1
|
Chau VQ, Kolb AW, Miller DL, Yannuzzi NA, Brandt CR. Phylogenetic and Genomic Characterization of Whole Genome Sequences of Ocular Herpes Simplex Virus Type 1 Isolates Identifies Possible Virulence Determinants in Humans. Invest Ophthalmol Vis Sci 2023; 64:16. [PMID: 37450309 DOI: 10.1167/iovs.64.10.16] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Purpose There are limited data on the prevalence and genetic diversity of herpes simplex virus type 1 (HSV-1) virulence genes in ocular isolates. Here, we sequenced 36 HSV-1 ocular isolates, collected by the Bascom Palmer Eye Institute, a university-based eye hospital, from three different ocular anatomical sites (conjunctiva, cornea, and eyelid) and carried out a genomic and phylogenetic analyses. Methods The PacBio Sequel II long read platform was used for genome sequencing. Phylogenetic analysis and genomic analysis were performed to help better understand genetic variability among common virulence genes in ocular herpetic disease. Results A phylogenetic network generated using the genome sequences of the 36 Bascom Palmer ocular isolates, plus 174 additional strains showed that ocular isolates do not group together phylogenetically. Analysis of the thymidine kinase and DNA polymerase protein sequences from the Bascom Palmer isolates showed multiple novel single nucleotide polymorphisms, but only one, BP-K14 encoded a known thymidine kinase acyclovir resistance mutation. An analysis of the multiple sequence alignment comprising the 51 total ocular isolates versus 159 nonocular strains detected several possible single nucleotide polymorphisms in HSV-1 genes that were found significantly more often in the ocular isolates. These genes included UL6, gM, VP19c, VHS, gC, VP11/12, and gG. Conclusions There does not seem to be a specific genetic feature of viruses causing ocular infection. The identification of novel and common recurrent polymorphisms may help to understand the drivers of herpetic pathogenicity and specific factors that may influence the virulence of ocular disease.
Collapse
Affiliation(s)
- Viet Q Chau
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States
| | - Aaron W Kolb
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Wisconsin, United States
| | - Darlene L Miller
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States
| | - Nicolas A Yannuzzi
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States
| | - Curtis R Brandt
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Wisconsin, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Wisconsin, United States
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Wisconsin, United States
| |
Collapse
|
2
|
Lewin AC, Coghill LM, McLellan GJ, Bentley E, Kousoulas KG. Genomic analysis for virulence determinants in feline herpesvirus type-1 isolates. Virus Genes 2020; 56:49-57. [PMID: 31776852 PMCID: PMC7027352 DOI: 10.1007/s11262-019-01718-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/21/2019] [Indexed: 12/27/2022]
Abstract
Feline herpesvirus type 1 (FHV-1) is a widespread cause of respiratory and ocular disease in domestic cats. A spectrum of disease severity is observed in host animals, but there has been limited prior investigation into viral genome factors which could be responsible. Stocks of FHV-1 were established from oropharyngeal swabs obtained from twenty-five cats with signs of infection housed in eight animal shelters around the USA. A standardized numerical host clinical disease severity scoring scheme was used for each cat from which an isolate was obtained. Illumina MiSeq was used to sequence the genome of each isolate. Genomic homogeneity among isolates was relatively high. A general linear model for fixed effects determined that only two synonymous single nucleotide polymorphisms across two genes (UL37/39) in the same isolate (from one host animal with a low disease severity score) were significantly associated (p ≤ 0.05) with assigned host respiratory and total disease severity score. No variants in any isolate were found to be significantly associated with assigned host ocular disease severity score. A concurrent analysis of missense mutations among the viral isolates identified three genes as being primarily involved in the observed genomic variation, but none were significantly associated with host disease severity scores. An ancestral state likelihood reconstruction was performed and determined that there was no evidence of a connection between host disease severity score and viral evolutionary state. We conclude from our results that the spectrum of host disease severity observed with FHV-1 is unlikely to be primarily related to viral genomic variations, and is instead due to host response and/or other factors.
Collapse
Affiliation(s)
- Andrew C Lewin
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA, 70803, USA.
| | - Lyndon M Coghill
- Center for Computation and Technology, Louisiana State University, 340 E Parker Boulevard, Baton Rouge, LA, 70808, USA
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| | - Gillian J McLellan
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI, 53706, USA
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI, 53706, USA
| | - Ellison Bentley
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI, 53706, USA
| | - Konstantin G Kousoulas
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| |
Collapse
|
3
|
Egan KP, Allen AG, Wigdahl B, Jennings SR. Modeling the pathology, immune responses, and kinetics of HSV-1 replication in the lip scarification model. Virology 2018; 514:124-133. [DOI: 10.1016/j.virol.2017.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/01/2017] [Accepted: 11/13/2017] [Indexed: 12/21/2022]
|
4
|
Effects of Acyclovir and IVIG on Behavioral Outcomes after HSV1 CNS Infection. Behav Neurol 2017; 2017:5238402. [PMID: 29358844 PMCID: PMC5735307 DOI: 10.1155/2017/5238402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/06/2017] [Accepted: 09/16/2017] [Indexed: 12/27/2022] Open
Abstract
Herpes simplex virus 1 (HSV) encephalitis (HSE) has serious neurological complications, involving behavioral and cognitive impairments that cause significant morbidity and a reduced quality of life. We showed that HSE results from dysregulated central nervous system (CNS) inflammatory responses. We hypothesized that CNS inflammation is casually involved in behavioral abnormalities after HSE and that treatment with ACV and pooled human immunoglobulin (IVIG), an immunomodulatory drug, would improve outcomes compared to mice treated with phosphate buffered saline (PBS) or ACV alone. Anxiety levels were high in HSV-infected PBS and ACV-treated mice compared to mice treated with ACV + IVIG, consistent with reports implicating inflammation in anxiety induced by lipopolysaccharide (LPS) or stress. Female, but not male, PBS-treated mice were cognitively impaired, and unexpectedly, ACV was protective, while the inclusion of IVIG surprisingly antagonized ACV's beneficial effects. Distinct serum proteomic profiles were observed for male and female mice, and the antagonistic effects of ACV and IVIG on behavior were paralleled by similar changes in the serum proteome of ACV- and ACV + IVIG-treated mice. We conclude that inflammation and other factors mediate HSV-induced behavioral impairments and that the effects of ACV and IVIG on behavior involve novel mechanisms.
Collapse
|
5
|
Susceptibility of mice to bovine herpesvirus type 5 infection in the central nervous system. Vet Res Commun 2017; 41:279-288. [PMID: 28942490 DOI: 10.1007/s11259-017-9699-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/19/2017] [Indexed: 12/21/2022]
Abstract
Bovine herpesvirus type 5 (BoHV-5) is an important pathogen that causes meningoencephalitis in cattle. Few studies have used the mouse as a model for BoHV-5 infection. Despite the fact that BoHV-5 can infect mice with immune deficiencies, little is known about viral replication, immune response, and the course of infection in the central nervous system (CNS) of wild-type mice. Therefore, the aim of this study was to evaluate the response in the CNS of BALB/c mice acutely infected with BoHV-5 at different days post-inoculation (dpi). BoHV-5, when inoculated intracranially, was able to infect and replicate within the CNS of BALB/c mice. Until 15 dpi, the mice were able to survive without showing prominent neurological signs. The infection was accompanied by a Th1 immune response, with a significant expression of the cytokines IFN-γ and TNF-α and chemokine CCL-2. The expression of these cytokines and chemokines was most significant in the early course of infection (3 and 4 dpi), and it was followed by meningoencephalitis with perivascular cuffing and periventriculitis, composed mainly of macrophages and lymphocytes. After the expression of cytokines and chemokine, the mice were able to curb BoHV-5 acute infection in the brain, since there was a decrease in the number of BoHV-5 DNA copies after 3 dpi and viable viral particles were not detected after 6 dpi. Importantly, BoHV-5 was able to infect the trigeminal ganglia during acute infection, since a large number of BoHV-5 DNA copies were detected on 1 and 2 dpi.
Collapse
|
6
|
Koyanagi N, Imai T, Shindo K, Sato A, Fujii W, Ichinohe T, Takemura N, Kakuta S, Uematsu S, Kiyono H, Maruzuru Y, Arii J, Kato A, Kawaguchi Y. Herpes simplex virus-1 evasion of CD8+ T cell accumulation contributes to viral encephalitis. J Clin Invest 2017; 127:3784-3795. [PMID: 28891812 DOI: 10.1172/jci92931] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 07/26/2017] [Indexed: 01/18/2023] Open
Abstract
Herpes simplex virus-1 (HSV-1) is the most common cause of sporadic viral encephalitis, which can be lethal or result in severe neurological defects even with antiviral therapy. While HSV-1 causes encephalitis in spite of HSV-1-specific humoral and cellular immunity, the mechanism by which HSV-1 evades the immune system in the central nervous system (CNS) remains unknown. Here we describe a strategy by which HSV-1 avoids immune targeting in the CNS. The HSV-1 UL13 kinase promotes evasion of HSV-1-specific CD8+ T cell accumulation in infection sites by downregulating expression of the CD8+ T cell attractant chemokine CXCL9 in the CNS of infected mice, leading to increased HSV-1 mortality due to encephalitis. Direct injection of CXCL9 into the CNS infection site enhanced HSV-1-specific CD8+ T cell accumulation, leading to marked improvements in the survival of infected mice. This previously uncharacterized strategy for HSV-1 evasion of CD8+ T cell accumulation in the CNS has important implications for understanding the pathogenesis and clinical treatment of HSV-1 encephalitis.
