1
|
Xie W, Bruce K, Belz GT, Farrell HE, Stevenson PG. Indirect CD4 + T cell protection against mouse gamma-herpesvirus infection via interferon gamma. J Virol 2024; 98:e0049324. [PMID: 38578092 PMCID: PMC11092340 DOI: 10.1128/jvi.00493-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 04/06/2024] Open
Abstract
CD4+ T cells play a key role in γ-herpesvirus infection control. However, the mechanisms involved are unclear. Murine herpesvirus type 4 (MuHV-4) allows relevant immune pathways to be dissected experimentally in mice. In the lungs, it colonizes myeloid cells, which can express MHC class II (MHCII), and type 1 alveolar epithelial cells (AEC1), which lack it. Nevertheless, CD4+ T cells can control AEC1 infection, and this control depends on MHCII expression in myeloid cells. Interferon-gamma (IFNγ) is a major component of CD4+ T cell-dependent MuHV-4 control. Here, we show that the action of IFNγ is also indirect, as CD4+ T cell-mediated control of AEC1 infection depended on IFNγ receptor (IFNγR1) expression in CD11c+ cells. Indirect control also depended on natural killer (NK) cells. Together, the data suggest that the activation of MHCII+ CD11c+ antigen-presenting cells is key to the CD4+ T cell/NK cell protection axis. By contrast, CD8+ T cell control of AEC1 infection appeared to operate independently. IMPORTANCE CD4+ T cells are critical for the control of gamma-herpesvirus infection; they act indirectly, by recruiting natural killer (NK) cells to attack infected target cells. Here, we report that the CD4+ T cell/NK cell axis of gamma-herpesvirus control requires interferon-γ engagement of CD11c+ dendritic cells. This mechanism of CD4+ T cell control releases the need for the direct engagement of CD4+ T cells with virus-infected cells and may be a common strategy for host control of immune-evasive pathogens.
Collapse
Affiliation(s)
- Wanxiaojie Xie
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Kimberley Bruce
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Gabrielle T. Belz
- The University of Queensland Frazer Institute, Brisbane, Queensland, Australia
| | - Helen E. Farrell
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Philip G. Stevenson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
2
|
D’Aria S, Maquet C, Li S, Dhup S, Lepez A, Kohler A, Van Hée VF, Dadhich RK, Frenière M, Andris F, Nemazanyy I, Sonveaux P, Machiels B, Gillet L, Braun MY. Expression of the monocarboxylate transporter MCT1 is required for virus-specific mouse CD8 + T cell memory development. Proc Natl Acad Sci U S A 2024; 121:e2306763121. [PMID: 38498711 PMCID: PMC10990098 DOI: 10.1073/pnas.2306763121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 01/29/2024] [Indexed: 03/20/2024] Open
Abstract
Lactate-proton symporter monocarboxylate transporter 1 (MCT1) facilitates lactic acid export from T cells. Here, we report that MCT1 is mandatory for the development of virus-specific CD8+ T cell memory. MCT1-deficient T cells were exposed to acute pneumovirus (pneumonia virus of mice, PVM) or persistent γ-herpesvirus (Murid herpesvirus 4, MuHV-4) infection. MCT1 was required for the expansion of virus-specific CD8+ T cells and the control of virus replication in the acute phase of infection. This situation prevented the subsequent development of virus-specific T cell memory, a necessary step in containing virus reactivation during γ-herpesvirus latency. Instead, persistent active infection drove virus-specific CD8+ T cells toward functional exhaustion, a phenotype typically seen in chronic viral infections. Mechanistically, MCT1 deficiency sequentially impaired lactic acid efflux from activated CD8+ T cells, caused an intracellular acidification inhibiting glycolysis, disrupted nucleotide synthesis in the upstream pentose phosphate pathway, and halted cell proliferation which, ultimately, promoted functional CD8+ T cell exhaustion instead of memory development. Taken together, our data demonstrate that MCT1 expression is mandatory for inducing T cell memory and controlling viral infection by CD8+ T cells.
Collapse
Affiliation(s)
- Stefania D’Aria
- Institute for Medical Immunology, Faculty of Medicine, Université libre de Bruxelles, Gosselies6041, Belgium
| | - Céline Maquet
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - Fundamental and Applied Research for Animals & Health Research Unit, University of Liège, Liège4000, Belgium
| | - Shuang Li
- Institute for Medical Immunology, Faculty of Medicine, Université libre de Bruxelles, Gosselies6041, Belgium
| | - Suveera Dhup
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels1200, Belgium
| | - Anouk Lepez
- Immunobiology Laboratory, Faculty of Sciences, Université libre de Bruxelles, Gosselies6041, Belgium
| | - Arnaud Kohler
- Institute for Medical Immunology, Faculty of Medicine, Université libre de Bruxelles, Gosselies6041, Belgium
| | - Vincent F. Van Hée
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels1200, Belgium
| | - Rajesh K. Dadhich
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels1200, Belgium
| | - Marine Frenière
- Institute for Medical Immunology, Faculty of Medicine, Université libre de Bruxelles, Gosselies6041, Belgium
| | - Fabienne Andris
- Immunobiology Laboratory, Faculty of Sciences, Université libre de Bruxelles, Gosselies6041, Belgium
| | - Ivan Nemazanyy
- Plateforme d’étude du métabolisme, Institut Necker, Inserm US 24 - CNRS UMS 3633, Faculté de Médecine Paris Descartes, Paris75015, France
| | - Pierre Sonveaux
- WEL Research Institute, Welbio Department, Wavre1300, Belgium
| | - Bénédicte Machiels
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - Fundamental and Applied Research for Animals & Health Research Unit, University of Liège, Liège4000, Belgium
| | - Laurent Gillet
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - Fundamental and Applied Research for Animals & Health Research Unit, University of Liège, Liège4000, Belgium
| | - Michel Y. Braun
- Institute for Medical Immunology, Faculty of Medicine, Université libre de Bruxelles, Gosselies6041, Belgium
| |
Collapse
|
3
|
Age-associated B cells are long-lasting effectors that impede latent γHV68 reactivation. Sci Rep 2022; 12:21189. [PMID: 36477199 PMCID: PMC9729602 DOI: 10.1038/s41598-022-25543-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Age-associated B cells (ABCs; CD19+CD11c+T-bet+) are a unique population that are increased in an array of viral infections, though their role during latent infection is largely unexplored. Here, we use murine gammaherpesvirus 68 (γHV68) to demonstrate that ABCs remain elevated long-term during latent infection and express IFNγ and TNF. Using a recombinant γHV68 that is cleared following acute infection, we show that ABCs persist in the absence of latent virus, though their expression of IFNγ and TNF is decreased. With a fluorescent reporter gene-expressing γHV68 we demonstrate that ABCs are infected with γHV68 at similar rates to other previously activated B cells. We find that mice without ABCs display defects in anti-viral IgG2a/c antibodies and are more susceptible to reactivation of γHV68 following virus challenges that typically do not break latency. Together, these results indicate that ABCs are a persistent effector subset during latent viral infection that impedes γHV68 reactivation.
