaxony, Germany
| | - Ulrich Brose
- German Centre for Integrative Biodiversity Research (iDiv), Halle‐Jena‐LeipzigLeipzigSaxony, Germany
- Institute of Biodiversity, Friedrich Schiller University JenaJenaThuringia, Germany
| | - Franciska T. De Vries
- School of Earth and Environmental Sciences, The University of ManchesterManchesterNorth West England, UK
| | | | - Michel Loreau
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS and Paul Sabatier UniversityMoulisOccitanie, France
| | - Jerome Mathieu
- Sorbonne Université, CNRS, UPECParisÎle-de-France, France
| | - Christian Mulder
- Department BiologicalGeological and Environmental Sciences, University of CataniaCataniaSicily, Italy
| | - Wim H. Van der Putten
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenGelderland, The Netherlands
- Laboratory of NematologyWageningen UniversityWageningenGelderland, The Netherlands
| | - Matthias C. Rillig
- Freie Universität Berlin, Institute of BiologyBerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
| | - David A. Wardle
- Asian School for the Environment, Nanyang Technological UniversitySingaporeSingapore
| | - Elizabeth M. Bach
- Department of Biology and School of Global Environmental SustainabilityColorado State UniversityFort CollinsCOUSA
| | - Marie L. C. Bartz
- Center of Functional Ecology, Department of Life SciencesUniversity of CoimbraCoimbraCentro, Portugal
- Universidade Positivo, Rua Professor Pedro Viriato Parigot de SouzaCuritiba Paraná, Brazil
| | - Joanne M. Bennett
- German Centre for Integrative Biodiversity Research (iDiv), Halle‐Jena‐LeipzigLeipzigSaxony, Germany
- Institute of Biology, Martin Luther University Halle‐WittenbergHalle (Saale)Saxony-Anhalt, Germany
| | - Maria J. I. Briones
- Departamento de Ecología y Biología AnimalUniversidad de VigoVigoGalicien, Spain
| | | | - Thibaud Decaëns
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE UMR 5175, CNRS–Université de Montpellier–Université Paul‐Valéry Montpellier–EPHE)MontpellierOccitanie, France
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv), Halle‐Jena‐LeipzigLeipzigSaxony, Germany
- Institute of Biology, Leipzig UniversityLeipzigSaxony, Germany
| | - Olga Ferlian
- German Centre for Integrative Biodiversity Research (iDiv), Halle‐Jena‐LeipzigLeipzigSaxony, Germany
- Institute of Biology, Leipzig UniversityLeipzigSaxony, Germany
| | - Carlos António Guerra
- German Centre for Integrative Biodiversity Research (iDiv), Halle‐Jena‐LeipzigLeipzigSaxony, Germany
- Institute of Biology, Martin Luther University Halle‐WittenbergHalle (Saale)Saxony-Anhalt, Germany
| | - Birgitta König‐Ries
- German Centre for Integrative Biodiversity Research (iDiv), Halle‐Jena‐LeipzigLeipzigSaxony, Germany
- Institute of Computer Science, Friedrich Schiller University JenaJenaThuringia, Germany
| | - Alberto Orgiazzi
- European Commission, Joint Research Centre (JRC), Sustainable Resources DirectorateIspraVareseItaly
| | - Kelly S. Ramirez
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenGelderland, The Netherlands
| | - David J. Russell
- Senckenberg Museum of Natural History GörlitzGoerlitzSaxony, Germany
| | - Michiel Rutgers
- National Institute for Public Health and the EnvironmentBilthovenUtrecht, The Netherlands
| | - Diana H. Wall
- Department of Biology and School of Global Environmental SustainabilityColorado State UniversityFort CollinsCOUSA
| | - Erin K. Cameron
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinki, Uusimaa, Finland
- Department of Environmental ScienceSaint Mary's UniversityHalifaxNova ScotiaCanada
| |
Collapse
|
4
|
Blackburn DC, Giribet G, Soltis DE, Stanley EL. Predicting the Impact of Describing New Species on Phylogenetic Patterns. Integr Org Biol 2019; 1:obz028. [PMID: 33791542 PMCID: PMC7671110 DOI: 10.1093/iob/obz028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Although our inventory of Earth’s biodiversity remains incomplete, we still require analyses using the Tree of Life to understand evolutionary and ecological patterns. Because incomplete sampling may bias our inferences, we must evaluate how future additions of newly discovered species might impact analyses performed today. We describe an approach that uses taxonomic history and phylogenetic trees to characterize the impact of past species discoveries on phylogenetic knowledge using patterns of branch-length variation, tree shape, and phylogenetic diversity. This provides a framework for assessing the relative completeness of taxonomic knowledge of lineages within a phylogeny. To demonstrate this approach, we use recent large phylogenies for amphibians, reptiles, flowering plants, and invertebrates. Well-known clades exhibit a decline in the mean and range of branch lengths that are added each year as new species are described. With increased taxonomic knowledge over time, deep lineages of well-known clades become known such that most recently described new species are added close to the tips of the tree, reflecting changing tree shape over the course of taxonomic history. The same analyses reveal other clades to be candidates for future discoveries that could dramatically impact our phylogenetic knowledge. Our work reveals that species are often added non-randomly to the phylogeny over multiyear time-scales in a predictable pattern of taxonomic maturation. Our results suggest that we can make informed predictions about how new species will be added across the phylogeny of a given clade, thus providing a framework for accommodating unsampled undescribed species in evolutionary analyses.
