1
|
Ramírez R, Falcón R, Izquierdo A, García A, Alvarez M, Pérez AB, Soto Y, Muné M, da Silva EM, Ortega O, Mohana-Borges R, Guzmán MG. Recombinant dengue 2 virus NS3 protein conserves structural antigenic and immunological properties relevant for dengue vaccine design. Virus Genes 2014; 49:185-95. [PMID: 24854144 DOI: 10.1007/s11262-014-1087-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 05/08/2014] [Indexed: 12/28/2022]
Abstract
The NS3 protein is a multifunctional non-structural protein of flaviviruses implicated in the polyprotein processing. The predominance of cytotoxic T cell lymphocytes epitopes on the NS3 protein suggests a protective role of this protein in limiting virus replication. In this work, we studied the antigenicity and immunogenicity of a recombinant NS3 protein of the Dengue virus 2. The full-length NS3 gene was cloned and expressed as a His-tagged fusion protein in Escherichia coli. The pNS3 protein was purified by two chromatography steps. The recombinant NS3 protein was recognized by anti-protease NS3 polyclonal antibody and anti-DENV2 HMAF by Western Blot. This purified protein was able to stimulate the secretion of high levels of gamma interferon and low levels of interleukin-10 and tumor necrosis factor-α in mice splenocytes, suggesting a predominantly Th-1-type T cell response. Immunized BALB/c mice with the purified NS3 protein showed a strong induction of anti-NS3 IgG antibodies, essentially IgG2b, as determined by ELISA. Immunized mice sera with recombinant NS3 protein showed specific recognition of native dengue protein by Western blotting and immunofluorescence techniques. The successfully purified recombinant protein was able to preserv the structural and antigenic determinants of the native dengue protein. The antigenicity shown by the recombinant NS3 protein suggests its possible inclusion into future DENV vaccine preparations.
Collapse
Affiliation(s)
- Rosa Ramírez
- PAHO/WHO Collaborating Centre for the Study of Dengue and its Vector, Institute of Tropical Medicine "Pedro Kourí", IPK, Autopista Novia del Mediodía Km 6 1/2, 17100, Havana, Cuba
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
HCV proteins and immunoglobulin variable gene (IgV) subfamilies in HCV-induced type II mixed cryoglobulinemia: a concurrent pathogenetic role. Clin Dev Immunol 2012; 2012:705013. [PMID: 22690241 PMCID: PMC3368339 DOI: 10.1155/2012/705013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 04/02/2012] [Indexed: 02/08/2023]
Abstract
The association between hepatitis C virus (HCV) infection and type II mixed cryoglobulinemia (MCII) is well established, but the role played by distinct HCV proteins and by specific components of the anti-HCV humoral immune response remains to be clearly defined. It is widely accepted that HCV drives the expansion of few B-cell clones expressing a restricted pool of selected immunoglobulin variable (IgV) gene subfamilies frequently endowed with rheumatoid factor (RF) activity. Moreover, the same IgV subfamilies are frequently observed in HCV-transformed malignant B-cell clones occasionally complicating MCII. In this paper, we analyze both the humoral and viral counterparts at the basis of cryoglobulins production in HCV-induced MCII, with particular attention reserved to the single IgV subfamilies most frequently involved.
Collapse
|
3
|
Shi H, Xie L, Shi H, Yan L, Duan Z. Characterization and application of monoclonal antibody against hepatitis C virus nonstructual protein three. Hybridoma (Larchmt) 2012; 31:54-9. [PMID: 22316486 DOI: 10.1089/hyb.2011.0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Developing assays for detecting HCV antigens could be beneficial because viral proteins appear earlier than antibodies and are more stable than RNA in the serum. Monoclonal antibody was prepared by immunization and cell fusion. Subclass, specificity, and efficiency of monoclonal antibodies were determined by ELISA. Epitope specificity of monoclonal antibodies was analyzed by ELISA additivity test. HCV antigen in serum of hepatitis patients was examined by double monoclonal antibody sandwich ELISA. Five hybridoma cell lines were screened and named HCV(1), HCV(2), HCV(3), HCV(4), and HCV(5). These five monoclonal antibodies had high specificity and efficiency. The additivity test showed that HCV(2), HCV(4), and HCV(5) recognized different epitopes, which can be matched in ELISA. Of 173 anti-HCV positive patients, 37 (21.4%) were positive for HCV antigen. Of 1498 anti-HCV negative patients, 10 (0.67%) were positive for HCV antigen. Fifty normal controls were negative for HCV antigen. HCV antigen detection had moderate agreement and correlation with HCV RNA detection (kappa=0.577, p<0.01; r=0.59, p<0.01). This result indicates that the monoclonal antibody against HCV NS(3) may be a potential diagnostic reagent, which would provide a foundation for developing a sandwich ELISA of HCV antigen detection.
Collapse
Affiliation(s)
- Hongbo Shi
- Beijing Artificial Liver Treatment and Training Centre, Beijing Youan Hospital, Affiliated Hospital of Capital Medical University, Beijing, China
| | | | | | | | | |
Collapse
|
4
|
Characterization of NS3 protease from an Egyptian HCV genotype 4a isolate. Arch Virol 2009; 154:1649-57. [PMID: 19763775 DOI: 10.1007/s00705-009-0500-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 08/17/2009] [Indexed: 10/20/2022]
Abstract
The role of the NS3 protease in HCV replication was demonstrated by the ability of a protease inhibitor cocktail (10 microg/ml) to abolish the induced cytopathic effect in RAW macrophages upon infection with Egyptian sera. The HCV protease gene was amplified from Egyptian sera by nested PCR and cloned downstream of the CMV promotor in a mammalian expression plasmid, which was then used to transform bacteria. Colonies carrying the gene in the correct orientation were subjected to large-scale plasmid purification followed by sequencing. Phylogenetic comparison of the sequence obtained with published sequences from different genotypes confirmed that our sequence belongs to genotype 4a. Of the other genotypes, the most closely related ones were from genotype 1. Multiple alignments of protease peptides showed that the catalytic triads and binding residues for substrate, Zn2+ and the NS4 cofactor are conserved among different isolates, including ours, and confirmed the closer homology between NS3 of genotypes 4 and 1. The HCV-protease-encoding construct was successfully transcribed in both mammalian cells and mice. Mouse antibodies produced against the protease-encoding-construct detected the 18-kDa enzyme in lysates of cells transfected with the construct by Western blotting, and in the media of infected cells by ELISA.