Collapse
|
4
|
Mouat IC, Shanina I, Horwitz MS. Age-associated B cells are long-lasting effectors that impede latent γHV68 reactivation. Sci Rep 2022; 12:21189. [PMID: 36477199 DOI: 10.1101/2021.12.29.474434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/30/2022] [Indexed: 05/28/2023] Open
Abstract
Age-associated B cells (ABCs; CD19+CD11c+T-bet+) are a unique population that are increased in an array of viral infections, though their role during latent infection is largely unexplored. Here, we use murine gammaherpesvirus 68 (γHV68) to demonstrate that ABCs remain elevated long-term during latent infection and express IFNγ and TNF. Using a recombinant γHV68 that is cleared following acute infection, we show that ABCs persist in the absence of latent virus, though their expression of IFNγ and TNF is decreased. With a fluorescent reporter gene-expressing γHV68 we demonstrate that ABCs are infected with γHV68 at similar rates to other previously activated B cells. We find that mice without ABCs display defects in anti-viral IgG2a/c antibodies and are more susceptible to reactivation of γHV68 following virus challenges that typically do not break latency. Together, these results indicate that ABCs are a persistent effector subset during latent viral infection that impedes γHV68 reactivation.
Collapse
Affiliation(s)
- Isobel C Mouat
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Iryna Shanina
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Marc S Horwitz
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada.
- Life Sciences Centre, University of British Columbia, Room 3551, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
5
|
Blackman MA. From Superantigens to "Real" Viral Antigens. Viral Immunol 2020; 33:211-214. [PMID: 32286177 PMCID: PMC7185356 DOI: 10.1089/vim.2019.0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Studies inspired by Dr. Peter Doherty led to over 16 years of research into the mouse gamma-herpesvirus, γHV68, in the Blackman laboratory. Progress on our understanding of γHV68 biology include insight into the establishment of latency, immune control of the acute and latent stages of infection and experimental vaccines, is described here.
Collapse
|
6
|
Yunis J, Redwood AJ, Belz GT, Stevenson PG. Membrane association of a model CD4 + T-cell vaccine antigen confers enhanced yet incomplete protection against murid herpesvirus-4 infection. Immunol Cell Biol 2020; 98:332-343. [PMID: 31997396 DOI: 10.1111/imcb.12319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/20/2020] [Accepted: 01/27/2020] [Indexed: 12/14/2022]
Abstract
Vaccination against γ-herpesviruses has proved difficult. CD4+ T cells are essential to contain infection, but how best to prime them and whether this can reduce viral loads remain unclear. To address these questions, we used ovalbumin (OVA) as a model antigen, delivering it with murine cytomegalovirus (MCMV) to protect mice against OVA-expressing murine herpesvirus-4 (MuHV-4). Membrane-associated OVA (mOVA) was more effective than soluble OVA, both to prime CD4+ T cells and as an effector target. It was also a better target than an OVA epitope limited to infected cells, suggesting that protective CD4+ T cells recognize infected cell debris rather than infected cells themselves. While MCMV-mOVA protected acutely against MuHV-4-mOVA, long-term protection was incomplete, even when OVA-specific CD8+ T cells and B cells were also primed. Thus, even optimized single-target vaccines may poorly reduce long-term γ-herpesvirus infections.
Collapse
Affiliation(s)
- Joseph Yunis
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
| | - Alec J Redwood
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia
| | - Gabrielle T Belz
- Molecular Immunology, Walter and Eliza Hall Institute, Melbourne, VIC, Australia
| | - Philip G Stevenson
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
- Royal Children's Hospital, Brisbane, QLD, Australia
| |
Collapse
|
7
|
A CD4 + T Cell-NK Cell Axis of Gammaherpesvirus Control. J Virol 2020; 94:JVI.01545-19. [PMID: 31694958 DOI: 10.1128/jvi.01545-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/31/2019] [Indexed: 01/27/2023] Open
Abstract
CD4+ T cells are essential to control herpesviruses. Murid herpesvirus 4 (MuHV-4)-driven lung disease in CD4+ T-cell-deficient mice provides a well-studied example. Protective CD4+ T cells have been hypothesized to kill infected cells directly. However, removing major histocompatibility complex class II (MHCII) from LysM+ or CD11c+ cells increased MuHV-4 replication not in those cells but in type 1 alveolar epithelial cells, which lack MHCII, LysM, or CD11c. Disruption of MHCII in infected cells had no effect. Therefore, CD4+ T cells engaged uninfected presenting cells and protected indirectly. Mice lacking MHCII in LysM+ or CD11c+ cells maintained systemic antiviral CD4+ T cell responses, but recruited fewer CD4+ T cells into infected lungs. NK cell infiltration was also reduced, and NK cell depletion normalized infection between MHCII-deficient and control mice. Therefore, NK cell recruitment seemed to be an important component of CD4+ T-cell-dependent protection. Disruption of viral CD8+ T cell evasion made this defense redundant, suggesting that it is important mainly to control CD8-evasive pathogens.IMPORTANCE Gammaherpesviruses are widespread and cause cancers. CD4+ T cells are a key defense. We found that they defend indirectly, engaging uninfected presenting cells and recruiting innate immune cells to attack infected targets. This segregation of CD4+ T cells from immediate contact with infection helps the immune system to cope with viral evasion. Priming this defense by vaccination offers a way to protect against gammaherpesvirus-induced cancers.