Collapse
Affiliation(s)
- D C Blackburn
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - G Giribet
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - D E Soltis
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - E L Stanley
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
5
|
Loudermilk EL, Dyer L, Pokswinski S, Hudak AT, Hornsby B, Richards L, Dell J, Goodrick SL, Hiers JK, O’Brien JJ. Simulating Groundcover Community Assembly in a Frequently Burned Ecosystem Using a Simple Neutral Model. FRONTIERS IN PLANT SCIENCE 2019; 10:1107. [PMID: 31572417 PMCID: PMC6753978 DOI: 10.3389/fpls.2019.01107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
Fire is a keystone process that drives patterns of biodiversity globally. In frequently burned fire-dependent ecosystems, surface fire regimes allow for the coexistence of high plant diversity at fine scales even where soils are uniform. The mechanisms on how fire impacts groundcover community dynamics are, however, poorly understood. Because fire can act as a stochastic agent of mortality, we hypothesized that a neutral mechanism might be responsible for maintaining plant diversity. We used the demographic parameters of the unified neutral theory of biodiversity (UNTB) as a foundation to model groundcover species richness, using a southeastern US pine woodland as an example. We followed the fate of over 7,000 individuals of 123 plant species for 4 years and two prescribed burns in frequently burned Pinus palustris sites in northwest FL, USA. Using these empirical data and UNTB-based assumptions, we developed two parsimonious autonomous agent models, which were distinct by spatially explicit and implicit local recruitment processes. Using a parameter sensitivity test, we examined how empirical estimates, input species frequency distributions, and community size affected output species richness. We found that dispersal limitation was the most influential parameter, followed by mortality and birth, and that these parameters varied based on scale of the frequency distributions. Overall, these nominal parameters were useful for simulating fine-scale groundcover communities, although further empirical analysis of richness patterns, particularly related to fine-scale burn severity, is needed. This modeling framework can be utilized to examine our premise that localized groundcover assemblages are neutral communities at high fire frequencies, as well as to examine the extent to which niche-based dynamics determine community dynamics when fire frequency is altered.