Collapse
|
5
|
Yang J, Lei YF, Yin W, Wei SH, An QX, Lv X, Hu XB, Xu ZK. Production and characterization of monoclonal antibody specific for NS3 helicase of hepatitis C virus. Hybridoma (Larchmt) 2008; 27:181-6. [PMID: 18582211 DOI: 10.1089/hyb.2007.0557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hepatitis C virus (HCV) infection is the major etiological agent of chronic hepatitis, which leads to liver cirrhosis and hepatocellular carcinomas. HCV NS3 helicase is a promising target of anti-virus therapy. In this report, we discuss a strategy to generate monoclonal antibodies (MAbs) of the HCV NS3 helicase, and investigate its potential characteristic. Our results showed the production of MAbs against NS3 helicase, which could specifically recognize the native NS3 helicase in transiently transfected cells in the immunofluorescence experiment. The resultant MAbs were used as the first antibody in Western blot analyses, and observed the specific band that defines the NS3 helicase. Likewise, one MAb could inhibit the NS3 helicase enzymatic activity distinctly in the NS3 helicase-mediated DNA-unwinding assay. To conclude, these antibodies may be useful to generate specific diagnostic tools for HCV infection and may also be developed for potential therapeutics.
Collapse
Affiliation(s)
- Jing Yang
- The State Key Discipline and Department of Microbiology Fourth Medical Military University, 17th Changlexi Road, Xi'an 710032, China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Simula MP, Caggiari L, Gloghini A, De Re V. HCV-related immunocytoma and type II mixed cryoglobulinemia-associated autoantigens. Ann N Y Acad Sci 2007; 1110:121-30. [PMID: 17911427 DOI: 10.1196/annals.1423.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatitis C virus (HCV) is a hepatotropic virus causing hepatocellular damage and chronic liver inflammation that progressively can lead to cirrhosis and hepatocellular carcinoma (HCC). HCV is also lymphotropic, as demonstrated by its capacity to replicate in lymphocytes, by the recurrent detection of organ- and non-organ-specific autoantibodies in HCV-infected patients, and by the strong association found between HCV infection and type II mixed cryoglobulinemic syndrome (MC-II). Moreover, accumulating data ascribe an etiopathogenetic role in the development of B cell non-Hodgkin's lymphomas (NHL) to HCV. All these findings account for the profound effect of HCV infection in the host's immune system. The unique virus-host interactions that culminate in the generation and sustained production of autoantibodies and cryoglobulins have not been delineated. It appears that chronic antigenic stimulation could cause the emergence of specific B cell clones that produce cryoglobulins; moreover, B cell activation and/or deregulation could originate as a result of HCV binding to CD81 tetraspanin or as a consequence of its ability to replicate in B cells. In a previous study we demonstrated that, in MC-II HCV-positive patients, cryoprecipitated monoclonal IgMs, and B cell receptors (BCR) of overexpanded B cell clones share the same combinatory region. Moreover, these IgMs were reactive against both the Fc region of human IgG and the HCV-NS3 antigen. NS3 and Fc epitopes have been idengified by epitope excision approach. One of the idengified NS3 epitopes has been used to immunize a mouse and the monoclonal antibody obtained showed the same cross-reactivity as patients' IgMs. The characterization of antigenic specificity of this antibody may be useful to idengify antigens that can stimulate B cell proliferation in HCV-infected individuals.
Collapse
Affiliation(s)
- Maria Paola Simula
- Farmacologia Sperimentale e Clinica DOMERT, Centro di Riferimento Oncologico, IRCCS. V.F. Gallini, 2 33081 Aviano, Pordenone, Italy
| | | | | | | |
Collapse
|
7
|
Ahlén G, Söderholm J, Tjelle T, Kjeken R, Frelin L, Höglund U, Blomberg P, Fons M, Mathiesen I, Sällberg M. In Vivo Electroporation Enhances the Immunogenicity of Hepatitis C Virus Nonstructural 3/4A DNA by Increased Local DNA Uptake, Protein Expression, Inflammation, and Infiltration of CD3+ T Cells. THE JOURNAL OF IMMUNOLOGY 2007; 179:4741-53. [PMID: 17878373 DOI: 10.4049/jimmunol.179.7.4741] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The mechanisms by which in vivo electroporation (EP) improves the potency of i.m. DNA vaccination were characterized by using the hepatitis C virus nonstructural (NS) 3/4A gene. Following a standard i.m. injection of DNA with or without in vivo EP, plasmid levels peaked immediately at the site of injection and decreased by 4 logs the first week. In vivo EP did not promote plasmid persistence and, depending on the dose, the plasmid was cleared or almost cleared after 60 days. In vivo imaging and immunohistochemistry revealed that protein expression was restricted to the injection site despite the detection of significant levels of plasmid in adjacent muscle groups. In vivo EP increased and prolonged NS3/4A protein expression levels as well as an increased infiltration of CD3+ T cells at the injection site. These factors most likely additively contributed to the enhanced and broadened priming of NS3/4A-specific Abs, CD4+ T cells, CD8+ T cells, and gamma-IFN production. The primed CD8+ responses were functional in vivo, resulting in elimination of hepatitis C virus NS3/4A-expressing liver cells in transiently transgenic mice. Collectively, the enhanced protein expression and inflammation at the injection site following in vivo EP contributed to the priming of in vivo functional immune responses. These localized effects most likely help to insure that the strength and duration of the responses are maintained when the vaccine is tested in larger animals, including rabbits and humans. Thus, the combined effects mediated by in vivo EP serves as a potent adjuvant for the NS3/4A-based DNA vaccine.
