1
|
Bruner E. In search for evolutionary roots of a mindful cognition: A Darwinian view on sustained intentional awareness. Biosystems 2024; 246:105321. [PMID: 39233109 DOI: 10.1016/j.biosystems.2024.105321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
The attention system underwent important evolutionary changes and specializations in the human genus. In fact, our outstanding social and technological complexity strictly depends on our attentional ability, which is sustained, intentional, and conscious. Attention, intention, and awareness are key features for what can be defined a mindful cognition, and we may wonder whether a specific combination of these cognitive traits may be the result of a natural selective process, or else an accidental by-product of mental complexity. In this article, basic concepts in evolutionary anthropology are reviewed, to consider whether positive, neutral, or negative selective forces might have influenced the evolution of a mindful cognitive ability. At present, all these alternatives are potentially supported by different kinds of evidence. Hybrid hypotheses, considering stabilizing mechanisms or distinct social roles and intra-specific variation, are also likely. An evolutionary approach to the cognitive abilities involved in attention and awareness can reveal potentialities, limitations, and drawbacks of our individual and collective natural behaviors, especially when dealing with the evolution of the human consciousness.
Collapse
Affiliation(s)
- Emiliano Bruner
- Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain; Reina Sofia Alzheimer Center, CIEN Foundation, ISCIII, Madrid, Spain.
| |
Collapse
|
2
|
Dorschner J, Hernandez Salazar LT, Laska M. Serial visual reversal learning in captive black-handed spider monkeys, Ateles geoffroyi. Anim Cogn 2024; 27:56. [PMID: 39136822 PMCID: PMC11322210 DOI: 10.1007/s10071-024-01897-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
Recent research suggests that socio-ecological factors such as dietary specialization and social complexity may be drivers of advanced cognitive skills among primates. Therefore, we assessed the ability of 12 black-handed spider monkeys (Ateles geoffroyi), a highly frugivorous platyrrhine primate with strong fission-fusion dynamics, to succeed in a serial visual reversal learning task. Using a two-alternative choice paradigm we first trained the animals to reliably choose a rewarded visual stimulus over a non-rewarded one. Upon reaching a pre-set learning criterion we then switched the reward values of the two stimuli and assessed if and how quickly the animals learned to reverse their choices, again to a pre-set learning criterion. This stimulus reversal procedure was then continued for a total of 80 sessions of 10 trials each. We found that the spider monkeys quickly learned to reliably discriminate between two simultaneously presented visual stimuli, that they succeeded in a visual reversal learning task, and that they displayed an increase in learning speed across consecutive reversals, suggesting that they are capable of serial reversal learning-set formation with visual cues. The fastest-learning individual completed five reversals within the 80 sessions. The spider monkeys outperformed most other primate and nonprimate mammal species tested so far on this type of cognitive task, including chimpanzees, with regard to their learning speed in both the initial learning task and in the first reversal task, suggesting a high degree of behavioral flexibility and inhibitory control. Our findings support the notion that socio-ecological factors such as dietary specialization and social complexity foster advanced cognitive skills in primates.
Collapse
Affiliation(s)
- Jules Dorschner
- IFM Biology, Linköping University, Linköping, SE-581 83, Sweden
| | | | - Matthias Laska
- IFM Biology, Linköping University, Linköping, SE-581 83, Sweden.
| |
Collapse
|
3
|
Padilla-Morales B, Acuña-Alonzo AP, Kilili H, Castillo-Morales A, Díaz-Barba K, Maher KH, Fabian L, Mourkas E, Székely T, Serrano-Meneses MA, Cortez D, Ancona S, Urrutia AO. Sexual size dimorphism in mammals is associated with changes in the size of gene families related to brain development. Nat Commun 2024; 15:6257. [PMID: 39048570 PMCID: PMC11269740 DOI: 10.1038/s41467-024-50386-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
In mammals, sexual size dimorphism often reflects the intensity of sexual selection, yet its connection to genomic evolution remains unexplored. Gene family size evolution can reflect shifts in the relative importance of different molecular functions. Here, we investigate the associate between brain development gene repertoire to sexual size dimorphism using 124 mammalian species. We reveal significant changes in gene family size associations with sexual size dimorphism. High levels of dimorphism correlate with an expansion of gene families enriched in olfactory sensory perception and a contraction of gene families associated with brain development functions, many of which exhibited particularly high expression in the human adult brain. These findings suggest a relationship between intense sexual selection and alterations in gene family size. These insights illustrate the complex interplay between sexual dimorphism, gene family size evolution, and their roles in mammalian brain development and function, offering a valuable understanding of mammalian genome evolution.
Collapse
Affiliation(s)
- Benjamin Padilla-Morales
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK.
| | | | - Huseyin Kilili
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | | | - Karina Díaz-Barba
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
- Instituto de Ecología, UNAM, Mexico city, 04510, Mexico
- Licenciatura en ciencias genómicas, UNAM, Cuernavaca, 62210, México
| | - Kathryn H Maher
- NERC Environmental Omics Facility, Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Laurie Fabian
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | - Evangelos Mourkas
- Zoonosis Science Centre, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Tamás Székely
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | - Martin-Alejandro Serrano-Meneses
- Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, Sta. Catarina Mártir, San Andrés Cholula, Puebla, 72810, México
| | - Diego Cortez
- Centro de Ciencias Genómicas, UNAM, Cuernavaca, 62210, México
| | - Sergio Ancona
- Instituto de Ecología, Departamento de Ecología Evolutiva, UNAM, México City, 04510, México
| | - Araxi O Urrutia
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK.
- Instituto de Ecología, UNAM, Mexico city, 04510, Mexico.
| |
Collapse
|
4
|
González-Forero M. Evolutionary-developmental (evo-devo) dynamics of hominin brain size. Nat Hum Behav 2024; 8:1321-1333. [PMID: 38802541 PMCID: PMC11272587 DOI: 10.1038/s41562-024-01887-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/11/2024] [Indexed: 05/29/2024]
Abstract
Brain size tripled in the human lineage over four million years, but why this occurred remains uncertain. Here, to study what caused this brain expansion, I mathematically model the evolutionary and developmental (evo-devo) dynamics of hominin brain size. The model recovers (1) the evolution of brain and body sizes of seven hominin species starting from brain and body sizes of the australopithecine scale, (2) the evolution of the hominin brain-body allometry and (3) major patterns of human development and evolution. I show that the brain expansion recovered is not caused by direct selection for brain size but by its genetic correlation with developmentally late preovulatory ovarian follicles. This correlation is generated over development if individuals experience a challenging ecology and seemingly cumulative culture, among other conditions. These findings show that the evolution of exceptionally adaptive traits may not be primarily caused by selection for them but by developmental constraints that divert selection.
Collapse
|
5
|
D'Souza H, D'Souza D. Stop trying to carve Nature at its joints! The importance of a process-based developmental science for understanding neurodiversity. ADVANCES IN CHILD DEVELOPMENT AND BEHAVIOR 2024; 66:233-268. [PMID: 39074923 DOI: 10.1016/bs.acdb.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Nature is dynamic and interdependent. Yet we typically study and understand it as a hierarchy of independent static things (objects, factors, capacities, traits, attributes) with well-defined boundaries. Hence, since Plato, the dominant research practice has been to 'carve Nature at its joints' (Phaedrus 265e), rooted in the view that the world comes to us pre-divided - into static forms or essences - and that the goal of science is to simply discover (identify and classify) them. This things-based approach dominates developmental science, and especially the study of neurodevelopmental conditions. The goal of this paper is to amplify the marginalised process-based approach: that Nature has no joints. It is a hierarchy of interacting processes from which emerging functions (with fuzzy boundaries) softly assemble, become actively maintained, and dissipate over various timescales. We further argue (with a specific focus on children with Down syndrome) that the prevailing focus on identifying, isolating, and analysing things rather than understanding dynamic interdependent processes is obstructing progress in developmental science and particularly our understanding of neurodiversity. We explain how re-examining the very foundation of traditional Western thought is necessary to progress our research on neurodiversity, and we provide specific recommendations on how to steer developmental science towards the process-based approach.
Collapse
Affiliation(s)
- Hana D'Souza
- Centre for Human Developmental Science, School of Psychology, Cardiff University, Cardiff, United Kingdom.
| | - Dean D'Souza
- Centre for Human Developmental Science, School of Psychology, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
6
|
Luppi AI, Rosas FE, Noonan MP, Mediano PAM, Kringelbach ML, Carhart-Harris RL, Stamatakis EA, Vernon AC, Turkheimer FE. Oxygen and the Spark of Human Brain Evolution: Complex Interactions of Metabolism and Cortical Expansion across Development and Evolution. Neuroscientist 2024; 30:173-198. [PMID: 36476177 DOI: 10.1177/10738584221138032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Scientific theories on the functioning and dysfunction of the human brain require an understanding of its development-before and after birth and through maturation to adulthood-and its evolution. Here we bring together several accounts of human brain evolution by focusing on the central role of oxygen and brain metabolism. We argue that evolutionary expansion of human transmodal association cortices exceeded the capacity of oxygen delivery by the vascular system, which led these brain tissues to rely on nonoxidative glycolysis for additional energy supply. We draw a link between the resulting lower oxygen tension and its effect on cytoarchitecture, which we posit as a key driver of genetic developmental programs for the human brain-favoring lower intracortical myelination and the presence of biosynthetic materials for synapse turnover. Across biological and temporal scales, this protracted capacity for neural plasticity sets the conditions for cognitive flexibility and ongoing learning, supporting complex group dynamics and intergenerational learning that in turn enabled improved nutrition to fuel the metabolic costs of further cortical expansion. Our proposed model delineates explicit mechanistic links among metabolism, molecular and cellular brain heterogeneity, and behavior, which may lead toward a clearer understanding of brain development and its disorders.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences and Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, UK
- The Alan Turing Institute, London, UK
| | - Fernando E Rosas
- Department of Informatics, University of Sussex, Brighton, UK
- Centre for Psychedelic Research, Department of Brain Science, Imperial College London, London, UK
- Centre for Complexity Science, Imperial College London, London, UK
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
| | - MaryAnn P Noonan
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Pedro A M Mediano
- Department of Psychology, University of Cambridge, Cambridge, UK
- Department of Psychology, Queen Mary University of London, London, UK
- Department of Computing, Imperial College London, London, UK
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Robin L Carhart-Harris
- Psychedelics Division-Neuroscape, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Emmanuel A Stamatakis
- Department of Clinical Neurosciences and Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Anthony C Vernon
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
7
|
Veerareddy A, Fang H, Safari N, Xu P, Krueger F. Cognitive empathy mediates the relationship between gray matter volume size of dorsomedial prefrontal cortex and social network size: A voxel-based morphometry study. Cortex 2023; 169:279-289. [PMID: 37972460 DOI: 10.1016/j.cortex.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 07/19/2023] [Accepted: 09/26/2023] [Indexed: 11/19/2023]
Abstract
Social networks are an important factor in developing and maintaining social relationships. The social brain network comprises brain regions that differ in terms of their location, structure, and functioning, and these differences tend to vary among individuals with different social network sizes. However, it remains unknown how social cognitive abilities such as empathy can affect social network size. The goal of our study was to examine the relationship between brain regions in the social brain network, empathy, and individual social network size by using the Social Network Index, which measures social network diversity, size, and complexity by assessing 12 different types of relationships. We performed voxel-based morphometry and mediation analyses using data from questionnaires and structural magnetic resonance imaging data in a sample of 204 young adults. Our findings showed that the gray matter volume of the dorsomedial prefrontal cortex (dmPFC) was inversely associated with social network size and cognitive empathy mediated this association, suggesting that decreased gray matter volume in the dmPFC is associated with greater utilization of cognitive empathy, which, in turn, seems to increase social network size. A potential mechanism explaining this inverse relationship could be cognitive pruning, a phenomenon that occurs in the brain between early adolescence and adulthood, but future longitudinal studies are needed. In conclusion, our findings provide information about the neurocognitive mechanisms involved in the formation and maintenance of social networks.