Collapse
Affiliation(s)
- E. Louise Loudermilk
- USDA Forest Service, Southern Research Station, Center for Forest Disturbance Science, Athens, GA, United States
| | - Lee Dyer
- Department of Biology, University of Nevada, Reno, Reno, NV, United States
| | - Scott Pokswinski
- Tall Timbers Research Station and Conservancy, Tallahassee, FL, United States
| | - Andrew T. Hudak
- USDA Forest Service, Rocky Mountain Research Station, Forestry Sciences Laboratory, Moscow, ID, United States
| | - Benjamin Hornsby
- USDA Forest Service, Southern Research Station, Center for Forest Disturbance Science, Athens, GA, United States
| | - Lora Richards
- Department of Biology, University of Nevada, Reno, Reno, NV, United States
| | - Jane Dell
- Department of Biology, University of Nevada, Reno, Reno, NV, United States
| | - Scott L. Goodrick
- USDA Forest Service, Southern Research Station, Center for Forest Disturbance Science, Athens, GA, United States
| | - J. Kevin Hiers
- Tall Timbers Research Station and Conservancy, Tallahassee, FL, United States
| | - Joseph J. O’Brien
- USDA Forest Service, Southern Research Station, Center for Forest Disturbance Science, Athens, GA, United States
| |
Collapse
|
6
|
Evolving biodiversity patterns in changing river networks. J Theor Biol 2019; 462:418-424. [DOI: 10.1016/j.jtbi.2018.11.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 10/15/2018] [Accepted: 11/23/2018] [Indexed: 11/20/2022]
|
7
|
The Species Problem from the Modeler's Point of View. Bull Math Biol 2018; 81:878-898. [PMID: 30535845 DOI: 10.1007/s11538-018-00536-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 11/27/2018] [Indexed: 01/12/2023]
Abstract
How to define a partition of individuals into species is a long-standing question called the species problem in systematics. Here, we focus on this problem in the thought experiment where individuals reproduce clonally and both the differentiation process and the population genealogies are explicitly known. We specify three desirable properties of species partitions: (A) Heterotypy between species, (B) Homotypy within species and (M) Genealogical monophyly of each species. We then ask: How and when is it possible to delineate species in a way satisfying these properties? We point out that the three desirable properties cannot in general be satisfied simultaneously, but that any two of them can. We mathematically prove the existence of the finest partition satisfying (A) and (M) and the coarsest partition satisfying (B) and (M). For each of them, we propose a simple algorithm to build the associated phylogeny out of the genealogy. The ways we propose to phrase the species problem shed new light on the interaction between the genealogical and phylogenetic scales in modeling work. The two definitions centered on the monophyly property can readily be used at a higher taxonomic level as well, e.g., to cluster species into monophyletic genera.
Collapse
|
8
|
Matos-Maraví P, Matzke NJ, Larabee FJ, Clouse RM, Wheeler WC, Sorger DM, Suarez AV, Janda M. Taxon cycle predictions supported by model-based inference in Indo-Pacific trap-jaw ants (Hymenoptera: Formicidae: Odontomachus). Mol Ecol 2018; 27:4090-4107. [PMID: 30106242 DOI: 10.1111/mec.14835] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/01/2018] [Accepted: 08/07/2018] [Indexed: 01/05/2023]
Abstract
Nonequilibrium dynamics and non-neutral processes, such as trait-dependent dispersal, are often missing from quantitative island biogeography models despite their potential explanatory value. One of the most influential nonequilibrium models is the taxon cycle, but it has been difficult to test its validity as a general biogeographical framework. Here, we test predictions of the taxon cycle model using six expected phylogenetic patterns and a time-calibrated phylogeny of Indo-Pacific Odontomachus (Hymenoptera: Formicidae: Ponerinae), one of the ant genera that E.O. Wilson used when first proposing the hypothesis. We used model-based inference and a newly developed trait-dependent dispersal model to jointly estimate ancestral biogeography, ecology (habitat preferences for forest interiors, vs. "marginal" habitats, such as savannahs, shorelines, disturbed areas) and the linkage between ecology and dispersal rates. We found strong evidence that habitat shifts from forest interior to open and disturbed habitats increased macroevolutionary dispersal rate. In addition, lineages occupying open and disturbed habitats can give rise to both island endemics re-occupying only forest interiors and taxa that re-expand geographical ranges. The phylogenetic predictions outlined in this study can be used in future work to evaluate the relative weights of neutral (e.g., geographical distance and area) and non-neutral (e.g., trait-dependent dispersal) processes in historical biogeography and community ecology.