Collapse
Affiliation(s)
- Gustaf Ahlén
- Division of Clinical Microbiology, F68, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Desombere I, Van Vlierberghe H, Weiland O, Hultgren C, Sällberg M, Quiroga J, Carreño V, Leroux-Roels G. Serum levels of anti-NS4a and anti-NS5a predict treatment response of patients with chronic hepatitis C. J Med Virol 2007; 79:701-13. [PMID: 17457916 DOI: 10.1002/jmv.20846] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In order to understand better the clinical significance and prognostic value of antibody responses to HCV proteins and in search for parameters that may allow the early identification of non-sustained responders to therapy, antibody levels were measured against NS3, NS4a and NS5a at baseline in the serum of 120 patients chronically infected with HCV of genotype 1 that were classified as sustained responders, relapsers, or non-responders to therapy. The capacity of these antibody tests to predict therapy-outcome was evaluated. While no differences were observed in the anti-NS3 responses in these different response groups, anti-NS4a and anti-NS5a antibodies were observed more frequently and at higher titres in sustained responders versus non-responders or non-sustained responders (=non-responders + relapsers). Based on this observation, a combination of test results consisting of 'the absence of NS4a (AA 1687-1718) antibody at baseline and the presence of HCV-RNA exceeding 10(5) IU/ml after 1 week of treatment' was identified which predicts non-sustained response to treatment with 100% certainty. Replacing the HCV-RNA decision limit by a HCV-core antigen level of >15 pg/ml resulted in the same predictive value. The proposed algorithm also holds for patients treated with peg-interferon and ribavirin. In conclusion, in patients with chronic HCV infection, the decision to continue or stop treatment can be made after 1 week of treatment with (peg)-interferon alpha and ribavirin.
Collapse
|
9
|
De Re V, Sansonno D, Simula MP, Caggiari L, Gasparotto D, Fabris M, Tucci FA, Racanelli V, Talamini R, Campagnolo M, Geremia S, Dammacco F, De Vita S. HCV-NS3 and IgG-Fc crossreactive IgM in patients with type II mixed cryoglobulinemia and B-cell clonal proliferations. Leukemia 2006; 20:1145-54. [PMID: 16617326 DOI: 10.1038/sj.leu.2404201] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We demonstrate that in three cases of MC (two with immunocytoma), the IgM-RF+ component of their cryoprecipitated represents the circulating counterpart of the B-cell receptor (BCR) of the monoclonal overexpanded B-cell population. These IgMs were isolated and used to demonstrate a crossreactivity against both hepatitis C virus (HCV) NS3 antigen and the Fc portion of IgG. Epitopes were identified in a fraction of exemplary samples by using epitope excision approach (NS(31250-1334) and IgG Fc(345-355)). The same phenomenon of crossreactivity has been shown to occur in vivo after immunization of a mouse with the NS3(1251-1270) peptide. To verify if the same reaction was also present in MC samples characterized by an oligo/polyclonal B-cell proliferation, IgM crossreactivity was tested in 14 additional samples. Five out of the 14 were reactive against HCV NS3 and 11 out of 14 were reactive against IgG-Fc peptide. The data support the role of HCV NS3 antigen in a subset of patients with MC, whereas the high frequency of the IgG-Fc epitope suggests that these B cells originate from precursors strongly selected for auto-IgG specificity. We suggest that engagement of specific BCRs by NS3 (or NS3-immunocomplex) antigen could explain the prevalence of IgM cryoglobulins in these patients.
Collapse
Affiliation(s)
- V De Re
- Division of Experimental Oncology I, Centro di Riferimento Oncologico, IRCCS-National Cancer Institute, Aviano, Pordenone, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Mihailova M, Fiedler M, Boos M, Petrovskis I, Sominskaya I, Roggendorf M, Viazov S, Pumpens P. Preparation of hepatitis C virus structural and non-structural protein fragments and studies of their immunogenicity. Protein Expr Purif 2006; 50:43-8. [PMID: 16889980 DOI: 10.1016/j.pep.2006.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 06/15/2006] [Accepted: 06/15/2006] [Indexed: 02/05/2023]
Abstract
Plasmids pQE-60 and pQE-30 containing 6 x His-tag sequence were used for expression of fragments of HCV structural and non-structural proteins in Escherichia coli (E. coli). The following fragments were used: core (1-98 aa), NS3 (202-482 aa), and tetramer of hypervariable region 1 (HVR1) of E2 protein. The constructed plasmids directed high levels of expression of HCV proteins in E. coli JM109. After purification by the metal-affinity chromatography on nickel-nitrilotriacetic acid (Ni-NTA) agarose, the His-tagged HCV proteins were used for immunization of BALB/c mice. All three proteins were able to induce high levels of specific antibodies and, in the case of the NS3 and HVR1 tetramer, also to mount vigorous cell-proliferating responses. High immunogenicity of the tested fragments of HCV proteins shows them as good candidates for inclusion into the future HCV vaccine preparations.
Collapse
Affiliation(s)
- Marija Mihailova
- Institute of Virology, Essen University Hospital, Hufelandstr. 55, 45122 Essen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Frelin L, Ahlén G, Alheim M, Weiland O, Barnfield C, Liljeström P, Sällberg M. Codon optimization and mRNA amplification effectively enhances the immunogenicity of the hepatitis C virus nonstructural 3/4A gene. Gene Ther 2004; 11:522-33. [PMID: 14999224 DOI: 10.1038/sj.gt.3302184] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have recently shown that the NS3-based genetic immunogens should contain also hepatitis C virus (HCV) nonstructural (NS) 4A to utilize fully the immunogenicity of NS3. The next step was to try to enhance immunogenicity by modifying translation or mRNA synthesis. To enhance translation efficiency, a synthetic NS3/4A-based DNA (coNS3/4A-DNA) vaccine was generated in which the codon usage was optimized (co) for human cells. In a second approach, expression of the wild-type (wt) NS3/4A gene was enhanced by mRNA amplification using the Semliki forest virus (SFV) replicon (wtNS3/4A-SFV). Transient tranfections of human HepG2 cells showed that the coNS3/4A gene gave 11-fold higher levels of NS3 as compared to the wtNS3/4A gene when using the CMV promoter. We have previously shown that the presence of NS4A enhances the expression by SFV. Both codon optimization and mRNA amplification resulted in an improved immunogenicity as evidenced by higher levels of NS3-specific antibodies. This improved immunogenicity also resulted in a more rapid priming of cytotoxic T lymphocytes (CTLs). Since HCV is a noncytolytic virus, the functionality of the primed CTL responses was evaluated by an in vivo challenge with NS3/4A-expressing syngeneic tumor cells. The priming of a tumor protective immunity required an endogenous production of the immunogen and CD8+ CTLs, but was independent of B and CD4+ T cells. This model confirmed the more rapid in vivo activation of an NS3/4A-specific tumor-inhibiting immunity by codon optimization and mRNA amplification. Finally, therapeutic vaccination with the coNS3/4A gene using gene gun 6-12 days after injection of tumors significantly reduced the tumor growth in vivo. Codon optimization and mRNA amplification effectively enhances the overall immunogenicity of NS3/4A. Thus, either, or both, of these approaches should be utilized in an NS3/4A-based HCV genetic vaccine.