Collapse
|
8
|
Lawler C, Simas JP, Stevenson PG. Vaccine protection against murid herpesvirus-4 is maintained when the priming virus lacks known latency genes. Immunol Cell Biol 2019; 98:67-78. [PMID: 31630452 DOI: 10.1111/imcb.12299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/13/2019] [Accepted: 10/16/2019] [Indexed: 11/30/2022]
Abstract
γ-Herpesviruses establish latent infections of lymphocytes and drive their proliferation, causing cancers and motivating a search for vaccines. Effective vaccination against murid herpesvirus-4 (MuHV-4)-driven lymphoproliferation by latency-impaired mutant viruses suggests that lytic access to the latency reservoir is a viable target for control. However, the vaccines retained the immunogenic MuHV-4 M2 latency gene. Here, a strong reduction in challenge virus load was maintained when the challenge virus lacked the main latency-associated CD8+ T-cell epitope of M2, or when the vaccine virus lacked M2 entirely. This protection was maintained also when the vaccine virus lacked both episome maintenance and the genomic region encompassing M1, M2, M3, M4 and ORF4. Therefore, protection did not require immunity to known MuHV-4 latency genes. As the remaining vaccine virus genes have clear homologs in human γ-herpesviruses, this approach of deleting viral latency genes could also be applied to them, to generate safe and effective vaccines against human disease.
Collapse
Affiliation(s)
- Clara Lawler
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - João Pedro Simas
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal
| | - Philip G Stevenson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia.,Royal Children's Hospital, Brisbane, QLD, Australia
| |
Collapse
|
9
|
A Human STAT1 Gain-of-Function Mutation Impairs CD8 + T Cell Responses against Gammaherpesvirus 68. J Virol 2019; 93:JVI.00307-19. [PMID: 31315996 DOI: 10.1128/jvi.00307-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/05/2019] [Indexed: 01/14/2023] Open
Abstract
Autosomal dominant STAT1 mutations in humans have been associated with chronic mucocutaneous candidiasis (CMC), as well as with increased susceptibility to herpesvirus infections. Prior studies have focused on mucosal and Th17-mediated immunity against Candida, but mechanisms of impaired antiviral immunity have not previously been examined. To begin to explore the mechanisms of STAT1-associated immunodeficiency against herpesviruses, we generated heterozygous STAT1 R274W knock-in mice that have a frequently reported STAT1 mutation associated in humans with susceptibility to herpesvirus infections. In primary macrophages and fibroblasts, we found that STAT1 R274W had no appreciable effect on cell-intrinsic immunity against herpes simplex virus 1 (HSV-1) or gammaherpesvirus 68 (γHV68) infection. However, intraperitoneal inoculation of mice with γHV68 was associated with impaired control of infection at day 14 in STAT1 R274W mice compared with that in wild-type (WT) littermate control animals. Infection of STAT1 R274W mice was associated with paradoxically decreased expression of IFN-stimulated genes (ISGs) and gamma interferon (IFN-γ), likely secondary to defective CD4+ and CD8+ T cell responses, including diminished numbers of antigen-specific CD8+ T cells. Viral pathogenesis studies in WT and STAT1 R274W mixed bone marrow chimeric mice revealed that the presence of WT leukocytes was sufficient to limit infection and that antigen-specific STAT1 R274W CD8+ T cell responses were impaired even in the presence of WT leukocytes. Thus, in addition to regulating Th17 responses against Candida, a STAT1 gain-of-function mutant impedes antigen-specific T cell responses against a common gammaherpesvirus in mice.IMPORTANCE Mechanisms of immunodeficiency related to STAT1 gain of function have not been previously studied in an animal model of viral pathogenesis. Using virological and immunological techniques, we examined the immune response to γHV68 in heterozygous mice that have an autosomal dominant mutation in the STAT1 coiled-coil domain (STAT1 R274W). We observed impaired control of infection, which was associated with diminished production of gamma interferon (IFN-γ), fewer effector CD4+ and CD8+ T cells, and a reduction in the number of antigen-specific CD8+ T cells. These findings indicate that a STAT1 gain-of-function mutation limits production of antiviral T cells, likely contributing to immunodeficiency against herpesviruses.
Collapse
|
10
|
Abstract
Vaccination against γ-herpesviruses has been hampered by our limited understanding of their normal control. Epstein–Barr virus (EBV)-transformed B cells are killed by viral latency antigen-specific CD8+ T cells in vitro, but attempts to block B cell infection with antibody or to prime anti-viral CD8+ T cells have protected poorly in vivo. The Doherty laboratory used Murid Herpesvirus-4 (MuHV-4) to analyze γ-herpesvirus control in mice and found CD4+ T cell dependence, with viral evasion limiting CD8+ T cell function. MuHV-4 colonizes germinal center (GC) B cells via lytic transfer from myeloid cells, and CD4+ T cells control myeloid infection. GC colonization and protective, lytic antigen-specific CD4+ T cells are now evident also for EBV. Subunit vaccines have protected only transiently against MuHV-4, but whole virus vaccines give long-term protection, via CD4+ T cells and antibody. They block infection transfer to B cells, and need include no known viral latency gene, nor any MuHV-4-specific gene. Thus, the Doherty approach of in vivo murine analysis has led to a plausible vaccine strategy for EBV and, perhaps, some insight into what CD8+ T cells really do.
Collapse
Affiliation(s)
- Philip G Stevenson
- School of Chemistry and Molecular Biosciences, University of Queensland and Brisbane, Australia.,Child Health Research Center, Brisbane, Australia
| |
Collapse
|
11
|
Glauser DL, Milho R, Lawler C, Stevenson PG. Antibody arrests γ-herpesvirus olfactory super-infection independently of neutralization. J Gen Virol 2018; 100:246-258. [PMID: 30526737 DOI: 10.1099/jgv.0.001183] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Protecting against persistent viruses is an unsolved challenge. The clearest example for a gamma-herpesvirus is resistance to super-infection by Murid herpesvirus-4 (MuHV-4). Most experimental infections have delivered MuHV-4 into the lungs. A more likely natural entry site is the olfactory epithelium. Its protection remains unexplored. Here, prior exposure to olfactory MuHV-4 gave good protection against super-infection. The protection was upstream of B cell infection, which occurs in lymph nodes, and showed redundancy between antibody and T cells. Adding antibody to virions that blocked heparan binding strongly reduced olfactory host entry - unlike in the lungs, opsonized virions did not reach IgG Fc receptor+ myeloid cells. However, the nasal antibody response to primary infection was too low to reduce host entry. Instead, the antibody acted downstream, reducing viral replication in the olfactory epithelium. This depended on IgG Fc receptor engagement rather than virion neutralization. Thus antibody can protect against natural γ-herpesvirus infection before it reaches B cells and independently of neutralization.
