1
|
Teramoto N, Okada Y, Aburada N, Hayashi M, Ito J, Shirasuna K, Iwata H. Resveratrol intake by males increased the mitochondrial DNA copy number and telomere length of blastocysts derived from aged mice. J Reprod Dev 2024; 70:247-253. [PMID: 38945863 PMCID: PMC11310382 DOI: 10.1262/jrd.2024-043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
The present study examined whether male resveratrol intake affected mitochondrial DNA copy number (mt-cn) and telomere length (TL) in blastocysts fathered by young and aged male mice. C57BL/6N male mice supplied with water or water containing 0.1 mM resveratrol were used for embryo production at 14-23 and 48-58 weeks of age. Two-cell-stage embryos were collected from the oviducts of superovulated female mice (8-15 weeks old) and cultured for 3 days until the blastocyst stage. Mt-cn and TL levels were measured by real-time polymerase chain reaction. Resveratrol intake did not affect body weight or water consumption. Resveratrol intake increased the expression levels of SIRT1 in the liver, the antioxidative ability of serum, and extended TL in the heart, whereas there was no significant difference in mt-cn in the heart or TL in sperm. The rate of blastocyst development was significantly lower in aged male mice than in younger mice, and resveratrol intake increased the total number of blastocysts derived from both young and aged males. Resveratrol intake did not affect mt-cn or TL in blastomeres of blastocyst-stage embryos derived from young mice, but significantly increased both mt-cn and TL in blastomeres of blastocysts derived from aged fathers. In conclusion, resveratrol intake increased mt-cn and TL levels in blastocysts derived from aged male mice.
Collapse
Affiliation(s)
- Noko Teramoto
- Department of Animal Science, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Yuri Okada
- Department of Animal Science, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Nao Aburada
- Department of Animal Science, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Masamune Hayashi
- Department of Animal Science, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Jun Ito
- Department of Animal Science, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Komei Shirasuna
- Department of Animal Science, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Hisataka Iwata
- Department of Animal Science, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| |
Collapse
|
2
|
Ng GYQ, Hande MP. Use of peptide nucleic acid probe to determine telomere dynamics in improving chromosome analysis in genetic toxicology studies. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 897:503773. [PMID: 39054004 DOI: 10.1016/j.mrgentox.2024.503773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/01/2024] [Accepted: 05/22/2024] [Indexed: 07/27/2024]
Abstract
Genetic toxicology, strategically located at the intersection of genetics and toxicology, aims to demystify the complex interplay between exogenous agents and our genetic blueprint. Telomeres, the protective termini of chromosomes, play instrumental roles in cellular longevity and genetic stability. Traditionally karyotyping and fluorescence in situ hybridisation (FISH), have been indispensable tools for chromosomal analysis following exposure to genotoxic agents. However, their scope in discerning nuanced molecular dynamics is limited. Peptide Nucleic Acids (PNAs) are synthetic entities that embody characteristics of both proteins and nucleic acids and have emerged as potential game-changers. This perspective report comprehensively examines the vast potential of PNAs in genetic toxicology, with a specific emphasis on telomere research. PNAs' superior resolution and precision make them a favourable choice for genetic toxicological assessments. The integration of PNAs in contemporary analytical workflows heralds a promising evolution in genetic toxicology, potentially revolutionizing diagnostics, prognostics, and therapeutic avenues. In this timely review, we attempted to assess the limitations of current PNA-FISH methodology and recommend refinements.