Collapse
Affiliation(s)
- Pável Matos-Maraví
- Institute of Entomology, Biology Centre CAS, Ceske Budejovice, Czech Republic.,Department of Zoology, Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.,Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden.,Gothenburg Global Biodiversity Centre, Göteborg, Sweden
| | - Nicholas J Matzke
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia.,School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Fredrick J Larabee
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia.,Department of Entomology and Department of Animal Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois
| | - Ronald M Clouse
- Division of Invertebrate Zoology, American Museum of Natural History, New York City, New York
| | - Ward C Wheeler
- Division of Invertebrate Zoology, American Museum of Natural History, New York City, New York
| | - Daniela Magdalena Sorger
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina.,W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina.,Research & Collections, North Carolina Museum of Natural Sciences, Raleigh, North Carolina
| | - Andrew V Suarez
- Department of Entomology and Department of Animal Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois
| | - Milan Janda
- Institute of Entomology, Biology Centre CAS, Ceske Budejovice, Czech Republic.,Laboratorio Nacional de Análisis y Síntesis Ecológica, ENES, UNAM, Morelia, Mexico
| |
Collapse
|
9
|
Hoppe A, Türpitz S, Steel M. Species notions that combine phylogenetic trees and phenotypic partitions. J Math Biol 2018. [PMID: 30043242 DOI: 10.1101/075580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A recent paper (Manceau and Lambert in bioRxiv, 2017. https://doi.org/10.1101/075580 ) developed a novel approach for describing two well-defined notions of 'species' based on a phylogenetic tree and a phenotypic partition. In this paper, we explore some further combinatorial properties of this approach and describe an extension that allows an arbitrary number of phenotypic partitions to be combined with a phylogenetic tree for these two species notions.
Collapse
Affiliation(s)
- Anica Hoppe
- Institute of Mathematics and Computer Science, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Sonja Türpitz
- Institute of Mathematics and Computer Science, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Mike Steel
- Biomathematics Research Centre, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
10
|
Maliet O, Gascuel F, Lambert A. Ranked Tree Shapes, Nonrandom Extinctions, and the Loss of Phylogenetic Diversity. Syst Biol 2018; 67:1025-1040. [DOI: 10.1093/sysbio/syy030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 04/08/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Odile Maliet
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
- ED 227, Sorbonne Universités, Paris, France
| | - Fanny Gascuel
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
- ED 227, Sorbonne Universités, Paris, France
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Amaury Lambert
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
- Laboratoire Probabilités, Statistique et Modélisation (LPSM), Sorbonne Université, CNRS, Paris, France
| |
Collapse
|
11
|
Markovitch O, Krasnogor N. Predicting species emergence in simulated complex pre-biotic networks. PLoS One 2018; 13:e0192871. [PMID: 29447212 PMCID: PMC5813963 DOI: 10.1371/journal.pone.0192871] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/31/2018] [Indexed: 12/23/2022] Open
Abstract
An intriguing question in evolution is what would happen if one could "replay" life's tape. Here, we explore the following hypothesis: when replaying the tape, the details ("decorations") of the outcomes would vary but certain "invariants" might emerge across different life-tapes sharing similar initial conditions. We use large-scale simulations of an in silico model of pre-biotic evolution called GARD (Graded Autocatalysis Replication Domain) to test this hypothesis. GARD models the temporal evolution of molecular assemblies, governed by a rates matrix (i.e. network) that biases different molecules' likelihood of joining or leaving a dynamically growing and splitting assembly. Previous studies have shown the emergence of so called compotypes, i.e., species capable of replication and selection response. Here, we apply networks' science to ascertain the degree to which invariants emerge across different life-tapes under GARD dynamics and whether one can predict these invariant from the chemistry specification alone (i.e. GARD's rates network representing initial conditions). We analysed the (complex) rates' network communities and asked whether communities are related (and how) to the emerging species under GARD's dynamic, and found that the communities correspond to the species emerging from the simulations. Importantly, we show how to use the set of communities detected to predict species emergence without performing any simulations. The analysis developed here may impact complex systems simulations in general.