Collapse
Affiliation(s)
| | - Huihua Fang
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Magnetic Resonance Imaging Center, Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China; Department of Psychology, University of Mannheim, Mannheim, Germany
| | - Nooshin Safari
- School of Systems Biology, George Mason University, Fairfax, VA, USA
| | - Pengfei Xu
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (BNU), Faculty of Psychology, Beijing Normal University, Beijing, China; Center for Neuroimaging, Shenzhen Institute of Neuroscience, Shenzhen, China.
| | - Frank Krueger
- School of Systems Biology, George Mason University, Fairfax, VA, USA; Department of Psychology, University of Mannheim, Mannheim, Germany
| |
Collapse
|
8
|
Macionis V. Fetal head-down posture may explain the rapid brain evolution in humans and other primates: An interpretative review. Brain Res 2023; 1820:148558. [PMID: 37634686 DOI: 10.1016/j.brainres.2023.148558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Evolutionary cerebrovascular consequences of upside-down postural verticality of the anthropoid fetus have been largely overlooked in the literature. This working hypothesis-based report provides a literature interpretation from an aspect that the rapid evolution of the human brain has been promoted by fetal head-down position due to maternal upright and semi-upright posture. Habitual vertical torso posture is a feature not only of humans, but also of monkeys and non-human apes that spend considerable time in a sitting position. Consequently, the head-down position of the fetus may have caused physiological craniovascular hypertension that stimulated expansion of the intracranial vessels and acted as an epigenetic physiological stress, which enhanced neurogenesis and eventually, along with other selective pressures, led to the progressive growth of the anthropoid brain and its organization. This article collaterally opens a new insight into the conundrum of high cephalopelvic proportions (i.e., the tight fit between the pelvic birth canal and fetal head) in phylogenetically distant lineages of monkeys, lesser apes, and humans. Low cephalopelvic proportions in non-human great apes could be accounted for by their energetically efficient horizontal nest-sleeping and consequently by their larger body mass compared to monkeys and lesser apes that sleep upright. One can further hypothesize that brain size varies in anthropoids according to the degree of exposure of the fetus to postural verticality. The supporting evidence for this postulation includes a finding that in fossil hominins cerebral blood flow rate increased faster than brain volume. This testable hypothesis opens a perspective for research on fetal postural cerebral hemodynamics.
Collapse
|
9
|
Goodman JR, Caines A, Foley RA. Shibboleth: An agent-based model of signalling mimicry. PLoS One 2023; 18:e0289333. [PMID: 37523380 PMCID: PMC10389733 DOI: 10.1371/journal.pone.0289333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 07/17/2023] [Indexed: 08/02/2023] Open
Abstract
Mimicry is an essential strategy for exploiting competitors in competitive co-evolutionary relationships. Protection against mimicry may, furthermore, be a driving force in human linguistic diversity: the potential harm caused by failing to detect mimicked group-identity signals may select for high sensitivity to mimicry of honest group members. Here we describe the results of five agent-based models that simulate multi-generational interactions between two groups of individuals: original members of a group with an honest identity signal, and members of an outsider group who mimic that signal, aiming to pass as members of the in-group. The models correspond to the Biblical story of Shibboleth, where a tribe in conflict with another determines tribe affiliation by asking individuals to pronounce the word, 'Shibboleth.' In the story, failure to reproduce the word phonetically resulted in death. Here, we run five different versions of a 'Shibboleth' model: a first, simple version, which evaluates whether a composite variable of mimicry quality and detection quality is a superior predictor to the model's outcome than is cost of detection. The models thereafter evaluate variations on the simple model, incorporating group-level behaviours such as altruistic punishment. Our results suggest that group members' sensitivity to mimicry of the Shibboleth-signal is a better predictor of whether any signal of group identity goes into fixation in the overall population than is the cost of mimicry detection. Thus, the likelihood of being detected as a mimic may be more important than the costs imposed on mimics who are detected. This suggests that theoretical models in biology should place greater emphasis on the likelihood of detection, which does not explicitly entail costs, rather than on the costs to individuals who are detected. From a language learning perspective, the results suggest that admission to group membership through linguistic signals is powered by the ability to imitate and evade detection as an outsider by existing group members.
Collapse
Affiliation(s)
- Jonathan R Goodman
- Leverhulme Centre for Human Evolutionary Studies, University of Cambridge, Cambridge, United Kingdom
- Darwin College, University of Cambridge, Cambridge, United Kingdom
| | - Andrew Caines
- ALTA Institute, University of Cambridge, Cambridge, United Kingdom
| | - Robert A Foley
- Leverhulme Centre for Human Evolutionary Studies, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
10
|
Tusche A, Spunt RP, Paul LK, Tyszka JM, Adolphs R. Neural signatures of social inferences predict the number of real-life social contacts and autism severity. Nat Commun 2023; 14:4399. [PMID: 37474575 PMCID: PMC10359299 DOI: 10.1038/s41467-023-40078-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
We regularly infer other people's thoughts and feelings from observing their actions, but how this ability contributes to successful social behavior and interactions remains unknown. We show that neural activation patterns during social inferences obtained in the laboratory predict the number of social contacts in the real world, as measured by the social network index, in three neurotypical samples (total n = 126) and one sample of autistic adults (n = 23). We also show that brain patterns during social inference generalize across individuals in these groups. Cross-validated associations between brain activations and social inference localize selectively to the right posterior superior temporal sulcus and were specific for social, but not nonsocial, inference. Activation within this same brain region also predicts autism-like trait scores from questionnaires and autism symptom severity. Thus, neural activations produced while thinking about other people's mental states predict variance in multiple indices of social functioning in the real world.
Collapse
Affiliation(s)
- Anita Tusche
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, 91125, USA.
- Department of Psychology, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| | - Robert P Spunt
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Lynn K Paul
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Julian M Tyszka
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Ralph Adolphs
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
11
|
Fichtel C, Henke-von der Malsburg J, Kappeler PM. Cognitive performance is linked to fitness in a wild primate. SCIENCE ADVANCES 2023; 9:eadf9365. [PMID: 37436999 DOI: 10.1126/sciadv.adf9365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
Cognitive performance varies widely across animal species, but the processes underlying cognitive evolution remain poorly known. For cognitive abilities to evolve, performance must be linked to individual fitness benefits, but these links have been rarely studied in primates even though they exceed most other mammals in these traits. We subjected 198 wild gray mouse lemurs to four cognitive and two personality tests and subsequently monitored their survival in a mark-recapture study. Our study revealed that survival was predicted by individual variation in cognitive performance as well as body mass and exploration. Because cognitive performance covaried negatively with exploration, individuals gathering more accurate information enjoyed better cognitive performance and lived longer, but so did heavier and more explorative individuals. These effects may reflect a speed-accuracy trade-off, with alternative strategies yielding similar overall fitness. The observed intraspecific variation in selective benefits of cognitive performance, if heritable, can provide the basis for the evolution of cognitive abilities in members of our lineage.
Collapse
Affiliation(s)
- Claudia Fichtel
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Leibniz Science Campus "Primate Cognition", Göttingen 37077, Germany
| | - Johanna Henke-von der Malsburg
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Peter M Kappeler
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
12
|
Grabowski M, Kopperud BT, Tsuboi M, Hansen TF. Both Diet and Sociality Affect Primate Brain-Size Evolution. Syst Biol 2023; 72:404-418. [PMID: 36454664 PMCID: PMC10275546 DOI: 10.1093/sysbio/syac075] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/17/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2023] Open
Abstract
Increased brain size in humans and other primates is hypothesized to confer cognitive benefits but brings costs associated with growing and maintaining energetically expensive neural tissue. Previous studies have argued that changes in either diet or levels of sociality led to shifts in brain size, but results were equivocal. Here we test these hypotheses using phylogenetic comparative methods designed to jointly account for and estimate the effects of adaptation and phylogeny. Using the largest current sample of primate brain and body sizes with observation error, complemented by newly compiled diet and sociality data, we show that both diet and sociality have influenced the evolution of brain size. Shifting from simple to more complex levels of sociality resulted in relatively larger brains, while shifting to a more folivorous diet led to relatively smaller brains. While our results support the role of sociality, they modify a range of ecological hypotheses centered on the importance of frugivory, and instead indicate that digestive costs associated with increased folivory may have resulted in relatively smaller brains. [adaptation; allometry; bayou; evolutionary trend; energetic constraints; phylogenetic comparative methods; primate brain size; Slouch; social-brain hypothesis.].
Collapse
Affiliation(s)
- Mark Grabowski
- Research Centre in Evolutionary Anthropology and Palaeoecology, Liverpool John Moores University, 3 Byrom Street, Liverpool L3 3AF, UK
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Bjørn T Kopperud
- GeoBio-Center LMU, Ludwig-Maximilians-Universität München, Richard-Wagner Straße 10, 80333 Munich, Germany
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner Straße 10, 80333 Munich, Germany
| | - Masahito Tsuboi
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
- Department of Biology, Lund University, Ekologihuset, Sölvegatan 37, 223 62 Lund, Sweden
| | - Thomas F Hansen
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| |
Collapse
|
13
|
Bohn M, Eckert J, Hanus D, Lugauer B, Holtmann J, Haun DBM. Great ape cognition is structured by stable cognitive abilities and predicted by developmental conditions. Nat Ecol Evol 2023; 7:927-938. [PMID: 37106158 PMCID: PMC10250201 DOI: 10.1038/s41559-023-02050-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 03/28/2023] [Indexed: 04/29/2023]
Abstract
Great ape cognition is used as a reference point to specify the evolutionary origins of complex cognitive abilities, including in humans. This research often assumes that great ape cognition consists of cognitive abilities (traits) that account for stable differences between individuals, which change and develop in response to experience. Here, we test the validity of these assumptions by assessing repeatability of cognitive performance among captive great apes (Gorilla gorilla, Pongo abelii, Pan paniscus, Pan troglodytes) in five tasks covering a range of cognitive domains. We examine whether individual characteristics (age, group, test experience) or transient situational factors (life events, testing arrangements or sociality) influence cognitive performance. Our results show that task-level performance is generally stable over time; four of the five tasks were reliable measurement tools. Performance in the tasks was best explained by stable differences in cognitive abilities (traits) between individuals. Cognitive abilities were further correlated, suggesting shared cognitive processes. Finally, when predicting cognitive performance, we found stable individual characteristics to be more important than variables capturing transient experience. Taken together, this study shows that great ape cognition is structured by stable cognitive abilities that respond to different developmental conditions.
