1
|
Janes ME, Gottlieb AP, Park KS, Zhao Z, Mitragotri S. Cancer vaccines in the clinic. Bioeng Transl Med 2024; 9:e10588. [PMID: 38193112 PMCID: PMC10771564 DOI: 10.1002/btm2.10588] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/06/2023] [Accepted: 07/22/2023] [Indexed: 01/10/2024] Open
Abstract
Vaccines are an important tool in the rapidly evolving repertoire of immunotherapies in oncology. Although cancer vaccines have been investigated for over 30 years, very few have achieved meaningful clinical success. However, recent advances in areas such antigen identification, formulation development and manufacturing, combination therapy regimens, and indication and patient selection hold promise to reinvigorate the field. Here, we provide a timely update on the clinical status of cancer vaccines. We identify and critically analyze 360 active trials of cancer vaccines according to delivery vehicle, antigen type, indication, and other metrics, as well as highlight eight globally approved products. Finally, we discuss current limitations and future applications for clinical translation of cancer vaccines.
Collapse
Affiliation(s)
- Morgan E. Janes
- John A. Paulson School of Engineering & Applied Sciences, Harvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
- Harvard‐MIT Division of Health Sciences and Technology, Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Alexander P. Gottlieb
- John A. Paulson School of Engineering & Applied Sciences, Harvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Kyung Soo Park
- John A. Paulson School of Engineering & Applied Sciences, Harvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Zongmin Zhao
- Department of Pharmaceutical SciencesCollege of Pharmacy, University of Illinois ChicagoChicagoIllinoisUSA
- University of Illinois Cancer CenterChicagoIllinoisUSA
| | - Samir Mitragotri
- John A. Paulson School of Engineering & Applied Sciences, Harvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
| |
Collapse
|
2
|
Atay C, Medina-Echeverz J, Hochrein H, Suter M, Hinterberger M. Armored modified vaccinia Ankara in cancer immunotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 379:87-142. [PMID: 37541728 DOI: 10.1016/bs.ircmb.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Cancer immunotherapy relies on unleashing the patient´s immune system against tumor cells. Cancer vaccines aim to stimulate both the innate and adaptive arms of immunity to achieve durable clinical responses. Some roadblocks for a successful cancer vaccine in the clinic include the tumor antigen of choice, the adjuvants employed to strengthen antitumor-specific immune responses, and the risks associated with enhancing immune-related adverse effects in patients. Modified vaccinia Ankara (MVA) belongs to the family of poxviruses and is a versatile vaccine platform that combines several attributes crucial for cancer therapy. First, MVA is an excellent inducer of innate immune responses leading to type I interferon secretion and induction of T helper cell type 1 (Th1) immune responses. Second, it elicits robust and durable humoral and cellular immunity against vector-encoded heterologous antigens. Third, MVA has enormous genomic flexibility, which allows for the expression of multiple antigenic and costimulatory entities. And fourth, its replication deficit in human cells ensures a excellent safety profile. In this review, we summarize the current understanding of how MVA induces innate and adaptive immune responses. Furthermore, we will give an overview of the tumor-associated antigens and immunomodulatory molecules that have been used to armor MVA and describe their clinical use. Finally, the route of MVA immunization and its impact on therapeutic efficacy depending on the immunomodulatory molecules expressed will be discussed.
Collapse
Affiliation(s)
- Cigdem Atay
- Bavarian Nordic GmbH, Fraunhoferstr.13, Planegg, Germany
| | | | | | - Mark Suter
- Prof. em. University of Zurich, Switzerland
| | | |
Collapse
|
3
|
Dai R, Huang X, Yang Y. γδT Cells Are Required for CD8 + T Cell Response to Vaccinia Viral Infection. Front Immunol 2021; 12:727046. [PMID: 34691033 PMCID: PMC8531544 DOI: 10.3389/fimmu.2021.727046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/22/2021] [Indexed: 12/28/2022] Open
Abstract
Vaccinia virus (VV) is the most studied member of the poxvirus family, is responsible for the successful elimination of smallpox worldwide, and has been developed as a vaccine vehicle for infectious diseases and cancer immunotherapy. We have previously shown that the unique potency of VV in the activation of CD8+ T cell response is dependent on efficient activation of the innate immune system through Toll-like receptor (TLR)-dependent and -independent pathways. However, it remains incompletely defined what regulate CD8+ T cell response to VV infection. In this study, we showed that γδT cells play an important role in promoting CD8+ T cell response to VV infection. We found that γδT cells can directly present viral antigens in the context of MHC-I for CD8+ T cell activation to VV in vivo, and we further demonstrated that cell-intrinsic MyD88 signaling in γδT cells is required for activation of γδT cells and CD8+ T cells. These results illustrate a critical role for γδT cells in the regulation of adaptive T cell response to viral infection and may shed light on the design of more effective vaccine strategies based on manipulation of γδT cells.
Collapse
Affiliation(s)
- Rui Dai
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Xiaopei Huang
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Yiping Yang
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
4
|
DeMaria PJ, Lee-Wisdom K, Donahue RN, Madan RA, Karzai F, Schwab A, Palena C, Jochems C, Floudas C, Strauss J, Marté JL, Redman JM, Dombi E, Widemann B, Korchin B, Adams T, Pico-Navarro C, Heery C, Schlom J, Gulley JL, Bilusic M. Phase 1 open-label trial of intravenous administration of MVA-BN-brachyury-TRICOM vaccine in patients with advanced cancer. J Immunother Cancer 2021; 9:e003238. [PMID: 34479925 PMCID: PMC8420671 DOI: 10.1136/jitc-2021-003238] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND MVA-BN-brachyury-TRICOM is a recombinant vector-based therapeutic cancer vaccine designed to induce an immune response against brachyury. Brachyury, a transcription factor overexpressed in advanced cancers, has been associated with treatment resistance, epithelial-to-mesenchymal transition, and metastatic potential. MVA-BN-brachyury-TRICOM has demonstrated immunogenicity and safety in previous clinical trials of subcutaneously administered vaccine. Preclinical studies have suggested that intravenous administration of therapeutic vaccines can induce superior CD8+ T cell responses, higher levels of systemic cytokine release, and stronger natural killer cell activation and proliferation. This is the first-in-human study of the intravenous administration of MVA-BN-brachyury-TRICOM. METHODS Between January 2020 and March 2021, 13 patients were treated on a phase 1, open-label, 3+3 design, dose-escalation study at the National Institutes of Health Clinical Center. The study population was adults with advanced solid tumors and was enriched for chordoma, a rare sarcoma of the notochord that overexpresses brachyury. Vaccine was administered intravenously at three DLs on days 1, 22, and 43. Blood samples were taken to assess drug pharmacokinetics and immune activation. Imaging was conducted at baseline, 1 month, and 3 months post-treatment. The primary endpoint was safety and tolerability as determined by the frequency of dose-limiting toxicities; a secondary endpoint was determination of the recommended phase 2 dose. RESULTS No dose-limiting toxicities were observed and no serious adverse events were attributed to the vaccine. Vaccine-related toxicities were consistent with class profile (ie, influenza-like symptoms). Cytokine release syndrome up to grade 2 was observed with no adverse outcomes. Dose-effect trend was observed for fever, chills/rigor, and hypotension. Efficacy analysis of objective response rate per RECIST 1.1 at the end of study showed one patient with a partial response, four with stable disease, and eight with progressive disease. Three patients with stable disease experienced clinical benefit in the form of improvement in pain. Immune correlatives showed T cell activation against brachyury and other tumor-associated cascade antigens. CONCLUSIONS Intravenous administration of MVA-BN-brachyury-TRICOM vaccine was safe and tolerable. Maximum tolerated dose was not reached. The maximum administered dose was 109 infectious units every 3 weeks for three doses. This dose was selected as the recommended phase 2 dose. TRIAL REGISTRATION NUMBER NCT04134312.
Collapse
Affiliation(s)
- Peter J DeMaria
- Genitourinary Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Katherine Lee-Wisdom
- Medical Oncology Service, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Renee N Donahue
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland, USA
| | - Ravi A Madan
- Genitourinary Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Fatima Karzai
- Genitourinary Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Angie Schwab
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland, USA
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland, USA
| | - Caroline Jochems
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland, USA
| | - Charalampos Floudas
- Genitourinary Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Julius Strauss
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland, USA
| | - Jennifer L Marté
- Genitourinary Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jason Mark Redman
- Genitourinary Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Eva Dombi
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Brigitte Widemann
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Borys Korchin
- Oncology Strategy, Bavarian Nordic Inc, Morrisville, North Carolina, USA
| | | | - Cesar Pico-Navarro
- Oncology Strategy, Bavarian Nordic Inc, Morrisville, North Carolina, USA
| | | | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland, USA
| | - James L Gulley
- Genitourinary Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Marijo Bilusic
- Genitourinary Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Lymphoid follicle antigen (Ag) delivery and enhanced rodent humoral immune responses mediated by Ag-containing PEGylated liposomes. Vaccine 2021; 39:1131-1139. [PMID: 33478792 DOI: 10.1016/j.vaccine.2021.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/13/2020] [Accepted: 01/01/2021] [Indexed: 12/11/2022]
Abstract
Antigen (Ag) delivery to lymphoid follicles is important in achieving adaptive immunity. We recently developed a novel two-step Ag delivery system that efficiently induces cellular immune responses to Ags in mice by using priming intravenous (i.v.) injections of empty PEGylated liposomes (PEG-Lip) followed 3 days later by Ag-entrapped PEG-Lip (Ag-PEG-lip). In this study, we looked for humoral immune responses in rats and mice with IgG production specific to the encapsulated Ags. We observed that initial i.v. injections of empty PEG-Lip triggered accumulation of subsequent doses ovalbumin-PEG-Lip (OVA-PEG-lip) in splenic follicles and enhanced IgG production against OVA in both rats and mice. Anti-OVA IgG production was diminished by inhibition of splenic follicular accumulation of OVA-PEG-Lip by fingolimod (FTY720), which inhibits lymphocyte egress from lymphoid tissues. Thisindicates that the follicular accumulation of Ags that we observed is an indispensable and unique step in the production of anti-OVA IgG. Interestingly, in BALB/c nude mice, which are T cell deficient, a high follicular accumulation of OVA-PEG-Lip was observed, but anti-OVA IgG production was not observed. This suggests that T cells are also indispensable for the induction of cellular immune responses by our two-step immunization procedure. Our unique Ag delivery platform, which efficiently delivers Ags to splenic follicles, may be a useful technique for the enhancement of cellular immunity, as well as humoral immunity. Further experimental evaluation should be undertaken in relevant animal models in order for efficacy, safety and immunological correlates to be determined.