Collapse
Affiliation(s)
- Omer Markovitch
- Interdisciplinary Computing and Complex Bio-Systems research group, School of Computing Science, Newcastle University, Newcastle upon Tyne, United-Kingdom
| | - Natalio Krasnogor
- Interdisciplinary Computing and Complex Bio-Systems research group, School of Computing Science, Newcastle University, Newcastle upon Tyne, United-Kingdom
| |
Collapse
|
12
|
Albert JS, Schoolmaster DR, Tagliacollo V, Duke-Sylvester SM. Barrier Displacement on a Neutral Landscape: Toward a Theory of Continental Biogeography. Syst Biol 2018; 66:167-182. [PMID: 27590192 DOI: 10.1093/sysbio/syw080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/23/2016] [Indexed: 01/07/2023] Open
Abstract
Macroevolutionary theory posits three processes leading to lineage diversification and the formation of regional biotas: dispersal (species geographic range expansion), speciation (species lineage splitting), and extinction (species lineage termination). The Theory of Island Biogeography (TIB) predicts species richness values using just two of these processes; dispersal and extinction. Yet most species on Earth live on continents or continental shelves, and the dynamics of evolutionary diversification at regional and continental scales are qualitatively different from those that govern the formation of species richness on biogeographic islands. Certain geomorphological processes operating perennially on continental platforms displace barriers to gene flow and organismal dispersal, and affect all three terms of macroevolutionary diversification. For example, uplift of a dissected landscape and river capture both merge and separate portions of adjacent areas, allowing dispersal and larger geographic ranges, vicariant speciation and smaller geographic ranges, and extinction when range sizes are subdivided below a minimum persistence threshold. The TIB also does not predict many biogeographic and phylogenetic patterns widely observed in continentally distributed taxa, including: (i) power function-like species-area relationships; (ii) log-normal distribution of species geographic range sizes, in which most species have restricted ranges (are endemic) and few species have broad ranges (are cosmopolitan); (iii) mid-domain effects with more species toward the geographic center, and more early-branching, species-poor clades toward the geographic periphery; (iv) exponential rates of net diversification with log-linear accumulation of lineages through geological time; and (v) power function-like relationships between species-richness and clade diversity, in which most clades are species-poor and few clades are species-rich. Current theory does not provide a robust mechanistic framework to connect these seemingly disparate patterns. Here we present SEAMLESS (Spatially Explicit Area Model of Landscape Evolution by SimulationS) that generates clade diversification by moving geographic barriers on a continuous, neutral landscape. SEAMLESS is a neutral Landscape Evolution Model (LEM) that treats species and barriers as functionally equivalent with respect to model parameters. SEAMLESS differs from other model-based biogeographic methods (e.g., Lagrange, GeoSSE, BayArea, and BioGeoBEARS) by modeling properties of dispersal barriers rather than areas, and by modeling the evolution of species lineages on a continuous landscape, rather than the evolution of geographic ranges along branches of a phylogeny. SEAMLESS shows how dispersal is required to maintain species richness and avoid clade-wide extinction, demonstrates that ancestral range size does not predict species richness, and provides a unified explanation for the suite of commonly observed biogeographic and phylogenetic patterns listed above. SEAMLESS explains how a simple barrier-displacement mechanism affects lineage diversification under neutral conditions, and is advanced here toward the formulation of a general theory of continental biogeography. [Diversification, extinction, geodispersal, macroevolution, river capture, vicariance.].
Collapse
Affiliation(s)
- James S Albert
- Department of Biology, University of Louisiana at Lafayette, 104 E. University Circle, Lafayette, LA 70503, USA
| | | | - Victor Tagliacollo
- Universidade Federal do Tocantins Avenida NS 15, 109 Norte Palmas, Tocantins 77001-090, Brazil
| | - Scott M Duke-Sylvester
- Department of Biology, University of Louisiana at Lafayette, 104 E. University Circle, Lafayette, LA 70503, USA
| |
Collapse
|
13
|
Nakadai R. Species diversity of herbivorous insects: a brief review to bridge the gap between theories focusing on the generation and maintenance of diversity. Ecol Res 2017. [DOI: 10.1007/s11284-017-1500-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Bonnet-Lebrun AS, Manica A, Eriksson A, Rodrigues ASL. Empirical phylogenies and species abundance distributions are consistent with preequilibrium dynamics of neutral community models with gene flow. Evolution 2017; 71:1149-1163. [PMID: 28306137 DOI: 10.1111/evo.13228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 03/04/2017] [Indexed: 11/30/2022]
Abstract
Community characteristics reflect past ecological and evolutionary dynamics. Here, we investigate whether it is possible to obtain realistically shaped modeled communities-that is with phylogenetic trees and species abundance distributions shaped similarly to typical empirical bird and mammal communities-from neutral community models. To test the effect of gene flow, we contrasted two spatially explicit individual-based neutral models: one with protracted speciation, delayed by gene flow, and one with point mutation speciation, unaffected by gene flow. The former produced more realistic communities (shape of phylogenetic tree and species-abundance distribution), consistent with gene flow being a key process in macro-evolutionary dynamics. Earlier models struggled to capture the empirically observed branching tempo in phylogenetic trees, as measured by the gamma statistic. We show that the low gamma values typical of empirical trees can be obtained in models with protracted speciation, in preequilibrium communities developing from an initially abundant and widespread species. This was even more so in communities sampled incompletely, particularly if the unknown species are the youngest. Overall, our results demonstrate that the characteristics of empirical communities that we have studied can, to a large extent, be explained through a purely neutral model under preequilibrium conditions.