Collapse
Affiliation(s)
- Manuel Bohn
- Department of Comparative Cultural Psychology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Johanna Eckert
- Department of Comparative Cultural Psychology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Daniel Hanus
- Department of Comparative Cultural Psychology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Benedikt Lugauer
- Wilhelm Wundt Institute of Psychology, Leipzig University, Leipzig, Germany
| | - Jana Holtmann
- Wilhelm Wundt Institute of Psychology, Leipzig University, Leipzig, Germany
| | - Daniel B M Haun
- Department of Comparative Cultural Psychology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Leipzig Research Centre for Early Child Development, Leipzig University, Leipzig, Germany
| |
Collapse
|
14
|
Sakai T, Hata J, Shintaku Y, Ohta H, Sogabe K, Mori S, Miyabe-Nishiwaki T, Okano HJ, Hamada Y, Hirabayashi T, Minamimoto T, Sadato N, Okano H, Oishi K. The Japan Monkey Centre Primates Brain Imaging Repository of high-resolution postmortem magnetic resonance imaging: the second phase of the archive of digital records. Neuroimage 2023; 273:120096. [PMID: 37031828 DOI: 10.1016/j.neuroimage.2023.120096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/17/2022] [Accepted: 04/06/2023] [Indexed: 04/11/2023] Open
Abstract
A comparison of neuroanatomical features of the brain between humans and our evolutionary relatives, nonhuman primates, is key to understanding the human brain system and the neural basis of mental and neurological disorders. Although most comparative MRI studies of human and nonhuman primate brains have been based on brains of primates that had been used as subjects in experiments, it is essential to investigate various species of nonhuman primates in order to elucidate and interpret the diversity of neuroanatomy features among humans and nonhuman primates. To develop a research platform for this purpose, it is necessary to harmonize the scientific contributions of studies with the standards of animal ethics, animal welfare, and the conservation of brain information for long-term continuation of the field. In previous research, we first developed a gated data-repository of anatomical images obtained using 9.4-T ex vivo MRI of postmortem brain samples from 12 nonhuman primate species, and which are stored at the Japan Monkey Centre. In the present study, as a second phase, we released a collection of T2-weighted images and diffusion tensor images obtained in nine species: white-throated capuchin, Bolivian squirrel monkey, stump-tailed macaque, Tibet monkey, Sykes' monkey, Assamese macaque, pig-tailed macaque, crested macaque, and chimpanzee. Our image repository should facilitate scientific discoveries in the field of comparative neuroscience. This repository can also promote animal ethics and animal welfare in experiments with nonhuman primate models by optimizing methods for in vivo and ex vivo MRI scanning of brains and supporting veterinary neuroradiological education. In addition, the repository is expected to contribute to conservation, preserving information about the brains of various primates, including endangered species, in a permanent digital form.
Collapse
Affiliation(s)
- Tomoko Sakai
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan; Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan; Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan.
| | - Junichi Hata
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan; Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan; Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan; RIKEN Brain Science Institute, Laboratory for Marmoset Neural Architecture, Wako, Saitama, Japan
| | - Yuta Shintaku
- Wildlife Research Center, Kyoto University, Kyoto, Japan; Japan Monkey Centre, Inuyama, Aichi, Japan
| | - Hiroki Ohta
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazumi Sogabe
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan; Department of Radiological Technology, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Susumu Mori
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kenney Krieger Institute, Baltimore, MD, USA
| | - Takako Miyabe-Nishiwaki
- Center for Model Human Evolution Research, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Hirotaka James Okano
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuzuru Hamada
- Center for Model Human Evolution Research, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Toshiyuki Hirabayashi
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takafumi Minamimoto
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Norihiro Sadato
- National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan; RIKEN Brain Science Institute, Laboratory for Marmoset Neural Architecture, Wako, Saitama, Japan
| | - Kenichi Oishi
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan
| |
Collapse
|
15
|
Home alone: A population neuroscience investigation of brain morphology substrates. Neuroimage 2023; 269:119936. [PMID: 36781113 DOI: 10.1016/j.neuroimage.2023.119936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023] Open
Abstract
As a social species, ready exchange with peers is a pivotal asset - our "social capital". Yet, single-person households have come to pervade metropolitan cities worldwide, with unknown consequences in the long run. Here, we systematically explore the morphological manifestations associated with singular living in ∼40,000 UK Biobank participants. The uncovered population-level signature spotlights the highly associative default mode network, in addition to findings such as in the amygdala central, cortical and corticoamygdaloid nuclei groups, as well as the hippocampal fimbria and dentate gyrus. Both positive effects, equating to greater gray matter volume associated with living alone, and negative effects, which can be interpreted as greater gray matter associations with not living alone, were found across the cortex and subcortical structures Sex-stratified analyses revealed male-specific neural substrates, including somatomotor, saliency and visual systems, while female-specific neural substrates centered on the dorsomedial prefrontal cortex. In line with our demographic profiling results, the discovered neural pattern of living alone is potentially linked to alcohol and tobacco consumption, anxiety, sleep quality as well as daily TV watching. The persistent trend for solitary living will require new answers from public-health decision makers. SIGNIFICANCE STATEMENT: Living alone has profound consequences for mental and physical health. Despite this, there has been a rapid increase in single-person households worldwide, with the long-term consequences yet unknown. In the largest study of its kind, we investigate how the objective lack of everyday social interaction, through living alone, manifests in the brain. Our population neuroscience approach uncovered a gray matter signature that converged on the 'default network', alongside targeted subcortical, sex and demographic profiling analyses. The human urge for social relationships is highlighted by the evolving COVID-19 pandemic. Better understanding of how social isolation relates to the brain will influence health and social policy decision-making of pandemic planning, as well as social interventions in light of global shifts in houseful structures.
Collapse
|
16
|
Branco MP, Geukes SH, Aarnoutse EJ, Ramsey NF, Vansteensel MJ. Nine decades of electrocorticography: A comparison between epidural and subdural recordings. Eur J Neurosci 2023; 57:1260-1288. [PMID: 36843389 DOI: 10.1111/ejn.15941] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/10/2023] [Accepted: 02/18/2023] [Indexed: 02/28/2023]
Abstract
In recent years, electrocorticography (ECoG) has arisen as a neural signal recording tool in the development of clinically viable neural interfaces. ECoG electrodes are generally placed below the dura mater (subdural) but can also be placed on top of the dura (epidural). In deciding which of these modalities best suits long-term implants, complications and signal quality are important considerations. Conceptually, epidural placement may present a lower risk of complications as the dura is left intact but also a lower signal quality due to the dura acting as a signal attenuator. The extent to which complications and signal quality are affected by the dura, however, has been a matter of debate. To improve our understanding of the effects of the dura on complications and signal quality, we conducted a literature review. We inventorized the effect of the dura on signal quality, decodability and longevity of acute and chronic ECoG recordings in humans and non-human primates. Also, we compared the incidence and nature of serious complications in studies that employed epidural and subdural ECoG. Overall, we found that, even though epidural recordings exhibit attenuated signal amplitude over subdural recordings, particularly for high-density grids, the decodability of epidural recorded signals does not seem to be markedly affected. Additionally, we found that the nature of serious complications was comparable between epidural and subdural recordings. These results indicate that both epidural and subdural ECoG may be suited for long-term neural signal recordings, at least for current generations of clinical and high-density ECoG grids.
Collapse
Affiliation(s)
- Mariana P Branco
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Simon H Geukes
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Erik J Aarnoutse
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Nick F Ramsey
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Mariska J Vansteensel
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
17
|
Townsend C, Ferraro JV, Habecker H, Flinn MV. Human cooperation and evolutionary transitions in individuality. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210414. [PMID: 36688393 PMCID: PMC9869453 DOI: 10.1098/rstb.2021.0414] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/31/2022] [Indexed: 01/24/2023] Open
Abstract
A major evolutionary transition in individuality involves the formation of a cooperative group and the transformation of that group into an evolutionary entity. Human cooperation shares principles with those of multicellular organisms that have undergone transitions in individuality: division of labour, communication, and fitness interdependence. After the split from the last common ancestor of hominoids, early hominins adapted to an increasingly terrestrial niche for several million years. We posit that new challenges in this niche set in motion a positive feedback loop in selection pressure for cooperation that ratcheted coevolutionary changes in sociality, communication, brains, cognition, kin relations and technology, eventually resulting in egalitarian societies with suppressed competition and rapid cumulative culture. The increasing pace of information innovation and transmission became a key aspect of the evolutionary niche that enabled humans to become formidable cooperators with explosive population growth, the ability to cooperate and compete in groups of millions, and emergent social norms, e.g. private property. Despite considerable fitness interdependence, the rise of private property, in concert with population explosion and socioeconomic inequality, subverts potential transition of human groups into evolutionary entities due to resurgence of latent competition and conflict. This article is part of the theme issue 'Human socio-cultural evolution in light of evolutionary transitions'.
Collapse
Affiliation(s)
- Cathryn Townsend
- Department of Anthropology, Baylor University, Waco, TX 76798-7334, USA
| | - Joseph V. Ferraro
- Department of Anthropology, Baylor University, Waco, TX 76798-7334, USA
| | - Heather Habecker
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798-7334, USA
| | - Mark V. Flinn
- Department of Anthropology, Baylor University, Waco, TX 76798-7334, USA
| |
Collapse
|
18
|
Abstract
Large brains provide adaptive cognitive benefits but require unusually high, near-constant energy inputs and become fully functional well after their growth is completed. Consequently, young of most larger-brained endotherms should not be able to independently support the growth and development of their own brains. This paradox is solved if the evolution of extended parental provisioning facilitated brain size evolution. Comparative studies indeed show that extended parental provisioning coevolved with brain size and that it may improve immature survival. The major role of extended parental provisioning supports the idea that the ability to sustain the costs of brains limited brain size evolution.
Collapse
|
19
|
Wang J, Weatheritt R, Voineagu I. Alu-minating the Mechanisms Underlying Primate Cortex Evolution. Biol Psychiatry 2022; 92:760-771. [PMID: 35981906 DOI: 10.1016/j.biopsych.2022.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/04/2022] [Accepted: 04/28/2022] [Indexed: 11/02/2022]
Abstract
The higher-order cognitive functions observed in primates correlate with the evolutionary enhancement of cortical volume and folding, which in turn are driven by the primate-specific expansion of cellular diversity in the developing cortex. Underlying these changes is the diversification of molecular features including the creation of human and/or primate-specific genes, the activation of specific molecular pathways, and the interplay of diverse layers of gene regulation. We review and discuss evidence for connections between Alu elements and primate brain evolution, the evolutionary milestones of which are known to coincide along primate lineages. Alus are repetitive elements that contribute extensively to the acquisition of novel genes and the expansion of diverse gene regulatory layers, including enhancers, alternative splicing, RNA editing, and microRNA pathways. By reviewing the impact of Alus on molecular features linked to cortical expansions or gyrification or implications in cognitive deficits, we suggest that future research focusing on the role of Alu-derived molecular events in the context of brain development may greatly advance our understanding of higher-order cognitive functions and neurologic disorders.