Collapse
Affiliation(s)
- L Frelin
- Division of Clinical Virology, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
12
|
Jolivet-Reynaud C, Adida A, Michel S, Deléage G, Paranhos-Baccala G, Gonin V, Battail-Poirot N, Lacoux X, Rolland D. Characterization of mimotopes mimicking an immunodominant conformational epitope on the hepatitis C virus NS3 helicase. J Med Virol 2004; 72:385-95. [PMID: 14748062 DOI: 10.1002/jmv.20002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The hepatitis C virus (HCV) nonstructural 3 (NS3) protein is composed of an amino terminal protease and a carboxyl terminal RNA helicase. NS3 contains major antigenic epitopes. The antibody response to NS3 appears early in the course of infection and is focused on the helicase region. However, this response cannot be defined by short synthetic peptides indicating the recognition of conformation-dependent epitopes. In this study, we have screened a dodecapeptide library displayed on phage with anti-NS3 mouse monoclonal antibodies (mAbs) that compete with each other and human anti-HCV NS3 positive sera. Two peptides (mimotopes) were selected that appeared to mimic an immunodominant epitope since they were recognized specifically by the different anti-NS3 mAbs of the study and by human sera from HCV infected patients. Homology search between the two mimotopes and the NS3 sequence showed that one of the two peptides shared amino acid similarities with NS3 at residues 1396-1398 on a very accessible loop as visualized on the three-dimensional structure of the helicase domain whereas the other one had two amino acids similar to nearby residues 1376 and 1378. Reproduced as synthetic dodecapeptides, the two mimotopes were recognized specifically by 19 and 22, respectively, out of 49 sera from HCV infected patients. These mimotopes allowed also the detection of anti-NS3 antibodies in sera of HCV patients at the seroconversion stage. These results suggest that the two NS3 mimotopes are potential tools for the diagnosis of HCV infection.
Collapse
|
13
|
Isaguliants MG, Petrakova NV, Mokhonov VV, Pokrovskaya K, Suzdaltzeva YG, Krivonos AV, Zaberezhny AD, Garaev MM, Smirnov VD, Nordenfelt E. DNA immunization efficiently targets conserved functional domains of protease and ATPase/helicase of nonstructural 3 protein (NS3) of human hepatitis C virus. Immunol Lett 2003; 88:1-13. [PMID: 12853154 DOI: 10.1016/s0165-2478(03)00051-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nonstructural protein 3 (NS3) of human hepatitis C virus (HCV) is a conserved multi-functional protein essential for replication and translation of viral RNA and polyprotein processing. Early T-cell response against NS3 is capable of restricting viremia. We aimed at characterizing the immunogenicity in gene immunization of the conserved regions of NS3 critical for protein folding and activity. C57BL/6 mice were injected with NS3 gene of Russian HCV 1b isolate 274933RU. Immunization did not exert any overt histological changes and had no long-term effects on the immune status of NS3 gene-recipients. The immune response in NS3 gene-recipients was screened by antibody ELISA, T-cell proliferation test and immune assays for specific cytokine production. T-lymphocytes of NS3 gene-recipients proliferated in response to peptides representing conserved regions of protease and ATPase/helicase. Stimulated T-lymphocytes produced IL-2, and in response to protease-derived peptides, also IFN-gamma. Potent and long-lasting antibody response was raised against conserved NS3 regions including "Greek-key" motif of protease, motifs II, V and polynucleotide-binding domains of ATPase/helicase. Thus, gene immunization effectively targeted conserved regions critical for NS3 protease and helicase function. In type and specificity, immune response of NS3 gene-immunized mice mimicked immunity achieved in the acute self-limiting HCV infection of human and primates and in virus-exposed healthy individuals, indicating promiscuity of NS3 as immunogen.
Collapse
Affiliation(s)
- Maria G Isaguliants
- D.I. Ivanovsky Institute of Virology, Gamaleja str. 16, 123098, Moscow, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Frelin L, Alheim M, Chen A, Söderholm J, Rozell B, Barnfield C, Liljeström P, Sällberg M. Low dose and gene gun immunization with a hepatitis C virus nonstructural (NS) 3 DNA-based vaccine containing NS4A inhibit NS3/4A-expressing tumors in vivo. Gene Ther 2003; 10:686-99. [PMID: 12692597 DOI: 10.1038/sj.gt.3301933] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The hepatitis C virus (HCV) protease and helicase encompasses the nonstructural (NS) 3 protein and the cofactor NS4A, which targets the NS3/4A-complex to intracellular membranes. We here evaluate the importance of NS4A in NS3-based genetic immunogens. A full-length genotype 1 NS3/4A gene was cloned into a eucaryotic expression vector in the form of NS3/4A and NS3 alone. Transient transfections revealed that the inclusion of NS4A increased the expression levels of NS3. Subsequently, immunization with the NS3/4A gene primed 10- to 100-fold higher levels of NS3-specific antibodies as compared to immunization with the NS3 gene. Humoral responses primed by the NS3/4A gene had a higher IgG2a/IgG1 ratio (>20) as compared to the NS3 gene (3.0), suggesting a T helper 1-skewed response. Low dose i.m. (10 microg) immunization with the NS3/4A gene inhibited the growth of NS3/4A-expressing tumor cells in vivo, whereas the NS3 gene alone or NS3 protein did not. We then evaluated the efficiency of the NS3/4A gene administered by the gene gun, at the same doses used for humans, in priming cytotoxic T lymphocyte (CTL) responses. Three to four 4 microg doses of the NS3/4A gene primed CTL at a precursor frequency of 2-4%, which inhibited the growth of NS3/4A-expressing tumor cells in vivo. Thus, NS4A enhances the expression levels and immunogenicity of NS3, and an NS3/4A gene delivered transdermally could be a therapeutic vaccine candidate.