Collapse
Affiliation(s)
- Naoto Koyanagi
- Division of Molecular Virology, Department of Microbiology and Immunology.,Department of Infectious Disease Control, International Research Center for Infectious Diseases, and
| | - Takahiko Imai
- Division of Molecular Virology, Department of Microbiology and Immunology.,Department of Infectious Disease Control, International Research Center for Infectious Diseases, and
| | - Keiko Shindo
- Division of Molecular Virology, Department of Microbiology and Immunology.,Department of Infectious Disease Control, International Research Center for Infectious Diseases, and
| | - Ayuko Sato
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Wataru Fujii
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takeshi Ichinohe
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, and
| | - Naoki Takemura
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Mucosal Immunology, School of Medicine, Chiba University, Chiba, Japan
| | - Shigeru Kakuta
- Department of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi Uematsu
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Mucosal Immunology, School of Medicine, Chiba University, Chiba, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| | - Yuhei Maruzuru
- Division of Molecular Virology, Department of Microbiology and Immunology.,Department of Infectious Disease Control, International Research Center for Infectious Diseases, and
| | - Jun Arii
- Division of Molecular Virology, Department of Microbiology and Immunology.,Department of Infectious Disease Control, International Research Center for Infectious Diseases, and
| | - Akihisa Kato
- Division of Molecular Virology, Department of Microbiology and Immunology.,Department of Infectious Disease Control, International Research Center for Infectious Diseases, and
| | - Yasushi Kawaguchi
- Division of Molecular Virology, Department of Microbiology and Immunology.,Department of Infectious Disease Control, International Research Center for Infectious Diseases, and
| |
Collapse
|
7
|
Mapping Murine Corneal Neovascularization and Weight Loss Virulence Determinants in the Herpes Simplex Virus 1 Genome and the Detection of an Epistatic Interaction between the UL and IRS/US Regions. J Virol 2016; 90:8115-31. [PMID: 27384650 PMCID: PMC5008079 DOI: 10.1128/jvi.00821-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/22/2016] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED Herpes simplex virus 1 (HSV-1) most commonly causes recrudescent labial ulcers; however, it is also the leading cause of infectious blindness in developed countries. Previous research in animal models has demonstrated that the severity of HSV-1 ocular disease is influenced by three main factors: host innate immunity, host immune response, and viral strain. We have previously shown that mixed infection with two avirulent HSV-1 strains (OD4 and CJ994) results in recombinants with a wide range of ocular disease phenotype severity. Recently, we developed a quantitative trait locus (QTL)-based computational approach (vQTLmap) to identify viral single nucleotide polymorphisms (SNPs) predicted to influence the severity of the ocular disease phenotypes. We have now applied vQTLmap to identify HSV-1 SNPs associated with corneal neovascularization and mean peak percentage weight loss (MPWL) using 65 HSV-1 OD4-CJ994 recombinants. The vQTLmap analysis using Random Forest for neovascularization identified phenotypically meaningful nonsynonymous SNPs in the ICP4, UL41 (VHS), UL42, UL46 (VP11/12), UL47 (VP13/14), UL48 (VP22), US3, US4 (gG), US6 (gD), and US7 (gI) coding regions. The ICP4 gene was previously identified as a corneal neovascularization determinant, validating the vQTLmap method. Further analysis detected an epistatic interaction for neovascularization between a segment of the unique long (UL) region and a segment of the inverted repeat short (IRS)/unique short (US) region. Ridge regression was used to identify MPWL-associated nonsynonymous SNPs in the UL1 (gL), UL2, UL4, UL49 (VP22), UL50, and ICP4 coding regions. The data provide additional insights into virulence gene and epistatic interaction discovery in HSV-1. IMPORTANCE Herpes simplex virus 1 (HSV-1) typically causes recurrent cold sores; however, it is also the leading source of infectious blindness in developed countries. Corneal neovascularization is critical for the progression of blinding ocular disease, and weight loss is a measure of infection severity. Previous HSV-1 animal virulence studies have shown that the severity of ocular disease is partially due to the viral strain. In the current study, we used a recently described computational quantitative trait locus (QTL) approach in conjunction with 65 HSV-1 recombinants to identify viral single nucleotide polymorphisms (SNPs) involved in neovascularization and weight loss. Neovascularization SNPs were identified in the ICP4, VHS, UL42, VP11/12, VP13/14, VP22, gG, US3, gD, and gI genes. Further analysis revealed an epistatic interaction between the UL and US regions. MPWL-associated SNPs were detected in the UL1 (gL), UL2, UL4, VP22, UL50, and ICP4 genes. This approach will facilitate future HSV virulence studies.
Collapse
|
8
|
Khoury-Hanold W, Yordy B, Kong P, Kong Y, Ge W, Szigeti-Buck K, Ralevski A, Horvath TL, Iwasaki A. Viral Spread to Enteric Neurons Links Genital HSV-1 Infection to Toxic Megacolon and Lethality. Cell Host Microbe 2016; 19:788-99. [PMID: 27281569 PMCID: PMC4902295 DOI: 10.1016/j.chom.2016.05.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 03/11/2016] [Accepted: 04/23/2016] [Indexed: 01/07/2023]
Abstract
Herpes simplex virus 1 (HSV-1), a leading cause of genital herpes, infects oral or genital mucosal epithelial cells before infecting the peripheral sensory nervous system. The spread of HSV-1 beyond the sensory nervous system and the resulting broader spectrum of disease are not well understood. Using a mouse model of genital herpes, we found that HSV-1-infection-associated lethality correlated with severe fecal and urinary retention. No inflammation or infection of the brain was evident. Instead, HSV-1 spread via the dorsal root ganglia to the autonomic ganglia of the enteric nervous system (ENS) in the colon. ENS infection led to robust viral gene transcription, pathological inflammatory responses, and neutrophil-mediated destruction of enteric neurons, ultimately resulting in permanent loss of peristalsis and the development of toxic megacolon. Laxative treatment rescued mice from lethality following genital HSV-1 infection. These results reveal an unexpected pathogenesis of HSV associated with ENS infection.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Enteric Nervous System/pathology
- Enteric Nervous System/virology
- Female
- Ganglia/pathology
- Ganglia/ultrastructure
- Ganglia/virology
- Ganglia, Spinal/pathology
- Ganglia, Spinal/virology
- Genome, Viral
- Herpes Genitalis/pathology
- Herpes Genitalis/virology
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/pathogenicity
- Herpesvirus 1, Human/physiology
- Intestines/virology
- Megacolon, Toxic/pathology
- Megacolon, Toxic/virology
- Mice
- Mice, Inbred C57BL
- Neurons/pathology
- Neurons/virology
- Neutrophils/virology
- Nociceptors/virology
- Vagina/virology
- Vaginal Diseases/pathology
- Vaginal Diseases/virology
- Virus Replication/physiology
Collapse
Affiliation(s)
- William Khoury-Hanold
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Brian Yordy
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Philip Kong
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yong Kong
- Department of Molecular Biophysics and Biochemistry, W.M. Keck Foundation Biotechnology Resource Laboratory, Yale University School of Medicine, New Haven, CT 06520, USA
| | - William Ge
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Klara Szigeti-Buck
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Alexandra Ralevski
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tamas L Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
9
|
Kolb AW, Lee K, Larsen I, Craven M, Brandt CR. Quantitative Trait Locus Based Virulence Determinant Mapping of the HSV-1 Genome in Murine Ocular Infection: Genes Involved in Viral Regulatory and Innate Immune Networks Contribute to Virulence. PLoS Pathog 2016; 12:e1005499. [PMID: 26962864 PMCID: PMC4786273 DOI: 10.1371/journal.ppat.1005499] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/18/2016] [Indexed: 12/23/2022] Open
Abstract
Herpes simplex virus type 1 causes mucocutaneous lesions, and is the leading cause of infectious blindness in the United States. Animal studies have shown that the severity of HSV-1 ocular disease is influenced by three main factors; innate immunity, host immune response and viral strain. We previously showed that mixed infection with two avirulent HSV-1 strains (OD4 and CJ994) resulted in recombinants that exhibit a range of disease phenotypes from severe to avirulent, suggesting epistatic interactions were involved. The goal of this study was to develop a quantitative trait locus (QTL) analysis of HSV-1 ocular virulence determinants and to identify virulence associated SNPs. Blepharitis and stromal keratitis quantitative scores were characterized for 40 OD4:CJ994 recombinants. Viral titers in the eye were also measured. Virulence quantitative trait locus mapping (vQTLmap) was performed using the Lasso, Random Forest, and Ridge regression methods to identify significant phenotypically meaningful regions for each ocular disease parameter. The most predictive Ridge regression model identified several phenotypically meaningful SNPs for blepharitis and stromal keratitis. Notably, phenotypically meaningful nonsynonymous variations were detected in the UL24, UL29 (ICP8), UL41 (VHS), UL53 (gK), UL54 (ICP27), UL56, ICP4, US1 (ICP22), US3 and gG genes. Network analysis revealed that many of these variations were in HSV-1 regulatory networks and viral genes that affect innate immunity. Several genes previously implicated in virulence were identified, validating this approach, while other genes were novel. Several novel polymorphisms were also identified in these genes. This approach provides a framework that will be useful for identifying virulence genes in other pathogenic viruses, as well as epistatic effects that affect HSV-1 ocular virulence. In addition to causing recurrent labial lesions, herpes simplex virus type 1 (HSV-1) is also the primary source of infectious blindness in the United States. Animal studies have shown that the severity of infection is influenced by several factors, including viral strain. Conventional studies investigating the genetics of viral virulence have focused on characterizing a naturally occurring strain, and engineering mutations into viruses. The purpose of this study was to develop a quantitative trait locus (QTL) computational analysis of HSV-1 genome to identify ocular virulence determinants and associated viral SNPs. Notably, phenotypically meaningful variations were detected in the UL24, UL29 (ICP8), UL41 (VHS), UL53 (gK), UL54 (ICP27), UL56, ICP4, US1 (ICP22), US3 and gG genes. Several genes previously implicated in virulence were identified, validating this approach, while other genes were novel. This is the first time a QTL based approach has been applied to a herpesvirus and it will also be valuable in future virulence, epistasis, and protein-protein interaction studies.