Collapse
Affiliation(s)
- Daniel L Glauser
- 1Division of Virology, University of Cambridge, UK
- ‡Present address: Suisselab AG, Bern, Switzerland
| | - Ricardo Milho
- 1Division of Virology, University of Cambridge, UK
- §Present address: Costello Medical, Cambridge, UK
| | - Clara Lawler
- 2School of Chemistry and Molecular Biosciences, University of Queensland, Australia
| | - Philip G Stevenson
- 3Royal Children's Hospital, Brisbane, Australia
- 1Division of Virology, University of Cambridge, UK
- 2School of Chemistry and Molecular Biosciences, University of Queensland, Australia
| |
Collapse
|
12
|
Hanson DJ, Hill JA, Koelle DM. Advances in the Characterization of the T-Cell Response to Human Herpesvirus-6. Front Immunol 2018; 9:1454. [PMID: 29988505 PMCID: PMC6026635 DOI: 10.3389/fimmu.2018.01454] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/12/2018] [Indexed: 12/29/2022] Open
Abstract
Human herpesvirus (HHV) 6 is thought to remain clinically latent in most individuals after primary infection and to reactivate to cause disease in persons with severe immunosuppression. In allogeneic hematopoietic stem cell transplant recipients, reactivation of HHV-6 species B is a considerable cause of morbidity and mortality. HHV-6B reactivation is the most frequent cause of infectious meningoencephalitis in this setting and has been associated with a variety of other complications such as graft rejection and acute graft versus host disease. This has inspired efforts to develop HHV-6-targeted immunotherapies. Basic knowledge of HHV-6-specific adaptive immunity is crucial for these endeavors, but remains incomplete. Many studies have focused on specific HHV-6 antigens extrapolated from research on human cytomegalovirus, a genetically related betaherpesvirus. Challenges to the study of HHV-6-specific T-cell immunity include the very low frequency of HHV-6-specific memory T cells in chronically infected humans, the large genome size of HHV-6, and the lack of an animal model. This review will focus on emerging techniques and methodological improvements that are beginning to overcome these barriers. Population-prevalent antigens are now becoming clear for the CD4+ T-cell response, while definition and ranking of CD8+ T-cell antigens and epitopes is at an earlier stage. This review will discuss current knowledge of the T-cell response to HHV-6, new research approaches, and translation to clinical practice.
Collapse
Affiliation(s)
- Derek J Hanson
- Department of Medicine, University of Washington, Seattle, WA, United States.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Joshua A Hill
- Department of Medicine, University of Washington, Seattle, WA, United States.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - David M Koelle
- Department of Medicine, University of Washington, Seattle, WA, United States.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Laboratory Medicine, University of Washington, Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States.,Benaroya Research Institute, Seattle, WA, United States
| |
Collapse
|
13
|
Tan CSE, Lawler C, Stevenson PG. CD8+ T cell evasion mandates CD4+ T cell control of chronic gamma-herpesvirus infection. PLoS Pathog 2017; 13:e1006311. [PMID: 28394921 PMCID: PMC5398720 DOI: 10.1371/journal.ppat.1006311] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 04/20/2017] [Accepted: 03/23/2017] [Indexed: 12/15/2022] Open
Abstract
Gamma-herpesvirus infections are regulated by both CD4+ and CD8+ T cells. However clinical disease occurs mainly in CD4+ T cell-deficient hosts. In CD4+ T cell-deficient mice, CD8+ T cells control acute but not chronic lung infection by Murid Herpesvirus-4 (MuHV-4). We show that acute and chronic lung infections differ in distribution: most acute infection was epithelial, whereas most chronic infection was in myeloid cells. CD8+ T cells controlled epithelial infection, but CD4+ T cells and IFNγ were required to control myeloid cell infection. Disrupting the MuHV-4 K3, which degrades MHC class I heavy chains, increased viral epitope presentation by infected lung alveolar macrophages and allowed CD8+ T cells to prevent disease. Thus, viral CD8+ T cell evasion led to niche-specific immune control, and an essential role for CD4+ T cells in limiting chronic infection. Gamma-herpesviruses chronically infect most people. While infection is usually asymptomatic, disease occurs if the immune system is weakened. Understanding how immune control normally works should provide a basis for preventing disease. In mice, CD8+ T cells can control acute gamma-herpesvirus infection but not chronic infection. We show that acute and chronic infections involve different cell types. CD8+ T cells controlled epithelial cell infection, which predominated acutely, but they could not control chronic macrophage infection unless viral immune evasion was disabled. Instead CD4+ T cells were required. Thus, viral evasion made host defence cell type-specific: CD8+ T cells controlled epithelial cell infection; CD4+ T cells controlled macrophage infection; and comprehensive control required both T cell subsets.
Collapse
Affiliation(s)
- Cindy S. E. Tan
- School of Chemistry and Molecular Biosciences, University of Queensland and Royal Children’s Hospital, Brisbane, Australia
| | - Clara Lawler
- School of Chemistry and Molecular Biosciences, University of Queensland and Royal Children’s Hospital, Brisbane, Australia
| | - Philip G. Stevenson
- School of Chemistry and Molecular Biosciences, University of Queensland and Royal Children’s Hospital, Brisbane, Australia
- * E-mail:
| |
Collapse
|
14
|
Cieniewicz B, Santana AL, Minkah N, Krug LT. Interplay of Murine Gammaherpesvirus 68 with NF-kappaB Signaling of the Host. Front Microbiol 2016; 7:1202. [PMID: 27582728 PMCID: PMC4987367 DOI: 10.3389/fmicb.2016.01202] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/19/2016] [Indexed: 11/13/2022] Open
Abstract
Herpesviruses establish a chronic infection in the host characterized by intervals of lytic replication, quiescent latency, and reactivation from latency. Murine gammaherpesvirus 68 (MHV68) naturally infects small rodents and has genetic and biologic parallels with the human gammaherpesviruses (gHVs), Kaposi's sarcoma-associated herpesvirus and Epstein-Barr virus. The murine gammaherpesvirus model pathogen system provides a platform to apply cutting-edge approaches to dissect the interplay of gammaherpesvirus and host determinants that enable colonization of the host, and that shape the latent or lytic fate of an infected cell. This knowledge is critical for the development of novel therapeutic interventions against the oncogenic gHVs. The nuclear factor kappa B (NF-κB) signaling pathway is well-known for its role in the promotion of inflammation and many aspects of B cell biology. Here, we review key aspects of the virus lifecycle in the host, with an emphasis on the route that the virus takes to gain access to the B cell latency reservoir. We highlight how the murine gammaherpesvirus requires components of the NF-κB signaling pathway to promote replication, latency establishment, and maintenance of latency. These studies emphasize the complexity of gammaherpesvirus interactions with NF-κB signaling components that direct innate and adaptive immune responses of the host. Importantly, multiple facets of NF-κB signaling have been identified that might be targeted to reduce the burden of gammaherpesvirus-associated diseases.