Collapse
Affiliation(s)
- L Frelin
- Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Majid AM, Gretch DR. Current and future hepatitis C virus diagnostic testing: problems and advancements. Microbes Infect 2002; 4:1227-36. [PMID: 12467764 DOI: 10.1016/s1286-4579(02)01650-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Serological antibody assays used in hepatitis C virus diagnosis have improved in sensitivity and specificity. However, detection of active viremia or monitoring levels of virus during or after patient treatment is most commonly undertaken using nucleic acid-based technologies. Advancements in diagnostic technologies and implications for managing patients with hepatitis C in various clinical settings are discussed.
Collapse
Affiliation(s)
- Ayaz M Majid
- Department of Laboratory Medicine, University of Washington Medical Center, Seattle, WA 98104-2499, USA
| | | |
Collapse
|
16
|
Brown LM, Papa RA, Frost MJ, Mackintosh SG, Gu X, Dixon RJ, Shannon AD. A single amino acid is critical for the expression of B-cell epitopes on the helicase domain of the pestivirus NS3 protein. Virus Res 2002; 84:111-24. [PMID: 11900844 DOI: 10.1016/s0168-1702(01)00444-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Truncated NS3 proteins, expressed by recombinant baculoviruses, were used to investigate the location of conserved B-cell epitopes on this non-structural bovine viral diarrhoea virus (BVDV) protein. A goat anti-pestivirus antiserum, and a panel of anti-NS3 monoclonal antibodies, including the BVDV-1 specific antibody P1D8, were used to verify the presence or absence of the epitopes. Interestingly, the monoclonal antibodies reacted only with the truncated protein encompassing the helicase domain of NS3. Expression of the B-cell epitopes was dependent on, but not within, a 57 amino acid sequence at the carboxy-terminal end of this protein, supporting observations that these conserved epitopes are conformational in nature. A comparison of deduced amino acid sequences of the helicase domain from BVDV-1, BVDV-2, BDV and CSFV isolates highlighted a single amino acid that appeared to be unique to P1D8-reactive BVDV-1 isolates. Site-directed mutagenesis studies confirmed that this amino acid is critical for the expression of the BVDV-1 specific NS3 epitope recognised by the P1D8 monoclonal antibody. Surprisingly, the amino acid was also important for an epitope recognised by two group-specific monoclonal antibodies, P1H11 and P4A11. Protein modelling studies, based on the structure of the hepatitis C NS3 helicase domain, indicated that this amino acid occupies a prominent position on the surface of the protein.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Baculoviridae/genetics
- Base Sequence
- Cattle
- Classical Swine Fever Virus/genetics
- Classical Swine Fever Virus/isolation & purification
- DNA, Viral
- Diarrhea Viruses, Bovine Viral/genetics
- Diarrhea Viruses, Bovine Viral/immunology
- Diarrhea Viruses, Bovine Viral/isolation & purification
- Enzyme-Linked Immunosorbent Assay/methods
- Epitope Mapping
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Gene Expression
- Genetic Vectors/genetics
- Goats
- Immunoenzyme Techniques
- Models, Molecular
- Molecular Sequence Data
- Protein Structure, Tertiary
- RNA Helicases/chemistry
- RNA Helicases/genetics
- RNA Helicases/immunology
- Recombination, Genetic
- Serine Endopeptidases
- Staining and Labeling/methods
- Swine
- Viral Nonstructural Proteins/chemistry
- Viral Nonstructural Proteins/genetics
- Viral Nonstructural Proteins/immunology
Collapse
Affiliation(s)
- L M Brown
- Department of Biological Sciences, University of Western Sydney, Macarthur, P.O. Box 555, Campbelltown, NSW 2560, Australia.
| | | | | | | | | | | | | |
Collapse
|
17
|
Lazdina U, Hultgren C, Frelin L, Chen M, Lodin K, Weiland O, Leroux-Roels G, Quiroga JA, Peterson DL, Milich DR, Sällberg M. Humoral and CD4(+) T helper (Th) cell responses to the hepatitis C virus non-structural 3 (NS3) protein: NS3 primes Th1-like responses more effectively as a DNA-based immunogen than as a recombinant protein. J Gen Virol 2001; 82:1299-1308. [PMID: 11369873 DOI: 10.1099/0022-1317-82-6-1299] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The non-structural 3 (NS3) protein is one of the most conserved proteins of hepatitis C virus, and T helper 1 (Th1)-like responses to NS3 in humans correlate with clearance of infection. Several studies have proposed that DNA-based immunizations are highly immunogenic and prime Th1-like responses, although few head-to-head comparisons with exogenous protein immunizations have been described. A full-length NS3/NS4A gene was cloned in eukaryotic vectors with expression directed to different subcellular compartments. Inbred mice were immunized twice in regenerating tibialis anterior (TA) muscles with either plasmid DNA or recombinant NS3 (rNS3). After two 100 micrograms DNA immunizations, specific antibody titres of up to 12960 were detected at week 5, dominated by IgG2a and IgG2b. NS3-specific CD4(+) T cell responses in DNA-immunized mice peaked at day 13, as measured by proliferation and IL-2 and IFN-gamma production. Mice immunized with 1-10 micrograms rNS3 without adjuvant developed antibody titres comparable to those of the DNA-immunized mice, but dominated instead by IgG1. CD4(+) T cell responses in these mice showed peaks of IL-2 response at day 3 and IL-6 and IFN-gamma responses at day 6. With adjuvant, rNS3 was around 10-fold more immunogenic with respect to speed and magnitude of the immune responses. Thus, immunization with rNS3 in adjuvant is superior to DNA immunization with respect to kinetics and quantity in priming specific antibodies and CD4(+) T cells. However, as a DNA immunogen, NS3 elicits stronger Th1-like immune responses, whereas rNS3 primes a mixed Th1/Th2-like response regardless of the route, dose or adjuvant.