Collapse
Affiliation(s)
- Aaron W. Kolb
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kyubin Lee
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Inna Larsen
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mark Craven
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Curtis R. Brandt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
10
|
Kastrukoff LF, Lau AS, Takei F, Carbone FR, Scalzo AA. A NK complex-linked locus restricts the spread of herpes simplex virus type 1 in the brains of C57BL/6 mice. Immunol Cell Biol 2015; 93:877-84. [PMID: 25971711 DOI: 10.1038/icb.2015.54] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 05/08/2015] [Accepted: 05/10/2015] [Indexed: 11/09/2022]
Abstract
The most frequent cause of sporadic viral encephalitis in western countries is Herpes simplex virus (HSV). Despite treatment, mortality rates reach 20-30% while survivors often suffer from significant morbidity. In mice, resistance to lethal Herpes simplex encephalitis (HSE) is multifactorial and influenced by mouse and virus strain as well as route of infection. The ability to restrict viral spread in the brain is one factor contributing to resistance. After infection of the oral mucosa with HSV type 1 (HSV-1), virus spreads throughout the brains of susceptible strains but is restricted in resistant C57BL/6 mice. To further investigate restriction of viral spread in the brain, mendelian analysis was combined with studies of congenic, intra-natural killer complex (intra-NKC) recombinant and antibody-depleted mice. Results from mendelian analysis support the restriction of viral spread as a dominant trait and consistent with a single gene effect. In congenic mice, the locus maps to the NKC on chromosome 6 and is provisionally termed Herpes Resistance Locus 2 (Hrl2). In intra-NKC recombinants, the locus is further mapped to the segment Cd69 through D6Wum34; a different location from previously identified loci (Hrl and Rhs1) also associated with HSV-1 infection. Studies with antibody-depleted mice indicate the effect of this locus is mediated by NK1.1(+) expressing cells. This model increases our knowledge of lethal HSE, which may lead to new treatment options.
Collapse
Affiliation(s)
- Lorne F Kastrukoff
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Allen S Lau
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fumio Takei
- The Terry Fox Laboratory, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Francis R Carbone
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony A Scalzo
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia.,Centre for Ophthalmology and Vision Science, M517, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
11
|
Recombination Analysis of Herpes Simplex Virus 1 Reveals a Bias toward GC Content and the Inverted Repeat Regions. J Virol 2015; 89:7214-23. [PMID: 25926637 DOI: 10.1128/jvi.00880-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 04/26/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Herpes simplex virus 1 (HSV-1) causes recurrent mucocutaneous ulcers and is the leading cause of infectious blindness and sporadic encephalitis in the United States. HSV-1 has been shown to be highly recombinogenic; however, to date, there has been no genome-wide analysis of recombination. To address this, we generated 40 HSV-1 recombinants derived from two parental strains, OD4 and CJ994. The 40 OD4-CJ994 HSV-1 recombinants were sequenced using the Illumina sequencing system, and recombination breakpoints were determined for each of the recombinants using the Bootscan program. Breakpoints occurring in the terminal inverted repeats were excluded from analysis to prevent double counting, resulting in a total of 272 breakpoints in the data set. By placing windows around the 272 breakpoints followed by Monte Carlo analysis comparing actual data to simulated data, we identified a recombination bias toward both high GC content and intergenic regions. A Monte Carlo analysis also suggested that recombination did not appear to be responsible for the generation of the spontaneous nucleotide mutations detected following sequencing. Additionally, kernel density estimation analysis across the genome found that the large, inverted repeats comprise a recombination hot spot. IMPORTANCE Herpes simplex virus 1 (HSV-1) virus is the leading cause of sporadic encephalitis and blinding keratitis in developed countries. HSV-1 has been shown to be highly recombinogenic, and recombination itself appears to be a significant component of genome replication. To date, there has been no genome-wide analysis of recombination. Here we present the findings of the first genome-wide study of recombination performed by generating and sequencing 40 HSV-1 recombinants derived from the OD4 and CJ994 parental strains, followed by bioinformatics analysis. Recombination breakpoints were determined, yielding 272 breakpoints in the full data set. Kernel density analysis determined that the large inverted repeats constitute a recombination hot spot. Additionally, Monte Carlo analyses found biases toward high GC content and intergenic and repetitive regions.
Collapse
|
12
|
Kollias CM, Huneke RB, Wigdahl B, Jennings SR. Animal models of herpes simplex virus immunity and pathogenesis. J Neurovirol 2015; 21:8-23. [PMID: 25388226 DOI: 10.1007/s13365-014-0302-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/07/2014] [Accepted: 10/27/2014] [Indexed: 12/20/2022]
Abstract
Herpes simplex viruses are ubiquitous human pathogens represented by two distinct serotypes: herpes simplex virus (HSV) type 1 (HSV-1); and HSV type 2 (HSV-2). In the general population, adult seropositivity rates approach 90% for HSV-1 and 20-25% for HSV-2. These viruses cause significant morbidity, primarily as mucosal membrane lesions in the form of facial cold sores and genital ulcers, with much less common but more severe manifestations causing death from encephalitis. HSV infections in humans are difficult to study in many cases because many primary infections are asymptomatic. Moreover, the neurotropic properties of HSV make it much more difficult to study the immune mechanisms controlling reactivation of latent infection within the corresponding sensory ganglia and crossover into the central nervous system of infected humans. This is because samples from the nervous system can only be routinely obtained at the time of autopsy. Thus, animal models have been developed whose use has led to a better understanding of multiple aspects of HSV biology, molecular biology, pathogenesis, disease, and immunity. The course of HSV infection in a spectrum of animal models depends on important experimental parameters including animal species, age, and genotype; route of infection; and viral serotype, strain, and dose. This review summarizes the animal models most commonly used to study HSV pathogenesis and its establishment, maintenance, and reactivation from latency. It focuses particularly on the immune response to HSV during acute primary infection and the initial invasion of the ganglion with comparisons to the events governing maintenance of viral latency.
Collapse
MESH Headings
- Animals
- Central Nervous System/pathology
- Central Nervous System/virology
- Disease Models, Animal
- Encephalitis, Viral/pathology
- Encephalitis, Viral/virology
- Ganglia, Sensory/pathology
- Ganglia, Sensory/virology
- Guinea Pigs
- Herpes Genitalis/pathology
- Herpes Genitalis/virology
- Herpes Simplex/pathology
- Herpes Simplex/virology
- Herpesvirus 1, Human/pathogenicity
- Herpesvirus 1, Human/physiology
- Herpesvirus 2, Human/pathogenicity
- Herpesvirus 2, Human/physiology
- Humans
- Immunity, Innate
- Mice
- Rabbits
- Species Specificity
- Virus Activation
- Virus Latency
Collapse
Affiliation(s)
- Christina M Kollias
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, 19102, USA
| | | | | | | |
Collapse
|
13
|
Kolb AW, Ané C, Brandt CR. Using HSV-1 genome phylogenetics to track past human migrations. PLoS One 2013; 8:e76267. [PMID: 24146849 DOI: 10.1371/journal.pone.0076267] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 08/24/2013] [Indexed: 01/11/2023] Open
Abstract
We compared 31 complete and nearly complete globally derived HSV-1 genomic sequences using HSV-2 HG52 as an outgroup to investigate their phylogenetic relationships and look for evidence of recombination. The sequences were retrieved from NCBI and were then aligned using Clustal W. The generation of a maximum likelihood tree resulted in a six clade structure that corresponded with the timing and routes of past human migration. The East African derived viruses contained the greatest amount of genetic diversity and formed four of the six clades. The East Asian and European/North American derived viruses formed separate clades. HSV-1 strains E07, E22 and E03 were highly divergent and may each represent an individual clade. Possible recombination was analyzed by partitioning the alignment into 5 kb segments, performing individual phylogenetic analysis on each partition and generating a.phylogenetic network from the results. However most evidence for recombination spread at the base of the tree suggesting that recombination did not significantly disrupt the clade structure. Examination of previous estimates of HSV-1 mutation rates in conjunction with the phylogenetic data presented here, suggests that the substitution rate for HSV-1 is approximately 1.38 × 10(-7) subs/site/year. In conclusion, this study expands the previously described HSV-1 three clade phylogenetic structures to a minimum of six and shows that the clade structure also mirrors global human migrations. Given that HSV-1 has co-evolved with its host, sequencing HSV-1 isolated from various populations could serve as a surrogate biomarker to study human population structure and migration patterns.
Collapse
Affiliation(s)
- Aaron W Kolb
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | | | | |
Collapse
|
14
|
Ramakrishna C, Openshaw H, Cantin EM. The case for immunomodulatory approaches in treating HSV encephalitis. Future Virol 2013; 8:259-272. [PMID: 23956785 DOI: 10.2217/fvl.12.138] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
HSV encephalitis (HSE) is the most prevalent sporadic viral encephalitis. Although safe and effective antiviral therapies and greatly improved noninvasive diagnostic procedures have significantly improved outcomes, mortality (~20%) and debilitating neurological sequelae in survivors remain unacceptably high. An encouraging new development is that the focus is now shifting away from the virus exclusively, to include consideration of the host immune response to infection in the pathology underlying development of HSE. In this article, the authors discuss results from recent studies in experimental mouse models, as well as clinical reports that demonstrate a role for exaggerated host inflammatory responses in the brain in the development of HSE that is motivating researchers and clinicians to consider new therapeutic approaches for treating HSE. The authors also discuss results from a few studies that have shown that immunomodulatory drugs can be highly protective against HSE, which supports a role for deleterious host inflammatory responses in HSE. The impressive outcomes of some immunomodulatory approaches in mouse models of HSE emphasize the urgent need for clinical trials to rigorously evaluate combination antiviral and immunomodulatory therapy in comparison with standard antiviral therapy for treatment of HSE, and support for such an initiative is gaining momentum.