Collapse
Affiliation(s)
- Gavin Yong Quan Ng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Manoor Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
3
|
Behdarvandian P, Nasr-Esfahani A, Tavalaee M, Pashaei K, Naderi N, Darmishonnejad Z, Hallak J, Aitken RJ, Gharagozloo P, Drevet JR, Nasr-Esfahani MH. Sperm chromatin structure assay (SCSA ®) and flow cytometry-assisted TUNEL assay provide a concordant assessment of sperm DNA fragmentation as a function of age in a large cohort of approximately 10,000 patients. Basic Clin Androl 2023; 33:33. [PMID: 38030992 PMCID: PMC10688019 DOI: 10.1186/s12610-023-00208-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/19/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Sperm DNA integrity is increasingly seen as a critical characteristic determining reproductive success, both in natural reproduction and in assisted reproductive technologies (ART). Despite this awareness, sperm DNA and nuclear integrity tests are still not part of routine examinations for either infertile men or fertile men wishing to assess their reproductive capacity. This is not due to the unavailability of DNA and sperm nuclear integrity tests. On the contrary, several relevant but distinct tests are available and have been used in many clinical trials, which has led to conflicting results and confusion. The reasons for this are mainly the lack of standardization between different clinics and between the tests themselves. In addition, the small number of samples analyzed in these trials has often weakened the value of the analyses performed. In the present work, we used a large cohort of semen samples, covering a wide age range, which were simultaneously evaluated for sperm DNA fragmentation (SDF) using two of the most frequently used SDF assays, namely the TUNEL assay and the sperm chromatin structure assay (SCSA®). At the same time, as standard seminal parameters (sperm motility, sperm morphology, sperm count) were available for these samples, correlations between age, SDF and conventional seminal parameters were analyzed. RESULTS We show that the SCSA® and TUNEL assessments of SDF produce concordant data. However, the SDF assessed by TUNEL is systematically lower than that assessed by SCSA®. Regardless of the test used, the SDF increases steadily during aging, while the HDS parameter (High DNA stainability assessed via SCSA®) remains unchanged. In the cohort analyzed, conventional sperm parameters do not seem to discriminate with aging. Only sperm volume and motility were significantly lower in the oldest age group analyzed [50-59 years of age]. CONCLUSIONS In the large cohort analyzed, SDF is an age-dependent parameter, increasing linearly with aging. The SCSA® assessment of SDF and the flow cytometry-assisted TUNEL assessment are well correlated, although TUNEL is less sensitive than SCSA®. This difference in sensitivity should be taken into account in the final assessment of the true level of fragmentation of the sperm nucleus of a given sample. The classical sperm parameters (motility, morphology, sperm count) do not change dramatically with age, making them inadequate to assess the fertility potential of an individual.
Collapse
Affiliation(s)
- Paria Behdarvandian
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, 8165131378, Iran
| | - Ali Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, 8165131378, Iran.
- Isfahan Fertility and Infertility Center, Isfahan, Iran.
| | - Marziyeh Tavalaee
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, 8165131378, Iran
| | - Kosar Pashaei
- Isfahan Fertility and Infertility Center, Isfahan, Iran
| | - Nushin Naderi
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, 8165131378, Iran
| | - Zahra Darmishonnejad
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, 8165131378, Iran
| | - Jorge Hallak
- Androscience, Science and Innovation Center in Andrology and High-Complex Clinical and Research Andrology Laboratory, Sao Paulo, 04534-011, Brazil
| | - Robert J Aitken
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | | | - Joël R Drevet
- Faculty of Medicine, Université Clermont Auvergne, GReD Institute, CRBC, 63000, Clermont-Ferrand, France.
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, 8165131378, Iran.
- Isfahan Fertility and Infertility Center, Isfahan, Iran.
| |
Collapse
|
4
|
Shi Q, Qi K. Developmental origins of health and disease: Impact of paternal nutrition and lifestyle. Pediatr Investig 2023; 7:111-131. [PMID: 37324600 PMCID: PMC10262906 DOI: 10.1002/ped4.12367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/29/2023] [Indexed: 09/20/2023] Open
Abstract
Most epidemiological and experimental studies have focused on maternal influences on offspring's health. The impact of maternal undernutrition, overnutrition, hypoxia, and stress is linked to adverse offspring outcomes across a range of systems including cardiometabolic, respiratory, endocrine, and reproduction among others. During the past decade, it has become evident that paternal environmental factors are also linked to the development of diseases in offspring. In this article, we aim to outline the current understanding of the impact of male health and environmental exposure on offspring development, health, and disease and explore the mechanisms underlying the paternal programming of offspring health. The available evidence suggests that poor paternal pre-conceptional nutrition and lifestyle, and advanced age can increase the risk of negative outcomes in offspring, via both direct (genetic/epigenetic) and indirect (maternal uterine environment) effects. Beginning at preconception, and during utero and the early life after birth, cells acquire an epigenetic memory of the early exposure which can be influential across the entire lifespan and program a child's health. Potentially not only mothers but also fathers should be advised that maintaining a healthy diet and lifestyle is important to improve offspring health as well as the parental health status. However, the evidence is mostly based on animal studies, and well-designed human studies are urgently needed to verify findings from animal data.