Collapse
Affiliation(s)
- Una Lazdina
- Divisions of Clinical Virology, F68, and Biomedical Laboratory Technology1 and Division of Infectious Diseases, Department of Medicine2, Karolinska Institute, Huddinge University Hospital, S-141 86 Huddinge, Sweden
| | - Catharina Hultgren
- Divisions of Clinical Virology, F68, and Biomedical Laboratory Technology1 and Division of Infectious Diseases, Department of Medicine2, Karolinska Institute, Huddinge University Hospital, S-141 86 Huddinge, Sweden
| | - Lars Frelin
- Divisions of Clinical Virology, F68, and Biomedical Laboratory Technology1 and Division of Infectious Diseases, Department of Medicine2, Karolinska Institute, Huddinge University Hospital, S-141 86 Huddinge, Sweden
| | - Margaret Chen
- Divisions of Clinical Virology, F68, and Biomedical Laboratory Technology1 and Division of Infectious Diseases, Department of Medicine2, Karolinska Institute, Huddinge University Hospital, S-141 86 Huddinge, Sweden
| | - Karin Lodin
- Divisions of Clinical Virology, F68, and Biomedical Laboratory Technology1 and Division of Infectious Diseases, Department of Medicine2, Karolinska Institute, Huddinge University Hospital, S-141 86 Huddinge, Sweden
| | - Ola Weiland
- Divisions of Clinical Virology, F68, and Biomedical Laboratory Technology1 and Division of Infectious Diseases, Department of Medicine2, Karolinska Institute, Huddinge University Hospital, S-141 86 Huddinge, Sweden
| | | | - Juan A Quiroga
- Department of Hepatology, Fundacion Jimenez Diaz, Madrid, Spain4
| | - Darrell L Peterson
- Department of Biochemistry, Virginia Commonwealth University, Richmond, VA, USA5
| | - David R Milich
- Vaccine Research Institute of San Diego, San Diego, CA, USA6
| | - Matti Sällberg
- Divisions of Clinical Virology, F68, and Biomedical Laboratory Technology1 and Division of Infectious Diseases, Department of Medicine2, Karolinska Institute, Huddinge University Hospital, S-141 86 Huddinge, Sweden
| |
Collapse
|
18
|
Vidalin O, Fournillier A, Renard N, Chen M, Depla E, Boucreux D, Brinster C, Baumert T, Nakano I, Fukuda Y, Liljeström P, Trépo C, Inchauspé G. Use of conventional or replicating nucleic acid-based vaccines and recombinant Semliki forest virus-derived particles for the induction of immune responses against hepatitis C virus core and E2 antigens. Virology 2000; 276:259-70. [PMID: 11040118 DOI: 10.1006/viro.2000.0566] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Replicating and nonreplicating nucleic acid-based vaccines as well as Semliki Forest-recombinant Viruses (rSFVs) were evaluated for the development of a vaccine against hepatitis C virus (HCV). Replicating SFV-DNA vaccines (pSFV) and rSFVs expressing HCV core or E2 antigens were compared with classical CMV-driven plasmids (pCMV) in single or bimodal vaccine protocols. In vitro experiments indicated that all vaccine vectors produced the HCV antigens but to different levels depending on the antigen expressed. Both replicating and nonreplicating core-expressing plasmids induced, upon injection in mice, specific comparable CTL responses ranging from 10 to 50% lysis (E:T ratio 100:1). Comparison of different injection modes (intramuscular versus intraepidermal) and the use of descalating doses of DNA (1-100 microgram) did not show an increased efficacy of the core-SFV plasmid compared with the CMV-driven one. Surprisingly, rSFVs yielded either no detectable anticore CTL or very low anti-E2 antibody titers following either single or bimodal administration together with CMV-expressing counterparts. Prime-boost experiments revealed, in all cases, the superiority of DNA-based only vaccines. The anti-E2 antibody response was evaluated using three different assays which indicated that all generated anti-E2 antibodies were targeted at similar determinants. This study emphasizes the potential of DNA-based vaccines for induction of anti-HCV immune responses and reveals an unexpected and limited benefit of SFV-based vaccinal approaches in the case of HCV core and E2.
Collapse
Affiliation(s)
- O Vidalin
- INSERM U271-151, Cours Albert Thomas, 69424 Lyon Cedex 03, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Iroegbu J, Birk M, Lazdina U, Sönnerborg A, Sällberg M. Variability and immunogenicity of human immunodeficiency virus type 1 p24 gene quasispecies. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2000; 7:377-83. [PMID: 10799449 PMCID: PMC95882 DOI: 10.1128/cdli.7.3.377-383.2000] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Despite the conserved nature of the human immunodeficiency virus type 1 (HIV-1) gag gene, multiple quasispecies of the p24 gene coexist in HIV-1-infected patients. We cloned and sequenced 31 p24 genes from four HIV-1-infected patients. The intrapatient homology between the p24 genes ranged from 97.1 to 99.1%, whereas the interpatient homology ranged from 91.5 to 93.8%, suggesting a host-specific evolution. Synonymous and nonsynonymous nucleotide changes were evenly distributed in the p24 gene, with 27 and 28%, respectively, located within host human leukocyte antigen class I recognition sites. This would suggest only a minor influence from the host cytotoxic T-cell response on the evolution of the p24 gene. The importance of minor variations within p24 was analyzed by designing DNA-based immunogens from two distinct p24 quasispecies genes simultaneously derived from one patient. In plasmid-immunized H-2(b), H-2(d), and H-2(k) haplotype mice, a clear influence from the host major histocompatibility complex was noted on the immune responses, fully consistent with those noted when a recombinant p24 protein is used as the immunogen. The two p24 DNA immunogens did not differ in their immunogenicity, indicating that the limited genetic variability (<1%) had little influence on the immune responses.