Collapse
|
6
|
Modified Vaccinia Virus Ankara Can Induce Optimal CD8 + T Cell Responses to Directly Primed Antigens Depending on Vaccine Design. J Virol 2019; 93:JVI.01154-19. [PMID: 31375596 PMCID: PMC6803277 DOI: 10.1128/jvi.01154-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/29/2019] [Indexed: 01/19/2023] Open
Abstract
A variety of strains of vaccinia virus (VACV) have been used as recombinant vaccine vectors with the aim of inducing robust CD8+ T cell immunity. While much of the pioneering work was done with virulent strains, such as Western Reserve (WR), attenuated strains such as modified vaccinia virus Ankara (MVA) are more realistic vectors for clinical use. To unify this literature, side-by-side comparisons of virus strains are required. Here, we compare the form of antigen that supports optimal CD8+ T cell responses for VACV strains WR and MVA using equivalent constructs. We found that for multiple antigens, minimal antigenic constructs (epitope minigenes) that prime CD8+ T cells via the direct presentation pathway elicited optimal responses from both vectors, which was surprising because this finding contradicts the prevailing view in the literature for MVA. We then went on to explore the discrepancy between current and published data for MVA, finding evidence that the expression locus and in some cases the presence of the viral thymidine kinase may influence the ability of this strain to prime optimal responses from antigens that require direct presentation. This extends our knowledge of the design parameters for VACV vectored vaccines, especially those based on MVA.IMPORTANCE Recombinant vaccines based on vaccinia virus and particularly attenuated strains such as MVA are in human clinical trials, but due to the complexity of these large vectors much remains to be understood about the design parameters that alter their immunogenicity. Previous work had found that MVA vectors should be designed to express stable protein in order to induce robust immunity by CD8+ (cytotoxic) T cells. Here, we found that the primacy of stable antigen is not generalizable to all designs of MVA and may depend where a foreign antigen is inserted into the MVA genome. This unexpected finding suggests that there is an interaction between genome location and the best form of antigen for optimal T cell priming in MVA and thus possibly other vaccine vectors. It also highlights that our understanding of antigen presentation by even the best studied of vaccine vectors remains incomplete.
Collapse
|
7
|
Volz A, Sutter G. Modified Vaccinia Virus Ankara: History, Value in Basic Research, and Current Perspectives for Vaccine Development. Adv Virus Res 2016; 97:187-243. [PMID: 28057259 PMCID: PMC7112317 DOI: 10.1016/bs.aivir.2016.07.001] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Safety tested Modified Vaccinia virus Ankara (MVA) is licensed as third-generation vaccine against smallpox and serves as a potent vector system for development of new candidate vaccines against infectious diseases and cancer. Historically, MVA was developed by serial tissue culture passage in primary chicken cells of vaccinia virus strain Ankara, and clinically used to avoid the undesirable side effects of conventional smallpox vaccination. Adapted to growth in avian cells MVA lost the ability to replicate in mammalian hosts and lacks many of the genes orthopoxviruses use to conquer their host (cell) environment. As a biologically well-characterized mutant virus, MVA facilitates fundamental research to elucidate the functions of poxvirus host-interaction factors. As extremely safe viral vectors MVA vaccines have been found immunogenic and protective in various preclinical infection models. Multiple recombinant MVA currently undergo clinical testing for vaccination against human immunodeficiency viruses, Mycobacterium tuberculosis or Plasmodium falciparum. The versatility of the MVA vector vaccine platform is readily demonstrated by the swift development of experimental vaccines for immunization against emerging infections such as the Middle East Respiratory Syndrome. Recent advances include promising results from the clinical testing of recombinant MVA-producing antigens of highly pathogenic avian influenza virus H5N1 or Ebola virus. This review summarizes our current knowledge about MVA as a unique strain of vaccinia virus, and discusses the prospects of exploiting this virus as research tool in poxvirus biology or as safe viral vector vaccine to challenge existing and future bottlenecks in vaccinology.
Collapse
Affiliation(s)
- A Volz
- German Center for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Munich, Germany
| | - G Sutter
- German Center for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Munich, Germany.
| |
Collapse
|
8
|
Skinner MA, Laidlaw SM, Eldaghayes I, Kaiser P, Cottingham MG. Fowlpox virus as a recombinant vaccine vector for use in mammals and poultry. Expert Rev Vaccines 2014; 4:63-76. [PMID: 15757474 DOI: 10.1586/14760584.4.1.63] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Live vaccines against fowlpox virus, which causes moderate pathology in poultry and is the type species of the Avipoxvirus genus, were developed in the 1920s. Development of recombinant fowlpox virus vector vaccines began in the 1980s, for use not only in poultry, but also in mammals including humans. In common with other avipoxviruses, such as canarypox virus, fowlpox virus enters mammalian cells and expresses proteins, but replicates abortively. The use of fowlpox virus as a safe vehicle for expression of foreign antigens and host immunomodulators, is being evaluated in numerous clinical trials of vaccines against cancer, malaria, tuberculosis and AIDS, notably in heterologous prime-boost regimens. In this article, technical approaches to, and issues surrounding, the use of fowlpox virus as a recombinant vaccine vector in poultry and mammals are reviewed.
Collapse
Affiliation(s)
- Michael A Skinner
- Institute for Animal Health, Compton, Newbury, Berkshire, RG20 7NN, UK.
| | | | | | | | | |
Collapse
|
9
|
Xiao H, Liu L, Zhu Q, Tan Z, Yu W, Tang X, Zhan D, Du Y, Wang H, Liu D, Li Z, Yuen KY, Ho DD, Gao GF, Chen Z. A replicating modified vaccinia tiantan strain expressing an avian-derived influenza H5N1 hemagglutinin induce broadly neutralizing antibodies and cross-clade protective immunity in mice. PLoS One 2013; 8:e83274. [PMID: 24358269 PMCID: PMC3866202 DOI: 10.1371/journal.pone.0083274] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/11/2013] [Indexed: 11/25/2022] Open
Abstract
To combat the possibility of a zoonotic H5N1 pandemic in a timely fashion, it is necessary to develop a vaccine that would confer protection against homologous and heterologous human H5N1 influenza viruses. Using a replicating modified vaccinia virus Tian Tan strain (MVTT) as a vaccine vector, we constructed MVTTHA-QH and MVTTHA-AH, which expresses the H5 gene of a goose-derived Qinghai strain A/Bar-headed Goose/Qinghai/1/2005 or human-derived Anhui Strain A/Anhui/1/2005. The immunogenicity profiles of both vaccine candidates were evaluated. Vaccination with MVTTHA-QH induced a significant level of neutralizing antibodies (Nabs) against a homologous strain and a wide range of H5N1 pseudoviruses (clades 1, 2.1, 2.2, 2.3.2, and 2.3.4). Neutralization tests (NT) and Haemagglutination inhibition (HI) antibodies inhibit the live autologous virus as well as a homologous A/Xingjiang/1/2006 and a heterologous A/Vietnam/1194/2004, representing two human isolates from clade 2.2 and clade 1, respectively. Importantly, mice vaccinated with intranasal MVTTHA-QH were completely protected from challenge with lethal dosages of A/Bar-headed Goose/Qinghai/1/2005 and the A/Viet Nam/1194/2004, respectively, but not control mice that received a mock MVTTS vaccine. However, MVTTHA-AH induced much lower levels of NT against its autologous strain. Our results suggest that it is feasible to use the H5 gene from A/Bar-headed Goose/Qinghai/1/2005 to construct an effective vaccine, when using MVTT as a vector, to prevent infections against homologous and genetically divergent human H5N1 influenza viruses.
Collapse
Affiliation(s)
- Haixia Xiao
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Li Liu
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Microbiology and Research Center of Infection and Immunology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Qingyu Zhu
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Zhiwu Tan
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wenbo Yu
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Xian Tang
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Dawei Zhan
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yanhua Du
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Haibo Wang
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Di Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhixin Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Kwok-Yung Yuen
- Department of Microbiology and Research Center of Infection and Immunology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - David D. Ho
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- The Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York, United States of America, and the The University of Hong Kong, Hong Kong SAR, China
| | - George F. Gao
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (GFG); (ZC)
| | - Zhiwei Chen
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Microbiology and Research Center of Infection and Immunology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- * E-mail: (GFG); (ZC)
| |
Collapse
|
10
|
A brief history of the global effort to develop a preventive HIV vaccine. Vaccine 2013; 31:3502-18. [PMID: 23707164 DOI: 10.1016/j.vaccine.2013.05.018] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 05/01/2013] [Accepted: 05/07/2013] [Indexed: 01/09/2023]
Abstract
Soon after HIV was discovered as the cause of AIDS in 1983-1984, there was an expectation that a preventive vaccine would be rapidly developed. In trying to achieve that goal, three successive scientific paradigms have been explored: induction of neutralizing antibodies, induction of cell mediated immunity, and exploration of combination approaches and novel concepts. Although major progress has been made in understanding the scientific basis for HIV vaccine development, efficacy trials have been critical in moving the field forward. In 2009, the field was reinvigorated with the modest results obtained from the RV144 trial conducted in Thailand. Here, we review those vaccine development efforts, with an emphasis on events that occurred during the earlier years. The goal is to provide younger generations of scientists with information and inspiration to continue the search for an HIV vaccine.
Collapse
|
11
|
Bridge SH, Sharpe SA, Dennis MJ, Dowall SD, Getty B, Anson DS, Skinner MA, Stewart JP, Blanchard TJ. Heterologous prime-boost-boost immunisation of Chinese cynomolgus macaques using DNA and recombinant poxvirus vectors expressing HIV-1 virus-like particles. Virol J 2011; 8:429. [PMID: 21899739 PMCID: PMC3177910 DOI: 10.1186/1743-422x-8-429] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 09/07/2011] [Indexed: 01/13/2023] Open
Abstract
Background There is renewed interest in the development of poxvirus vector-based HIV vaccines due to the protective effect observed with repeated recombinant canarypox priming with gp120 boosting in the recent Thai placebo-controlled trial. This study sought to investigate whether a heterologous prime-boost-boost vaccine regimen in Chinese cynomolgus macaques with a DNA vaccine and recombinant poxviral vectors expressing HIV virus-like particles bearing envelopes derived from the most prevalent clades circulating in sub-Saharan Africa, focused the antibody response to shared neutralising epitopes. Methods Three Chinese cynomolgus macaques were immunised via intramuscular injections using a regimen composed of a prime with two DNA vaccines expressing clade A Env/clade B Gag followed by boosting with recombinant fowlpox virus expressing HIV-1 clade D Gag, Env and cholera toxin B subunit followed by the final boost with recombinant modified vaccinia virus Ankara expressing HIV-1 clade C Env, Gag and human complement protein C3d. We measured the macaque serum antibody responses by ELISA, enumerated T cell responses by IFN-γ ELISpot and assessed seroneutralisation of HIV-1 using the TZM-bl β-galactosidase assay with primary isolates of HIV-1. Results This study shows that large and complex synthetic DNA sequences can be successfully cloned in a single step into two poxvirus vectors: MVA and FPV and the recombinant poxviruses could be grown to high titres. The vaccine candidates showed appropriate expression of recombinant proteins with the formation of authentic HIV virus-like particles seen on transmission electron microscopy. In addition the b12 epitope was shown to be held in common by the vaccine candidates using confocal immunofluorescent microscopy. The vaccine candidates were safely administered to Chinese cynomolgus macaques which elicited modest T cell responses at the end of the study but only one out of the three macaques elicited an HIV-specific antibody response. However, the antibodies did not neutralise primary isolates of HIV-1 or the V3-sensitive isolate SF162 using the TZM-bl β-galactosidase assay. Conclusions MVA and FP9 are ideal replication-deficient viral vectors for HIV-1 vaccines due to their excellent safety profile for use in humans. This study shows this novel prime-boost-boost regimen was poorly immunogenic in Chinese cynomolgus macaques.