Collapse
Affiliation(s)
- Qiaoyu Shi
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| | - Kemin Qi
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| |
Collapse
|
5
|
Liu C, Chen YJ, Sun B, Chen HG, Mustieles V, Messerlian C, Sun Y, Meng TQ, Lu WQ, Pan XF, Xiong CL, Hou J, Wang YX. Blood trihalomethane concentrations in relation to sperm mitochondrial DNA copy number and telomere length among 958 healthy men. ENVIRONMENTAL RESEARCH 2023; 216:114737. [PMID: 36372149 DOI: 10.1016/j.envres.2022.114737] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND In animal and human studies, exposure to trihalomethanes (THMs) has been associated with reduced semen quality. However, the underlying mechanisms remain poorly understood. OBJECTIVE To investigate the associations of blood THM concentrations with sperm mitochondrial DNA copy number (mtDNAcn) and telomere length (TL) among healthy men. METHODS We recruited 958 men who volunteered as potential sperm donors. A single blood sample was collected from each participant at recruitment and measured for chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM) concentrations. Within a 90-day follow-up, the last semen sample provided by each participant was quantified for sperm mtDNAcn and TL. We used multivariable linear regression models to assess the associations between blood THM concentrations and sperm mtDNAcn and TL. We also performed stratified analyses according to the time intervals between baseline blood THM determinations and semen collection (i.e., 0-9, 10-14, 15-69, or >69 days) to explore potential windows of susceptibility. RESULTS After adjusting for potential confounders, we found inverse associations between quartiles (or categories) of blood TBM, brominated THM (Br-THM, the sum of BDCM, DBCM, and TBM), and total THM (TTHM, the sum of all four THMs) concentrations and sperm mtDNAcn (all P for trend≤0.03). Besides, we found inverse associations between quartiles of blood TCM, Br-THM, chlorinated THM (Cl-THM, the sum of TCM, BDCM, and DBCM), and TTHM concentrations and sperm TL (all P for trend<0.10). Stratified analyses showed stronger associations between Br-THM concentrations and sperm mtDNAcn determined 15-69 days since baseline exposure determinations, and between blood TCM and TTHM concentrations and sperm TL determined >69 days since baseline exposure determinations. CONCLUSION Exposure to THMs may be associated with sperm mitochondrial and telomeric dysfunction.
Collapse
Affiliation(s)
- Chong Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Ying-Jun Chen
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, PR China
| | - Bin Sun
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Heng-Gui Chen
- Clinical Research and Translation Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, PR China
| | - Vicente Mustieles
- University of Granada, Center for Biomedical Research (CIBM); Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Madrid, Spain
| | - Carmen Messerlian
- Department of Epidemiology and Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yang Sun
- Department of Epidemiology and Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tian-Qing Meng
- Hubei Province Human Sperm Bank, Center of Reproductive Medicine, Wuhan Tongji Reproductive Medicine Hospital, Wuhan, PR China
| | - Wen-Qing Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xiong-Fei Pan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, PR China
| | - Chen-Liang Xiong
- Hubei Province Human Sperm Bank, Center of Reproductive Medicine, Wuhan Tongji Reproductive Medicine Hospital, Wuhan, PR China.
| | - Jian Hou
- Department of Epidemiology and Biostatistics, School of Public Health, Zhengzhou University, Zhengzhou, PR China.
| | - Yi-Xin Wang
- Department of Epidemiology and Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
6
|
Raftopoulou C, Paltoglou G, Charmandari E. Association between Telomere Length and Pediatric Obesity: A Systematic Review. Nutrients 2022; 14:nu14061244. [PMID: 35334902 PMCID: PMC8949519 DOI: 10.3390/nu14061244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 12/10/2022] Open
Abstract
Objective: Telomere length (TL) is a robust marker of biological aging, and increased telomere attrition is noted in adults with obesity. The primary objective of this systematic review was to summarize current knowledge on the effects of childhood obesity in TL. The secondary objective was to assess the effect of weight management interventions in TL. Methods: The following databases were searched: PubMed, Scopus, Web of Science and Heal-link.gr from inception to September 2021. The search was performed using the following combinations of terms: “telomer*” [All Fields] AND (“length” [All Fields] OR “lengths” [All Fields]) AND “obes*” [All Fields] AND (“child*” [All Fields] OR “adolescen*” [All Fields]). Results: A total of 16 original articles were included in this systematic review. Eleven of them were cross-sectional and five were lifestyle interventions. Conclusions: There was a tendency towards a negative association between childhood obesity and TL. Life-style interventions in children have been associated with increased TL peripherally, indicating a possible association of the redistribution of younger cells in the periphery with the favorable effect of these interventions. Further prospective studies with larger sample sizes that employ other markers of cell aging would potentially elucidate this important mechanistic relation.