Collapse
Affiliation(s)
- Brandon Cieniewicz
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Alexis L Santana
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Nana Minkah
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Laurie T Krug
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| |
Collapse
|
15
|
Godinho-Silva C, Marques S, Fontinha D, Veiga-Fernandes H, Stevenson PG, Simas JP. Defining immune engagement thresholds for in vivo control of virus-driven lymphoproliferation. PLoS Pathog 2014; 10:e1004220. [PMID: 24967892 PMCID: PMC4072806 DOI: 10.1371/journal.ppat.1004220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/13/2014] [Indexed: 12/26/2022] Open
Abstract
Persistent infections are subject to constant surveillance by CD8+ cytotoxic T cells (CTL). Their control should therefore depend on MHC class I-restricted epitope presentation. Many epitopes are described for γ-herpesviruses and form a basis for prospective immunotherapies and vaccines. However the quantitative requirements of in vivo immune control for epitope presentation and recognition remain poorly defined. We used Murid Herpesvirus-4 (MuHV-4) to determine for a latently expressed viral epitope how MHC class-I binding and CTL functional avidity impact on host colonization. Tracking MuHV-4 recombinants that differed only in epitope presentation, we found little latitude for sub-optimal MHC class I binding before immune control failed. By contrast, control remained effective across a wide range of T cell functional avidities. Thus, we could define critical engagement thresholds for the in vivo immune control of virus-driven B cell proliferation. Chronic viral infections cause huge morbidity and mortality worldwide. γ-herpesviruses provide an example relevant to all human demographics, causing, inter alia, Hodgkin's disease, Burkitt's lymphoma, Kaposi's Sarcoma, and nasopharyngeal carcinoma. The proliferation of latently infected B cells and their control by CD8+ T cells are central to pathogenesis. Although many viral T cell targets have been identified in vitro, the functional impact of their engagement in vivo remains ill-defined. With the well-established Murid Herpesvirus-4 infection model, we used a range of recombinant viruses to define functional thresholds for the engagement of a latently expressed viral epitope. These data advance significantly our understanding of how the immune system must function to control γ-herpesvirus infection, with implications for vaccination and anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Cristina Godinho-Silva
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sofia Marques
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Diana Fontinha
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Henrique Veiga-Fernandes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Philip G. Stevenson
- Sir Albert Sakzewski Virus Research Center and Queensland and Children's Medical Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - J. Pedro Simas
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
16
|
Aligo J, Walker M, Bugelski P, Weinstock D. Is murine gammaherpesvirus-68 (MHV-68) a suitable immunotoxicological model for examining immunomodulatory drug-associated viral recrudescence? J Immunotoxicol 2014; 12:1-15. [PMID: 24512328 DOI: 10.3109/1547691x.2014.882996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Immunosuppressive agents are used for treatment of a variety of autoimmune diseases including rheumatoid arthritis (RA), systemic lupus erythematosis (SLE), and psoriasis, as well as for prevention of tissue rejection after organ transplantation. Recrudescence of herpesvirus infections, and increased risk of carcinogenesis from herpesvirus-associated tumors are related with immunosuppressive therapy in humans. Post-transplant lymphoproliferative disorder (PTLD), a condition characterized by development of Epstein Barr Virus (EBV)-associated B-lymphocyte lymphoma, and Kaposi's Sarcoma (KS), a dermal tumor associated with Kaposi Sarcoma-associated virus (KSHV), may develop in solid organ transplant patients. KS also occurs in immunosuppressed Acquired Immunodeficiency (AIDS) patients. Kaposi Sarcoma-associated virus (KSHV) is a herpes virus genetically related to EBV. Murine gammaherpes-virus-68 (MHV-68) is proposed as a mouse model of gammaherpesvirus infection and recrudescence and may potentially have relevance for herpesvirus-associated neoplasia. The pathogenesis of MHV-68 infection in mice mimics EBV/KSHV infection in humans with acute lytic viral replication followed by dissemination and establishment of persistent latency. MHV-68-infected mice may develop lymphoproliferative disease that is accelerated by disruption of the immune system. This manuscript first presents an overview of gammaherpesvirus pathogenesis and immunology as well as factors involved in viral recrudescence. A description of different types of immunodeficiency then follows, with particular focus on viral association with lymphomagenesis after immunosuppression. Finally, this review discusses different gammaherpesvirus animal models and describes a proposed MHV-68 model to further examine the interplay of immunomodulatory agents and gammaherpesvirus-associated neoplasia.
Collapse
Affiliation(s)
- Jason Aligo
- Biologics Toxicology, Janssen Research and Development, LLC , Spring House, PA , USA
| | | | | | | |
Collapse
|
17
|
Zuo J, Rowe M. Herpesviruses placating the unwilling host: manipulation of the MHC class II antigen presentation pathway. Viruses 2012; 4:1335-53. [PMID: 23012630 PMCID: PMC3446767 DOI: 10.3390/v4081335] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 08/14/2012] [Accepted: 08/15/2012] [Indexed: 12/18/2022] Open
Abstract
Lifelong persistent infection by herpesviruses depends on the balance between host immune responses and viral immune evasion. CD4 T cells responding to antigens presented on major histocompatibility complex class II (MHC-II) molecules are known to play an important role in controlling herpesvirus infections. Here we review, with emphasis on human herpesvirus infections, the strategies evolved to evade CD4 T cell immunity. These viruses target multiple points on the MHC class II antigen presentation pathway. The mechanisms include: suppression of CIITA to inhibit the synthesis of MHC class II molecules, diversion or degradation of HLA-DR molecules during membrane transport, and direct targeting of the invariant chain chaperone of HLA-DR.