Collapse
Affiliation(s)
- Juli Wang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.
| | - Robert Weatheritt
- St Vincent Clinical School, University of New South Wales, Sydney, Australia; Garvan Institute of Medical Research, EMBL Australia, Sydney, New South Wales, Australia
| | - Irina Voineagu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia; Cellular Genomics Futures Institute, University of New South Wales, Sydney, Australia.
| |
Collapse
|
20
|
De Meester G, Van Linden L, Torfs J, Pafilis P, Šunje E, Steenssens D, Zulčić T, Sassalos A, Van Damme R. Learning with lacertids: Studying the link between ecology and cognition within a comparative framework. Evolution 2022; 76:2531-2552. [PMID: 36111365 DOI: 10.1111/evo.14618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/10/2022] [Accepted: 08/21/2022] [Indexed: 01/22/2023]
Abstract
Cognition is an essential tool for animals to deal with environmental challenges. Nonetheless, the ecological forces driving the evolution of cognition throughout the animal kingdom remain enigmatic. Large-scale comparative studies on multiple species and cognitive traits have been advanced as the best way to facilitate our understanding of cognitive evolution, but such studies are rare. Here, we tested 13 species of lacertid lizards (Reptilia: Lacertidae) using a battery of cognitive tests measuring inhibitory control, problem-solving, and spatial and reversal learning. Next, we tested the relationship between species' performance and (a) resource availability (temperature and precipitation), habitat complexity (Normalized Difference Vegetation Index), and habitat variability (seasonality) in their natural habitat and (b) their life history (size at hatching and maturity, clutch size, and frequency). Although species differed markedly in their cognitive abilities, such variation was mostly unrelated to their ecology and life history. Yet, species living in more variable environments exhibited lower behavioral flexibility, likely due to energetic constrains in such habitats. Our standardized protocols provide opportunities for collaborative research, allowing increased sample sizes and replication, essential for moving forward in the field of comparative cognition. Follow-up studies could include more detailed measures of habitat structure and look at other potential selective drivers such as predation.
Collapse
Affiliation(s)
- Gilles De Meester
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium.,Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Athens, 157 84, Greece
| | - Lisa Van Linden
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium
| | - Jonas Torfs
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium
| | - Panayiotis Pafilis
- Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Athens, 157 84, Greece
| | - Emina Šunje
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium.,Department of Biology, Faculty of Natural Sciences, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina.,Herpetological Association in Bosnia and Herzegovina: BHHU: ATRA, Sarajevo, 71000, Bosnia and Herzegovina
| | - Dries Steenssens
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium
| | - Tea Zulčić
- Herpetological Association in Bosnia and Herzegovina: BHHU: ATRA, Sarajevo, 71000, Bosnia and Herzegovina
| | - Athanasios Sassalos
- Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Athens, 157 84, Greece
| | - Raoul Van Damme
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium
| |
Collapse
|
21
|
Vidiella B, Carrignon S, Bentley RA, O’Brien MJ, Valverde S. A cultural evolutionary theory that explains both gradual and punctuated change. J R Soc Interface 2022; 19:20220570. [PMID: 36382378 PMCID: PMC9667142 DOI: 10.1098/rsif.2022.0570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022] Open
Abstract
Cumulative cultural evolution (CCE) occurs among humans who may be presented with many similar options from which to choose, as well as many social influences and diverse environments. It is unknown what general principles underlie the wide range of CCE dynamics and whether they can all be explained by the same unified paradigm. Here, we present a scalable evolutionary model of discrete choice with social learning, based on a few behavioural science assumptions. This paradigm connects the degree of transparency in social learning to the human tendency to imitate others. Computer simulations and quantitative analysis show the interaction of three primary factors-information transparency, popularity bias and population size-drives the pace of CCE. The model predicts a stable rate of evolutionary change for modest degrees of popularity bias. As popularity bias grows, the transition from gradual to punctuated change occurs, with maladaptive subpopulations arising on their own. When the popularity bias gets too severe, CCE stops. This provides a consistent framework for explaining the rich and complex adaptive dynamics taking place in the real world, such as modern digital media.
Collapse
Affiliation(s)
- Blai Vidiella
- Evolution of Networks Lab, Institute of Evolutionary Biology (UPF-CSIC), Passeig Marítim de la Barceloneta 37, 08003 Barcelona, Spain
| | - Simon Carrignon
- McDonald Institute for Archaeological Research, Downing Street, Cambridge CB2 3ER, UK
| | | | - Michael J. O’Brien
- Department of Communication, History, and Philosophy and Department of Life Sciences, Texas A&M University–San Antonio, Texas 78224, USA
- Department of Anthropology, University of Missouri-Columbia, Missouri 65201, USA
| | - Sergi Valverde
- Evolution of Networks Lab, Institute of Evolutionary Biology (UPF-CSIC), Passeig Marítim de la Barceloneta 37, 08003 Barcelona, Spain
- European Centre for Living Technology (ECLT), Ca’ Bottacin, 3911 Dorsoduro Calle Crosera, 30123 Venezia, Italy
| |
Collapse
|
22
|
Bzdok D, Dunbar RIM. Social isolation and the brain in the pandemic era. Nat Hum Behav 2022; 6:1333-1343. [PMID: 36258130 DOI: 10.1038/s41562-022-01453-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/24/2022] [Indexed: 11/08/2022]
Abstract
Intense sociality has been a catalyst for human culture and civilization, and our social relationships at a personal level play a pivotal role in our health and well-being. These relationships are, however, sensitive to the time we invest in them. To understand how and why this should be, we first outline the evolutionary background in primate sociality from which our human social world has emerged. We then review defining features of that human sociality, putting forward a framework within which one can understand the consequences of mass social isolation during the COVID-19 pandemic, including mental health deterioration, stress, sleep disturbance and substance misuse. We outline recent research on the neural basis of prolonged social isolation, highlighting especially higher-order neural circuits such as the default mode network. Our survey of studies covers the negative effects of prolonged social deprivation and the multifaceted drivers of day-to-day pandemic experiences.
Collapse
Affiliation(s)
- Danilo Bzdok
- The Neuro-Montreal Neurological Institute (MNI), McConnell Brain-Imaging Centre (BIC), Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
| | - Robin I M Dunbar
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
| |
Collapse
|
23
|
Roberts SGB, Dunbar RIM, Roberts AI. Communicative roots of complex sociality and cognition: preface to the theme issue. Philos Trans R Soc Lond B Biol Sci 2022; 377:20220115. [PMID: 35934965 PMCID: PMC9358313 DOI: 10.1098/rstb.2022.0115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/12/2022] Open
Abstract
Primates live in stable social groups in which they form differentiated relationships with group members and use a range of communication including facial expressions, vocalizations and gestures. However, how these different types of communication are used to regulate social interactions, and what cognitive skills underpin this communication, is still unclear. The aim of this special issue is to examine the types of cognitive skills underpinning the flexible and complex communication that is used to maintain the bonded social relationships found in primates and humans. This article is part of the theme issue 'Cognition, communication and social bonds in primates'.
Collapse
Affiliation(s)
- Sam G. B. Roberts
- School of Psychology, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Robin I. M. Dunbar
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| | - Anna I. Roberts
- Institute of Human Biology and Evolution, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
24
|
Shultz S, Dunbar RIM. Socioecological complexity in primate groups and its cognitive correlates. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210296. [PMID: 35934968 PMCID: PMC9358314 DOI: 10.1098/rstb.2021.0296] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/21/2022] [Indexed: 11/12/2022] Open
Abstract
Characterizing non-human primate social complexity and its cognitive bases has proved challenging. Using principal component analyses, we show that primate social, ecological and reproductive behaviours condense into two components: socioecological complexity (including most social and ecological variables) and reproductive cooperation (comprising mainly a suite of behaviours associated with pairbonded monogamy). We contextualize these results using a meta-analysis of 44 published analyses of primate brain evolution. These studies yield two main consistent results: cognition, sociality and cooperative behaviours are associated with absolute brain volume, neocortex size and neocortex ratio, whereas diet composition and life history are consistently associated with relative brain size. We use a path analysis to evaluate the causal relationships among these variables, demonstrating that social group size is predicted by the neocortex, whereas ecological traits are predicted by the volume of brain structures other than the neocortex. That a range of social and technical behaviours covary, and are correlated with social group size and brain size, suggests that primate cognition has evolved along a continuum resulting in an increasingly flexible, domain-general capacity to solve a range of socioecological challenges culminating in a capacity for, and reliance on, innovation and social information use in the great apes and humans. This article is part of the theme issue 'Cognition, communication and social bonds in primates'.
Collapse
Affiliation(s)
- Susanne Shultz
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| | | |
Collapse
|
25
|
Reyes AS, Bittar A, Ávila LC, Botia C, Esmeral NP, Bloch NI. Divergence in brain size and brain region volumes across wild guppy populations. Proc Biol Sci 2022; 289:20212784. [PMID: 36000235 PMCID: PMC9399710 DOI: 10.1098/rspb.2021.2784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Complex evolutionary dynamics have produced extensive variation in brain anatomy in the animal world. In guppies, Poecilia reticulata, brain size and anatomy have been extensively studied in the laboratory contributing to our understanding of brain evolution and the cognitive advantages that arise with brain anatomical variation. However, it is unclear whether these laboratory results can be translated to natural populations. Here, we study brain neuroanatomy and its relationship with sexual traits across 18 wild guppy populations in diverse environments. We found extensive variation in female and male relative brain size and brain region volumes across populations in different environment types and with varying degrees of predation risk. In contrast with laboratory studies, we found differences in allometric scaling of brain regions, leading to variation in brain region proportions across populations. Finally, we found an association between sexual traits, mainly the area of black patches and tail length, and brain size. Our results suggest differences in ecological conditions and sexual traits are associated with differences in brain size and brain regions volumes in the wild, as well as sexual dimorphisms in the brain's neuroanatomy.
Collapse
Affiliation(s)
- Angie S. Reyes
- Department of Biomedical Engineering, University of Los Andes, Bogota, Colombia
| | - Amaury Bittar
- Department of Biomedical Engineering, University of Los Andes, Bogota, Colombia
| | - Laura C. Ávila
- Department of Biomedical Engineering, University of Los Andes, Bogota, Colombia
| | - Catalina Botia
- Department of Biomedical Engineering, University of Los Andes, Bogota, Colombia
| | - Natalia P. Esmeral
- Department of Biomedical Engineering, University of Los Andes, Bogota, Colombia
| | - Natasha I. Bloch
- Department of Biomedical Engineering, University of Los Andes, Bogota, Colombia
| |
Collapse
|
26
|
Pinacho-Guendulain B, Montiel-Castro AJ, Ramos-Fernández G, Pacheco-López G. Social complexity as a driving force of gut microbiota exchange among conspecific hosts in non-human primates. Front Integr Neurosci 2022; 16:876849. [PMID: 36110388 PMCID: PMC9468716 DOI: 10.3389/fnint.2022.876849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The emergent concept of the social microbiome implies a view of a highly connected biological world, in which microbial interchange across organisms may be influenced by social and ecological connections occurring at different levels of biological organization. We explore this idea reviewing evidence of whether increasing social complexity in primate societies is associated with both higher diversity and greater similarity in the composition of the gut microbiota. By proposing a series of predictions regarding such relationship, we evaluate the existence of a link between gut microbiota and primate social behavior. Overall, we find that enough empirical evidence already supports these predictions. Nonetheless, we conclude that studies with the necessary, sufficient, explicit, and available evidence are still scarce. Therefore, we reflect on the benefit of founding future analyses on the utility of social complexity as a theoretical framework.