Collapse
Affiliation(s)
- Simon H Bridge
- Clinical Research Group, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Lauterbach H, Kassub R, Pätzold J, Körner J, Brückel M, Verschoor A, Chaplin P, Suter M, Hochrein H. Immune requirements of post-exposure immunization with modified vaccinia Ankara of lethally infected mice. PLoS One 2010; 5:e9659. [PMID: 20300179 PMCID: PMC2836377 DOI: 10.1371/journal.pone.0009659] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 02/19/2010] [Indexed: 11/20/2022] Open
Abstract
Current prophylactic vaccines work via the induction of B and T cell mediated memory that effectively control further replication of the pathogen after entry. In the case of therapeutic or post-exposure vaccinations the situation is far more complex, because the pathogen has time to establish itself in the host, start producing immune-inhibitory molecules and spread into distant organs. So far it is unclear which immune parameters have to be activated in order to thwart an existing lethal infection. Using the mousepox model, we investigated the immunological mechanisms responsible for a successful post-exposure immunization with modified vaccinia Ankara (MVA). In contrast to intranasal application of MVA, we found that intravenous immunization fully protected mice infected with ectromelia virus (ECTV) when applied three days after infection. Intravenous MVA immunization induced strong innate and adaptive immune responses in lethally infected mice. By using various gene-targeted and transgenic mouse strains we show that NK cells, CD4 T cells, CD8 T cells and antibodies are essential for the clearance of ECTV after post-exposure immunization. Post-exposure immunization with MVA is an effective measure in a murine model of human smallpox. MVA activates innate and adaptive immune parameters and only a combination thereof is able to purge ECTV from its host. These data not only provide a basis for therapeutic vaccinations in the case of the deliberate release of pathogenic poxviruses but possibly also for the treatment of chronic infections and cancer.
Collapse
|
13
|
Jaoko W, Nakwagala FN, Anzala O, Manyonyi GO, Birungi J, Nanvubya A, Bashir F, Bhatt K, Ogutu H, Wakasiaka S, Matu L, Waruingi W, Odada J, Oyaro M, Indangasi J, Ndinya-Achola J, Konde C, Mugisha E, Fast P, Schmidt C, Gilmour J, Tarragona T, Smith C, Barin B, Dally L, Johnson B, Muluubya A, Nielsen L, Hayes P, Boaz M, Hughes P, Hanke T, McMichael A, Bwayo J, Kaleebu P. Safety and immunogenicity of recombinant low-dosage HIV-1 A vaccine candidates vectored by plasmid pTHr DNA or modified vaccinia virus Ankara (MVA) in humans in East Africa. Vaccine 2008; 26:2788-95. [PMID: 18440674 DOI: 10.1016/j.vaccine.2008.02.071] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 02/21/2008] [Accepted: 02/28/2008] [Indexed: 10/22/2022]
Abstract
The safety and immunogenicity of plasmid pTHr DNA, modified vaccinia virus Ankara (MVA) human immunodeficiency virus type 1 (HIV-1) vaccine candidates were evaluated in four Phase I clinical trials in Kenya and Uganda. Both vaccines, expressing HIV-1 subtype A gag p24/p17 and a string of CD8 T-cell epitopes (HIVA), were generally safe and well-tolerated. At the dosage levels and intervals tested, the percentage of vaccine recipients with HIV-1-specific cell-mediated immune responses, assessed by a validated ex vivo interferon gamma (IFN-gamma) ELISPOT assay and Cytokine Flow Cytometry (CFC), did not significantly differ from placebo recipients. These trials demonstrated the feasibility of conducting high-quality Phase 1 trials in Africa.
Collapse
Affiliation(s)
- Walter Jaoko
- Kenya AIDS Vaccine Initiative (KAVI), University of Nairobi, Department of Medical Microbiology, P.O. Box 19676, Nairobi 00202, Kenya.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Inhibitory Effect of RNA Pool Complexity on Stimulatory Capacity of RNA-pulsed Dendritic Cells. J Immunother 2008; 31:52-62. [DOI: 10.1097/cji.0b013e31815a1202] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Correlation of immunogenicities and in vitro expression levels of recombinant modified vaccinia virus Ankara HIV vaccines. Vaccine 2007; 26:486-93. [PMID: 18155813 DOI: 10.1016/j.vaccine.2007.11.036] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 11/05/2007] [Accepted: 11/15/2007] [Indexed: 11/23/2022]
Abstract
The purpose of the present study was to correlate the in vitro level of HIV Env expression by recombinant modified vaccinia virus Ankara (rMVA) with immunogenicity in mice. A 5-fold difference in Env synthesis was achieved at the translational level by the presence or absence of an out-of-frame initiation codon upstream of the env gene. This perturbation had no effect on the size or processing of Env. In contrast to the variation in Env synthesis, the rMVAs produced similar amounts of HIV Gag, which were expressed from identical cassettes. Mice immunized with the higher Env expressing rMVAs had about 15-fold higher titers of Env antibodies and several fold higher frequencies of Env-specific CD8+ and CD4+ T cells than mice immunized with the low expresser. The greater immune response achieved by high expression was maintained over a 100-fold dose range. Importantly, enhanced Env immune responses did not come at the expense of lower Gag T cell responses. These data suggest that for high immunogenicity, rMVAs should be engineered to produce the most recombinant protein that can be achieved without compromising the growth and stability of the rMVA.
Collapse
|
16
|
Létourneau S, Im EJ, Mashishi T, Brereton C, Bridgeman A, Yang H, Dorrell L, Dong T, Korber B, McMichael AJ, Hanke T. Design and pre-clinical evaluation of a universal HIV-1 vaccine. PLoS One 2007; 2:e984. [PMID: 17912361 PMCID: PMC1991584 DOI: 10.1371/journal.pone.0000984] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 09/13/2007] [Indexed: 02/08/2023] Open
Abstract
Background One of the big roadblocks in development of HIV-1/AIDS vaccines is the enormous diversity of HIV-1, which could limit the value of any HIV-1 vaccine candidate currently under test. Methodology and Findings To address the HIV-1 variation, we designed a novel T cell immunogen, designated HIVCONSV, by assembling the 14 most conserved regions of the HIV-1 proteome into one chimaeric protein. Each segment is a consensus sequence from one of the four major HIV-1 clades A, B, C and D, which alternate to ensure equal clade coverage. The gene coding for the HIVCONSV protein was inserted into the three most studied vaccine vectors, plasmid DNA, human adenovirus serotype 5 and modified vaccine virus Ankara (MVA), and induced HIV-1-specific T cell responses in mice. We also demonstrated that these conserved regions prime CD8+ and CD4+ T cell to highly conserved epitopes in humans and that these epitopes, although usually subdominant, generate memory T cells in patients during natural HIV-1 infection. Significance Therefore, this vaccine approach provides an attractive and testable alternative for overcoming the HIV-1 variability, while focusing T cell responses on regions of the virus that are less likely to mutate and escape. Furthermore, this approach has merit in the simplicity of design and delivery, requiring only a single immunogen to provide extensive coverage of global HIV-1 population diversity.
Collapse
Affiliation(s)
- Sven Létourneau
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford, United Kingdom
| | - Eung-Jun Im
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford, United Kingdom
| | - Tumelo Mashishi
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford, United Kingdom
| | - Choechoe Brereton
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford, United Kingdom
| | - Anne Bridgeman
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford, United Kingdom
| | - Hongbing Yang
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford, United Kingdom
| | - Lucy Dorrell
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford, United Kingdom
| | - Tao Dong
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford, United Kingdom
| | - Bette Korber
- Los Alamo National Laboratory, Theoretical Biology and Biophysics, Los Alamos, New Mexico, United States of America
- The Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Andrew J. McMichael
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford, United Kingdom
| | - Tomáš Hanke
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford, United Kingdom
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
17
|
Fournillier A, Gerossier E, Evlashev A, Schmitt D, Simon B, Chatel L, Martin P, Silvestre N, Balloul JM, Barry R, Inchauspé G. An accelerated vaccine schedule with a poly-antigenic hepatitis C virus MVA-based candidate vaccine induces potent, long lasting and in vivo cross-reactive T cell responses. Vaccine 2007; 25:7339-53. [PMID: 17875349 DOI: 10.1016/j.vaccine.2007.08.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 07/31/2007] [Accepted: 08/09/2007] [Indexed: 02/07/2023]
Abstract
We designed and evaluated in HLA-class I transgenic mouse models a hepatitis C virus (HCV) T cell-based MVA vectored vaccine expressing three viral antigens known to be targets of potent CD8+- and CD4+-mediated responses. An accelerated (3 week-based) vaccination induced specific CD8+ T cells harboring two effector functions (cytolytic activity - both in vitro and in vivo- and production of IFNgamma) as well as specific CD4+ T cells recognizing all three vaccine antigens. Responses were long lasting (6 months), boostable by a fourth MVA vaccination and in vivo cross-reactive as demonstrated in a surrogate Listeria-based challenge assay. This candidate vaccine has now moved into clinical trials.