Collapse
Affiliation(s)
- Jianmin Zuo
- Cancer Research UK Birmingham Cancer Centre, University of Birmingham, Birmingham B15 2TT, UK.
| | | |
Collapse
|
18
|
Murine gammaherpesvirus 68 infection protects lupus-prone mice from the development of autoimmunity. Proc Natl Acad Sci U S A 2012; 109:E1092-100. [PMID: 22474381 DOI: 10.1073/pnas.1203019109] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gammaherpesvirus infections, such as those caused by EBV, have been suggested to promote the development of autoimmunity. To test this idea, we infected healthy WT and lupus-prone B6.Sle123 mice with an EBV-related and rodent-specific gammaherpesvirus, γHV68. Although acute γHV68 infection increased autoantibody levels for 4 to 6 wk, latent infection inhibited these responses for 1 y. The inhibition of autoantibody expression was only observed in B6.Sle123 females and not in males, which already displayed lower autoantibody titers. Contrary to the initial hypothesis, infection of young B6.Sle123 mice, both male and female, resulted in suppression of lymphoid activation and expansion and of glomerular inflammation and sclerosis, preserving kidney function. Moreover, γHV68 infection led to reduced autoantibody titers, lymphoid activation, and glomerular inflammation whether lupus-prone females were infected before or during disease manifestation. Finally, γHV68 infection also inhibited autoantibody production in the genetically distinct MRL/lpr lupus-prone mice. Our findings indicate that γHV68 infection strongly inhibits the development and progression of lupus-like disease in mice that spontaneously develop this condition mediating its beneficial effects at the humoral, cellular, and organ levels. The mechanisms by which the virus exerts this down-modulatory action are not yet clear, but appear to operate via reduced activation of dendritic cells, T cells, and B cells. Gammaherpesviruses coevolved with the vertebrate immune systems, establishing lifelong infections in humans and other mammals. Our findings that γHV68 infection prevents rather than exacerbates autoimmunity in mice suggest that infection with gammaherpesviruses may be protective rather than pathological in most individuals.
Collapse
|
19
|
Freeman ML, Burkum CE, Woodland DL, Sun R, Wu TT, Blackman MA. Importance of antibody in virus infection and vaccine-mediated protection by a latency-deficient recombinant murine γ-herpesvirus-68. THE JOURNAL OF IMMUNOLOGY 2011; 188:1049-56. [PMID: 22198955 DOI: 10.4049/jimmunol.1102621] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The human γ-herpesviruses EBV and Kaposi's sarcoma-associated herpesvirus establish lifelong latent infections, can reactivate in immunocompromised individuals, and are associated with the development of malignancies. Murine γ-herpesvirus-68 (γHV68), a rodent pathogen related to EBV and Kaposi's sarcoma-associated herpesvirus, provides an important model to dissect mechanisms of immune control and investigate vaccine strategies. Infection of mice with γHV68 elicits robust antiviral immunity, and long-term protection from γHV68 reactivation requires both cellular and humoral immune responses. Vaccination of mice with AC-replication and transcription activator (RTA), a highly lytic latency-null recombinant γHV68, results in complete protection from wild-type γHV68 infection that lasts for at least 10 mo. In this report, we examine the immune correlates of AC-RTA-mediated protection and show that sterilizing immunity requires both T cells and Ab. Importantly, Ab was also critical for mitigating viral infection in the brain, and in the absence of Ab-mediated control, amplification of the AC-RTA virus in the brain resulted in fatality. Our results highlight important considerations in the development of vaccination strategies based on live-attenuated viruses.
Collapse
|
20
|
MHV-68 producing mIFNα1 is severely attenuated in vivo and effectively protects mice against challenge with wt MHV-68. Vaccine 2011; 29:3935-44. [DOI: 10.1016/j.vaccine.2011.03.092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 03/03/2011] [Accepted: 03/25/2011] [Indexed: 11/22/2022]
|
21
|
Abstract
Due to the oncogenic potential associated with persistent infection of human gamma-herpesviruses, including Epstein-Barr virus (EBV or HHV-4) and Kaposi's sarcoma-associated herpesvirus (KSHV or HHV-8), vaccine development has focused on subunit vaccines. However, the results using an animal model of mouse infection with a related rodent virus, murine gamma-herpesvirus 68 (MHV-68, γHV-68, or MuHV-4), have shown that the only effective vaccination strategy is based on live attenuated viruses, including viruses engineered to be incapable of establishing persistence. Vaccination with a virus lacking persistence would eliminate many potential complications. Progress in understanding persistent infections of EBV and KSHV raises the possibility of engineering a live attenuated virus without persistence. Therefore, we should keep the option open for developing a live EBV or KSHV vaccine.
Collapse
Affiliation(s)
- Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, School of Medicine, University of California at Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
22
|
May JS, Stevenson PG. Vaccination with murid herpesvirus-4 glycoprotein B reduces viral lytic replication but does not induce detectable virion neutralization. J Gen Virol 2010; 91:2542-52. [PMID: 20519454 PMCID: PMC3052599 DOI: 10.1099/vir.0.023085-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 05/31/2010] [Indexed: 01/17/2023] Open
Abstract
Herpesviruses characteristically disseminate from immune hosts. Therefore in the context of natural infection, antibody neutralizes them poorly. Murid herpesvirus-4 (MuHV-4) provides a tractable model with which to understand gammaherpesvirus neutralization. MuHV-4 virions blocked for cell binding by immune sera remain infectious for IgG-Fc receptor(+) myeloid cells, so broadly neutralizing antibodies must target the virion fusion complex - glycoprotein B (gB) or gH/gL. While gB-specific neutralizing antibodies are rare, its domains I+II (gB-N) contain at least one potent neutralization epitope. Here, we tested whether immunization with recombinant gB presenting this epitope could induce neutralizing antibodies in naive mice and protect them against MuHV-4 challenge. Immunizing with the full-length gB extracellular domain induced a strong gB-specific antibody response and reduced MuHV-4 lytic replication but did not induce detectable neutralization. gB-N alone, which more selectively displayed pre-fusion epitopes including neutralization epitopes, also failed to induce neutralizing responses, and while viral lytic replication was again reduced this depended completely on IgG Fc receptors. gB and gB-N also boosted neutralizing responses in only a minority of carrier mice. Therefore, it appears that neutralizing epitopes on gB are intrinsically difficult for the immune response to target.