Collapse
Affiliation(s)
- Braulio Pinacho-Guendulain
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), Ciudad de México, Mexico
| | - Augusto Jacobo Montiel-Castro
- Department of Health Sciences, Metropolitan Autonomous University (UAM), Lerma, Mexico
- *Correspondence: Augusto Jacobo Montiel-Castro,
| | - Gabriel Ramos-Fernández
- Institute for Research on Applied Mathematics and Systems (IIMAS), National Autonomous University of Mexico (UNAM), Mexico City, Mexico
- Center for Complexity Sciences, National Autonomous University of Mexico, Mexico City, Mexico
| | - Gustavo Pacheco-López
- Department of Health Sciences, Metropolitan Autonomous University (UAM), Lerma, Mexico
- Gustavo Pacheco-López,
| |
Collapse
|
27
|
Lynch LM, Allen KL. Relative Brain Volume of Carnivorans Has Evolved in Correlation with Environmental and Dietary Variables Differentially among Clades. BRAIN, BEHAVIOR AND EVOLUTION 2022; 97:284-297. [PMID: 35235933 DOI: 10.1159/000523787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/16/2022] [Indexed: 12/21/2022]
Abstract
Carnivorans possess relatively large brains compared to most other mammalian clades. Factors like environmental complexity (Cognitive Buffer Hypothesis) and diet quality (Expensive-Tissue Hypothesis) have been proposed as mechanisms for encephalization in other large-brained clades. We examine whether the Cognitive Buffer and Expensive-Tissue Hypotheses account for brain size variation within Carnivora. Under these hypotheses, we predict a positive correlation between brain size and environmental complexity or protein consumption. Relative endocranial volume (phylogenetic generalized least-squares residual from species' mean body mass) and 9 environmental and dietary variables were collected from the literature for 148 species of terrestrial and marine carnivorans. We found that the correlation between relative brain volume and environment and diet differed among clades, a trend consistent with other larger brained vertebrates (i.e., Primates, Aves). Mustelidae and Procyonidae demonstrate larger brains in species with higher-quality diets, consistent with the Expensive-Tissue Hypothesis, while in Herpestidae, correlations between relative brain size and environment are consistent with the Cognitive Buffer Hypothesis. Our results indicate that carnivorans may have evolved relatively larger brains under similar selective pressures as primates despite the considerable differences in life history and behavior between these two clades.
Collapse
Affiliation(s)
- Leigha M Lynch
- Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA.,Midwestern University, Glendale, Arizona, USA
| | - Kari L Allen
- Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
28
|
Harrison JF, Biewener A, Bernhardt JR, Burger JR, Brown JH, Coto ZN, Duell ME, Lynch M, Moffett ER, Norin T, Pettersen AK, Smith FA, Somjee U, Traniello JFA, Williams TM. White Paper: An Integrated Perspective on the Causes of Hypometric Metabolic Scaling in Animals. Integr Comp Biol 2022; 62:icac136. [PMID: 35933126 PMCID: PMC9724154 DOI: 10.1093/icb/icac136] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 04/16/2022] [Accepted: 05/19/2022] [Indexed: 11/15/2022] Open
Abstract
Larger animals studied during ontogeny, across populations, or across species, usually have lower mass-specific metabolic rates than smaller animals (hypometric scaling). This pattern is usually observed regardless of physiological state (e.g. basal, resting, field, maximally-active). The scaling of metabolism is usually highly correlated with the scaling of many life history traits, behaviors, physiological variables, and cellular/molecular properties, making determination of the causation of this pattern challenging. For across-species comparisons of resting and locomoting animals (but less so for across populations or during ontogeny), the mechanisms at the physiological and cellular level are becoming clear. Lower mass-specific metabolic rates of larger species at rest are due to a) lower contents of expensive tissues (brains, liver, kidneys), and b) slower ion leak across membranes at least partially due to membrane composition, with lower ion pump ATPase activities. Lower mass-specific costs of larger species during locomotion are due to lower costs for lower-frequency muscle activity, with slower myosin and Ca++ ATPase activities, and likely more elastic energy storage. The evolutionary explanation(s) for hypometric scaling remain(s) highly controversial. One subset of evolutionary hypotheses relies on constraints on larger animals due to changes in geometry with size; for example, lower surface-to-volume ratios of exchange surfaces may constrain nutrient or heat exchange, or lower cross-sectional areas of muscles and tendons relative to body mass ratios would make larger animals more fragile without compensation. Another subset of hypotheses suggests that hypometric scaling arises from biotic interactions and correlated selection, with larger animals experiencing less selection for mass-specific growth or neurolocomotor performance. A additional third type of explanation comes from population genetics. Larger animals with their lower effective population sizes and subsequent less effective selection relative to drift may have more deleterious mutations, reducing maximal performance and metabolic rates. Resolving the evolutionary explanation for the hypometric scaling of metabolism and associated variables is a major challenge for organismal and evolutionary biology. To aid progress, we identify some variation in terminology use that has impeded cross-field conversations on scaling. We also suggest that promising directions for the field to move forward include: 1) studies examining the linkages between ontogenetic, population-level, and cross-species allometries, 2) studies linking scaling to ecological or phylogenetic context, 3) studies that consider multiple, possibly interacting hypotheses, and 4) obtaining better field data for metabolic rates and the life history correlates of metabolic rate such as lifespan, growth rate and reproduction.
Collapse
Affiliation(s)
- Jon F Harrison
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Andrew Biewener
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Joanna R Bernhardt
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Yale Institute for Biospheric Studies, New Haven, CT 06520, USA
| | - Joseph R Burger
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - James H Brown
- Center for Evolutionary and Theoretical Immunology, The University of New Mexico, Albuquerque, NM 87131, USA
| | - Zach N Coto
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Meghan E Duell
- Department of Biology, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85281, USA
| | - Emma R Moffett
- Department of Ecology and Evolution, University of California, Irvine, CA 92697, USA
| | - Tommy Norin
- DTU Aqua | National Institute of Aquatic Resources, Technical University of Denmark, Anker Engelunds Vej 1 Bygning 101A, 2800 Kgs. Lyngby, Denmark
| | - Amanda K Pettersen
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Felisa A Smith
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Ummat Somjee
- Smithsonian Tropical Research Institute, Panama City, Panama
| | | | - Terrie M Williams
- Division of Physical and Biological Sciences, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
29
|
Hooper R, Brett B, Thornton A. Problems with using comparative analyses of avian brain size to test hypotheses of cognitive evolution. PLoS One 2022; 17:e0270771. [PMID: 35867640 PMCID: PMC9307164 DOI: 10.1371/journal.pone.0270771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022] Open
Abstract
There are multiple hypotheses for the evolution of cognition. The most prominent hypotheses are the Social Intelligence Hypothesis (SIH) and the Ecological Intelligence Hypothesis (EIH), which are often pitted against one another. These hypotheses tend to be tested using broad-scale comparative studies of brain size, where brain size is used as a proxy of cognitive ability, and various social and/or ecological variables are included as predictors. Here, we test how robust conclusions drawn from such analyses may be. First, we investigate variation in brain and body size measurements across >1000 bird species. We demonstrate that there is substantial variation in brain and body size estimates across datasets, indicating that conclusions drawn from comparative brain size models are likely to differ depending on the source of the data. Following this, we subset our data to the Corvides infraorder and interrogate how modelling decisions impact results. We show that model results change substantially depending on variable inclusion, source and classification. Indeed, we could have drawn multiple contradictory conclusions about the principal drivers of brain size evolution. These results reflect concerns from a growing number of researchers that conclusions drawn from comparative brain size studies may not be robust. We suggest that to interrogate hypotheses of cognitive evolution, a fruitful way forward is to focus on testing cognitive performance within and between closely related taxa, with an emphasis on understanding the relationship between informational uncertainty and cognitive evolution.
Collapse
Affiliation(s)
- Rebecca Hooper
- University of Exeter, Centre for Ecology and Conservation, College of Life and Environmental Sciences, Penryn Campus, Cornwall, United Kingdom
- University of Exeter, Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, Streatham Campus, Exeter, United Kingdom
- * E-mail: (RH); (AT)
| | - Becky Brett
- University of Exeter, Centre for Ecology and Conservation, College of Life and Environmental Sciences, Penryn Campus, Cornwall, United Kingdom
| | - Alex Thornton
- University of Exeter, Centre for Ecology and Conservation, College of Life and Environmental Sciences, Penryn Campus, Cornwall, United Kingdom
- * E-mail: (RH); (AT)
| |
Collapse
|
30
|
Heldstab SA, Isler K, Graber SM, Schuppli C, van Schaik CP. The economics of brain size evolution in vertebrates. Curr Biol 2022; 32:R697-R708. [PMID: 35728555 DOI: 10.1016/j.cub.2022.04.096] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Across the animal kingdom, we see remarkable variation in brain size. This variation has even increased over evolutionary time. Traditionally, studies aiming to explain brain size evolution have looked at the fitness benefits of increased brain size in relation to its increased cognitive performance in the social and/or ecological domain. However, brains are among the most energetically expensive tissues in the body and also require an uninterrupted energy supply. If not compensated, these energetic demands inevitably lead to a reduction in energy allocation to other vital functions. In this review, we summarize how an increasing number of studies show that to fully comprehend brain size evolution and the large variation in brain size across lineages, it is important to look at the economics of brains, including the different pathways through which the high energetic costs of brains can be offset. We further show how numerous studies converge on the conclusion that cognitive abilities can only drive brain size evolution in vertebrate lineages where they result in an improved energy balance through favourable ecological preconditions. Cognitive benefits that do not directly improve the organism's energy balance can only be selectively favoured when they produce such large improvements in reproduction or survival that they outweigh the negative energetic effects of the large brain.