Collapse
Affiliation(s)
- A Fournillier
- Transgene S.A., Site AFSSA, 31 avenue Tony Garnier, 69364 Lyon Cédex 07, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Albarran Y Carvajal A, de la Garza A, Cruz Quiroz BJC, Vazquez Zea E, Díaz Estrada I, Mendez Fuentez E, López Contreras M, Andrade-Manzano A, Padilla S, Varela AR, Rosales R. MVA E2 recombinant vaccine in the treatment of human papillomavirus infection in men presenting intraurethral flat condyloma: a phase I/II study. BioDrugs 2007; 21:47-59. [PMID: 17263589 DOI: 10.2165/00063030-200721010-00006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND Human papillomavirus (HPV) is the etiologic agent for warts and cervical cancer. In Mexico, the death rate from cervical cancer is extremely high, and statistical data show that since 1990 the number of deaths is increasing. Condylomas and cancer of the penis are the most common lesions presented in men; bladder and prostate cancer in men are also associated with the presence of HPV. Since HPV is transmitted by sexual intercourse, treating both partners is necessary in order to eliminate the virus in the population. Approaches to this include preventative vaccines such as Gardasil, and therapeutic vaccines to treat established infections in both men and women. This will be the only way to decrease the numbers of deaths due to this malignancy. PATIENTS AND METHODS We conducted a phase I/II clinical trial to evaluate the potential use of the recombinant vaccinia viral vaccine MVA E2 (composed of modified vaccinia virus Ankara [MVA] expressing the E2 gene of bovine papillomavirus) to treat flat condyloma lesions associated with oncogenic HPV in men. Fifty male patients with flat condyloma lesions were treated with either MVA E2 therapeutic vaccine or fluorouracil (5-fluorouracil). Thirty men received the therapeutic vaccine, at a total of 10(6) virus particles per dose, administered directly into the urethra once every week over a 4-week period. Twenty control patients were treated with 5% fluorouracil 1mL twice weekly over a 4-week period directly into the urethra. Reduction of lesions or absence of papillomavirus infection was monitored by colposcopy and histologic analysis. The immune response after MVA E2 treatment was determined by measuring the antibodies against the MVA E2 virus and by analyzing the lymphocyte cytotoxic activity against cancer cells bearing oncogenic papillomavirus. Presence of papillomavirus was determined by the Hybrid Capture method. RESULTS Twenty-eight of 30 patients showed no lesion or presence of papillomavirus as diagnosed by colposcopy and brush histologic examination after 4 weeks of MVA E2 treatment. These patients showed complete elimination of flat condyloma in the urethra and no acetowhite spots were detected over the prepuce. In two other patients the acetowhite spots and flat condyloma did not diminish. All patients developed antibodies against the MVA E2 vaccine and E2 protein, and generated a specific cytotoxic response against papilloma-transformed cells. Viral DNA was not detected in MVA E2-treated patients. In the control group, 13 of 20 patients were free of lesions. Three of these patients had recurrence of lesions after 3 months of treatment and none of the patients developed specific antibodies against cancer cells. In contrast, patients treated with MVA E2 did not show any recurrence of lesions after 1 year of treatment. In addition, none of the patients had local or systemic adverse effects according to the WHO classification 1-4. CONCLUSIONS Therapeutic vaccination with MVA E2 proved to be very effective in stimulating the immune system against papillomavirus, and in generating regression of flat condyloma lesions in men.
Collapse
|
19
|
Peters BS, Jaoko W, Vardas E, Panayotakopoulos G, Fast P, Schmidt C, Gilmour J, Bogoshi M, Omosa-Manyonyi G, Dally L, Klavinskis L, Farah B, Tarragona T, Bart PA, Robinson A, Pieterse C, Stevens W, Thomas R, Barin B, McMichael AJ, McIntyre JA, Pantaleo G, Hanke T, Bwayo J. Studies of a prophylactic HIV-1 vaccine candidate based on modified vaccinia virus Ankara (MVA) with and without DNA priming: effects of dosage and route on safety and immunogenicity. Vaccine 2006; 25:2120-7. [PMID: 17250931 DOI: 10.1016/j.vaccine.2006.11.016] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 11/05/2006] [Accepted: 11/07/2006] [Indexed: 01/20/2023]
Abstract
BACKGROUND Two parallel studies evaluated safety and immunogenicity of a prophylactic HIV-1 vaccine in 192 HIV-seronegative, low-risk volunteers. Modified vaccinia virus Ankara (MVA) and plasmid DNA (pTHr) expressed HIV-1 clade A gag p24 and p17 fused to a string of 25 overlapping CD8+ T cell epitopes (HIVA). METHODS These studies compared intramuscular, subcutaneous, and intradermal MVA at dosage levels ranging from 5x10(6)-2.5x10(8) pfu. In Study IAVI-010, DNA vaccine was given as a prime at months 0 and 1, followed by MVA as a boost at months 5 and 8. In Study IAVI-011, MVA alone was given at months 0 and 2. Regular safety monitoring was performed. Immunogenicity was measured by the interferon (IFN)-gamma ELISPOT assay on peripheral blood mononuclear cells (PBMC). RESULTS No serious adverse events were attributed to either vaccine; most adverse events were mild or moderate, although MVA resulted in some severe local reactions. Five vaccine recipients had at least one positive IFN-gamma ELISPOT response, but none were sustained. CONCLUSION This HIV-1 vaccine candidate was in general safe and well-tolerated. Local reactions were common, but tolerable. Detectable immune responses were infrequent.
Collapse
|
20
|
Jiang S, Song R, Popov S, Mirshahidi S, Ruprecht RM. Overlapping synthetic peptides as vaccines. Vaccine 2006; 24:6356-65. [PMID: 16793181 PMCID: PMC7127786 DOI: 10.1016/j.vaccine.2006.04.070] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 04/13/2006] [Accepted: 04/20/2006] [Indexed: 01/06/2023]
Abstract
Several vaccine strategies aim to generate cell-mediated immunity (CMI) against microorganisms or tumors. While epitope-based vaccines offer advantages, knowledge of specific epitopes and frequency of major histocompatibility complex (MHC) alleles is required. Here we show that using promiscuous overlapping synthetic peptides (OSP) as immunogens generated peptide-specific CMI in all vaccinated outbred mice and in different strains of inbred mice; CMI responses also recognized viral proteins. OSP immunogens also induced CMI ex vivo in dendritic cell/T-cell cocultures involving cells from individuals with different HLA haplotypes. Thus, broad CMI was induced by OSP in different experimental settings, using different immunogens, without identifying either epitopes or MHC backgrounds of the vaccinees.
Collapse
Affiliation(s)
- Shisong Jiang
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
21
|
Estcourt MJ, Létourneau S, McMichael AJ, Hanke T. Vaccine route, dose and type of delivery vector determine patterns of primary CD8+ T cell responses. Eur J Immunol 2005; 35:2532-40. [PMID: 16144036 DOI: 10.1002/eji.200535184] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The dynamics of primary CD8+ T cell responses following administration of modified virus Ankara (MVA)- and DNA-vectored vaccines was investigated in a mouse model. To overcome the low frequency of naive antigen-specific precursors and follow the early expansion events, naive CFSE-labelled T cell receptor-transgenic F5 lymphocytes were transferred into syngeneic non-transgenic recipients prior to vaccination. Using the i.d., i.v. and i.m. routes and increasing recombinant MVA (rMVA) vaccine doses, the primary response was analysed on a divisional basis at local and distant lymphoid organs at various times after vaccination. The results indicated that F5 cell divisions were initiated in the local draining lymph nodes and cells only after five to six divisions appeared at more distant sites. The rMVA dose affected frequencies of cells entering division and at the peak response. When priming induced by rMVA and plasmid DNA was compared, dramatic differences in the cycling patterns were observed with plasmid DNA inducing a response slower and more sustained over the first 2 wk than rMVA. Both rMVA and DNA induced comparable IFN-gamma production, which increased with cell divisions. Taken together, the vaccine type, dose and route have a strong influence on the spatial and temporal patterns of initial T cell responses.
Collapse
Affiliation(s)
- Marie J Estcourt
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford, United Kingdom
| | | | | | | |
Collapse
|
22
|
Purow B, Staveley-O'Carroll K. Targeting of vaccinia virus using biotin-avidin viral coating and biotinylated antibodies. J Surg Res 2005; 123:49-54. [PMID: 15652950 DOI: 10.1016/j.jss.2004.04.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2003] [Indexed: 10/26/2022]
Abstract
INTRODUCTION To test a general method for altering the tropism of viral vectors, we conjugated targeting antibody to the surface of recombinant vaccinia virus with a biotin-avidin-biotin linker and assessed the resulting infectivity in target cells and controls. MATERIALS AND METHODS We biotinylated a vaccinia viral vector and used avidin to crosslink the biotinylated viral surface to a biotinylated antibody specific for a molecule on the surface of a target cell. In an in vitro model system, we coated a recombinant vaccinia construct containing the E. coli beta-galactosidase gene with antibody to the murine class I MHC molecule Db. Target cells were B78H1 murine melanoma cells transduced with either the Db gene or, as a control, the Kb gene. Infectivity was assessed by staining target cells with x-gal to demonstrate expression of virally delivered beta-galactosidase. This technique was also assessed in a second system with vaccinia/beta-gal targeted to the murine B7.2 molecule. The infectivity of the resulting construct was assessed for murine SA1 fibrosarcoma cells transfected with the B7.2 gene and for wild-type, B7.2-negative SA1. Experiments were repeated in each system with similar results. RESULTS This strategy demonstrated antibody-mediated viral targeting in both the B78H1 and the SA1 models. Importantly, addition of the targeting coat diminished the infectivity of the modified vaccinia for control cells but preserved infectivity for targeted cells. In the B78H1 system, Db-targeted vaccinia consistently had 2- to 3-fold greater infectivity for B78H1Db than B78H1Kb. Increasing the number of avidin molecules used per virion in the synthesis of the viral coat led to greater selectivity but decreased overall infectivity. In the SA1 system, B7.2-targeted vaccinia demonstrated completely ablated infectivity for control SA1 cells, but maintained infectivity for target SA1/B7.2 cells. CONCLUSIONS Recombinant viral vectors such as vaccinia may be coated with biotin/avidin and linked to biotinylated antibodies to preferentially target specific cell types in vitro. Such an approach may be useful in targeting recombinant lytic viruses to tumors for destruction and in immune up-regulation in vivo. Similarly, this approach may enhance nonlytic viruses for gene therapy applications.
Collapse
|
23
|
Slyker JA, Lohman BL, Mbori-Ngacha DA, Reilly M, Wee EGT, Dong T, McMichael AJ, Rowland-Jones SL, Hanke T, John-Stewart G. Modified vaccinia Ankara expressing HIVA antigen stimulates HIV-1-specific CD8 T cells in ELISpot assays of HIV-1 exposed infants. Vaccine 2005; 23:4711-9. [PMID: 16043269 PMCID: PMC3382083 DOI: 10.1016/j.vaccine.2005.01.145] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 01/20/2005] [Accepted: 01/21/2005] [Indexed: 11/25/2022]
Abstract
Recombinant modified vaccinia virus Ankara expressing HIV-1 antigens (MVA.HIVA) was used in ELISpot assays to monitor HIV-1-specific T cell responses in infants. Responses to MVA.HIVA and HIV-1 peptides were examined in 13 infected and 81 exposed uninfected infants in Nairobi, Kenya. Responses to MVA.HIVA (38%) and peptide stimulation (38%) were similar in frequency (p=1.0) and magnitude (mean 176 versus 385 HIVSFU/10(6), p=0.96) in HIV-1 infected infants. In exposed uninfected infants, MVA.HIVA detected more positive responses and higher magnitude responses as compared to peptide. MVA.HIVA ELISpot is a sensitive method for quantification of HIV-1-specific CD8+ T cell responses in HIV-1 exposed infants. These results demonstrate the relevance of HIV-1 clade A consensus-derived immunogen HIVA for the viruses currently circulating in Nairobi.