Collapse
Affiliation(s)
- Janet S May
- Division of Virology, Department of Pathology, University of Cambridge, UK
| | | |
Collapse
|
23
|
Wright DE, Colaco S, Colaco C, Stevenson PG. Antibody limits in vivo murid herpesvirus-4 replication by IgG Fc receptor-dependent functions. J Gen Virol 2009; 90:2592-2603. [PMID: 19625459 PMCID: PMC2885036 DOI: 10.1099/vir.0.014266-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 07/17/2009] [Indexed: 12/11/2022] Open
Abstract
Antibody is an important antiviral defence. However, it is considered to do little against human gamma-herpesviruses, which establish predominantly latent infections regulated by T cells. One limitation on analysing these infections has been that latency is already well-established at clinical presentation; early infection may still be accessible to antibody. Here, using murid herpesvirus-4 (MuHV-4), we tested the impact of adoptively transferred antibody on early gamma-herpesvirus infection. Immune sera and neutralizing and non-neutralizing monoclonal antibodies (mAbs) all reduced acute lytic MuHV-4 replication. The reductions, even by neutralizing mAbs, were largely or completely dependent on host IgG Fc receptors. Therefore, passive antibody can blunt acute gamma-herpesvirus lytic infection, and does this principally by IgG Fc-dependent functions rather than by neutralization.
Collapse
Affiliation(s)
- Debbie E. Wright
- Division of Virology, Department of Pathology, University of Cambridge, UK
| | - Susanna Colaco
- Division of Virology, Department of Pathology, University of Cambridge, UK
| | - Camilo Colaco
- Immunobiology Ltd, Babraham Research Campus, Cambridge, UK
| | | |
Collapse
|
24
|
Stevenson PG, Simas JP, Efstathiou S. Immune control of mammalian gamma-herpesviruses: lessons from murid herpesvirus-4. J Gen Virol 2009; 90:2317-2330. [PMID: 19605591 DOI: 10.1099/vir.0.013300-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Many acute viral infections can be controlled by vaccination; however, vaccinating against persistent infections remains problematic. Herpesviruses are a classic example. Here, we discuss their immune control, particularly that of gamma-herpesviruses, relating the animal model provided by murid herpesvirus-4 (MuHV-4) to human infections. The following points emerge: (i) CD8(+) T-cell evasion by herpesviruses confers a prominent role in host defence on CD4(+) T cells. CD4(+) T cells inhibit MuHV-4 lytic gene expression via gamma-interferon (IFN-gamma). By reducing the lytic secretion of immune evasion proteins, they may also help CD8(+) T cells to control virus-driven lymphoproliferation in mixed lytic/latent lesions. Similarly, CD4(+) T cells specific for Epstein-Barr virus lytic antigens could improve the impact of adoptively transferred, latent antigen-specific CD8(+) T cells. (ii) In general, viral immune evasion necessitates multiple host effectors for optimal control. Thus, subunit vaccines, which tend to prime single effectors, have proved less successful than attenuated virus mutants, which prime multiple effectors. Latency-deficient mutants could make safe and effective gamma-herpesvirus vaccines. (iii) The antibody response to MuHV-4 infection helps to prevent disease but is suboptimal for neutralization. Vaccinating virus carriers with virion fusion complex components improves their neutralization titres. Reducing the infectivity of herpesvirus carriers in this way could be a useful adjunct to vaccinating naive individuals with attenuated mutants.
Collapse
Affiliation(s)
- P G Stevenson
- Division of Virology, Department of Pathology, University of Cambridge, UK
| | - J P Simas
- Instituto de Microbiologia e Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - S Efstathiou
- Division of Virology, Department of Pathology, University of Cambridge, UK
| |
Collapse
|
25
|
Milho R, Smith CM, Marques S, Alenquer M, May JS, Gillet L, Gaspar M, Efstathiou S, Simas JP, Stevenson PG. In vivo imaging of murid herpesvirus-4 infection. J Gen Virol 2009; 90:21-32. [PMID: 19088269 PMCID: PMC2885022 DOI: 10.1099/vir.0.006569-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 10/06/2008] [Indexed: 12/27/2022] Open
Abstract
Luciferase-based imaging allows a global view of microbial pathogenesis. We applied this technique to gammaherpesvirus infection by inserting a luciferase expression cassette into the genome of murine herpesvirus-4 (MuHV-4). The recombinant virus strongly expressed luciferase in lytically infected cells without significant attenuation. We used it to compare different routes of virus inoculation. After intranasal infection of anaesthetized mice, luciferase was expressed in the nose and lungs for 7-10 days and in lymphoid tissue, most consistently the superficial cervical lymph nodes, for up to 30 days. Gastrointestinal infection was not observed. Intraperitoneal infection was very different to intranasal, with strong luciferase expression in the liver, kidneys, intestines, reproductive tract and spleen, but none in the nose or lungs. The nose has not previously been identified as a site of MuHV-4 infection. After intranasal infection of non-anaesthetized mice, it was the only site of non-lymphoid luciferase expression. Nevertheless, lymphoid colonization and persistence were still established, even at low inoculation doses. In contrast, virus delivered orally was very poorly infectious. Inoculation route therefore had a major impact on pathogenesis. Low dose intranasal infection without anaesthesia seems most likely to mimic natural transmission, and may therefore be particularly informative about normal viral gene functions.