Collapse
Affiliation(s)
- Sandra A Heldstab
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Development and Evolution of Cognition Research Group, Max Planck Institute of Animal Behavior, Bücklestrasse 5a, 78467 Konstanz, Germany.
| | - Karin Isler
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Sereina M Graber
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Caroline Schuppli
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Development and Evolution of Cognition Research Group, Max Planck Institute of Animal Behavior, Bücklestrasse 5a, 78467 Konstanz, Germany
| | - Carel P van Schaik
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Comparative Socioecology Group, Max Planck Institute of Animal Behavior, Bücklestrasse 5a, 78467 Konstanz, Germany; Department of Evolutionary Biology and Environmental Science, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
31
|
Coto ZN, Traniello JFA. Social Brain Energetics: Ergonomic Efficiency, Neurometabolic Scaling, and Metabolic Polyphenism in Ants. Integr Comp Biol 2022; 62:icac048. [PMID: 35617153 PMCID: PMC9825342 DOI: 10.1093/icb/icac048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 01/12/2023] Open
Abstract
Metabolism, a metric of the energy cost of behavior, plays a significant role in social evolution. Body size and metabolic scaling are coupled, and a socioecological pattern of increased body size is associated with dietary change and the formation of larger and more complex groups. These consequences of the adaptive radiation of animal societies beg questions concerning energy expenses, a substantial portion of which may involve the metabolic rates of brains that process social information. Brain size scales with body size, but little is understood about brain metabolic scaling. Social insects such as ants show wide variation in worker body size and morphology that correlates with brain size, structure, and worker task performance, which is dependent on sensory inputs and information-processing ability to generate behavior. Elevated production and maintenance costs in workers may impose energetic constraints on body size and brain size that are reflected in patterns of metabolic scaling. Models of brain evolution do not clearly predict patterns of brain metabolic scaling, nor do they specify its relationship to task performance and worker ergonomic efficiency, two key elements of social evolution in ants. Brain metabolic rate is rarely recorded and therefore the conditions under which brain metabolism influences the evolution of brain size are unclear. We propose that studies of morphological evolution, colony social organization, and worker ergonomic efficiency should be integrated with analyses of species-specific patterns of brain metabolic scaling to advance our understanding of brain evolution in ants.
Collapse
Affiliation(s)
- Zach N Coto
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - James F A Traniello
- Department of Biology, Boston University, Boston, MA 02215, USA
- Graduate Program in Neuroscience, Boston University, Boston, MA 02215, USA
| |
Collapse
|
32
|
Chittka L, Rossi N. Social cognition in insects. Trends Cogn Sci 2022; 26:578-592. [DOI: 10.1016/j.tics.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/26/2022] [Accepted: 04/12/2022] [Indexed: 11/25/2022]
|
33
|
Lingam M. The Possible Role of Body Temperature in Modulating Brain and Body Sizes in Hominin Evolution. Front Psychol 2022; 12:774683. [PMID: 35222146 PMCID: PMC8866639 DOI: 10.3389/fpsyg.2021.774683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Many models have posited that the concomitant evolution of large brains and body sizes in hominins was constrained by metabolic costs. In such studies, the impact of body temperature has arguably not been sufficiently addressed despite the well-established fact that the rates of most physiological processes are manifestly temperature-dependent. Hence, the potential role of body temperature in regulating the number of neurons and body size is investigated by means of a heuristic quantitative model. It is suggested that modest deviations in body temperature (i.e., by a couple of degrees Celsius) might allow for substantive changes in brain and body parameters. In particular, a higher body temperature may prove amenable to an increased number of neurons, a higher brain-to-body mass ratio and fewer hours expended on feeding activities, while the converse could apply when the temperature is lowered. Future studies should, therefore, endeavor to explore and incorporate the effects of body temperature in metabolic theories of hominin evolution, while also integrating other factors such as foraging efficiency, diet, and fire control in tandem.
Collapse
Affiliation(s)
- Manasvi Lingam
- Department of Aerospace, Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL, United States
| |
Collapse
|
34
|
Azorsa F, Muscedere ML, Traniello JFA. Socioecology and Evolutionary Neurobiology of Predatory Ants. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.804200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
35
|
Barrett L, Henzi SP, Barton RA. Experts in action: why we need an embodied social brain hypothesis. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200533. [PMID: 34957849 PMCID: PMC8710874 DOI: 10.1098/rstb.2020.0533] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The anthropoid primates are known for their intense sociality and large brain size. The idea that these might be causally related has given rise to a large body of work testing the 'social brain hypothesis'. Here, the emphasis has been placed on the political demands of social life, and the cognitive skills that would enable animals to track the machinations of other minds in metarepresentational ways. It seems to us that this position risks losing touch with the fact that brains primarily evolved to enable the control of action, which in turn leads us to downplay or neglect the importance of the physical body in a material world full of bodies and other objects. As an alternative, we offer a view of primate brain and social evolution that is grounded in the body and action, rather than minds and metarepresentation. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- Louise Barrett
- Department of Psychology, University of Lethbridge, Lethbridge, Canada
| | - S. Peter Henzi
- Department of Psychology, University of Lethbridge, Lethbridge, Canada
| | | |
Collapse
|
36
|
Fei H, de Guinea M, Yang L, Chapman CA, Fan P. Where to sleep next? Evidence for spatial memory associated with sleeping sites in Skywalker gibbons (Hoolock tianxing). Anim Cogn 2022; 25:891-903. [PMID: 35099623 DOI: 10.1007/s10071-022-01600-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/29/2022]
Abstract
Finding suitable sleeping sites is highly advantageous but challenging for wild animals. While suitable sleeping sites provide protection against predators and enhance sleep quality, these sites are heterogeneously distributed in space. Thus, animals may generate memories associated with suitable sleeping sites to be able to approach them efficiently when needed. Here, we examined traveling trajectories (i.e., direction, linearity, and speed of traveling) in relation to sleeping sites to assess whether Skywalker gibbons (Hoolock tianxing) use spatial memory to locate sleeping trees. Our results show that about 30% of the sleeping trees were efficiently revisited by gibbons and the recursive use of trees was higher than a randomly simulated visiting pattern. When gibbons left the last feeding tree for the day, they traveled in a linear fashion to sleeping sites out-of-sight (> 40 m away), and linearity of travel to sleeping trees out-of-sight was higher than 0.800 for all individuals. The speed of the traveling trajectories to sleeping sites out-of-sight increased not only as sunset approached, but also when daily rainfall increased. These results suggest that gibbons likely optimized their trajectories to reach sleeping sites under increasing conditions of predatory risk (i.e., nocturnal predators) and uncomfortable weather. Our study provides novel evidence on the use of spatial memory to locate sleeping sites through analyses of movement patterns, which adds to an already extensive body of literature linking cognitive processes and sleeping patterns in human and non-human animals.
Collapse
Affiliation(s)
- Hanlan Fei
- Department of Ecology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.,College of Life Science, China West Normal University, Nanchong, 637002, China
| | - Miguel de Guinea
- Movement Ecology Laboratory, Department of Ecology Evolution and Behavior, Alexander Silverman Institute of Life Science, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Li Yang
- Department of Ecology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Colin A Chapman
- Wilson Center, 1300 Pennsylvania Avenue NW, Washington, DC, 20004, USA.,Department of Anthropology, The George Washington University, Washington, DC, 20037, USA.,School of Life Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, 3209, South Africa.,Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, 710127, China
| | - Pengfei Fan
- Department of Ecology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
37
|
Gandia KM, Cappa F, Baracchi D, Hauber ME, Beani L, Uy FMK. Caste, Sex, and Parasitism Influence Brain Plasticity in a Social Wasp. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.803437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Brain plasticity is widespread in nature, as it enables adaptive responses to sensory demands associated with novel stimuli, environmental changes and social conditions. Social Hymenoptera are particularly well-suited to study neuroplasticity, because the division of labor amongst females and the different life histories of males and females are associated with specific sensory needs. Here, we take advantage of the social wasp Polistes dominula to explore if brain plasticity is influenced by caste and sex, and the exploitation by the strepsipteran parasite Xenos vesparum. Within sexes, male wasps had proportionally larger optic lobes, while females had larger antennal lobes, which is consistent with the sensory needs of sex-specific life histories. Within castes, reproductive females had larger mushroom body calyces, as predicted by their sensory needs for extensive within-colony interactions and winter aggregations, than workers who frequently forage for nest material and prey. Parasites had different effects on female and male hosts. Contrary to our predictions, female workers were castrated and behaviorally manipulated by female or male parasites, but only showed moderate differences in brain tissue allocation compared to non-parasitized workers. Parasitized males maintained their reproductive apparatus and sexual behavior. However, they had smaller brains and larger sensory brain regions than non-parasitized males. Our findings confirm that caste and sex mediate brain plasticity in P. dominula, and that parasitic manipulation drives differential allocation of brain regions depending on host sex.
Collapse
|
38
|
Rudebeck PH, Izquierdo A. Foraging with the frontal cortex: A cross-species evaluation of reward-guided behavior. Neuropsychopharmacology 2022; 47:134-146. [PMID: 34408279 PMCID: PMC8617092 DOI: 10.1038/s41386-021-01140-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023]
Abstract
Efficient foraging is essential to survival and depends on frontal cortex in mammals. Because of its role in psychiatric disorders, frontal cortex and its contributions to reward procurement have been studied extensively in both rodents and non-human primates. How frontal cortex of these animal models compares is a source of intense debate. Here we argue that translating findings from rodents to non-human primates requires an appreciation of both the niche in which each animal forages as well as the similarities in frontal cortex anatomy and function. Consequently, we highlight similarities and differences in behavior and anatomy, before focusing on points of convergence in how parts of frontal cortex contribute to distinct aspects of foraging in rats and macaques, more specifically. In doing so, our aim is to emphasize where translation of frontal cortex function between species is clearer, where there is divergence, and where future work should focus. We finish by highlighting aspects of foraging for which have received less attention but we believe are critical to uncovering how frontal cortex promotes survival in each species.
Collapse
Affiliation(s)
| | - Alicia Izquierdo
- Department of Psychology, UCLA, Los Angeles, CA, USA.
- The Brain Research Institute, UCLA, Los Angeles, CA, USA.
- Integrative Center for Learning and Memory, UCLA, Los Angeles, CA, USA.
- Integrative Center for Addictions, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
39
|
Chambers HR, Heldstab SA, O’Hara SJ. Why big brains? A comparison of models for both primate and carnivore brain size evolution. PLoS One 2021; 16:e0261185. [PMID: 34932586 PMCID: PMC8691615 DOI: 10.1371/journal.pone.0261185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 11/24/2021] [Indexed: 11/19/2022] Open
Abstract
Despite decades of research, much uncertainty remains regarding the selection pressures responsible for brain size variation. Whilst the influential social brain hypothesis once garnered extensive support, more recent studies have failed to find support for a link between brain size and sociality. Instead, it appears there is now substantial evidence suggesting ecology better predicts brain size in both primates and carnivores. Here, different models of brain evolution were tested, and the relative importance of social, ecological, and life-history traits were assessed on both overall encephalisation and specific brain regions. In primates, evidence is found for consistent associations between brain size and ecological factors, particularly diet; however, evidence was also found advocating sociality as a selection pressure driving brain size. In carnivores, evidence suggests ecological variables, most notably home range size, are influencing brain size; whereas, no support is found for the social brain hypothesis, perhaps reflecting the fact sociality appears to be limited to a select few taxa. Life-history associations reveal complex selection mechanisms to be counterbalancing the costs associated with expensive brain tissue through extended developmental periods, reduced fertility, and extended maximum lifespan. Future studies should give careful consideration of the methods chosen for measuring brain size, investigate both whole brain and specific brain regions where possible, and look to integrate multiple variables, thus fully capturing all of the potential factors influencing brain size.