Collapse
|
24
|
Munks MW, Mourich DV, Mittler RS, Weinberg AD, Hill AB. 4-1BB and OX40 stimulation enhance CD8 and CD4 T-cell responses to a DNA prime, poxvirus boost vaccine. Immunology 2004; 112:559-66. [PMID: 15270726 PMCID: PMC1782516 DOI: 10.1111/j.1365-2567.2004.01917.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
4-1BB (CD137) is a tumour necrosis factor receptor (TNFR) family member, expressed primarily on CD8 T cells after activation. Signalling through 4-1BB has been reported to enhance CD8 T-cell expansion and to protect activated CD8 T cells from death, resulting in an enlarged memory population. Although stimulating 4-1BB has been shown to significantly improve the immune response to weak immunogens such as tumours, little is known about its effect on the CD8 T-cell response to a powerful viral vector such as vaccinia. To test 4-1BB's ability to improve the murine CD8 T cell response to a DNA prime, poxvirus boost vaccine, similar to those used for human immunodeficiency virus and simian immunodeficiency virus vaccines, we administered 4-1BB agonist antibody at the time of the poxvirus boost. 4-1BB stimulation increased the number of functional memory CD8 T cells by two- to fourfold. However, we saw a similar enhancement at the peak of the response and in the memory phase, thus we found no evidence in the context of virus infection that 4-1BB stimulation could increase the percentage of CD8 T cells that survive the acute activation phase to become memory cells. OX40 (CD134) is an analogous TNFR family member expressed primarily on activated CD4 T cells. OX40 stimulation increased the number of antigen-specific CD4 T cells approximately threefold. Stimulating both 4-1BB and OX40 enhanced the CD8 T-cell response more than 4-1BB alone. Thus stimulating these receptors can improve the response to a powerful virus vector, and may be useful in vaccine development.
Collapse
Affiliation(s)
- Michael W Munks
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | | | | | | | |
Collapse
|
25
|
Gómez CE, Abaitua F, Rodríguez D, Esteban M. Efficient CD8+ T cell response to the HIV-env V3 loop epitope from multiple virus isolates by a DNA prime/vaccinia virus boost (rWR and rMVA strains) immunization regime and enhancement by the cytokine IFN-γ. Virus Res 2004; 105:11-22. [PMID: 15325077 DOI: 10.1016/j.virusres.2004.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Revised: 03/30/2004] [Accepted: 04/02/2004] [Indexed: 12/16/2022]
Abstract
The cytotoxic T-lymphocyte response (CTL) has been shown to be determinant in the clearance of many viral infections and hence, vaccine candidates against AIDS are designed to enhance this arm of the immune system. In this study, we have analyzed the antigen specific immune responses triggered in mice by different combinations of vaccine vehicles expressing the multiepitope polypeptide TAB13. This chimeric protein contains the V3 region of the gp120 from eight different HIV-1 isolates and was efficiently expressed by a DNA vector (DNA-TAB), and also by vaccinia virus recombinants (rVV) based either on the attenuated modified vaccinia virus Ankara (MVA-TAB) or Western Reserve (VV-TAB) strains. Inoculation of a DNA-TAB vector in priming followed by a booster with VV-TAB or MVA-TAB induces a humoral immune response against TAB13 protein and efficiently enhanced the CD8+ T cell response against V3 epitopes from HIV-1 isolates LR150, MN, and IIIB in comparison with animals immunized with two doses of DNA-TAB. A protocol that incorporates a DNA vector expressing IFN-gamma (DNA-IFN-gamma) with DNA-TAB in the priming, followed by a booster with MVA-TAB, triggered the highest values of specific CD8+ T cell response. By examining the cytokine pattern, the immune response induced by these vaccination approaches was predominantly of Th-1 type. These findings establish safe strategies for the enhanced generation of T cell mediated immunity to HIV-1 that can benefit in the design of an effective vaccine against AIDS.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Amino Acid Sequence
- Animals
- Base Sequence
- CD8-Positive T-Lymphocytes/immunology
- Cells, Cultured
- Cricetinae
- Cytokines/analysis
- Epitopes/genetics
- Epitopes/immunology
- Female
- HIV Envelope Protein gp120/genetics
- HIV Envelope Protein gp120/immunology
- HIV-1/immunology
- Immunization, Secondary
- Injections, Intramuscular
- Injections, Intraperitoneal
- Interferon-gamma/genetics
- Interferon-gamma/metabolism
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Vaccination/methods
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccinia virus/genetics
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
26
|
Nkolola JP, Wee EGT, Im EJ, Jewell CP, Chen N, Xu XN, McMichael AJ, Hanke T. Engineering RENTA, a DNA prime-MVA boost HIV vaccine tailored for Eastern and Central Africa. Gene Ther 2004; 11:1068-80. [PMID: 15164090 DOI: 10.1038/sj.gt.3302241] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
For the development of human immunodeficiency virus type 1 (HIV-1) vaccines, traditional approaches inducing virus-neutralizing antibodies have so far failed. Thus the effort is now focused on elicitation of cellular immunity. We are currently testing in clinical trials in the United Kingdom and East Africa a T-cell vaccine consisting of HIV-1 clade A Gag-derived immunogen HIVA delivered in a prime-boost regimen by a DNA plasmid and modified vaccinia virus Ankara (MVA). Here, we describe engineering and preclinical development of a second immunogen RENTA, which will be used in combination with the present vaccine in a four-component DNA/HIVA-RENTA prime-MVA/HIVA-RENTA boost formulation. RENTA is a fusion protein derived from consensus HIV clade A sequences of Tat, reverse transcriptase, Nef and gp41. We inactivated the natural biological activities of the HIV components and confirmed immunogenicities of the pTHr.RENTA and MVA.RENTA vaccines in mice. Furthermore, we demonstrated in mice and rhesus monkeys broadening of HIVA-elicited T-cell responses by a parallel induction of HIVA- and RENTA-specific responses recognizing multiple HIV epitopes.
Collapse
Affiliation(s)
- J P Nkolola
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Bazhan SI, Belavin PA, Seregin SV, Danilyuk NK, Babkina IN, Karpenko LI, Nekrasova NA, Lebedev LR, Ignatyev GM, Agafonov AP, Poryvaeva VA, Aborneva IV, Ilyichev AA. Designing and engineering of DNA-vaccine construction encoding multiple CTL-epitopes of major HIV-1 antigens. Vaccine 2004; 22:1672-82. [PMID: 15068850 DOI: 10.1016/j.vaccine.2003.09.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A synthetic T cell immunogen (TCI) has been designed as a candidate DNA-based vaccine against Human immunodeficiency virus (HIV)-1 using cytotoxic T lymphocytes (CD8(+) CTL) and T-helper lymphocytes (CD4(+) Th) epitopes retrieved from the Los Alamos HIV Molecular Immunology Database. The protein 392 amino acids in length contains about eighty CTL-epitopes, many of which are overlapping and are totally restricted by ten different HLA class I molecules. To be able to detect CTL responses induced by a DNA vaccine in experimental animals, additional epitopes, restricted by mouse and Macaque rhesus major histocompatibility complex (MHC) class I molecules, were included in the target immunogen. The gene encoding the TCI protein was assembled, cloned into vector plasmids and expressed in a prokaryotic and a eukaryotic system. The presence of HIV-1 protein fragments in the immunogen structure was ascertained by ELISA and immunoblotting using panels of HIV-1-positive sera and monoclonal antibodies to p24. It has been demonstrated that DNA vaccine can induce both specific T cell responses (CTL and blast transformation) and specific antibodies in mice immunized with pcDNA-TCI.
Collapse
Affiliation(s)
- Sergei I Bazhan
- The State Research Center of Virology and Biotechnology Vector, 630559 Koltsovo, Novosibirsk Region, Russia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Jiao X, Wang RYH, Feng Z, Hu G, Alter HJ, W -K Shih J. DNA immunization encoding the secreted nonstructural protein 3 (NS3) of hepatitis C virus and enhancing the Th1 type immune response. J Viral Hepat 2004; 11:18-26. [PMID: 14738554 DOI: 10.1046/j.1352-0504.2003.00464.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
To induce a sustained and specific cellular immune response to hepatitis C virus (HCV), DNA immunization of mice was performed using plasmids containing the HCV nonstructural gene 3 (HCV/NS3). Plasmids were constructed such that the NS3 gene was expressed in a secreted form, a nonsecreted form or as a membrane-bound antigen. The plasmid encoding the secreted antigen induced the strongest humoral and cellular immunity and favoured the T-helper type 1 (Th1) pathway as shown by cytokine profiles and switching of antibody subclasses. Our study indicates that DNA immunization with a secreted form of HCV/NS3 is an effective means of inducing primary Th1 immune responses in the murine model.
Collapse
Affiliation(s)
- X Jiao
- Department of Transfusion Medicine, Warren G. Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20982, USA
| | | | | | | | | | | |
Collapse
|
29
|
González-Aseguinolaza G, Nakaya Y, Molano A, Dy E, Esteban M, Rodríguez D, Rodríguez JR, Palese P, García-Sastre A, Nussenzweig RS. Induction of protective immunity against malaria by priming-boosting immunization with recombinant cold-adapted influenza and modified vaccinia Ankara viruses expressing a CD8+-T-cell epitope derived from the circumsporozoite protein of Plasmodium yoelii. J Virol 2003; 77:11859-66. [PMID: 14557672 PMCID: PMC229373 DOI: 10.1128/jvi.77.21.11859-11866.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We immunized mice with an attenuated (cold-adapted) influenza virus followed by an attenuated vaccinia virus (modified vaccinia virus Ankara), both expressing a CD8(+)-T-cell epitope derived from malaria sporozoites. This vaccination regimen elicited high levels of protection against malaria. This is the first time that the vaccine efficacy of a recombinant cold-adapted influenza virus vector expressing a foreign antigen has been evaluated.