Collapse
Affiliation(s)
- Christina Raftopoulou
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | - George Paltoglou
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, Aghia Sophia Children’s Hospital, 11527 Athens, Greece;
| | - Evangelia Charmandari
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, Aghia Sophia Children’s Hospital, 11527 Athens, Greece;
- Correspondence: ; Tel./Fax: +30-213-2013-384
| |
Collapse
|
7
|
Gorenjak V, Petrelis AM, Stathopoulou MG, Visvikis-Siest S. Telomere length determinants in childhood. Clin Chem Lab Med 2021; 58:162-177. [PMID: 31465289 DOI: 10.1515/cclm-2019-0235] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/30/2019] [Indexed: 01/16/2023]
Abstract
Telomere length (TL) is a dynamic marker that reflects genetic predispositions together with the environmental conditions of an individual. It is closely related to longevity and a number of pathological conditions. Even though the extent of telomere research in children is limited compared to that of adults, there have been a substantial number of studies providing first insights into child telomere biology and determinants. Recent discoveries revealed evidence that TL is, to a great extent, determined already in childhood and that environmental conditions in adulthood have less impact than first believed. Studies have demonstrated that large inter-individual differences in TL are present among newborns and are determined by diverse factors that influence intrauterine development. The first years of child growth are associated with high cellular turnover, which results in fast shortening of telomeres. The rate of telomere loss becomes stable in early adulthood. In this review article we summarise the existing knowledge on telomere dynamics during the first years of childhood, highlighting the conditions that affect newborn TL. We also warn about the knowledge gaps that should be filled to fully understand the regulation of telomeres, in order to implement them as biomarkers for use in diagnostics or treatment.
Collapse
Affiliation(s)
| | | | | | - Sophie Visvikis-Siest
- University of Lorraine, Inserm, IGE-PCV, Nancy, France.,Department of Internal Medicine and Geriatrics, CHU Technopôle Nancy-Brabois, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
8
|
Nudelman KNH, Lin J, Lane KA, Nho K, Kim S, Faber KM, Risacher SL, Foroud TM, Gao S, Davis JW, Weiner MW, Saykin AJ. Telomere Shortening in the Alzheimer's Disease Neuroimaging Initiative Cohort. J Alzheimers Dis 2020; 71:33-43. [PMID: 31322561 DOI: 10.3233/jad-190010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Although shorter telomeres have been associated with Alzheimer's disease (AD), it is unclear whether longitudinal change in telomere length is associated with AD progression. OBJECTIVE To investigate the association of telomere length change with AD diagnosis and progression. METHODS In 653 individuals from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort, T/S ratio (telomere versus single copy gene), a proxy of telomere length, was measured for up to five visits per participant (N = 1918 samples post-QC) using quantitative PCR (qPCR). T/S ratio was adjusted for batch effects and DNA storage time. A mixed effects model was used to evaluate association of telomere length with AD diagnostic group and interaction of age and diagnosis. Another mixed effects model was used to compare T/S ratio changes pre- to post-conversion to MCI or AD to telomere change in participants with stable diagnoses. RESULTS Shorter telomeres were associated with older age (Effect Size (ES) = -0.23) and male sex (ES = -0.26). Neither baseline T/S ratio (ES = -0.036) nor T/S ratio change (ES = 0.046) differed significantly between AD diagnostic groups. MCI/AD converters showed greater, but non-significant, telomere shortening compared to non-converters (ES = -0.186). CONCLUSIONS Although AD compared to controls showed small, non-significant effects for baseline T/S ratio and T/S ratio shortening, we did observe a larger, though still non-significant effect for greater telomere shortening in converters compared to non-converters. Although our results do not support telomere shortening as a robust biomarker of AD progression, further investigation in larger samples and for subgroups of participants may be informative.