Collapse
Affiliation(s)
- Helen Rebecca Chambers
- School of Science, Engineering & Environment, University of Salford, Salford, Greater Manchester, United Kingdom
| | | | - Sean J. O’Hara
- School of Science, Engineering & Environment, University of Salford, Salford, Greater Manchester, United Kingdom
| |
Collapse
|
40
|
Yokoyama C, Autio JA, Ikeda T, Sallet J, Mars RB, Van Essen DC, Glasser MF, Sadato N, Hayashi T. Comparative connectomics of the primate social brain. Neuroimage 2021; 245:118693. [PMID: 34732327 PMCID: PMC9159291 DOI: 10.1016/j.neuroimage.2021.118693] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/27/2021] [Accepted: 10/29/2021] [Indexed: 01/13/2023] Open
Abstract
Social interaction is thought to provide a selection pressure for human intelligence, yet little is known about its neurobiological basis and evolution throughout the primate lineage. Recent advances in neuroimaging have enabled whole brain investigation of brain structure, function, and connectivity in humans and non-human primates (NHPs), leading to a nascent field of comparative connectomics. However, linking social behavior to brain organization across the primates remains challenging. Here, we review the current understanding of the macroscale neural mechanisms of social behaviors from the viewpoint of system neuroscience. We first demonstrate an association between the number of cortical neurons and the size of social groups across primates, suggesting a link between neural information-processing capacity and social capabilities. Moreover, by capitalizing on recent advances in species-harmonized functional MRI, we demonstrate that portions of the mirror neuron system and default-mode networks, which are thought to be important for representation of the other's actions and sense of self, respectively, exhibit similarities in functional organization in macaque monkeys and humans, suggesting possible homologies. With respect to these two networks, we describe recent developments in the neurobiology of social perception, joint attention, personality and social complexity. Together, the Human Connectome Project (HCP)-style comparative neuroimaging, hyperscanning, behavioral, and other multi-modal investigations are expected to yield important insights into the evolutionary foundations of human social behavior.
Collapse
Affiliation(s)
- Chihiro Yokoyama
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Joonas A Autio
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Takuro Ikeda
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Jérôme Sallet
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, Oxford University, Oxford, United Kingdom; University of Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - David C Van Essen
- Departments of Neuroscience, Washington University Medical School, St Louis, MO, United States of America
| | - Matthew F Glasser
- Departments of Neuroscience, Washington University Medical School, St Louis, MO, United States of America; Department of Radiology, Washington University Medical School, St Louis, MO, United States of America
| | - Norihiro Sadato
- National Institute for Physiological Sciences, Okazaki, Japan; The Graduate University for Advanced Studies (SOKENDAI), Kanagawa, Japan
| | - Takuya Hayashi
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan; School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
41
|
DeSilva JM, Traniello JFA, Claxton AG, Fannin LD. When and Why Did Human Brains Decrease in Size? A New Change-Point Analysis and Insights From Brain Evolution in Ants. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.742639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Human brain size nearly quadrupled in the six million years since Homo last shared a common ancestor with chimpanzees, but human brains are thought to have decreased in volume since the end of the last Ice Age. The timing and reason for this decrease is enigmatic. Here we use change-point analysis to estimate the timing of changes in the rate of hominin brain evolution. We find that hominin brains experienced positive rate changes at 2.1 and 1.5 million years ago, coincident with the early evolution of Homo and technological innovations evident in the archeological record. But we also find that human brain size reduction was surprisingly recent, occurring in the last 3,000 years. Our dating does not support hypotheses concerning brain size reduction as a by-product of body size reduction, a result of a shift to an agricultural diet, or a consequence of self-domestication. We suggest our analysis supports the hypothesis that the recent decrease in brain size may instead result from the externalization of knowledge and advantages of group-level decision-making due in part to the advent of social systems of distributed cognition and the storage and sharing of information. Humans live in social groups in which multiple brains contribute to the emergence of collective intelligence. Although difficult to study in the deep history of Homo, the impacts of group size, social organization, collective intelligence and other potential selective forces on brain evolution can be elucidated using ants as models. The remarkable ecological diversity of ants and their species richness encompasses forms convergent in aspects of human sociality, including large group size, agrarian life histories, division of labor, and collective cognition. Ants provide a wide range of social systems to generate and test hypotheses concerning brain size enlargement or reduction and aid in interpreting patterns of brain evolution identified in humans. Although humans and ants represent very different routes in social and cognitive evolution, the insights ants offer can broadly inform us of the selective forces that influence brain size.
Collapse
|
42
|
Wang Y, Zhao B, Choi J, Lee EA. Genomic approaches to trace the history of human brain evolution with an emerging opportunity for transposon profiling of ancient humans. Mob DNA 2021; 12:22. [PMID: 34663455 PMCID: PMC8525043 DOI: 10.1186/s13100-021-00250-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022] Open
Abstract
Transposable elements (TEs) significantly contribute to shaping the diversity of the human genome, and lines of evidence suggest TEs as one of driving forces of human brain evolution. Existing computational approaches, including cross-species comparative genomics and population genetic modeling, can be adapted for the study of the role of TEs in evolution. In particular, diverse ancient and archaic human genome sequences are increasingly available, allowing reconstruction of past human migration events and holding the promise of identifying and tracking TEs among other evolutionarily important genetic variants at an unprecedented spatiotemporal resolution. However, highly degraded short DNA templates and other unique challenges presented by ancient human DNA call for major changes in current experimental and computational procedures to enable the identification of evolutionarily important TEs. Ancient human genomes are valuable resources for investigating TEs in the evolutionary context, and efforts to explore ancient human genomes will potentially provide a novel perspective on the genetic mechanism of human brain evolution and inspire a variety of technological and methodological advances. In this review, we summarize computational and experimental approaches that can be adapted to identify and validate evolutionarily important TEs, especially for human brain evolution. We also highlight strategies that leverage ancient genomic data and discuss unique challenges in ancient transposon genomics.
Collapse
Affiliation(s)
- Yilan Wang
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | - Boxun Zhao
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - Jaejoon Choi
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
43
|
Dunbar RIM, Shultz S. The Infertility Trap: The Fertility Costs of Group-Living in Mammalian Social Evolution. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.634664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mammal social groups vary considerably in size from single individuals to very large herds. In some taxa, these groups are extremely stable, with at least some individuals being members of the same group throughout their lives; in other taxa, groups are unstable, with membership changing by the day. We argue that this variability in grouping patterns reflects a tradeoff between group size as a solution to environmental demands and the costs created by stress-induced infertility (creating an infertility trap). These costs are so steep that, all else equal, they will limit group size in mammals to ∼15 individuals. A species will only be able to live in larger groups if it evolves strategies that mitigate these costs. We suggest that mammals have opted for one of two solutions. One option (fission-fusion herding) is low cost but high risk; the other (bonded social groups) is risk-averse, but costly in terms of cognitive requirements.
Collapse
|
44
|
Smith AD, De Lillo C. Sources of variation in search and foraging: A theoretical perspective. Q J Exp Psychol (Hove) 2021; 75:197-231. [PMID: 34609229 DOI: 10.1177/17470218211050314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Search-the problem of exploring a space of alternatives to identify target goals-is a fundamental behaviour for many species. Although its foundation lies in foraging, most studies of human search behaviour have been directed towards understanding the attentional mechanisms that underlie the efficient visual exploration of two-dimensional (2D) scenes. With this review, we aim to characterise how search behaviour can be explained across a wide range of contexts, environments, spatial scales, and populations, both typical and atypical. We first consider the generality of search processes across psychological domains. We then review studies of interspecies differences in search. Finally, we explore in detail the individual and contextual variables that affect visual search and related behaviours in established experimental psychology paradigms. Despite the heterogeneity of the findings discussed, we identify that variations in control processes, along with the ability to regulate behaviour as a function of the structure of search space and the sampling processes adopted, to be central to explanations of variations in search behaviour. We propose a tentative theoretical model aimed at integrating these notions and close by exploring questions that remain unaddressed.
Collapse
Affiliation(s)
| | - Carlo De Lillo
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| |
Collapse
|
45
|
Hunt LT, Daw ND, Kaanders P, MacIver MA, Mugan U, Procyk E, Redish AD, Russo E, Scholl J, Stachenfeld K, Wilson CRE, Kolling N. Formalizing planning and information search in naturalistic decision-making. Nat Neurosci 2021; 24:1051-1064. [PMID: 34155400 DOI: 10.1038/s41593-021-00866-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 03/23/2021] [Indexed: 02/05/2023]
Abstract
Decisions made by mammals and birds are often temporally extended. They require planning and sampling of decision-relevant information. Our understanding of such decision-making remains in its infancy compared with simpler, forced-choice paradigms. However, recent advances in algorithms supporting planning and information search provide a lens through which we can explain neural and behavioral data in these tasks. We review these advances to obtain a clearer understanding for why planning and curiosity originated in certain species but not others; how activity in the medial temporal lobe, prefrontal and cingulate cortices may support these behaviors; and how planning and information search may complement each other as means to improve future action selection.
Collapse
Affiliation(s)
- L T Hunt
- Department of Psychiatry, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
| | - N D Daw
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, USA
| | - P Kaanders
- Department of Experimental Psychology, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - M A MacIver
- Center for Robotics and Biosystems, Department of Neurobiology, Department of Biomedical Engineering, Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - U Mugan
- Center for Robotics and Biosystems, Department of Neurobiology, Department of Biomedical Engineering, Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - E Procyk
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, Bron, France
| | - A D Redish
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - E Russo
- Department of Theoretical Neuroscience, Central Institute of Mental Health, Mannheim, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - J Scholl
- Department of Experimental Psychology, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | | | - C R E Wilson
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, Bron, France
| | - N Kolling
- Department of Psychiatry, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
| |
Collapse
|
46
|
Bennett MS. What Behavioral Abilities Emerged at Key Milestones in Human Brain Evolution? 13 Hypotheses on the 600-Million-Year Phylogenetic History of Human Intelligence. Front Psychol 2021; 12:685853. [PMID: 34393912 PMCID: PMC8358274 DOI: 10.3389/fpsyg.2021.685853] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/16/2021] [Indexed: 01/24/2023] Open
Abstract
This paper presents 13 hypotheses regarding the specific behavioral abilities that emerged at key milestones during the 600-million-year phylogenetic history from early bilaterians to extant humans. The behavioral, intellectual, and cognitive faculties of humans are complex and varied: we have abilities as diverse as map-based navigation, theory of mind, counterfactual learning, episodic memory, and language. But these faculties, which emerge from the complex human brain, are likely to have evolved from simpler prototypes in the simpler brains of our ancestors. Understanding the order in which behavioral abilities evolved can shed light on how and why our brains evolved. To propose these hypotheses, I review the available data from comparative psychology and evolutionary neuroscience.