Collapse
Affiliation(s)
- Chandran Ramakrishna
- Department of Virology, Beckman Research Institute of City of Hope; Duarte, CA 91010-3000, USA
| | | | | |
Collapse
|
15
|
Abdelmagid N, Bereczky-Veress B, Guerreiro-Cacais AO, Bergman P, Luhr KM, Bergström T, Sköldenberg B, Piehl F, Olsson T, Diez M. The calcitonin receptor gene is a candidate for regulation of susceptibility to herpes simplex type 1 neuronal infection leading to encephalitis in rat. PLoS Pathog 2012; 8:e1002753. [PMID: 22761571 PMCID: PMC3386237 DOI: 10.1371/journal.ppat.1002753] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 05/01/2012] [Indexed: 11/24/2022] Open
Abstract
Herpes simplex encephalitis (HSE) is a fatal infection of the central nervous system (CNS) predominantly caused by Herpes simplex virus type 1. Factors regulating the susceptibility to HSE are still largely unknown. To identify host gene(s) regulating HSE susceptibility we performed a genome-wide linkage scan in an intercross between the susceptible DA and the resistant PVG rat. We found one major quantitative trait locus (QTL), Hse1, on rat chromosome 4 (confidence interval 24.3–31 Mb; LOD score 29.5) governing disease susceptibility. Fine mapping of Hse1 using recombinants, haplotype mapping and sequencing, as well as expression analysis of all genes in the interval identified the calcitonin receptor gene (Calcr) as the main candidate, which also is supported by functional studies. Thus, using unbiased genetic approach variability in Calcr was identified as potentially critical for infection and viral spread to the CNS and subsequent HSE development. Herpes simplex encephalitis (HSE) is a rare, but severe infection of the central nervous system (CNS) caused by Herpes simplex virus type 1. We have previously characterized a model for HSE in the inbred DA rat which resembles human HSE. Interestingly the inbred PVG rat is completely resistant to the disease and displays reduced or no uptake of viral particles into the peripheral and central nerve compartments respectively. To identify the gene(s) regulating HSE pathogenesis, we crossed the susceptible DA and the resistant PVG.A rats for two generations and infected 239 rats of the F2 (DAxPVG.A) cohort with HSV-1. A genome-wide linkage scan demonstrated one strong quantitative trait locus (QTL), Hse1, on rat chromosome 4 regulating disease susceptibility. Fine mapping, haplotype mapping, sequencing and expression analysis of the genes in the Hse1 interval collectively support the underlying genetic variation to be located in, or adjacent to the calcitonin receptor gene (Calcr). Further support for a role of CalcR in regulating HSV-1 replication and propagation is provided by strain-dependent differences in the calcitonin receptor protein tissue localization and in functional studies. Using an unbiased genetic mapping approach this study identifies Calcr as a candidate for regulating susceptibility to HSE.
Collapse
Affiliation(s)
- Nada Abdelmagid
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kastrukoff LF, Lau AS, Thomas EE. The effect of mouse strain on herpes simplex virus type 1 (HSV-1) infection of the central nervous system (CNS). HERPESVIRIDAE 2012; 3:4. [PMID: 22449238 PMCID: PMC3355007 DOI: 10.1186/2042-4280-3-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Accepted: 03/26/2012] [Indexed: 12/25/2022]
Abstract
BACKGROUND Mice infected with HSV-1 can develop lethal encephalitis or virus induced CNS demyelination. Multiple factors affect outcome including route of infection, virus and mouse strain. When infected with a sub-lethal dose of HSV-1 strain 2 via the oral mucosa, susceptible SJL/J, A/J, and PL/J mice develop demyelinating lesions throughout the brain. In contrast, lesions are restricted to the brainstem (BST) in moderately resistant BALB/c mice and are absent in resistant BL/6 mice. The reasons for the strain differences are unknown. METHODS In this study, we combine histology, immunohistochemistry, and in-situ hybridization to investigate the relationship between virus and the development of lesions during the early stage (< 24 days PI) of demyelination in different strains of mice. RESULTS Initially, viral DNA and antigen positive cells appear sequentially in non-contiguous areas throughout the brains of BALB/c, SJL/J, A/J, and PL/J mice but are restricted to an area of the BST of BL/6 mice. In SJL/J, A/J, and PL/J mice, this is followed by the development of 'focal' areas of virus infected neuronal and non-neuronal cells throughout the brain. The 'focal' areas follow a hierarchical order and co-localize with developing demyelinating lesions. When antigen is cleared, viral DNA positive cells can remain in areas of demyelination; consistent with a latent infection. In contrast, 'focal' areas are restricted to the BST of BALB/c mice and do not occur in BL/6 mice. CONCLUSIONS The results of this study indicate that susceptible mouse strains, infected with HSV-1 via the oral mucosa, develop CNS demyelination during the first 24 days PI in several stages. These include: the initial spread of virus and infection of cells in non-contiguous areas throughout the brain, the development of 'focal' areas of virus infected neuronal and non-neuronal cells, the co-localization of 'focal' areas with developing demyelinating lesions, and latent infection in a number of the lesions. In contrast, the limited demyelination that develops in BALB/c and the lack of demyelination in BL/6 mice correlates with the limited or lack of 'focal' areas of virus infected neuronal and non-neuronal cells in these two strains.
Collapse
Affiliation(s)
- Lorne F Kastrukoff
- Department of Medicine, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Allen S Lau
- Department of Medicine, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Eva E Thomas
- Department of Pathology, British Columbia's Children's Hospital, Vancouver V6H 3 V4, Canada
| |
Collapse
|
17
|
Kolb AW, Adams M, Cabot EL, Craven M, Brandt CR. Multiplex sequencing of seven ocular herpes simplex virus type-1 genomes: phylogeny, sequence variability, and SNP distribution. Invest Ophthalmol Vis Sci 2011; 52:9061-73. [PMID: 22016062 DOI: 10.1167/iovs.11-7812] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Little is known about the role of sequence variation in the pathology of HSV-1 keratitis virus. The goal was to show that a multiplex, high-throughput genome-sequencing approach is feasible for simultaneously sequencing seven HSV-1 ocular strains. METHODS A genome sequencer was used to sequence the HSV-1 ocular isolates TFT401, 134, CJ311, CJ360, CJ394, CJ970, and OD4, in a single lane. Reads were mapped to the HSV-1 strain 17 reference genome by high-speed sequencing. ClustalW was used for alignment, and the Mega 4 package was used for phylogenetic analysis (www.megasoftware.net). Simplot was used to compare genetic variability and high-speed sequencing was used to identify SNPs (developed by Stuart Ray, Johns Hopkins University School of Medicine, Baltimore, MD, http://sray.med.som.jhml.edu/SCRoftware/simplot). RESULTS Approximately 95% to 99% of the seven genomes were sequenced in a single lane with average coverage ranging from 224 to 1345. Phylogenetic analysis of the sequenced genome regions revealed at least three clades. Each strain had approximately 200 coding SNPs compared to strain 17, and these were evenly spaced along the genomes. Four genes were highly conserved, and six were more variable. Reduced coverage was obtained in the highly GC-rich terminal repeat regions. CONCLUSIONS Multiplex sequencing is a cost-effective way to obtain the genomic sequences of ocular HSV-1 isolates with sufficient coverage of the unique regions for genomic analysis. The number of SNPs and their distribution will be useful for analyzing the genetics of virulence, and the sequence data will be useful for studying HSV-1 evolution and for the design of structure-function studies.
Collapse
Affiliation(s)
- Aaron W Kolb
- Department of Ophthalmology and Visual Sciences, University of Wisconsin Biotechnology Center,University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
18
|
Dasgupta G, BenMohamed L. Of mice and not humans: how reliable are animal models for evaluation of herpes CD8(+)-T cell-epitopes-based immunotherapeutic vaccine candidates? Vaccine 2011; 29:5824-36. [PMID: 21718746 PMCID: PMC3159167 DOI: 10.1016/j.vaccine.2011.06.083] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/09/2011] [Accepted: 06/14/2011] [Indexed: 11/23/2022]
Abstract
Herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2)-specific CD8(+) T cells that reside in sensory ganglia, appear to control recurrent herpetic disease by aborting or reducing spontaneous and sporadic reactivations of latent virus. A reliable animal model is the ultimate key factor to test the efficacy of therapeutic vaccines that boost the level and the quality of sensory ganglia-resident CD8(+) T cells against spontaneous herpes reactivation from sensory neurons, yet its relevance has been often overlooked. Herpes vaccinologists are hesitant about using mouse as a model in pre-clinical development of therapeutic vaccines because they do not adequately mimic spontaneous viral shedding or recurrent symptomatic diseases, as occurs in human. Alternatives to mouse models are rabbits and guinea pigs in which reactivation arise spontaneously with clinical herpetic features relevant to human disease. However, while rabbits and guinea pigs develop spontaneous HSV reactivation and recurrent ocular and genital disease none of them can mount CD8(+) T cell responses specific to Human Leukocyte Antigen- (HLA-)restricted epitopes. In this review, we discuss the advantages and limitations of these animal models and describe a novel "humanized" HLA transgenic rabbit, which shows spontaneous HSV-1 reactivation, recurrent ocular disease and mounts CD8(+) T cell responses to HLA-restricted epitopes. Adequate investments are needed to develop reliable preclinical animal models, such as HLA class I and class II double transgenic rabbits and guinea pigs to balance the ethical and financial concerns associated with the rising number of unsuccessful clinical trials for therapeutic vaccine formulations tested in unreliable mouse models.
Collapse
Affiliation(s)
- Gargi Dasgupta
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697-4375
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697-4375
- Institute for Immunology, University of California Irvine, Irvine, CA 92697-1450
| |
Collapse
|
19
|
Kolb AW, Schmidt TR, Dyer DW, Brandt CR. Sequence variation in the herpes simplex virus U(S)1 ocular virulence determinant. Invest Ophthalmol Vis Sci 2011; 52:4630-8. [PMID: 21519032 DOI: 10.1167/iovs.10-7032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
PURPOSE The herpes simplex virus type 1 (HSV-1) U(S)1 gene encodes host-range and ocular virulence determinants. Mutations in U(S)1 affecting virulence are known in strain OD4, but the genomic variation across several strains is not known. The goal was to determine the degree of sequence variation in the gene from several ocular HSV isolates. METHODS The U(S)1 gene from six ocular HSV-1 isolates, as well as strains KOS and F, were sequenced, and bioinformatics analyses were applied to the data. RESULTS Strains 17, F, CJ394, and CJ311 had identical amino acid sequences. With the other strains, most of the variability was concentrated in the amino-terminal third of the protein. MEME analysis identified a 63-residue core sequence (motif 1) present in all α-herpesvirus U(S)1 homologs that were located in a region identified as structured. Ten amino acids were absolutely conserved in all the α-herpesvirus U(S)1 homologs and were all located in the central core. Consensus-binding motifs for cyclin-dependent kinases and pocket proteins were also identified. CONCLUSIONS These results suggest that significant sequence variation exists in the U(S)1 gene, that the α22 protein contains a conserved central core region with structurally variable regions at the amino- and carboxyl termini, that 10 amino acids are conserved in α-herpes U(S)1 homologs, and that additional host proteins may interact with the HSV-1 U(S)1 and U(S)1.5 proteins. This information will be valuable in designing further studies on structure-function relationships and on the role these play in host-range determination and keratitis.