Collapse
Affiliation(s)
- Anne-Sophie Bonnet-Lebrun
- Centre d'Ecologie Fonctionnelle et Evolutive CEFE UMR 5175, CNRS-Université de Montpellier-Université Paul-Valéry Montpellier-EPHE, 1919 route de Mende, 34293 Montpellier cedex 5, France.,Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom.,École Normale Supérieure, 45 rue d'Ulm, F-75230, Paris, France
| | - Andrea Manica
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom
| | - Anders Eriksson
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom.,Integrative Systems Biology Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Ana S L Rodrigues
- Centre d'Ecologie Fonctionnelle et Evolutive CEFE UMR 5175, CNRS-Université de Montpellier-Université Paul-Valéry Montpellier-EPHE, 1919 route de Mende, 34293 Montpellier cedex 5, France
| |
Collapse
|
15
|
Jordan SMR, Barraclough TG, Rosindell J. Quantifying the effects of the break up of Pangaea on global terrestrial diversification with neutral theory. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150221. [PMID: 26977062 PMCID: PMC4810815 DOI: 10.1098/rstb.2015.0221] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The historic richness of most taxonomic groups increases substantially over geological time. Explanations for this fall broadly into two categories: bias in the fossil record and elevated net rates of diversification in recent periods. For example, the break up of Pangaea and isolation between continents might have increased net diversification rates. In this study, we investigate the effect on terrestrial diversification rates of the increased isolation between land masses brought about by continental drift. We use ecological neutral theory as a means to study geologically complex scenarios tractably. Our models show the effects of simulated geological events that affect all species equally, without the added complexity of further ecological processes. We find that continental drift leads to an increase in diversity only where isolation between continents leads to additional speciation through vicariance, and where higher taxa with very low global diversity are considered. We conclude that continental drift by itself is not sufficient to account for the increase in terrestrial species richness observed in the fossil record.
Collapse
Affiliation(s)
- Sean M R Jordan
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Timothy G Barraclough
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK
| | - James Rosindell
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK
| |
Collapse
|
16
|
Ezard THG, Quental TB, Benton MJ. The challenges to inferring the regulators of biodiversity in deep time. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150216. [PMID: 26977058 PMCID: PMC4810811 DOI: 10.1098/rstb.2015.0216] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2016] [Indexed: 11/12/2022] Open
Abstract
Attempts to infer the ecological drivers of macroevolution in deep time have long drawn inspiration from work on extant systems, but long-term evolutionary and geological changes complicate the simple extrapolation of such theory. Recent efforts to incorporate a more informed ecology into macroevolution have moved beyond the descriptive, seeking to isolate generating mechanisms and produce testable hypotheses of how groups of organisms usurp each other or coexist over vast timespans. This theme issue aims to exemplify this progress, providing a series of case studies of how novel modelling approaches are helping infer the regulators of biodiversity in deep time. In this Introduction, we explore the challenges of these new approaches. First, we discuss how our choices of taxonomic units have implications for the conclusions drawn. Second, we emphasize the need to embrace the interdependence of biotic and abiotic changes, because no living organism ignores its environment. Third, in the light of parts 1 and 2, we discuss the set of dynamic signatures that we might expect to observe in the fossil record. Finally, we ask whether these dynamics represent the most ecologically informative foci for research efforts aimed at inferring the regulators of biodiversity in deep time. The papers in this theme issue contribute in each of these areas.
Collapse
Affiliation(s)
- Thomas H G Ezard
- Ocean and Earth Sciences, National Oceanography Centre Southampton, University of Southampton Waterfront Campus, European Way, Southampton SO14 3ZH, UK Centre for Biological Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton SO17 1BJ, UK
| | - Tiago B Quental
- Departamento de Ecologia, Universidade de São Paulo, São Paulo, SP 05508-900, Brazil
| | - Michael J Benton
- School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK
| |
Collapse
|