Collapse
Affiliation(s)
- J Iroegbu
- Divisions of Clinical Virology, F68, Karolinska Institute, Huddinge University Hospital, S-141 86 Huddinge, Sweden
| | | | | | | | | |
Collapse
|
20
|
Pereboeva LA, Pereboev AV, Wang LF, Morris GE. Hepatitis C epitopes from phage-displayed cDNA libraries and improved diagnosis with a chimeric antigen. J Med Virol 2000. [DOI: 10.1002/(sici)1096-9071(200002)60:2<144::aid-jmv7>3.0.co;2-g] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Markine-Goriaynoff D, van der Logt JT, Truyens C, Nguyen TD, Heessen FW, Bigaignon G, Carlier Y, Coutelier JP. IFN-gamma-independent IgG2a production in mice infected with viruses and parasites. Int Immunol 2000; 12:223-30. [PMID: 10653858 DOI: 10.1093/intimm/12.2.223] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
After infection with some viruses and intracellular parasites, antibody production is restricted to IgG2a. We first observed that, whereas live viruses such as lactate dehydrogenase-elevating virus (LDV) or mouse adenovirus induced mostly an IgG2a response, a large proportion of antibodies produced against killed viruses were IgG1. This IgG1 antiviral response was suppressed when live virions were added to inactivated viral particles. These results indicate that the IgG2a preponderance is related to the infectious process itself rather than to the type of antigen involved. Since IFN-gamma is known to stimulate IgG2a production by activated B lymphocytes and to be secreted after infection, we examined the role of this cytokine in the antibody isotypic distribution caused by LDV. Most IgG2a responses were relatively unaffected in mice deficient for the IFN-gamma receptor or treated with anti-IFN-gamma antibody. A similar IFN-gamma-independent IgG2a secretion was observed after infection with the parasites Toxoplasma gondii and Trypanosoma cruzi. However, the IFN-gamma-independent IgG2a production triggered by infection still required the presence of functional T(h) lymphocytes. Therefore, signal(s) other than IFN-gamma secretion may explain the T(h)-dependent isotypic bias in antibody secretion triggered by viruses and parasites.
Collapse
Affiliation(s)
- D Markine-Goriaynoff
- Unit of Experimental Medicine, Christian de Duve Institute of Cellular Pathology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, 1200 Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhang ZX, Lazdina U, Chen M, Peterson DL, Sällberg M. Characterization of a monoclonal antibody and its single-chain antibody fragment recognizing the nucleoside Triphosphatase/Helicase domain of the hepatitis C virus nonstructural 3 protein. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2000; 7:58-63. [PMID: 10618278 PMCID: PMC95823 DOI: 10.1128/cdli.7.1.58-63.2000] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/1999] [Accepted: 10/06/1999] [Indexed: 11/20/2022]
Abstract
We have produced a murine monoclonal antibody (MAb), ZX10, recognizing the NTPase/helicase domain of the hepatitis C virus (HCV) nonstructural 3 protein (NS3), from which we designed a single-chain variable fragment (ScFv). The ZX10 MAb recognized a discontinuous epitope of the NTPase/helicase domain, of which the linear sequence GEIPFYGKAIPL at residues 1371 to 1382 constitutes one part. cDNAs from variable regions coding for the heavy and light chains were cloned, sequenced, and assembled into the NS3-ScFv, which was inserted into procaryotic and eucaryotic expression vectors. Escherichia coli-expressed NS3-ScFv inhibited the binding of the ZX10 MAb to NS3, confirming a retained specificity. However, the ability to bind the peptide 1371-1382 had been lost. In vitro-translated NS3-ScFv and HCV NS3/NS4A were coprecipitated by antibodies to HCV NS4A, confirming the in vitro activity of the NS3 ScFv. Thus, we have designed a functional NS3 NTPase/helicase domain-specific ScFv which should be evaluated further with respect to disturbing enzymatic functions of the NS3 protein.
Collapse
Affiliation(s)
- Z X Zhang
- Divisions of Clinical Virology and Basic Oral Sciences, Huddinge University Hospital, S-141 86 Huddinge, Sweden
| | | | | | | | | |
Collapse
|
23
|
Ou-Yang P, Chiang BL, Hwang LH, Chen YG, Yang PM, Chi WK, Chen PJ, Chen DS. Characterization of monoclonal antibodies against hepatitis C virus nonstructural protein 3: different antigenic determinants from human B cells. J Med Virol 1999; 57:345-50. [PMID: 10089044 DOI: 10.1002/(sici)1096-9071(199904)57:4<345::aid-jmv3>3.0.co;2-n] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The nonstructural (NS3) region protein of hepatitis C virus (HCV) possesses major B-cell epitopes that induce antibodies after infection. To elucidate further the characteristics of these B cells and their role in the immune regulation of HCV infection, T9 (portion of NS3 region, amino acids [a.a.] 1188-1493)-specific monoclonal antibodies were derived and mapped for B-cell antigenic determinants with recombinant proteins. A total of 10 T9-specific hybridomas were generated and tested for B-cell antigenic determinants. To analyze the B-cell antigenic determinants, eight recombinant proteins including NS3-e (a.a. 1175-1334), NS3-a' (a.a. 1175-1250), NS3-a (a.a. 1251-1334), NS3-b (a.a. 1323-1412), NS3-c (a.a. 1407-1499), NS3-a/b (a.a. 1251-1412), NS3-bc (a.a. 1323-1499), and NS3-abc (a.a. 1251-1499) encoded by NS3-region internal clones were expressed and tested for immunoblotting. The data suggested IgG hybridomas recognized NS3-a, NS3-a', or NS3-b protein by immunoblotting. By contrast, the NS3-e protein bears the major antigenic determinant recognized by human sera. Half of the hybridomas were found to react with protein NS3-a', which is not a major B-cell antigenic determinant in humans. These data suggested that conformational epitopes in vivo may be important for B-cell recognition.
Collapse
Affiliation(s)
- P Ou-Yang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Cho JH, Lee SW, Sung YC. Enhanced cellular immunity to hepatitis C virus nonstructural proteins by codelivery of granulocyte macrophage-colony stimulating factor gene in intramuscular DNA immunization. Vaccine 1999; 17:1136-44. [PMID: 10195625 DOI: 10.1016/s0264-410x(98)00333-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Hepatitis C virus (HCV) nonstructural (NS) proteins appeared to be important targets for HCV vaccine development, since NS-specific T-helper-cell responses are associated with clearance from acute HCV infection. In this report, we have constructed a plasmid, pTV-NS345, that encodes the HCV NS3, NS4 and NS5 proteins (NS345) and a bicistronic plasmid, PTV-NS345/GMCSF, in which the HCV NS345 polyprotein and GMCSF are translated independently. Intramuscular inoculation with pTV-NS345 plasmid DNA into the Buffalo rats generated both antibody and T-cell proliferative responses to each NS protein. The expression of GMCSF, together with HCV NS345 proteins, appeared to significantly increase T-cell proliferative responses. In particular, the inoculation of a bicistronic plasmid generated higher T-cell proliferative responses to each NS protein than did the coinjection of two separate plasmids, pTV-NS345 and pTV-GMCSF. These results demonstrate that the codelivery of GMCSF augmented HCV NS345-specific cellular immunity and that the intensity of the immunity was differed depending on how GMCSF gene is codelivered.