Collapse
Affiliation(s)
- Aaron W Kolb
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
20
|
Kastrukoff LF, Lau AS, Takei F, Smyth MJ, Jones CM, Clarke SR, Carbone FR. Redundancy in the immune system restricts the spread of HSV-1 in the central nervous system (CNS) of C57BL/6 mice. Virology 2010; 400:248-58. [DOI: 10.1016/j.virol.2010.02.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 01/05/2010] [Accepted: 02/06/2010] [Indexed: 12/11/2022]
|
21
|
Elftman MD, Hunzeker JT, Mellinger JC, Bonneau RH, Norbury CC, Truckenmiller ME. Stress-induced glucocorticoids at the earliest stages of herpes simplex virus-1 infection suppress subsequent antiviral immunity, implicating impaired dendritic cell function. THE JOURNAL OF IMMUNOLOGY 2010; 184:1867-75. [PMID: 20089700 DOI: 10.4049/jimmunol.0902469] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The systemic elevation of psychological stress-induced glucocorticoids strongly suppresses CD8(+) T cell immune responses resulting in diminished antiviral immunity. However, the specific cellular targets of stress/glucocorticoids, the timing of exposure, the chronology of immunological events, and the underlying mechanisms of this impairment are incompletely understood. In this study, we address each of these questions in the context of a murine cutaneous HSV infection. We show that exposure to stress or corticosterone in only the earliest stages of an HSV-1 infection is sufficient to suppress, in a glucocorticoid receptor-dependent manner, the subsequent antiviral immune response after stress/corticosterone has been terminated. This suppression resulted in early onset and delayed resolution of herpetic lesions, reduced viral clearance at the site of infection and draining popliteal lymph nodes (PLNs), and impaired functions of HSV-specific CD8(+) T cells in PLNs, including granzyme B and IFN-gamma production and the ability to degranulate. In knockout mice lacking glucocorticoid receptors only in T cells, we show that these impaired CD8(+) T cell functions are not due to direct effects of stress/corticosterone on the T cells, but the ability of PLN-derived dendritic cells to prime HSV-1-specific CD8(+) T cells is functionally impaired. These findings highlight the susceptibility of critical early events in the generation of an antiviral immune response to neuroendocrine modulation and implicate dendritic cells as targets of stress/glucocorticoids in vivo. These findings also provide insight into the mechanisms by which the clinical use of glucocorticoids contributes to altered immune responses in patients with viral infections or tumors.
Collapse
Affiliation(s)
- Michael D Elftman
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
22
|
Traffic of leukocytes in the central nervous system is associated with chemokine up-regulation in a severe model of herpes simplex encephalitis: an intravital microscopy study. Neurosci Lett 2008; 445:18-22. [PMID: 18782601 DOI: 10.1016/j.neulet.2008.08.072] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 08/26/2008] [Accepted: 08/27/2008] [Indexed: 11/22/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) is a human pathogen that may cause severe encephalitis. The development of experimental models of HSV-1 encephalitis is relevant for the comprehension of the immune mechanisms involved in this infection. C57BL/6 mice were inoculated intracranially with 10(4) PFU of neurotropic HSV-1. All animals developed signs of encephalitis and died until day 6 post-infection (pi). Using intravital microscopy, we demonstrated increased leukocyte rolling and adhesion in the brain microvasculature of infected mice at days 1, 3 and 5 pi. The infection was followed by a significant increase in chemokine levels, including CCL2, CCL3, CCL5, CXCL1 and CXCL9. TNF-alpha also showed a significant increase at day 3 pi. Histological analyses demonstrated diffuse meningoencephalitis characterized mainly by mononuclear cell infiltrates. The present model of HSV-1 encephalitis exhibits high mortality in the very first days of infection. Accordingly, there were increased rolling and adhesion of leukocytes along the brain endothelium wall and a high expression of chemokines in the central nervous system. These results corroborate the role of chemokines in leukocyte recruitment following HSV-1 infection in the central nervous system.
Collapse
|
23
|
Israyelyan A, Chouljenko VN, Baghian A, David AT, Kearney MT, Kousoulas KG. Herpes simplex virus type-1(HSV-1) oncolytic and highly fusogenic mutants carrying the NV1020 genomic deletion effectively inhibit primary and metastatic tumors in mice. Virol J 2008; 5:68. [PMID: 18518998 PMCID: PMC2453120 DOI: 10.1186/1743-422x-5-68] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 06/02/2008] [Indexed: 12/17/2022] Open
Abstract
Background The NV1020 oncolytic herpes simplex virus type-1 has shown significant promise for the treatment of many different types of tumors in experimental animal models and human trials. Previously, we described the construction and use of the NV1020-like virus OncSyn to treat human breast tumors implanted in nude mice. The syncytial mutation gKsyn1 (Ala-to-Val at position 40) was introduced into the OncSyn viral genome cloned into a bacterial artificial chromosome using double-red mutagenesis in E. coli to produce the OncdSyn virus carrying syncytial mutations in both gB(syn3) and gK(syn1). Results The OncdSyn virus caused extensive virus-induced cell fusion in cell culture. The oncolytic potential of the OncSyn and OncdSyn viruses was tested in the highly metastatic syngeneic mouse model system, which utilizes 4T1 murine mammary cancer cells implanted within the interscapular region of Balb/c mice. Mice were given three consecutive intratumor injections of OncSyn, OncdSyn, or phosphate buffered saline four days apart. Both OncSyn and OncdSyn virus injections resulted in significant reduction of tumor sizes (p < 0.05) compared to control tumors. Virus treated mice but not controls showed a marked reduction of metastatic foci in lungs and internal organs. Mouse weights were not significantly impacted by any treatment during the course of the entire study (p = 0.296). Conclusion These results show that the attenuated, but highly fusogenic OncSyn and OncdSyn viruses can effectively reduce primary and metastatic breast tumors in immuncompetent mice. The available bac-cloned OncSyn and OncdSyn viral genomes can be rapidly modified to express a number of different anti-tumor and immunomodulatory genes that can further enhance their anti-tumor potency.
Collapse
Affiliation(s)
- Anna Israyelyan
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Genetic susceptibility to herpes simplex virus 1 encephalitis in mice and humans. Curr Opin Allergy Clin Immunol 2008; 7:495-505. [PMID: 17989525 DOI: 10.1097/aci.0b013e3282f151d2] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Herpes simplex encephalitis is a rare complication of herpes simplex virus 1 infection that strikes otherwise healthy individuals. Its pathogenesis has long remained elusive. We highlight the investigations dealing with the genetic basis of herpes simplex encephalitis in mice and humans. RECENT FINDINGS Mouse models have revealed the impact of various host genes on protective immunity to herpes simplex encephalitis through strain-dependent variability (forward genetics) and via targeted knockouts (reverse genetics). These studies established in particular the crucial role of IFNalpha/beta in immunity to herpes simplex virus 1, paving the way towards the elucidation of the genetic cause of human herpes simplex encephalitis. Two children with rare, specific STAT1 or NEMO mutations displayed a broad impairment of IFNalpha/beta and IFNlambda-mediated immunity and predisposition to several infectious diseases including herpes simplex encephalitis. In contrast, children with UNC93B1 and TLR3 mutations displayed a selective impairment of dsRNA-induced IFNalpha/beta and IFNlambda production and predisposition to isolated herpes simplex encephalitis. SUMMARY Herpes simplex encephalitis results from a series of monogenic primary immunodeficiencies that impair the TLR3 and UNC-93B-dependent production of IFNalpha/beta and IFNlambda in the central nervous system, at least in a fraction of children. This is not only crucial for the understanding of immunity to herpes simplex virus 1, but also for the diagnosis and treatment of herpes simplex encephalitis.
Collapse
|
25
|
Keadle TL, Morris JL, Stuart PM. The effects of aminoguanidine on primary and recurrent ocular herpes simplex virus infection. Nitric Oxide 2005; 13:247-53. [PMID: 16125422 DOI: 10.1016/j.niox.2005.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 07/14/2005] [Accepted: 07/14/2005] [Indexed: 11/28/2022]
Abstract
In primary ocular herpes simplex virus (HSV) infection, nitric oxide may function to control viral replication and herpetic stromal keratitis (HSK) lesions. Recurrent HSK, manifested as corneal opacity and neovascularization, is the potentially blinding sequel to primary infection. Here, we assess the effects of nitric oxide synthase inhibition on a mouse model of recurrent HSK. In preliminary primary infection experiments, NIH inbred mice treated with aminoguanidine, an inhibitor of inducible nitric oxide synthase (iNOS), experienced no changes in post-infection tear, brain, or ganglia virus titers, but encephalitis-related mortality was elevated. After UV-B stimulated viral reactivation, iNOS inhibition did not affect virus shedding or clinical disease. In contrast to primary HSK, there was no exacerbation of mortality in recurrent disease. Our findings indicate that nitric oxide can be neuroprotective without antiviral effects in primary HSK, and does not play a significant role in the pathogenesis of recurrent HSK. Compared with data from other mouse strains, this work suggests that there may be a genetic component to the importance of NO in controlling ocular HSV infection.