Collapse
Affiliation(s)
- Gloria González-Aseguinolaza
- Department of Medical & Molecular Parasitology, NYU School of Medicine. Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Vázquez-Blomquist D, Iglesias E, González-Horta EE, Duarte CA. The HIV-1 chimeric protein CR3 expressed by poxviral vectors induces a diverse CD8+ T cell response in mice and is antigenic for PBMCs from HIV+ patients. Vaccine 2003; 22:145-55. [PMID: 14615141 DOI: 10.1016/j.vaccine.2003.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recombinant avipoxvirus vectors are attractive for vaccination against human immunodeficiency virus type 1 (HIV-1), where induction of a cytotoxic CD8(+) T cell (CTL) response seems to be an important component of protective immunity. We expressed the chimeric protein CR3, composed by CTL epitopes rich regions from, RT, Gag and Nef and conserved Th cell epitopes from gp120, gp41 and Vpr of HIV-1 in a fowlpox virus (FWPV) vector (FPCR3), and used this vector to induce HIV-specific CTL responses in mice. Mice immunised twice intraperitoneally with FPCR3, developed a CD8(+) T cell response measured as production of IFN-gamma by splenocytes in response to stimulation with P815 cells infected with recombinant vaccinia viruses (rVV) expressing CR3, Gag and Nef. The number of IFN-gamma secreting cells was markedly higher when a P815 cell line constitutively expressing CR3 was used as target cells for Enzyme-linked-immunospot (ELISPOT). CR3 epitopes were also specifically recognised by human PBMCs from three HIV(+) patients with different haplotypes. These results confirm the potential of FWPV vectors expressing these novel HIV-1 chimeric proteins to induce a simultaneous CD8(+) T cell response against conserved viral targets and early expressed regulatory proteins.
Collapse
Affiliation(s)
- Dania Vázquez-Blomquist
- Departamento de SIDA, División de Vacunas, Centro de Ingeniería Genética y Biotecnología, Apdo 6162, Cubanacan, Playa, 10600, Ciudad Habana, Cuba
| | | | | | | |
Collapse
|
31
|
Prinz DM, Smithson SL, Kieber-Emmons T, Westerink MAJ. Induction of a protective capsular polysaccharide antibody response to a multiepitope DNA vaccine encoding a peptide mimic of meningococcal serogroup C capsular polysaccharide. Immunology 2003; 110:242-9. [PMID: 14511238 PMCID: PMC1783044 DOI: 10.1046/j.1365-2567.2003.01732.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Systemic infection by encapsulated organisms, such as Neisseria meningitidis, is a major cause of morbidity and mortality worldwide, especially in individuals less than 2 years of age. Antibodies directed at the capsular polysaccharide are shown to be protective against disease by inducing complement-dependent bactericidal activity. The current polysaccharide vaccine has been shown to be poorly immunogenic in high-risk groups and this is probably related to its T-independent properties. An alternative approach to eliciting a T-dependent serum immunoglobulin G (IgG) antibody response to encapsulated pathogens is DNA vaccination. We assessed the immunogenicity of a multiepitope DNA vaccine encoding a T-cell helper epitope and a peptide mimic of N. meningitidis serogroup C. The DNA construct induced a significant anti-polysaccharide antibody response that was bactericidal. Mice immunized with the DNA construct were subsequently protected against challenge with a lethal dose of N. meningitidis serogroup C.
Collapse
Affiliation(s)
- Deborah M Prinz
- Departments of Pathology and Medicine, Medical College of Ohio, Toledo, OH 43614, USA.
| | | | | | | |
Collapse
|
32
|
Abstract
This article gives an overview about the development of an HIV-1 vaccine. Tremendous numbers of papers have been published on this topic during the last 10 years, and this article can only touch on the different directions taken toward the development of an HIV-1 vaccine, and not give a complete overview of the entire field.
Collapse
Affiliation(s)
- James P McGettigan
- Department of Biochemistry and Molecular Pharmacology, Dorrance H. Hamilton Laboratories, Center for Human Virology, Philadelphia, PA 19107-6799, USA
| | | | | |
Collapse
|
33
|
Vázquez Blomquist D, Green P, Laidlaw SM, Skinner MA, Borrow P, Duarte CA. Induction of a strong HIV-specific CD8+ T cell response in mice using a fowlpox virus vector expressing an HIV-1 multi-CTL-epitope polypeptide. Viral Immunol 2003; 15:337-56. [PMID: 12081016 DOI: 10.1089/08828240260066260] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recombinant avipoxvirus vectors are attractive candidates for use in vaccination strategies for infections such as human immunodeficiency virus type 1 (HIV-1), where induction of a CD8+ T cell response is thought to be an important component of protective immunity. Here, we report the expression of a multiepitope polypeptide (TAB9) composed of the central 15 amino acids of the V3 loop from six different isolates of HIV-1 in a fowlpox virus (FWPV) vector, and the use of this vector (FPTAB9LZ) to induce strong HIV-specific CD8+ T cell responses in mice. In animals immunized twice intravenously with FPTAB9LZ, almost 2% of the CD8+ T cells in the spleen were shown to produce IFN-gamma in response to stimulation with HIV-1 peptides 1 week after the second immunization. The most dominant response was to the HIV-1 IIIB peptide. A strong HIV-specific response was also induced by intraperitoneal immunization of mice with FPTAB9LZ, whilst subcutaneous immunization elicited a weaker response. Intraperitoneal immunization with FPTAB9LZ was also shown to provide protection against challenge with a recombinant vaccinia virus expressing antigens, including those in TAB9. These results confirm the potential of FWPV vectors for use in HIV vaccination strategies.
Collapse
|
34
|
Abstract
HIV/AIDS has become the most devastating pandemic in recorded history. It has killed 40 million people in the last 20 years and the World Health Organisation estimated that at least 14,000 new infections occurred daily in 2001. There will be up to 100 million new infections in the next 10 years (for current updates, visit http://www.unaids.org/epidemic_update/). Most HIV infections occur in the developing world, and the adverse social and economic impact of the HIV/AIDS pandemic, particularly in the developing world, is unprecedented. Highly active antiretroviral therapy (HAART) has had significant effects on HIV/AIDS in the developed world. The drugs have acted to prolong survival, reduce the viral load, and to alleviate suffering. However, the incidence of side effects and resistance is high and the drugs are unaffordable and unavailable in the developing world. HAART regimens are difficult to comply with. Public health efforts to modify the behaviour, attitude and culture that accelerate the spread of HIV/AIDS have had only modest success. There is urgent need for a prophylactic and/or therapeutic HIV vaccine. This is a review of the obstacles and current trends in HIV vaccine development.
Collapse
Affiliation(s)
- Matilu Mwau
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | | |
Collapse
|
35
|
Shen X, Wong SBJ, Buck CB, Zhang J, Siliciano RF. Direct priming and cross-priming contribute differentially to the induction of CD8+ CTL following exposure to vaccinia virus via different routes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:4222-9. [PMID: 12370352 DOI: 10.4049/jimmunol.169.8.4222] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To explore the relative importance of direct presentation vs cross-priming in the induction of CTL responses to viruses and viral vectors, we generated a recombinant vaccinia vector, vUS11, expressing the human CMV (HCMV) protein US11. US11 dislocates most allelic forms of human and murine MHC class I heavy chains from the lumen of the endoplasmic reticulum into the cytosol, where they are degraded by proteasomes. Expression of US11 dramatically decreased the presentation of viral Ag and CTL recognition of infected cells in vitro without significantly reducing total cell surface MHC class I levels. However, because US11 is an endoplasmic reticulum resident membrane protein, it cannot block presentation by non-infected cells that take up Ag through the cross-priming pathway. We show that the expression of US11 strongly inhibits the induction of primary CD8(+) CTLs when the infection occurs via the i.p. or i.v. route, demonstrating that direct priming is critical for the induction of CTL responses to viral infections introduced via these routes. This effect is less dramatic following i.m. infection and is minimal after s.c. or intradermal infection. Thus, classic MHC class I Ag presentation and cross-priming contribute differentially to the induction of CD8(+) CTLs following exposure to vaccinia virus via different routes.
Collapse
MESH Headings
- Animals
- Antigen Presentation/genetics
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Cytotoxicity, Immunologic/genetics
- Epitopes, T-Lymphocyte/immunology
- Female
- Genetic Vectors/administration & dosage
- Genetic Vectors/biosynthesis
- Genetic Vectors/immunology
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Humans
- Injections, Intradermal
- Injections, Intramuscular
- Injections, Intraperitoneal
- Injections, Intravenous
- Injections, Subcutaneous
- Lymphocyte Activation/genetics
- Mice
- Mice, Inbred A
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, SCID
- RNA-Binding Proteins/biosynthesis
- RNA-Binding Proteins/genetics
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/virology
- Tumor Cells, Cultured
- Vaccination/methods
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/chemistry
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccinia virus/genetics
- Vaccinia virus/immunology
- Viral Proteins/biosynthesis
- Viral Proteins/genetics
- Viral Vaccines/administration & dosage
- Viral Vaccines/chemical synthesis
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Xuefei Shen
- Program in Biochemistry, Department of Medicine, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
36
|
Allen TM, Jing P, Calore B, Horton H, O'Connor DH, Hanke T, Piekarczyk M, Ruddersdorf R, Mothé BR, Emerson C, Wilson N, Lifson JD, Belyakov IM, Berzofsky JA, Wang C, Allison DB, Montefiori DC, Desrosiers RC, Wolinsky S, Kunstman KJ, Altman JD, Sette A, McMichael AJ, Watkins DI. Effects of cytotoxic T lymphocytes (CTL) directed against a single simian immunodeficiency virus (SIV) Gag CTL epitope on the course of SIVmac239 infection. J Virol 2002; 76:10507-11. [PMID: 12239328 PMCID: PMC136573 DOI: 10.1128/jvi.76.20.10507-10511.2002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccine-induced cytotoxic T lymphocytes (CTL) have been implicated in the control of virus replication in simian immunodeficiency virus (SIV)-challenged and simian-human immunodeficiency virus-challenged macaques. Therefore, we wanted to test the impact that vaccine-induced CTL responses against an immunodominant Gag epitope might have in the absence of other immune responses. By themselves, these strong CTL responses failed to control SIVmac239 replication.
Collapse
Affiliation(s)
- Todd M Allen
- Wisconsin Regional Primate Research Center, University of Wisconsin, Madison, WI 53715, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Allen TM, Kelleher AD, Zaunders J, Walker BD. STI and beyond: the prospects of boosting anti-HIV immune responses. Trends Immunol 2002; 23:456-60. [PMID: 12200068 DOI: 10.1016/s1471-4906(02)02297-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Twenty years into the HIV epidemic, highly active antiretroviral therapy (HAART) represents the only effective intervention to control HIV-1 disease progression. However, the prospect of life-long treatment with HAART is challenging given cumulative drug toxicities, difficulties with adherence to complicated regimens and the looming emergence of drug-resistant viruses. The challenges are even greater in resource-poor settings where costs and logistical problems with delivery represent formidable obstacles. Alternative approaches to long-term control of viral replication and disease progression are clearly needed.