Collapse
Affiliation(s)
- Kelly N H Nudelman
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.,National Centralized Repository for Alzheimer's Disease and Related Dementias (NCRAD), Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Kathleen A Lane
- Biostatistics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kwangsik Nho
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA.,Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sungeun Kim
- Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.,Electrical and Computer Engineering, SUNY Oswego, Oswego, NY, USA
| | - Kelley M Faber
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.,National Centralized Repository for Alzheimer's Disease and Related Dementias (NCRAD), Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shannon L Risacher
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA.,Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tatiana M Foroud
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.,National Centralized Repository for Alzheimer's Disease and Related Dementias (NCRAD), Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sujuan Gao
- Biostatistics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Justin W Davis
- Genomics Research Center, AbbVie, North Chicago, IL, USA
| | - Michael W Weiner
- Center for Imaging of Neurodegenerative Diseases, Department of Radiology, San Francisco VA Medical Center/University of California San Francisco, San Francisco, CA, USA
| | - Andrew J Saykin
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA.,Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
9
|
Sánchez-Montes G, Martínez-Solano Í, Díaz-Paniagua C, Vilches A, Ariño AH, Gomez-Mestre I. Telomere attrition with age in a wild amphibian population. Biol Lett 2020; 16:20200168. [PMID: 32673551 PMCID: PMC7423040 DOI: 10.1098/rsbl.2020.0168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022] Open
Abstract
Telomere shortening with age has been documented in many organisms, but few studies have reported telomere length measurements in amphibians, and no information is available for growth after metamorphosis, nor in wild populations. We provide both cross-sectional and longitudinal evidence of net telomere attrition with age in a wild amphibian population of natterjack toads (Epidalea calamita). Based on age-estimation by skeletochronology and qPCR telomere length measurements in the framework of an individual-based monitoring programme, we confirmed telomere attrition in recaptured males. Our results support that toads experience telomere attrition throughout their ontogeny, and that most attrition occurs during the first 1-2 years. We did not find associations between telomere length and inbreeding or body condition. Our results on telomere length dynamics under natural conditions confirm telomere shortening with age in amphibians and provide quantification of wide telomere length variation within and among age-classes in a wild breeding population.
Collapse
Affiliation(s)
- Gregorio Sánchez-Montes
- Museo Nacional de Ciencias Naturales, CSIC, c/ José Gutiérrez Abascal, 2, 28006 Madrid, Spain
| | - Íñigo Martínez-Solano
- Museo Nacional de Ciencias Naturales, CSIC, c/ José Gutiérrez Abascal, 2, 28006 Madrid, Spain
| | - Carmen Díaz-Paniagua
- Ecology, Evolution, and Development Group, Doñana Biological Station, CSIC, c/ Américo Vespucio 26, 41092 Seville, Spain
| | - Antonio Vilches
- Department of Environmental Biology, University of Navarra, c/ Irunlarrea, 1, 31008 Pamplona, Spain
| | - Arturo H. Ariño
- Department of Environmental Biology, University of Navarra, c/ Irunlarrea, 1, 31008 Pamplona, Spain
| | - Ivan Gomez-Mestre
- Ecology, Evolution, and Development Group, Doñana Biological Station, CSIC, c/ Américo Vespucio 26, 41092 Seville, Spain
| |
Collapse
|
10
|
Srinivas N, Rachakonda S, Kumar R. Telomeres and Telomere Length: A General Overview. Cancers (Basel) 2020; 12:E558. [PMID: 32121056 PMCID: PMC7139734 DOI: 10.3390/cancers12030558] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
Telomeres are highly conserved tandem nucleotide repeats that include proximal double-stranded and distal single-stranded regions that in complex with shelterin proteins afford protection at chromosomal ends to maintain genomic integrity. Due to the inherent limitations of DNA replication and telomerase suppression in most somatic cells, telomeres undergo age-dependent incremental attrition. Short or dysfunctional telomeres are recognized as DNA double-stranded breaks, triggering cells to undergo replicative senescence. Telomere shortening, therefore, acts as a counting mechanism that drives replicative senescence by limiting the mitotic potential of cells. Telomere length, a complex hereditary trait, is associated with aging and age-related diseases. Epidemiological data, in general, support an association with varying magnitudes between constitutive telomere length and several disorders, including cancers. Telomere attrition is also influenced by oxidative damage and replicative stress caused by genetic, epigenetic, and environmental factors. Several single nucleotide polymorphisms at different loci, identified through genome-wide association studies, influence inter-individual variation in telomere length. In addition to genetic factors, environmental factors also influence telomere length during growth and development. Telomeres hold potential as biomarkers that reflect the genetic predisposition together with the impact of environmental conditions and as targets for anti-cancer therapies.