Collapse
Affiliation(s)
- Tammie L Keadle
- Washington University School of Medicine, Department of Ophthalmology Visual Sciences, 660 S. Euclid, Box 8096, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
26
|
Brandt CR. The role of viral and host genes in corneal infection with herpes simplex virus type 1. Exp Eye Res 2005; 80:607-21. [PMID: 15862167 DOI: 10.1016/j.exer.2004.09.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Accepted: 09/28/2004] [Indexed: 11/26/2022]
Abstract
Herpes simplex virus infection of the eye is the leading cause of blindness due to infection in the US despite the availability of several antiviral drugs. Studies with animal models have shown that three factors, innate host resistance, the host adaptive immune response, and the strain of virus interact to determine whether an infection is asymptomatic or proceeds to the development of blinding keratitis (HSK). Of these, the role of adaptive immunity has received the most attention. This work has clearly shown that stromal keratitis is an immunopathological disease, most likely due to the induction of a delayed type hypersensitivity response. Substantially less is known about the role of specific host genes in resistance to HSK. The fact that different strains of virus display different disease phenotypes indicates that viral 'virulence' genes are critical. Of the 80 plus HSV genes, few have been formally tested for their role in HSV keratitis. Most studies of virulence genes to date have focused on a single gene or protein and large changes in disease phenotypes are usually measured. Large changes in the ability to cause disease are likely to reduce the fitness of the virus, thus such studies, although useful, do not mimic the natural situation. Viral gene products are known to interact with each other, and with host proteins and these interactions are critical in determining the outcome of infection. In reality, the 'constellation' of genes encoded by each particular strain is critical, and how this constellation of genes works together and with host proteins determines the outcome of an infection. The goal of this review is to discuss the current state of knowledge regarding the role of host and viral genes in HSV keratitis. The roles of specific genes that have been shown to influence keratitis are discussed. Recent data showing that different viral genes cooperate to influence disease severity and confirming that the constellation of genes within a particular strain determines the disease phenotype are also discussed, as are the methods used to test the role of viral genes in virulence. It will become apparent that there is a paucity of information regarding the function of many viral genes in keratitis. Improving our knowledge of the role of viral genes is critical for devising more effective treatments for this disease.
Collapse
Affiliation(s)
- Curtis R Brandt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin Medical School, 6630 MSC, 1300 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
27
|
Abstract
It is often stated that individuals of a species can differ significantly in their innate resistance to infection with herpes simplex virus type 1 (HSV-1). Three decades ago Lopez reported that C57BL/6 mice could survive a 5,000-fold-higher inoculum of HSV-1 given intraperitoneally than mice of the A or BALB/c strain (Nature 258:152-153, 1975). Susceptible strains of mice died of encephalitis-like symptoms, suggesting that viral spread to the central nervous system was the cause of death. Although Lopez's study documented that C57BL/6 mice were resistant to the development of HSV-1 encephalitis and mortality, the resistance of C57BL/6 mice to other steps of the HSV-1 infection process was not assessed. The results of the present study extend these observations to clarify the difference between resistance to (i) HSV-1 pathogenesis, (ii) HSV-1 replication, (iii) HSV-1 spread, and (iv) the establishment of latent HSV-1 infection. Although C57BL/6 mice are more resistant to HSV-1 pathogenesis than BALB/c mice, the results of the present study establish that HSV-1 enters, replicates, spreads, and establishes latent infections with virtually identical efficiencies in C57BL/6 and BALB/c mice. These observations raise questions about the validity of the inference that differences in natural resistance are relevant in explaining what differentiates humans with recurrent herpetic disease from the vast majority of asymptomatic carriers of HSV-1 and HSV-2.
Collapse
MESH Headings
- Animals
- Chlorocebus aethiops
- Female
- Genome, Viral
- Green Fluorescent Proteins
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/pathogenicity
- Herpesvirus 1, Human/physiology
- Humans
- Immunity, Innate
- Keratitis, Herpetic/etiology
- Keratitis, Herpetic/immunology
- Keratitis, Herpetic/virology
- Luminescent Proteins/genetics
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, SCID
- Recombinant Proteins/genetics
- Recombination, Genetic
- Species Specificity
- Vero Cells
- Virus Latency
- Virus Replication
Collapse
Affiliation(s)
- William P Halford
- Department of Microbiology and Immunology, Tulane University Medical School, New Orleans, LA, USA.
| | | | | |
Collapse
|
28
|
Peltoniemi J, Broberg EK, Halenius A, Setala N, Eralinna JP, Salmi AA, Roytta M, Hukkanen V. Immunomodulation by roquinimex decreases the expression of IL-23 (p19) mRNA in the brains of herpes simplex virus type 1 infected BALB/c mice. Clin Exp Immunol 2004; 137:305-12. [PMID: 15270847 PMCID: PMC1809122 DOI: 10.1111/j.1365-2249.2004.02528.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Herpes simplex virus (HSV) is a common neurotropic virus which infects epithelial cells and subsequently the trigeminal ganglia (TG) and brain tissue. We studied how immunomodulation with roquinimex (Linomide) affects the course of corneal HSV infection in BALB/c mice. BALB/c mice have also been used in a model for HSV-based vectors in treating an autoimmune disease of the central nervous system (CNS). We addressed the questions of how immunomodulation affects the local as well as the systemic immune response and whether roquinimex could facilitate the spread of HSV to the CNS. The cytokine response in the brain and TG was studied using a quantitative rapid real-time RT-PCR method. We were interested in whether immunomodulation affects the expression of the recently described Th1-cytokine IL-23p19 in the brain and TG. The expression of IL-23 mRNA was decreased in brains of roquinimex-treated BALB/c mice. Also the expression of IL-12p35 and IFN-gamma mRNAs decreased. No significant changes were seen in IL-4 and IL-10 mRNA expression. The cytokine response was also studied using supernatants of stimulated splenocytes by EIA. Roquinimex treatment suppressed the production of IFN-gamma and also the production of IL-10 in HSV-infected BALB/c mice.
Collapse
Affiliation(s)
- J Peltoniemi
- Department of Virology, University of Turku, Turku, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Thomas DL, Fraser NW. HSV-1 therapy of primary tumors reduces the number of metastases in an immune-competent model of metastatic breast cancer. Mol Ther 2004; 8:543-51. [PMID: 14529826 DOI: 10.1016/s1525-0016(03)00236-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The HSV-1 1716 mutant virus and similar oncolytic herpesviruses deficient in the gamma 34.5 neurovirulence gene are able to reduce the growth of tumors in mice. Here we demonstrate that HSV-1 1716 therapy moderately reduced the growth of tumors of the highly malignant, spontaneously metastasizing 4T1 mouse mammary carcinoma model. This moderate effect on 4T1 tumor growth was likely due to poor replication kinetics of HSV-1 1716 in 4T1 cells. Interestingly, HSV-1 therapy of the primary tumor increased the survival time of mice. Coincident with this increase was a reduction in metastases as determined by quantification of the number of metastatic cells in the lungs. HSV-1 therapy of the primary tumor was also able to reduce the establishment of a second challenge of 4T1 tumors. Moreover, infiltrates of both CD4(+) and CD8(+) T cells were detected in HSV-1 1716-treated tumors. An important role for the T cell infiltrates was confirmed when HSV-1 therapy did not reduce the growth of 4T1 tumors in SCID mice. Collectively, these results demonstrate that an HSV-dependent anti-tumor immune response is required for the reduction in primary 4T1 tumor growth and for the reduction in the establishment of metastases in this tumor model.
Collapse
Affiliation(s)
- Darby L Thomas
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6076, USA
| | | |
Collapse
|
30
|
Lundberg P, Welander P, Openshaw H, Nalbandian C, Edwards C, Moldawer L, Cantin E. A locus on mouse chromosome 6 that determines resistance to herpes simplex virus also influences reactivation, while an unlinked locus augments resistance of female mice. J Virol 2003; 77:11661-73. [PMID: 14557652 PMCID: PMC229335 DOI: 10.1128/jvi.77.21.11661-11673.2003] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During studies to determine a role for tumor necrosis factor (TNF) in herpes simplex virus type 1 (HSV-1) infection using TNF receptor null mutant mice, we discovered a genetic locus, closely linked to the TNF p55 receptor (Tnfrsf1a) gene on mouse chromosome 6 (c6), that determines resistance or susceptibility to HSV-1. We named this locus the herpes resistance locus, Hrl, and showed that it also mediates resistance to HSV-2. Hrl has at least two alleles, Hrl(r), expressed by resistant strains like C57BL/6 (B6), and Hrl(s), expressed by susceptible strains like 129S6 (129) and BALB/c. Although Hrl is inherited as an autosomal dominant gene, resistance to HSV-1 is strongly sex biased such that female mice are significantly more resistant than male mice. Analysis of backcrosses between resistant B6 and susceptible 129 mice revealed that a second locus, tentatively named the sex modifier locus, Sml, functions to augment resistance of female mice. Besides determining resistance, Hrl is one of several genes involved in the control of HSV-1 replication in the eye and ganglion. Remarkably, Hrl also affects reactivation of HSV-1, possibly by interaction with some unknown gene(s). We showed that Hrl is distinct from Cmv1, the gene that determines resistance to murine cytomegalovirus, which is encoded in the major NK cell complex just distal of p55 on c6. Hrl has been mapped to a roughly 5-centimorgan interval on c6, and current efforts are focused on obtaining a high-resolution map for Hrl.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Chromosome Mapping
- Crosses, Genetic
- Ganglion Cysts/virology
- Genetic Linkage
- Herpes Genitalis/genetics
- Herpes Genitalis/mortality
- Herpes Simplex/genetics
- Herpes Simplex/mortality
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/pathogenicity
- Herpesvirus 2, Human/genetics
- Herpesvirus 2, Human/immunology
- Herpesvirus 2, Human/pathogenicity
- Immunity, Innate/genetics
- Macrophages, Peritoneal/virology
- Mice
- Mice, Inbred BALB C/genetics
- Mice, Inbred C57BL/genetics
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor, Type I
- Sex Factors
Collapse
Affiliation(s)
- Patric Lundberg
- Department of Virology, Beckman Research Institute, City of Hope Medical Center, Duarte, California 91010, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Flodström-Tullberg M. Viral infections: their elusive role in regulating susceptibility to autoimmune disease. Microbes Infect 2003; 5:911-21. [PMID: 12919859 DOI: 10.1016/s1286-4579(03)00161-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Viral infections may trigger autoimmune disease. Complicating our understanding of how viral infections promote disease is the realization that viral infections can sometimes prevent auto-aggressive reactions. Here, we will discuss recent findings that provide insights into how viral infections may alter susceptibility to autoimmunity.