Collapse
Affiliation(s)
- Todd M Allen
- Partners AIDS Research Center, Massachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MA, USA.
| | | | | | | |
Collapse
|
38
|
Mwau M, McMichael AJ, Hanke T. Design and validation of an enzyme-linked immunospot assay for use in clinical trials of candidate HIV vaccines. AIDS Res Hum Retroviruses 2002; 18:611-8. [PMID: 12079556 DOI: 10.1089/088922202760019301] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The enzyme-linked immunosorbent (ELISPOT) assay, which enumerates peripheral blood mononuclear cells (PBMCs) releasing interferon gamma (IFN-gamma) on specific antigen stimulation, is becoming the assay of choice for evaluation of vaccine-induced cell-mediated immune responses in many clinical trials. A properly conducted trial requires the assays to be validated, especially should the trial lead to vaccine licensure. Here, the design and validation of an ELISPOT assay are described for use in clinical trials of candidate human immunodeficiency virus (HIV) vaccines, using a particular immunogen termed HIVA. This assay employs eight pools of 20 to 23 peptides each: seven pools are derived from the immunogen and one pool is derived from cytotoxic T cell epitopes of common human viruses serving as an internal positive control. The validation determined that first, the overall variation of a positive response of approximately 500 spot-forming units (SFU)/10(6) cells was 21%, while second, the average of 5 SFU/10(6) cells was detected for the seven HIVA-derived pools in HIV-uninfected individuals; third, a positive response to a peptide added to the assay pools was not occluded by the other pool peptides; fourth, the frequencies detected in fresh PBMCs were 2- to 3-fold higher compared with the same samples that had been cryopreserved; and finally, all seven HIV-derived pools induced IFN-gamma responses in PBMCs isolated from HIV-infected individuals. The limits of the validation of assays involving biological responses of living cells are discussed.
Collapse
Affiliation(s)
- Matilu Mwau
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford, OX3 9DS, United Kingdom
| | | | | |
Collapse
|
39
|
Hocknell PK, Wiley RD, Wang X, Evans TG, Bowers WJ, Hanke T, Federoff HJ, Dewhurst S. Expression of human immunodeficiency virus type 1 gp120 from herpes simplex virus type 1-derived amplicons results in potent, specific, and durable cellular and humoral immune responses. J Virol 2002; 76:5565-80. [PMID: 11991985 PMCID: PMC137011 DOI: 10.1128/jvi.76.11.5565-5580.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) infects a wide range of cells, including dendritic cells. Consequently, HSV-1 vectors may be capable of eliciting strong immune responses to vectored antigens. To test this hypothesis, an HSV-1 amplicon plasmid encoding human immunodeficiency virus type 1 gp120 was constructed, and murine immune responses to helper virus-free amplicon preparations derived from this construct were evaluated. Initial studies revealed that a single intramuscular (i.m.) injection of 10(6) infectious units (i.u.) of HSV:gp120 amplicon particles (HSV:gp120) elicited Env-specific cellular and humoral immune responses. A potent, CD8(+)-T-cell-mediated response to an H-2D(d)-restricted peptide from gp120 (RGPGRAFVTI) was measured by a gamma interferon ELISPOT and was confirmed by standard cytotoxic-T-lymphocyte assays. Immunoglobulin G enzyme-linked immunosorbent assay analysis showed the induction of a strong, Env-specific antibody response. An i.m. or an intradermal administration of HSV:gp120 at the tail base elicited a more potent cellular immune response than did an intraperitoneal (i.p.) inoculation, although an i.p. introduction generated a stronger humoral response. The immune response to HSV:gp120 was durable, with robust cellular and humoral responses persisting at 171 days after a single 10(6)-i.u. inoculation. The immune response to HSV:gp120 was also found to be dose dependent: as few as 10(4) i.u. elicited a strong T-cell response. Finally, HSV:gp120 elicited significant Env-specific cellular immune responses even in animals that had been previously infected with wild-type HSV-1. Taken together, these data strongly support the use of helper-free HSV-1 amplicon particles as vaccine delivery vectors.
Collapse
Affiliation(s)
- Peter K Hocknell
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Hanke T, McMichael AJ, Mwau M, Wee EGT, Ceberej I, Patel S, Sutton J, Tomlinson M, Samuel RV. Development of a DNA-MVA/HIVA vaccine for Kenya. Vaccine 2002; 20:1995-8. [PMID: 11983261 DOI: 10.1016/s0264-410x(02)00085-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Without going into the details of the devastation that human immunodeficiency virus (HIV) infection causes especially in the developing world, the best hope for changing the course of this epidemic is development of a safe, effective, accessible prophylactic HIV vaccine. While the inaccessibility of potentially neutralising epitopes on primary HIV isolates has hampered the development of envelope-based vaccines, there is a number of new potent technologies capable of inducing high levels of circulating virus-specific CD8(+) cytotoxic T lymphocytes (CTL). Our original finding that a successive immunisation with DNA and modified vaccinia virus Ankara (MVA) vaccines expressing a common immunogen is a potent way of inducing CD8(+) CTL, which has been since reinforced by us and others, prompted us to test this approach in humans. With the view of proceeding into a high-risk cohort in Kenya for the efficacy trial, we designed the immunogen, termed HIVA, to match the HIV strain responsible locally for over 70% infections. It consists of a consensus clade A gag p24/p17 and a string of clade A-derived CTL epitopes. Pre-clinical studies demonstrated high immunogenicities of both the pTHr.HIVA and MVA.HIVA vaccines. In mice, these induced strong T cells-mediated immune responses which lasted at least 155 days. In rhesus macaques, the prime-boost immunisation elicited T cell responses specific for multiple HIV-derived epitopes. Phase I trials in healthy low-risk volunteers have commenced in Oxford and Nairobi, and the preliminary immunogenicity analysis from the Oxford site indicated that both vaccine components alone induced T cell responses in a majority of volunteers. These results have boosted expectations for the prime-boost vaccinations.
Collapse
Affiliation(s)
- Tomás Hanke
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, The John Radcliffe Hospital, Oxford OX3 9DS, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hamajima K, Hoshino Y, Xin KQ, Hayashi F, Tadokoro K, Okuda K. Systemic and mucosal immune responses in mice after rectal and vaginal immunization with HIV-DNA vaccine. Clin Immunol 2002; 102:12-8. [PMID: 11781062 DOI: 10.1006/clim.2001.5141] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the feasibility of inducing local and systemic human immunodeficiency virus (HIV)-specific immune responses by rectal and vaginal application of an HIV-DNA vaccine. Mice were immunized with an HIV-DNA vaccine preparation via a rectal or vaginal route. After several applications, HIV-specific antibodies were detected in sera, fecal extract solutions, and vaginal washes, and these antibodies were potent in inhibiting the syncytium formation of a CD4-positive human T cell line by a cell line capable of inducing HIV-1 infection. Spleen cells from rectally and vaginally immunized mice showed antigen-mediated IFN-gamma-inducing activity. In addition, with rectal immunization, mononuclear cells from both the spleen and the regional lymph nodes of the rectal region were found to be potent at inducing a cytotoxic T lymphocyte response. These humoral and cell-mediated immune responses were enhanced by augmenting the vaccine with granulocyte-macrophage colony-stimulating factor-expressing plasmids or IL-12-expressing plasmid. Our results demonstrated that both rectal and vaginal immunization could induce systemic and mucosal immunity and that these responses were enhanced by the addition of the above cytokine-expressing plasmids.
Collapse
Affiliation(s)
- Kenji Hamajima
- Department of Bacteriology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Ensoli B, Cafaro A. NOVEL STRATEGIES TOWARD THE DEVELOPMENT OF AN EFFECTIVE VACCINE TO PREVENT HUMAN IMMUNODEFICIENCY VIRUS INFECTION OR ACQUIRED IMMUNODEFICIENCY VIRUS*. ACTA ACUST UNITED AC 2001. [DOI: 10.1081/crp-100108179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
43
|
Arnon R, Tarrab-Hazdai R, Ben-Yedidia T. Peptide-based synthetic recombinant vaccines with anti-viral efficacy. Biologicals 2001; 29:237-42. [PMID: 11851322 DOI: 10.1006/biol.2001.0303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Synthetic recombinant vaccines are constructs in which a synthetic oligonucleotide coding for a protective epitope is inserted into an adequate gene for expression of the epitope. We report the results obtained using recombinant flagella of Salmonella vaccine strain expressing epitopes of influenza virus or of the parasite Schistosoma mansoni. In the case of influenza virus, three conserved epitopes of the haemagglutinin and the nucleoprotein of the virus inducing B- and T-cell immune response, were expressed and the flagella were used for intranasal immunization without any adjuvant. Both humoral and cellular immune responses specific to the virus induced in mice cross-strain long-term protection against challenge infection. Aged mice were also able to resist infection. For the design of a human influenza vaccine, epitopes recognized by the HLAs prevalent in Caucasian populations were used, and the resulting vaccine was evaluated in human/mouse radiation chimaera in which human PBMC are functionally engrafted. The vaccinated mice demonstrated efficient clearance of the virus after challenge and resistance to lethal infection. In the case of the parasitic disease schistosomiasis, a 14-residue peptide denoted 9B peptide 1 was expressed in the flagella. Intranasal vaccination of mice with this construct, without the use of adjuvant, resulted in 40% protection against challenge infection.
Collapse
Affiliation(s)
- R Arnon
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel 76100.
| | | | | |
Collapse
|
44
|
Potter P, Tourdot S, Blanchard T, Smith GL, Gould KG. Differential processing and presentation of the H-2D(b)-restricted epitope from two different strains of influenza virus nucleoprotein. J Gen Virol 2001; 82:1069-1074. [PMID: 11297681 DOI: 10.1099/0022-1317-82-5-1069] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The influenza virus strains A/NT/60/68 and A/PR/8/34 both have an immunodominant D(b)-restricted epitope in their nucleoprotein (NP) at amino acid residues 366-374, with two amino acid differences between the epitopes. Cross-reactive cytotoxic T lymphocytes (CTLs) were generated by priming mice with the influenza virus A/NT/60/68 NP and restimulating in vitro with influenza virus A/PR/8/34. CTLs that gave high levels of specific lysis recognized target cells infected with either strain of influenza virus with similar efficiency. Surprisingly, when target cells were infected with recombinant vaccinia viruses (VV) expressing the two different NPs, presentation of the D(b)-restricted epitope from the A/NT/60/68 NP was extremely poor, whereas presentation of the equivalent epitope from the A/PR/8/34 NP was as efficient as in influenza virus-infected cells. This difference was observed in spite of the fact that the two NP sequences show 94% identity at the amino acid sequence level. Experiments with additional cross-reactive CTL cell lines which recognized target cells less efficiently revealed a similar difference in presentation between the two NP epitopes in influenza virus-infected cells and showed a difference in the efficiency of presentation of the D(b)-restricted epitope from the two NP molecules independent of VV infection. The results show that two equivalent epitopes in highly similar proteins are processed with very different efficiency, even though they are both immunodominant epitopes. They also suggest that the previously described inhibition of antigen presentation by VV is a general, non-specific effect, which is more apparent for epitopes that are processed and presented less efficiently.