Collapse
Affiliation(s)
| | | | - Rajiv Kumar
- Division of Functional Genome Analysis, German Cancer Research Center, Im Neunheimer Feld 580, 69120 Heidelberg, Germany; (N.S.); (S.R.)
| |
Collapse
|
11
|
Chahine MN, Toupance S, El-Hakim S, Labat C, Gautier S, Moussallem T, Yared P, Asmar R, Benetos A. Telomere length and age-dependent telomere attrition: the blood-and-muscle model. Can J Physiol Pharmacol 2019; 97:328-334. [DOI: 10.1139/cjpp-2018-0582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Short telomere length (TL) is associated with atherosclerotic cardiovascular disease (ACVD) and other age-related diseases. It is unclear whether these associations originate from having inherently short TL or a faster TL attrition before or during disease development. We proposed the blood-and-muscle model to assess TL dynamics throughout life course. Our objective was to measure TL in leukocytes (LTL) and in skeletal muscle (MTL), which served as a proxy of TL at birth. The delta (MTL–LTL) represented life-long telomere attrition. Blood draws and skeletal muscle biopsies were performed on 35 Lebanese individuals undergoing surgery. Following DNA extraction, LTL and MTL were measured by Southern blot. In every individual aged between 30 and 85 years, MTL was longer than LTL. With age, MTL and LTL decreased, but the delta (MTL–LTL) increased by 14 bp/year. We validated the blood-and-muscle model that allowed us to identify TL, TL at birth, and lifelong TL attrition in a cross-sectional study. This model can be used in larger cross-sectional studies to evaluate the association of telomere dynamics with age-related diseases onset and progression.
Collapse
Affiliation(s)
- Mirna N. Chahine
- Foundation-Medical Research Institutes, Beirut, Lebanon
- Faculty of Medical Sciences, Lebanese University, Hadath, Lebanon
| | - Simon Toupance
- Université de Lorraine, Inserm, DCAC, F-54000 Nancy, France
- Université de Lorraine, CHRU-Nancy, Pôle “Maladies du Vieillissement, Gérontologie et Soins Palliatifs”, F-54000, France
- Nancyclotep-GIE, F-54000 Nancy, France
| | - Sandy El-Hakim
- Faculty of Public Health II, Lebanese University, Fanar, Lebanon
| | - Carlos Labat
- Université de Lorraine, Inserm, DCAC, F-54000 Nancy, France
| | - Sylvie Gautier
- Université de Lorraine, CHRU-Nancy, Pôle “Maladies du Vieillissement, Gérontologie et Soins Palliatifs”, F-54000, France
| | | | - Pierre Yared
- Faculty of Medical Sciences, Lebanese University, Hadath, Lebanon
| | - Roland Asmar
- Foundation-Medical Research Institutes, Beirut, Lebanon
| | - Athanase Benetos
- Université de Lorraine, Inserm, DCAC, F-54000 Nancy, France
- Université de Lorraine, CHRU-Nancy, Pôle “Maladies du Vieillissement, Gérontologie et Soins Palliatifs”, F-54000, France
| |
Collapse
|
12
|
Epigenetic inheritance of telomere length in wild birds. PLoS Genet 2019; 15:e1007827. [PMID: 30763308 PMCID: PMC6375570 DOI: 10.1371/journal.pgen.1007827] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/12/2018] [Indexed: 02/07/2023] Open
Abstract
Telomere length (TL) predicts health and survival across taxa. Variation in TL between individuals is thought to be largely of genetic origin, but telomere inheritance is unusual, because zygotes already express a TL phenotype, the TL of the parental gametes. Offspring TL changes with paternal age in many species including humans, presumably through age-related TL changes in sperm, suggesting an epigenetic inheritance mechanism. However, present evidence is based on cross-sectional analyses, and age at reproduction is confounded with between-father variation in TL. Furthermore, the quantitative importance of epigenetic TL inheritance is unknown. Using longitudinal data of free-living jackdaws Corvus monedula, we show that erythrocyte TL of subsequent offspring decreases with parental age within individual fathers, but not mothers. By cross-fostering eggs, we confirmed the paternal age effect to be independent of paternal age dependent care. Epigenetic inheritance accounted for a minimum of 34% of the variance in offspring TL that was explained by paternal TL. This is a minimum estimate, because it ignores the epigenetic component in paternal TL variation and sperm TL heterogeneity within ejaculates. Our results indicate an important epigenetic component in the heritability of TL with potential consequences for offspring fitness prospects.