Collapse
|
47
|
Brown JG. Ticks, Hair Loss, and Non-Clinging Babies: A Novel Tick-Based Hypothesis for the Evolutionary Divergence of Humans and Chimpanzees. Life (Basel) 2021; 11:435. [PMID: 34066043 PMCID: PMC8150933 DOI: 10.3390/life11050435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/12/2021] [Accepted: 04/30/2021] [Indexed: 02/06/2023] Open
Abstract
Human straight-legged bipedalism represents one of the earliest events in the evolutionary split between humans (Homo spp.) and chimpanzees (Pan spp.), although its selective basis is a mystery. A carrying-related hypothesis has recently been proposed in which hair loss within the hominin lineage resulted in the inability of babies to cling to their mothers, requiring mothers to walk upright to carry their babies. However, a question remains for this model: what drove the hair loss that resulted in upright walking? Observers since Darwin have suggested that hair loss in humans may represent an evolutionary strategy for defence against ticks. The aim of this review is to propose and evaluate a novel tick-based evolutionary hypothesis wherein forest fragmentation in hominin paleoenvironments created conditions that were favourable for tick proliferation, selecting for hair loss in hominins and grooming behaviour in chimpanzees as divergent anti-tick strategies. It is argued that these divergent anti-tick strategies resulted in different methods for carrying babies, driving the locomotor divergence of humans and chimpanzees.
Collapse
|
48
|
Talbot S, Gerdjikov T, De Lillo C. Two variations and one similarity in memory functions deployed by mice and humans to support foraging. Q J Exp Psychol (Hove) 2021; 75:245-259. [PMID: 33818203 DOI: 10.1177/17470218211010576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Assessing variations in cognitive function between humans and animals is vital for understanding the idiosyncrasies of human cognition and for refining animal models of human brain function and disease. We determined memory functions deployed by mice and humans to support foraging with a search task acting as a test battery. Mice searched for food from the top of poles within an open arena. Poles were divided into groups based on visual cues and baited according to different schedules. White and black poles were baited in alternate trials. Striped poles were never baited. The requirement of the task was to find all baits in each trial. Mice's foraging efficiency, defined as the number of poles visited before all baits were retrieved, improved with practice. Mice learnt to avoid visiting unbaited poles across trials (long-term memory) and revisits to poles within each trial (working memory). Humans tested with a virtual reality version of the task outperformed mice in foraging efficiency, working memory, and exploitation of the temporal pattern of rewards across trials. Moreover, humans, but not mice, reduced the number of possible movement sequences used to search the set of poles. For these measures, interspecies differences were maintained throughout the 3 weeks of testing. By contrast, long-term memory for never-rewarded poles was similar in mice and humans after the first week of testing. These results indicate that human cognitive functions relying on archaic brain structures may be adequately modelled in mice. Conversely, modelling in mice fluid skills likely to have developed specifically in primates requires caution.
Collapse
Affiliation(s)
- Spencer Talbot
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Todor Gerdjikov
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Carlo De Lillo
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| |
Collapse
|
49
|
Mixture models as a method for comparative sociality: social networks and demographic change in resident killer whales. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03006-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abstract
In studies of social behaviour, social bonds are usually inferred from rates of interaction or association. This approach has revealed many important insights into the proximate formation and ultimate function of animal social structures. However, it remains challenging to compare social structure between systems or time-points because extrinsic factors, such as sampling methodology, can also influence the observed rate of association. As a consequence of these methodological challenges, it is difficult to analyse how patterns of social association change with demographic processes, such as the death of key social partners. Here we develop and illustrate the use of binomial mixture models to quantitatively compare patterns of social association between networks. We then use this method to investigate how patterns of social preferences in killer whales respond to demographic change. Resident killer whales are bisexually philopatric, and both sexes stay in close association with their mother in adulthood. We show that mothers and daughters show reduced social association after the birth of the daughter’s first offspring, but not after the birth of an offspring to the mother. We also show that whales whose mother is dead associate more with their opposite sex siblings and with their grandmother than whales whose mother is alive. Our work demonstrates the utility of using mixture models to compare social preferences between networks and between species. We also highlight other potential uses of this method such as to identify strong social bonds in animal populations.
Significance statement
Comparing patters of social associations between systems, or between the same systems at different times, is challenging due to the confounding effects of sampling and methodological differences. Here we present a method to allow social associations to be robustly classified and then compared between networks using binomial mixture models. We illustrate this method by showing how killer whales change their patterns of social association in response to the birth of calves and the death of their mother. We show that after the birth of her calf, females associate less with their mother. We also show that whales’ whose mother is dead associate more with their opposite sex siblings and grandmothers than whales’ whose mother is alive. This clearly demonstrates how this method can be used to examine fine scale temporal processes in animal social systems.
Collapse
|
50
|
Amato KR, Chaves ÓM, Mallott EK, Eppley TM, Abreu F, Baden AL, Barnett AA, Bicca-Marques JC, Boyle SA, Campbell CJ, Chapman CA, De la Fuente MF, Fan P, Fashing PJ, Felton A, Fruth B, Fortes VB, Grueter CC, Hohmann G, Irwin M, Matthews JK, Mekonnen A, Melin AD, Morgan DB, Ostner J, Nguyen N, Piel AK, Pinacho-Guendulain B, Quintino-Arêdes EP, Razanaparany PT, Schiel N, Sanz CM, Schülke O, Shanee S, Souto A, Souza-Alves JP, Stewart F, Stewart KM, Stone A, Sun B, Tecot S, Valenta K, Vogel ER, Wich S, Zeng Y. Fermented food consumption in wild nonhuman primates and its ecological drivers. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 175:513-530. [PMID: 33650680 DOI: 10.1002/ajpa.24257] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Although fermented food use is ubiquitous in humans, the ecological and evolutionary factors contributing to its emergence are unclear. Here we investigated the ecological contexts surrounding the consumption of fruits in the late stages of fermentation by wild primates to provide insight into its adaptive function. We hypothesized that climate, socioecological traits, and habitat patch size would influence the occurrence of this behavior due to effects on the environmental prevalence of late-stage fermented foods, the ability of primates to detect them, and potential nutritional benefits. MATERIALS AND METHODS We compiled data from field studies lasting at least 9 months to describe the contexts in which primates were observed consuming fruits in the late stages of fermentation. Using generalized linear mixed-effects models, we assessed the effects of 18 predictor variables on the occurrence of fermented food use in primates. RESULTS Late-stage fermented foods were consumed by a wide taxonomic breadth of primates. However, they generally made up 0.01%-3% of the annual diet and were limited to a subset of fruit species, many of which are reported to have mechanical and chemical defenses against herbivores when not fermented. Additionally, late-stage fermented food consumption was best predicted by climate and habitat patch size. It was more likely to occur in larger habitat patches with lower annual mean rainfall and higher annual mean maximum temperatures. DISCUSSION We posit that primates capitalize on the natural fermentation of some fruits as part of a nutritional strategy to maximize periods of fruit exploitation and/or access a wider range of plant species. We speculate that these factors contributed to the evolutionary emergence of the human propensity for fermented foods.
Collapse
Affiliation(s)
- Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Óscar M Chaves
- Escuela de Biología, Universidad de Costa Rica, UCR, San José, Costa Rica
| | - Elizabeth K Mallott
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Timothy M Eppley
- Institute for Conservation Research, San Diego Zoo Global, San Diego, California, USA.,Department of Anthropology, Portland State University, Portland, Oregon, USA
| | - Filipa Abreu
- Department of Biology, Federal Rural University of Pernambuco, Recife, Pernambuco, Brazil
| | - Andrea L Baden
- Department of Anthropology, Hunter College of the City University of New York, New York, New York, USA.,The New York Consortium in Evolutionary Primatology (NYCEP), City University of New York, New York, New York, USA
| | - Adrian A Barnett
- Amazon Mammals Research Group, National Amazon Research Institute (INPA), Manaus, AM, Brazil & Department of. Zoology, Federal University of Pernambuco, Recife, Prince Edward Island, Brazil
| | - Julio Cesar Bicca-Marques
- Laboratório de Primatologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, RS, Brazil
| | - Sarah A Boyle
- Department of Biology, Rhodes College, Memphis, Tennessee, USA
| | - Christina J Campbell
- Department of Anthropology, California State University Northridge, Northridge, California, USA
| | - Colin A Chapman
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, George Washington University, Washington, District of Columbia, USA.,School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa.,Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, China
| | | | - Pengfei Fan
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Peter J Fashing
- Department of Anthropology and Environmental Studies Program, California State University Fullerton, Fullerton, California, USA.,Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Annika Felton
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences (SLU), Alnarp, Sweden
| | - Barbara Fruth
- Department of Human Behavior, Ecology and Culture, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany.,School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom.,Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| | - Vanessa B Fortes
- Laboratório de Primatologia, Departamento de Zootecnia e Ciências Biológicas, Universidade Federal de Santa Maria, Palmeira das Missões, RS, Brazil
| | - Cyril C Grueter
- School of Human Sciences, The University of Western Australia, Perth, Australia.,Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Perth, Australia
| | - Gottfried Hohmann
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Mitchell Irwin
- Department of Anthropology, Northern Illinois University, DeKalb, Illinois, USA
| | - Jaya K Matthews
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Perth, Australia.,Africa Research & Engagement Centre, The University of Western Australia, Crawley, Western Australia, Australia
| | - Addisu Mekonnen
- Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Canada
| | - David B Morgan
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, Illinois, USA
| | - Julia Ostner
- Department of Behavioral Ecology, University of Goettingen, Goettingen, Germany.,Research Group Primate Social Evolution, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| | - Nga Nguyen
- Department of Anthropology and Environmental Studies Program, California State University Fullerton, Fullerton, California, USA.,Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Alex K Piel
- Department of Anthropology, University College London, London, United Kingdom
| | - Braulio Pinacho-Guendulain
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana (UAM), Lerma, Mexico.,Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Oaxaca, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Erika Patricia Quintino-Arêdes
- Laboratório de Primatologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, RS, Brazil
| | - Patrick Tojotanjona Razanaparany
- Graduate School of Asian and African Area Studies, Kyoto University, Kyoto, Japan.,Department of Zoology and Animal Biodiversity, University of Antananarivo, Antananarivo, Madagascar
| | - Nicola Schiel
- Department of Biology, Federal Rural University of Pernambuco, Recife, Pernambuco, Brazil
| | - Crickette M Sanz
- Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri, USA.,Congo Program, Wildlife Conservation Society, Brazzaville, Congo
| | - Oliver Schülke
- Department of Behavioral Ecology, University of Goettingen, Goettingen, Germany.,Research Group Primate Social Evolution, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| | - Sam Shanee
- Neotropical Primate Conservation, Cornwall, United Kingdom
| | - Antonio Souto
- Departamento de Zoologia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - João Pedro Souza-Alves
- Departamento de Zoologia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Fiona Stewart
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Kathrine M Stewart
- Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| | - Anita Stone
- Biology Department, California Lutheran University, Thousand Oaks, California, USA
| | - Binghua Sun
- School of Resource and Environmental Engineering, Anhui University, Hefei, China
| | - Stacey Tecot
- School of Anthropology, University of Arizona, Tucson, Arizona, USA
| | - Kim Valenta
- Department of Anthropology, University of Florida, Gainesville, Florida, USA
| | - Erin R Vogel
- Department of Anthropology, Rutgers University, New Brunswick, New Jersey, USA
| | - Serge Wich
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Yan Zeng
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|