Collapse
Affiliation(s)
- Malin Flodström-Tullberg
- Department of Medicine, The Karolinska Institute, Huddinge University Hospital, S-141 86 Stockholm, Sweden.
| |
Collapse
|
32
|
Kastrukoff LF, Kim SU. Oligodendrocytes from human donors differ in resistance to herpes simplex virus 1 (HSV-1). Glia 2002; 38:87-92. [PMID: 11921206 DOI: 10.1002/glia.10043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Primary cultures of human oligodendrocytes (HOLs) were established from six different donors. Differences in resistance to infection with herpes simplex virus 1 (HSV-1) were determined between the primary cultures of HOL in tissue culture infective dose 50 (TCID(50)), indirect immunofluoresence (IF), and serial electron microscopy (EM) studies. Virus production at different multiplicities of infection (MOIs) indicated that differences in HSV-1 replication were statistically significant and MOI-dependent. Overall, virus yield from the HOL cultures infected at an MOI of 1 increased up to 6 days postinfection (PI); no additional enhancement occurred at 7 days PI. However, differences in the replication capacity of the six HOL cultures observed at 5 days PI persisted at 6 and 7 days PI. When taken together, the results of these investigations indicate that, similar to experimental animals, resistance to HSV-1 differs between primary cultures of HOL and is donor-dependent. The results also raise the possibility that similar to experimental animals, resistance to HSV-1, mediated at the level of HOL, may be genetically determined. Furthermore, permissive infections of primary cultures of HOL were established with HSV-1 over a wide range of MOIs, similar to results obtained with viral infection of primary murine oligodendrocytes, but neither latent nor abortive infections of HOL were induced in vitro, even at very low MOIs. Resistance to HSV-1, mediated by glial cells, is a nonimmune mechanism that may influence the development of acute CNS infection in man as well as individual susceptibility to this virus.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Cells, Cultured
- Central Nervous System/pathology
- Central Nervous System/ultrastructure
- Central Nervous System/virology
- Encephalitis, Herpes Simplex/immunology
- Encephalitis, Herpes Simplex/pathology
- Encephalitis, Herpes Simplex/physiopathology
- Female
- Fluorescent Antibody Technique
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/pathogenicity
- Herpesvirus 1, Human/ultrastructure
- Humans
- Immunity, Innate/immunology
- Male
- Mice
- Middle Aged
- Multiple Sclerosis/immunology
- Multiple Sclerosis/pathology
- Multiple Sclerosis/virology
- Oligodendroglia/pathology
- Oligodendroglia/ultrastructure
- Oligodendroglia/virology
- Viral Load
- Virus Replication/immunology
Collapse
Affiliation(s)
- Lorne F Kastrukoff
- Demyelinating Disease Study Group, Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada.
| | | |
Collapse
|
33
|
Ellison AR, Yang L, Voytek C, Margolis TP. Establishment of latent herpes simplex virus type 1 infection in resistant, sensitive, and immunodeficient mouse strains. Virology 2000; 268:17-28. [PMID: 10683323 DOI: 10.1006/viro.1999.0158] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Productive infection with herpes simplex virus (HSV) type 1 is limited by both innate and adaptive immune mechanisms. The purpose of the current study was to determine whether these mechanisms also play a role in the establishment of latent HSV infection. First we examined the trigeminal ganglia (TG) of severe combined immunodeficiency (SCID), interferon-gamma knockout (GKO), and beige (a strain deficient in natural killer cell activity) mice following ocular inoculation with HSV. Although infection of SCID mice was invariably lethal, we consistently found latently infected neurons in the TG of these animals at 2-4 days postinoculation. HSV infection of GKO and beige mice, while not lethal, was characterized by a greater number of productively infected TG neurons and/or a delay in the time to peak productive infection compared to C57BL/6 controls. However, as assayed by both in situ hybridization for LAT expression and quantitative PCR (Q-PCR) for viral DNA, we found that HSV established a latent infection in GKO and beige mice as efficiently as in C57BL/6 controls. We subsequently examined the TG of "HSV-sensitive" strains of mice (Swiss-Webster, CBA, and BALB/c) following ocular infection with HSV. At the peak of acute ganglionic infection the number of productively infected TG neurons in each of these mouse strains was about sevenfold greater than in the "HSV-resistant" strain C57BL/6, consistent with previously reported differences in susceptibility to lethal challenge with HSV. However, as assayed by both in situ hybridization for LAT and Q-PCR for viral DNA, we found that HSV established a latent infection in Swiss-Webster, CBA, and BALB/c mice as efficiently as in C57BL/6 controls. We conclude that HSV efficiently establishes latent infection in the TG of mice in the absence of innate and adaptive immune mechanisms that are essential for limiting productive viral infection.
Collapse
Affiliation(s)
- A R Ellison
- Francis I. Proctor Foundation, Department of Ophthalmology, University of California at San Francisco Medical Center, 95 Kirkham Street, San Francisco, California, 94143, USA
| | | | | | | |
Collapse
|
34
|
McNally JM, Dempsey D, Wolcott RM, Chervenak R, Jennings SR. Phenotypic Identification of Antigen-Dependent and Antigen-Independent CD8 CTL Precursors in the Draining Lymph Node During Acute Cutaneous Herpes Simplex Virus Type 1 Infection. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.2.675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Optimal immunological control of cutaneous herpes simplex virus type 1 (HSV-1) infections initiated in the hind footpad of C57BL/6 (B6, H-2b) mice is dependent upon the presence of functional HSV-1-specific T lymphocytes. The class I MHC-restricted, CD8+ T cell subpopulation is involved in the clearance of infectious HSV-1 from the skin and limiting HSV-1 replication and spread within the peripheral nervous system. However, the frequency of HSV-1-specific CTL precursors (CTLp), as a measure of potential anti-viral CD8+ T cell function, is relatively low compared with other acute viral infections. To gain insight into the basis for this low functional frequency, changes in the CD8+ T cell subpopulation phenotype associated with activation and differentiation were investigated. Analysis of the phenotypic changes showed that HSV-1-specific CTLp were found predominantly within a subpopulation of CD8+ T cells expressing high levels of CD44 (CD44high) and high levels of the IL-2 receptor α-chain (CD25high). A second activated subpopulation of CD8+ T cells expressing the CD44high CD25low phenotype did not contain detectable HSV-1-specific CTLp, even after the addition of HSV-1-infected stimulator cells as a source of an exogenous Ag. These data suggested that HSV-1-specific CD8+ T cells must increase expression of CD25 before attaining the potential to become CTL effector cells. These findings also indicated that the up-regulation of CD44 alone is not sufficient to identify precisely HSV-1-specific CD8+ T cells.
Collapse
Affiliation(s)
- James M. McNally
- Department of Microbiology and Immunology, Louisiana State University Medical Center, School of Medicine, Shreveport, LA 71130
| | - Deborah Dempsey
- Department of Microbiology and Immunology, Louisiana State University Medical Center, School of Medicine, Shreveport, LA 71130
| | - R. Michael Wolcott
- Department of Microbiology and Immunology, Louisiana State University Medical Center, School of Medicine, Shreveport, LA 71130
| | - Robert Chervenak
- Department of Microbiology and Immunology, Louisiana State University Medical Center, School of Medicine, Shreveport, LA 71130
| | - Stephen R. Jennings
- Department of Microbiology and Immunology, Louisiana State University Medical Center, School of Medicine, Shreveport, LA 71130
| |
Collapse
|
35
|
Fowler SL, Forbes RA. Herpes simplex virus-1 replication in histiotypic rotation-mediated reaggregated murine brain. J Med Virol 1995; 45:405-9. [PMID: 7666042 DOI: 10.1002/jmv.1890450409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Inbred mouse strains exhibit varying susceptibilities to severe herpes simplex virus (HSV)-1-related neurologic disease. HSV-1 replication was examined in neural tissue obtained from mouse strains susceptible (A/J, SJL), moderately resistant (Balb/c), or resistant (C57BL/6) to severe HSV-1 disease. Reaggregated brain cultures were prepared from mechanically dissociated fetal mouse brains maintained with constant rotation. The resulting aggregates each contain neurons, astrocytes, oligodendrocytes, and microglia. These were inoculated with 10(-2)-10(4) plaque-forming units (pfu) HSV-1 MacIntyre/aggregate. Aggregates and media were harvested at 24, 48, 72, and 96 hr post-inoculation (p.i.) and assayed for virus production by plaque titration. Brain cultures prepared from A/J, SJL, Balb/c, and C57BL/6 mice supported HSV-1 replication equally well: by 96 hr p.i., titers of 10(6) pfu/ml were produced by each strain at each inoculum. ID50s were similar for A/J and C57BL/6 cultures. There was no increased capacity for HSV-1 replication or for permissiveness for HSV-1 infection in histiotypic brain cultures from mouse strains susceptible to severe HSV-1 disease.
Collapse
Affiliation(s)
- S L Fowler
- Department of Pediatrics, Medical University of South Carolina, Charleston 29425, USA
| | | |
Collapse
|
36
|
Kastrukoff LF, Lau AS, Leung GY, Thomas EE. Contrasting effects of immunosuppression on herpes simplex virus type I (HSV I) induced central nervous system (CNS) demyelination in mice. J Neurol Sci 1993; 117:148-58. [PMID: 8410049 PMCID: PMC7172415 DOI: 10.1016/0022-510x(93)90167-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We previously reported that lip inoculation of Herpes simplex virus type I (HSV I) in specific strains of mice would induce multifocal brain demyelination (MBD). The mechanisms mediating the development of MBD are unknown. In this study, five inbred strains of mice (C57BL/6J, Balb/cByJ, A/J, SJL/J, PL/J) immunosuppressed with either irradiation (IR), cyclophosphamide (CY), or cyclosporin A (CP) along with three immune deficient strains (C57BL/6J nu/nu, Balb/cByJ nu/nu, C57BL/6J bg/bg) were lip inoculated with HSV I to determine the effect of immunosuppression on viral spread throughout the brain and the development of demyelination during the acute stage of infection. Mortality increased in all groups when compared with controls but was greatest in A/J, SJL/J, and PL/J strains, where all mice died before day 6 PI. In contrast with immunocompetent C57BL/6J mice where virus is restricted to the brainstem, virus spread throughout the brain of immunosuppressed C57BL/6J, C57BL/6J nu/nu, and C57BL/6J bg/bg mice. Despite viral spread throughout the brain of immunosuppressed C57BL/6J, C57BL/6J nu/nu, Balb/cByJ and Balb/cByJ nu/nu mice, MBD did not develop. MBD did develop however, in both HSV I infected C57BL/6J bg/bg and CP treated Balb/cByJ mice. Immunosuppression of HSV I infected Balb/cByJ mice prevents the development of demyelination at the trigeminal root entry zone (TREZ) of the brainstem while in Balb/cByJ nu/nu mice, the extent of demyelination at TREZ was reduced and delayed when compared with immunocompetent controls. These results suggest that the immune system plays an important role in limiting viral spread in the brain as well as in the development of demyelination at TREZ and of MBD throughout the brain during the acute phase of infection. Virus alone does not induce MBD in this animal model of virus induced CNS demyelination but is a prerequisite for its development.