Collapse
|
13
|
Bauch C, Boonekamp JJ, Korsten P, Mulder E, Verhulst S. Epigenetic inheritance of telomere length in wild birds. PLoS Genet 2019; 15:e1007827. [PMID: 30763308 DOI: 10.1101/284208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/12/2018] [Indexed: 05/25/2023] Open
Abstract
Telomere length (TL) predicts health and survival across taxa. Variation in TL between individuals is thought to be largely of genetic origin, but telomere inheritance is unusual, because zygotes already express a TL phenotype, the TL of the parental gametes. Offspring TL changes with paternal age in many species including humans, presumably through age-related TL changes in sperm, suggesting an epigenetic inheritance mechanism. However, present evidence is based on cross-sectional analyses, and age at reproduction is confounded with between-father variation in TL. Furthermore, the quantitative importance of epigenetic TL inheritance is unknown. Using longitudinal data of free-living jackdaws Corvus monedula, we show that erythrocyte TL of subsequent offspring decreases with parental age within individual fathers, but not mothers. By cross-fostering eggs, we confirmed the paternal age effect to be independent of paternal age dependent care. Epigenetic inheritance accounted for a minimum of 34% of the variance in offspring TL that was explained by paternal TL. This is a minimum estimate, because it ignores the epigenetic component in paternal TL variation and sperm TL heterogeneity within ejaculates. Our results indicate an important epigenetic component in the heritability of TL with potential consequences for offspring fitness prospects.
Collapse
Affiliation(s)
- Christina Bauch
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
| | - Jelle J Boonekamp
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Peter Korsten
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
| | - Ellis Mulder
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
14
|
Monaghan P, Eisenberg DTA, Harrington L, Nussey D. Understanding diversity in telomere dynamics. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2016.0435. [PMID: 29335374 DOI: 10.1098/rstb.2016.0435] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2017] [Indexed: 12/13/2022] Open
Affiliation(s)
- Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - Dan T A Eisenberg
- Department of Anthropology, University of Washington, 314 Denny Hall, Box 353100 Seattle, WA 98195-3100, USA
| | - Lea Harrington
- Départemente de Médecine, Institut de recherche en immunologie et en cancérologie, Université de Montréal, 2950 chemin de Polytechnique, Montréal, Québec, Canada H3T 1J4
| | - Dan Nussey
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Labs, The King's Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| |
Collapse
|
15
|
Horvath K, Eisenberg D, Stone R, Anderson J, Kark J, Aviv A. Paternal Age and Transgenerational Telomere Length Maintenance: A Simulation Model. Sci Rep 2019; 9:20. [PMID: 30631124 PMCID: PMC6328556 DOI: 10.1038/s41598-018-36923-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 11/23/2018] [Indexed: 02/07/2023] Open
Abstract
Telomere length (TL) in offspring is positively correlated with paternal age at the time of the offspring conception. The paternal-age-at-conception (PAC) effect on TL is puzzling, and its biological implication at the population level is unknown. Using a probabilistic model of transgenerational TL and population dynamics, we simulated the effect of PAC on TL in individuals over the course of 1,000 years. Findings suggest a key role for an isometric PAC midpoint (PACmp) in modulating TL across generations, such that offspring conceived by males younger than the isometric PACmp have comparatively short telomeres, while offspring conceived by males older than the isometric PACmp have comparatively long telomeres. We further show that when cancer incidence escalates, the average PAC drops below the isometric PACmp and transgenerational adaptation to cancer ensues through TL shortening. We propose that PAC serves to maintain an optimal TL across generations.
Collapse
Affiliation(s)
- K Horvath
- Center of Human Development and Aging, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, United States of America
| | - D Eisenberg
- Department of Anthropology, and Center for Studies in Demography and Ecology, University of Washington, Seattle, Washington, United States of America
| | - R Stone
- Center of Human Development and Aging, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, United States of America
| | - J Anderson
- University of Washington, School of Aquatic and Fishery Sciences, Seattle, Washington, United States of America
| | - J Kark
- Hebrew University-Hadassah School of Public Health and Community Medicine, Jerusalem, Israel
| | - A Aviv
- Center of Human Development and Aging, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, United States of America.
| |
Collapse
|
16
|
Mitochondria, its DNA and telomeres in ageing and human population. Biogerontology 2018; 19:189-208. [DOI: 10.1007/s10522-018-9748-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/23/2018] [Indexed: 12/11/2022]
|