Collapse
Affiliation(s)
- J H Cho
- Department of Life Science, Center for Biofunctional Molecules, School of Environmental Engineering, Pohang University of Science and Technology, Kyungbuk, South Korea
| | | | | |
Collapse
|
25
|
Chen M, Sällberg M, Sönnerborg A, Weiland O, Mattsson L, Jin L, Birkett A, Peterson D, Milich DR. Limited humoral immunity in hepatitis C virus infection. Gastroenterology 1999; 116:135-43. [PMID: 9869611 DOI: 10.1016/s0016-5085(99)70237-4] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS The extremely high rate of chronicity to hepatitis C virus (HVC) infection suggests an inefficient immune response. The humoral immune response to HCV was evaluated in 60 patients with chronic HCV infection and in 12 patients acutely infected with HCV. METHODS A number of recombinant HCV antigens including the core, envelope 2 (E2), nonstructural (NS) 3, NS4, and NS5 proteins, and NS4a and E2-HVR-1 peptides were used in enzyme-linked immunoassays. RESULTS Immunoglobulin (Ig) G antibody responses to these viral antigens, except for the HCV core, were highly restricted to the IgG1 isotype. The prevalence of antibodies of the IgG1 isotype specific for the HCV core, E2, E2-HVR1, NS3 (helicase domain), NS4, and NS5 antigens was 97%, 98%, 28%, 88%, 33%, and 68%, respectively. Antibodies of the IgG3 isotype specific for E2, E2-HVR-1, NS3, NS4, and NS5 were detected in a minority of serum samples. The IgG2 and IgG4 isotypes were rarely if ever detected. Furthermore, antibody responses to HCV viral antigens were of relatively low titer and, with the exception of anti-HCV core, were delayed in appearance until the chronic phase of infection. CONCLUSIONS The IgG1 restriction, low titer, and delayed appearance of antibody responses elicited during HCV infection suggest that the immunogenicity of HCV proteins is limited in the context of natural infection. Inasmuch as recombinant HCV viral antigens perform as relatively normal immunogens in small animals, we suggest that the defective humoral immune responses during HCV infection may be attributable to an "immune avoidance" strategy.
Collapse
Affiliation(s)
- M Chen
- Department of Molecular Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Chen M, Sällberg M, Sönnerborg A, Jin L, Birkett A, Peterson D, Weiland O, Milich DR. Human and murine antibody recognition is focused on the ATPase/helicase, but not the protease domain of the hepatitis C virus nonstructural 3 protein. Hepatology 1998; 28:219-24. [PMID: 9657115 DOI: 10.1002/hep.510280128] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The hepatitis C virus (HCV) nonstructural (NS) 3 protein has been shown to possess at least two enzymatic domains. The amino terminal third contains a serine-protease domain, whereas the carboxy terminal two thirds is comprised of an adenosine triphosphatase (ATPase)/helicase domain. These domains are essential for the maturation of the carboxy-terminal portion of the HCV polyprotein and catalyze the cap synthesis of the RNA genome. In this report, human and murine antibody responses induced by NS3 were characterized using a recombinant full-length NS3 (NS3-FL) protein, or the isolated protease or ATPase/ helicase domains, expressed and purified from Escherichia coli. Sera from 40 patients with chronic HCV infection were assayed in enzyme-linked immunoassays (EIAs) for antibody binding to the panel of NS3 proteins. Virtually all patient sera contained antibodies specific for NS3-FL and the ATPase/helicase domain, whereas only 10% of sera reacted with the protease domain of NS3. Human antibodies reactive with NS3-FL were highly restricted to the immunoglobulin G1 (IgG1) isotype and were inhibited by soluble ATPase/helicase, but not by the protease domain. The anti-NS3 (ATPase/helicase) reactivity decreased on denaturation by sodium dodecyl sulfate (SDS) and beta-mercaptoethanol (2ME), suggesting the recognition of nonlinear or conformational B-cell determinants. Similar to infected humans, mice immunized with NS3-FL developed high-titered primary antibody responses to the NS3 ATPase/ helicase domain, whereas an anti-NS3 protease response was not observed after primary or secondary immunizations. Thus, the human and murine humoral immune responses to the HCV NS3 protein are focused on the ATPase/helicase domain, are restricted to the IgG1 isotype in humans, and are conformationally dependent. Unexpectedly, in both species, the NS3 protease domain, present in the context of the full-length NS3, appears to possess low intrinsic immunogenicity in terms of antibody production.
Collapse
Affiliation(s)
- M Chen
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Hultgren C, Milich DR, Sällberg M. Antibodies to the hepatitis B e antigen (HBeAg) can be induced in HBeAg-transgenic mice by adoptive transfer of a specific T-helper 2 cell clone. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 1997; 4:630-2. [PMID: 9302220 PMCID: PMC170615 DOI: 10.1128/cdli.4.5.630-632.1997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Production of antibody to hepatitis B e antigen (HBeAg); i.e., anti-HBe antibody,) in HBeAg-transgenic mice is believed to be mediated by T-helper 2 (Th2) cells. Injection of an HBeAg-specific Th2 clone into HBeAg-transgenic H-2k mice induced anti-HBe antibody production, confirming the function of Th2 cells in this model system.
Collapse
Affiliation(s)
- C Hultgren
- Division of Clinical Virology, Huddinge University Hospital, Sweden
| | | | | |
Collapse
|
28
|
A selection from recent publications. Trends Microbiol 1996. [DOI: 10.1016/s0966-842x(96)82910-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|