Collapse
Affiliation(s)
- L F Kastrukoff
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
37
|
Gordon YJ, McKnight JL, Ostrove JM, Romanowski E, Araullo-Cruz T. Host species and strain differences affect the ability of an HSV-1 ICP0 deletion mutant to establish latency and spontaneously reactivate in vivo. Virology 1990; 178:469-77. [PMID: 2171191 DOI: 10.1016/0042-6822(90)90344-q] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
HSV-1 latency and reactivation were studied in vivo by spontaneous and iontophoresis-induced ocular viral shedding in New Zealand rabbits, Balb/c and A/J mice latently infected with wild-type KOS, and dl x 3.1, a progeny ICP0 deletion mutant. The presence of trigeminal ganglionic latency was demonstrated by the in vitro methods of cocultivation and in situ hybridization. Although the efficiency of ganglionic latency was significantly less (P less than .0001) for dl x 3.1 than for KOS in both mice and rabbits, only dl x 3.1 shed spontaneously in the NZ rabbit. Iontophoresis of adrenergic agents failed to induce reactivation and ocular viral shedding of KOS or dl x 3.1 in mice or rabbits. The establishment of latency and reactivation of KOS and dl x 3.1 was dependent on the host animal. We conclude that host factors as exemplified by host species and host strain differences significantly affected the ability of KOS and dl x 3.1 to establish latency, to reactivate, and to shed spontaneously. ICP0 expression was not required for the establishment or maintenance of latency, nor was it required for the reactivation of latent HSV-1. Furthermore, the biological activity of KOS and dl x 3.1 during latency in vivo did not correlate with latency studies based on in vitro methods.
Collapse
Affiliation(s)
- Y J Gordon
- Eye and Ear Institute of Pittsburgh, Pennsylvania 15213
| | | | | | | | | |
Collapse
|
38
|
Bonneau RH, Jennings SR. Modulation of acute and latent herpes simplex virus infection in C57BL/6 mice by adoptive transfer of immune lymphocytes with cytolytic activity. J Virol 1989; 63:1480-4. [PMID: 2536848 PMCID: PMC247856 DOI: 10.1128/jvi.63.3.1480-1484.1989] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The ability of highly lytic herpes simplex virus (HSV) cytolytic T lymphocytes to modulate the interaction between the murine host (adult C57BL/6 [H-2b] mice) and HSV type 1 Patton resulting in acute infection in the footpad and latent infection in the sensory lumbosacral dorsal root ganglia (L6, L5, L4, and L3) innervating the footpad was investigated. Results indicated that a critical threshold level of infectious HSV was required to establish infection. The adoptive transfer of cytolytic T lymphocytes derived from in vitro cultures after restimulation with HSV-infected, syngeneic stimulator cells exhibiting class I H-2-restricted, L3T4- Lyt-2+ HSV-specific cytolytic activity immediately before infection with a high dose of HSV reduced the levels of infectious HSV recovered from the footpad tissue during acute infection and the levels of latent HSV reactivated from the dorsal root ganglia to levels expected from mice infected with a low dose. Depletion of Lyt-2+ cells from the transferred population abrogated the protective ability, while depletion of L3T4+ cells had little effect. These results suggest that functionally lytic HSV-specific cytolytic T lymphocytes present at the time of HSV infection have the potential to participate in the control of the acute infection and in the subsequent establishment of latent infection.
Collapse
Affiliation(s)
- R H Bonneau
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey 17033
| | | |
Collapse
|
39
|
Abghari SZ, Stulting RD. Variation in the number of sites of latency of herpes simplex virus in trigeminal ganglia of inbred mice. Curr Eye Res 1988; 7:1155-62. [PMID: 2852578 DOI: 10.3109/02713688809033219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Following uniocular topical corneal inoculation with herpes simplex virus type 1 (HSV), 176-fold more virus was recovered by 14-day cultivation in vitro from latently infected ipsilateral trigeminal ganglia (TG) of BALB/c mice than from TG of C57BL/6 mice (p = 0.002). Since these quantitative differences may reflect a difference in the number of latently infected cells or a difference in the ability of virus to replicate in secondarily infected cells during cultivation in vitro, experiments were designed to estimate the actual number of sites of latency. Two to four months after topical corneal inoculation, when no active ocular disease was present, minced TG were digested with 2% collagenase. The dissociated cells were placed on monolayers of vero cells, incubated at 31 degrees C, and observed for cytopathic effect (CPE) for 14 days. Ipsilateral TG from BALB/c mice produced five-fold more foci of infection than TG from C57BL/6 mice (p = 0.007). The number of foci of infection was also dependent upon the dose of virus used to infect the eye. Following infection with high doses of HSV, virus was reactivated from contralateral TG, but in lower numbers than from ipsilateral TG. In vitro studies showed that the replication of virus in ganglia from BALB/c mice was 3-8-fold greater than that in ganglia from C57BL/6 mice. These data support the hypothesis that host genetic factors and the number of infectious particles inoculated influence the number of latently infected cells in the trigeminal ganglion after corneal infection with HSV.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S Z Abghari
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA 30322
| | | |
Collapse
|
40
|
Kastrukoff LF, Lau AS, Kim SU. Herpes simplex virus type 1 induced multifocal demyelination of the central nervous system in mice. Ann N Y Acad Sci 1988; 540:654-6. [PMID: 2849908 DOI: 10.1111/j.1749-6632.1988.tb27202.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- L F Kastrukoff
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver
| | | | | |
Collapse
|
41
|
Host and viral genetic factors which influence viral neurotropism. THE MOLECULAR BIOLOGY OF NEUROLOGICAL DISEASE 1988. [PMCID: PMC7151776 DOI: 10.1016/b978-0-407-02400-7.50013-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This chapter reviews host and viral genetic factors that influence viral neurotropism. It highlights a few recent insights that have been gained into the molecular and genetic basis for viral tropism, with specific emphasis on the factors that appear particularly relevant to understanding the basis for the tropism of viruses for the nervous system. The chapter discusses the way by which host genes, acting through a variety of mechanisms, can influence the susceptibility or resistance of animals to neurotropic viruses. It also reviews investigations concerning the role played by individual viral genes and the proteins they encode in determining specific pathways of viral spread to the central nervous system in the infected host. The chapter presents several examples illustrating the current state of knowledge concerning the nature of viral cell attachment proteins and host cell receptors for neurotropic viruses. It also presents examples of the way by which specific viral genetic elements such as enhancers can act to determine the cell-specificity of certain neurotropic viruses.
Collapse
|
42
|
Ugolini G, Kuypers HG, Simmons A. Retrograde transneuronal transfer of herpes simplex virus type 1 (HSV 1) from motoneurones. Brain Res 1987; 422:242-56. [PMID: 2445438 DOI: 10.1016/0006-8993(87)90931-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The use of Herpes simplex virus (HSV) as a retrograde transneuronal tracer would have the unique advantage that the virus would be replicated in the second order neurones, resulting in strong labelling. HSV was injected in the XII nerve (mice). The virus was detected immunohistochemically. Four stages in the brainstem distribution of HSV-positive neurones were distinguished. These stages were correlated with injected amounts/survival time. In stage 1, positive neurones were restricted to the XII nucleus; glial cells were present around the intramedullary XII rootlets. In stages 2-4, positive neurones and glial cells were also present outside the XII nucleus: (a) in the lateral reticular formation, Kölliker-Fuse nucleus, raphe and nucleus coeruleus; and (b) in the area around the XII rootlets, including parts of the inferior olive. In view of their distribution, many of the neurones in (a) must have received the virus by retrograde transneuronal transfer from XII motoneurones. The neurones in (b) were probably infected through a different route, i.e. local transfer of virus from XII axons via glial cells. This local transfer does not lead to extensive spread of the infection, yet, when using HSV for retrograde transneuronal tracing it may represent a source of error.
Collapse
Affiliation(s)
- G Ugolini
- Department of Anatomy, University of Cambridge, UK
| | | | | |
Collapse
|
43
|
Kastrukoff LF, Lau AS, Kim SU. Multifocal CNS demyelination following peripheral inoculation with herpes simplex virus type 1. Ann Neurol 1987; 22:52-9. [PMID: 2820296 DOI: 10.1002/ana.410220113] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The peripheral inoculation of herpes simplex virus type 1 (HSV 1) in experimental animals induces central nervous system (CNS) demyelinating lesions, but the potential relevance of this model to multiple sclerosis is lessened by the unifocal nature of the lesion. In this study, inbred strains of mice were selected on the basis of varying resistance to mortality following lip inoculation with virus. A spectrum of CNS pathology was observed, ranging from focal collections of inflammatory cells at the trigeminal root entry zone in resistant strains (C57BL/6J), to unifocal demyelinating lesions in moderately resistant strains (BALB/cByJ), to multifocal demyelinating lesions throughout the brain in susceptible strains (A/J). Findings from viral titration studies of the CNS support a direct cytolytic effect of virus in the development of demyelinating lesions at the trigeminal root entry zone but cannot exclude an immune-mediated component. Furthermore, 50% tissue-culture-infective doses, immunofluorescence, and electron microscopic studies of primary cultures of oligodendrocytes, derived from the three strains of adult mice, identify differences in resistance to HSV 1 infection in vitro, suggesting that differences at this level may also contribute to the pathological appearance. Multifocal lesions in A/J mice were first observed when the infectious virus could no longer be isolated from the CNS and may be the result of an immune-mediated process "triggered" by the acute CNS infection in susceptible strains of mice.
Collapse
|