Collapse
Affiliation(s)
- Paul Potter
- Department of Immunology, Imperial College School of Medicine (St Mary's Campus), Norfolk Place, London W2 1PG, UK1
| | - Sophie Tourdot
- Department of Immunology, Imperial College School of Medicine (St Mary's Campus), Norfolk Place, London W2 1PG, UK1
| | - Tom Blanchard
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK2
| | - Geoffrey L Smith
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK2
| | - Keith G Gould
- Department of Immunology, Imperial College School of Medicine (St Mary's Campus), Norfolk Place, London W2 1PG, UK1
| |
Collapse
|
45
|
Derby EG, Reddy V, Nelson EL, Kopp WC, Baseler MW, Dawson JR, Malyguine AM. Correlation of human CD56+ cell cytotoxicity and IFN-gamma production. Cytokine 2001; 13:85-90. [PMID: 11145847 DOI: 10.1006/cyto.2000.0804] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The use of an IFN-gamma ELISPOT assay to evaluate cellular immune responses has gained increasing popularity, especially as a surrogate measure for cytotoxic T lymphocyte (CTL) responses. We have compared the IFN-gamma ELISPOT assay and the traditional(51)Cr release assay for detection of human natural killer (NK) cell activity. The cell populations used for evaluation of these assays included freshly isolated and IL-2-activated peripheral blood mononuclear cells (PBMC). CD56-positive cells were demonstrated to be the primary source of the IFN-gamma signal when PBMC were evaluated with NK-sensitive targets in the IFN-gamma ELISPOT assay. IFN-gamma ELISPOT and(51)Cr release assays showed excellent correlation suggesting that NK activity can be reliably evaluated with methods other than the traditional(51)Cr release assays.
Collapse
Affiliation(s)
- E G Derby
- NCI-Frederick Cancer Research and Development Center, SAIC-Frederick, Frederick, MD 21702-1201, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Ferrari G, Kostyu DD, Cox J, Dawson DV, Flores J, Weinhold KJ, Osmanov S. Identification of highly conserved and broadly cross-reactive HIV type 1 cytotoxic T lymphocyte epitopes as candidate immunogens for inclusion in Mycobacterium bovis BCG-vectored HIV vaccines. AIDS Res Hum Retroviruses 2000; 16:1433-43. [PMID: 11018863 DOI: 10.1089/08892220050140982] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
One of the fundamental goals of current strategies to develop an efficacious vaccine for AIDS is the elicitation of cytotoxic T lymphocyte (CTL) reactivities capable of recognizing cells infected with different subtypes of the human immunodeficiency virus type 1 (HIV-1). In efforts to explore new vaccine candidates by the UNAIDS/WHO Vaccine Committee, we review the most recent data concerning CTL epitopes that are conserved among the different HIV-1 subtypes. Moreover, we examine HLA allelic frequencies in several different populations, to determine those that could contribute to the goal of a cumulative phenotype frequency (CP) of at least 80%. By analyzing conserved epitopes in the context of HLA restricting alleles, we define a set of HIV-1 gene regions that may have the greatest potential to induce cross-clade reactive CTLs. The absence of well-defined correlates of immune protection that link CTL epitopes to delayed disease progression and/or prevention of infection does not permit an assignment of rank order of the most relevant component of a candidate vaccine. Thus far, most of the studies conducted in clade B-infected patients to define conserved and immunodominant epitopes indicate gag and pol gene products to be the most conserved among the HIV-1 subtypes. Moreover, anti-Pol and -Gag CTL responses appear to correlate inversely with disease progression, suggesting that they should be among the first choice of antigens to be included in a candidate vaccine construct aimed at induction of broad CTL responses. The impact of a clade B-based vaccine as a worldwide candidate capable of inducing protective immune responses can be determined only after "in vivo" studies. Meanwhile, extensive parallel studies in populations infected with non-clade B HIV-1 subtypes should define the patterns of immunodominant epitopes and HLA for comparison with the data already collected in clade B-infected subjects.
Collapse
Affiliation(s)
- G Ferrari
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 2770, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Hanke T, McMichael AJ. Design and construction of an experimental HIV-1 vaccine for a year-2000 clinical trial in Kenya. Nat Med 2000; 6:951-5. [PMID: 10973301 DOI: 10.1038/79626] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- T Hanke
- MRC Human Immunology Unit Institute of Molecular Medicine The John Radcliffe Oxford OX3 9DS, United Kingdom.
| | | |
Collapse
|
48
|
Gherardi MM, Ramírez JC, Esteban M. Interleukin-12 (IL-12) enhancement of the cellular immune response against human immunodeficiency virus type 1 env antigen in a DNA prime/vaccinia virus boost vaccine regimen is time and dose dependent: suppressive effects of IL-12 boost are mediated by nitric oxide. J Virol 2000; 74:6278-86. [PMID: 10864637 PMCID: PMC112133 DOI: 10.1128/jvi.74.14.6278-6286.2000] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We previously demonstrated that codelivery of interleukin-12 (IL-12) with the human immunodeficiency virus type 1 (HIV-1) Env antigen from a recombinant vaccinia virus (rVV) can enhance the specific anti-Env cell-mediated immune (CMI) response. In the present study, we have investigated the effects of IL-12 in mice when it is expressed in a DNA prime/VV boost vaccine regimen. The delivery of IL-12 and Env product during priming with a DNA vector, followed by a booster with VV expressing the Env gene (rVVenv), was found to trigger the optimal CMI response compared with other immunization schedules studied. Significantly, if IL-12 is also delivered as a booster from the viral vector, an impairment of the effects of IL-12 was observed involving nitric oxide (NO), since it was overcome by specific inhibitors of inducible NO synthase. NO caused transient immunosuppression rather than impairment of viral replication. Moreover, at certain viral doses, coadministration of the NO inhibitor during the booster resulted in IL-12-mediated enhancement of the specific CD8(+) T-cell response. In addition, the dose of the IL-12-encoding plasmid (pIL-12) and the route of administration of both vectors were relevant factors for optimal CMI responses. Maximal numbers of Env-specific CD8(+) gamma interferon-secreting cells were obtained when 50 microg of pIL-12 was administered intramuscularly at priming, followed by an intravenous rVVenv boost. Our results demonstrate, in a murine model, critical parameters affecting the success of vaccination schedules based on a combination of DNA and VV vectors in conjunction with immunomodulators.
Collapse
Affiliation(s)
- M M Gherardi
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, E-28049 Madrid, Spain
| | | | | |
Collapse
|
49
|
Allen TM, Vogel TU, Fuller DH, Mothé BR, Steffen S, Boyson JE, Shipley T, Fuller J, Hanke T, Sette A, Altman JD, Moss B, McMichael AJ, Watkins DI. Induction of AIDS virus-specific CTL activity in fresh, unstimulated peripheral blood lymphocytes from rhesus macaques vaccinated with a DNA prime/modified vaccinia virus Ankara boost regimen. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:4968-78. [PMID: 10779808 DOI: 10.4049/jimmunol.164.9.4968] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The observed role of CTL in the containment of AIDS virus replication suggests that an effective HIV vaccine will be required to generate strong CTL responses. Because epitope-based vaccines offer several potential advantages for inducing strong, multispecific CTL responses, we tested the ability of an epitope-based DNA prime/modified vaccinia virus Ankara (MVA) boost vaccine to induce CTL responses against a single SIVgag CTL epitope. As assessed using both 51Cr release assays and tetramer staining of in vitro stimulated PBMC, DNA vaccinations administered to the skin with the gene gun induced and progressively increased p11C, C-->M (CTPYDINQM)-specific CD8+ T lymphocyte responses in six of six Mamu-A*01+ rhesus macaques. Tetramer staining of fresh, unstimulated PBMC from two of the DNA-vaccinated animals indicated that as much as 0.4% of all CD3+/CD8alpha+ T lymphocytes were specific for the SIVgag CTL epitope. Administration of MVA expressing the SIVgag CTL epitope further boosted these responses, such that 0.8-20.0% of CD3+/CD8alpha+ T lymphocytes in fresh, unstimulated PBMC were now Ag specific. Enzyme-linked immunospot assays confirmed this high frequency of Ag-specific cells, and intracellular IFN-gamma staining demonstrated that the majority of these cells produced IFN-gamma after peptide stimulation. Moreover, direct ex vivo SIV-specific cytotoxic activity could be detected in PBMC from five of the six DNA/MVA-vaccinated animals, indicating that this epitope-based DNA prime/MVA boost regimen represents a potent method for inducing high levels of functionally active, Ag-specific CD8+ T lymphocytes in non-human primates.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- Biolistics
- Cells, Cultured
- Cytotoxicity, Immunologic
- Dose-Response Relationship, Immunologic
- Enzyme-Linked Immunosorbent Assay
- Epitopes, T-Lymphocyte/blood
- HIV-1/immunology
- Immunization, Secondary/methods
- Interferon-gamma/biosynthesis
- Leukocytes, Mononuclear/immunology
- Lymphocyte Activation/immunology
- Macaca mulatta
- Oligopeptides/immunology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/virology
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/immunology
- Vaccines, DNA/immunology
- Vaccinia virus/genetics
- Vaccinia virus/immunology
Collapse
Affiliation(s)
- T M Allen
- Wisconsin Regional Primate Research Center, University of Wisconsin, Madison, WI 53715, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Schmittel A, Keilholz U, Thiel E, Scheibenbogen C. Quantification of tumor-specific T lymphocytes with the ELISPOT assay. J Immunother 2000; 23:289-95. [PMID: 10838657 DOI: 10.1097/00002371-200005000-00001] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The characterization of tumor-associated antigens and of human leukocyte antigen (HLA) class I molecule-binding peptide epitopes derived from these antigens has prompted the initiation of various vaccination trials aimed at inducing tumor-specific CD8+ T cells in persons with cancer. Sensitive and easy-to-perform T-cell assays that assess the frequency of tumor-reactive T cells are crucial for the evaluation and further development of vaccination approaches. This review focuses on a novel ELISPOT technique that allows quantification of tumor-specific T lymphocytes from peripheral blood by detecting antigen-induced cytokine secretion. Various ELISPOT methods using different antigen-presenting cells and different cytokines as read-out are described. T-cell analyses performed using the standard chromium release assay and the ELISPOT assay are also compared. Results from various clinical trials, including peptide and whole tumor cell vaccination and cytokine treatment, are now available and show the suitability of the ELISPOT assay for monitoring T-cell responses. To establish a basis for standardization and to further improve this technique, the first comparative quality assurance studies analyzing T-cell frequencies in different laboratories with the ELISPOT assay are being performed.
Collapse
Affiliation(s)
- A Schmittel
- Universitätsklinikum Benjamin-Franklin, Medizinische Klinik III (Hämatologie, Onkologie, and Transfusionsmedizin), Berlin, Germany
| | | | | | | |
Collapse
|