Collapse
Affiliation(s)
- Ricardo Milho
- Division of Virology, Department of Pathology, University of Cambridge, UK
| | | | - Sofia Marques
- Instituto de Microbiologia e Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Marta Alenquer
- Instituto de Microbiologia e Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Janet S. May
- Division of Virology, Department of Pathology, University of Cambridge, UK
| | - Laurent Gillet
- Division of Virology, Department of Pathology, University of Cambridge, UK
| | - Miguel Gaspar
- Division of Virology, Department of Pathology, University of Cambridge, UK
| | - Stacey Efstathiou
- Division of Virology, Department of Pathology, University of Cambridge, UK
| | - J. Pedro Simas
- Instituto de Microbiologia e Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | | |
Collapse
|
26
|
Marques S, Alenquer M, Stevenson PG, Simas JP. A single CD8+ T cell epitope sets the long-term latent load of a murid herpesvirus. PLoS Pathog 2008; 4:e1000177. [PMID: 18846211 PMCID: PMC2556087 DOI: 10.1371/journal.ppat.1000177] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 09/15/2008] [Indexed: 12/29/2022] Open
Abstract
The pathogenesis of persistent viral infections depends critically on long-term viral loads. Yet what determines these loads is largely unknown. Here, we show that a single CD8+ T cell epitope sets the long-term latent load of a lymphotropic gamma-herpesvirus, Murid herpesvirus-4 (MuHV-4). The MuHV-4 M2 latency gene contains an H2-Kd -restricted T cell epitope, and wild-type but not M2− MuHV-4 was limited to very low level persistence in H2d mice. Mutating the epitope anchor residues increased viral loads and re-introducing the epitope reduced them again. Like the Kaposi's sarcoma–associated herpesvirus K1, M2 shows a high frequency of non-synonymous mutations, suggesting that it has been selected for epitope loss. In vivo competition experiments demonstrated directly that epitope presentation has a major impact on viral fitness. Thus, host MHC class I and viral epitope expression interact to set the long-term virus load. Persistent viruses present a major challenge to the immune response. Gamma-herpesviruses are a prime example, and the archetypal family member, Epstein-Barr virus (EBV), has been studied for many years. A major unanswered question with EBV is why long-term virus loads—a key pathogenesis outcome—vary so widely between individuals. As most EBV studies are necessarily descriptive, the murid gamma-herpesvirus MuHV-4 provides an important focus of pathogenesis research. Here, we used MuHV-4 to address what determines long-term gamma-herpesvirus loads. We find a major role for a single MHC class I–restricted latency epitope. This reflects that latency-associated viral immune evasion and transcriptional silencing create a unique setting, in which the pool of possible epitopes is small enough for epitope loss to have a significant impact on viral fitness. Our data suggest that polymorphisms in viral latency genes and in host HLA class I together determine long-term viral loads.
Collapse
Affiliation(s)
- Sofia Marques
- Instituto de Microbiologia e Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Marta Alenquer
- Instituto de Microbiologia e Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Philip G. Stevenson
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - J. Pedro Simas
- Instituto de Microbiologia e Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
27
|
Primary clearance of murine gammaherpesvirus 68 by PKCtheta-/- CD8 T cells is compromised in the absence of help from CD4 T cells. J Virol 2008; 82:11970-5. [PMID: 18818318 DOI: 10.1128/jvi.01053-08] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD4 T cells are dispensable for acute control of murine gammaherpesvirus 68 (MHV-68) but are necessary for effective long-term control of the virus by CD8 T cells. In contrast, protein kinase C theta (PKCtheta) is not essential for either acute or long-term viral control. However, we found that while either CD4 or CD8 T cells could mediate the clearance of MHV-68 from the lungs of PKCtheta(+/+) mice, PKCtheta(-/-) mice depleted of either subset failed to clear the virus. These data suggest that there are two alternative pathways for MHV-68 clearance, one dependent on CD4 T cells and the other on PKCtheta. Protection mediated by the latter appears to be short-lived. These observations may help to explain the differential requirement for PKCtheta in various models of CD8 T-cell activation and differences in the costimulatory requirements for acute and long-term viral control.
Collapse
|
28
|
Kupresanin F, Chow J, Mount A, Smith CM, Stevenson PG, Belz GT. Dendritic cells present lytic antigens and maintain function throughout persistent gamma-herpesvirus infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 179:7506-13. [PMID: 18025195 DOI: 10.4049/jimmunol.179.11.7506] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The activation and maintenance of Ag-specific CD8(+) T cells is central to the long-term control of persistent infections. These killer T cells act to continuously scan and remove reservoirs of pathogen that have eluded the acute immune response. Acutely cleared viral infections depend almost exclusively on dendritic cells (DC) to present Ags to, and to activate, the CD8(+) T cell response. Paradoxically, persistent pathogens often infect professional APCs such as DC, in addition to infecting a broad range of nonprofessional APC, raising the possibility that many cell types could present viral Ags and activate T cells. We addressed whether in persistent viral infection with murine gammaherpesviruses, DC or non-DC, such as B cells and macrophages, were required to maintain the continued activation of Ag-specific CD8(+) T cells. We found that presentation of the surrogate Ag, OVA, expressed under a lytic promoter to CD8(+) T cells during persistent infection was largely restricted to DC, with little contribution from other lymphoid resident cells, such as B cells. This is despite the fact that B cells harbor a very large reservoir of latent virus. Our results support that, during persistent viral infection, continual presentation of lytic Ags by DC leads to T cell activation critical for maintaining CD8(+) T cells capable of limiting persistent viral infection.
Collapse
Affiliation(s)
- Fiona Kupresanin
- The Walter and Eliza Hall Institute of Medical, Melbourne, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
29
|
Rosa GT, Gillet L, Smith CM, de Lima BD, Stevenson PG. IgG fc receptors provide an alternative infection route for murine gamma-herpesvirus-68. PLoS One 2007; 2:e560. [PMID: 17593961 PMCID: PMC1891442 DOI: 10.1371/journal.pone.0000560] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 05/30/2007] [Indexed: 01/22/2023] Open
Abstract
Background Herpesviruses can be neutralized in vitro but remain infectious in immune hosts. One difference between these settings is the availability of immunoglobulin Fc receptors. The question therefore arises whether a herpesvirus exposed to apparently neutralizing antibody can still infect Fc receptor+ cells. Principal Findings Immune sera blocked murine gamma-herpesvirus-68 (MHV-68) infection of fibroblasts, but failed to block and even enhanced its infection of macrophages and dendritic cells. Viral glycoprotein-specific monoclonal antibodies also enhanced infection. MHV-68 appeared to be predominantly latent in macrophages regardless of whether Fc receptors were engaged, but the infection was not abortive and new virus production soon overwhelmed infected cultures. Lytically infected macrophages down-regulated MHC class I-restricted antigen presentation, endocytosis and their response to LPS. Conclusions IgG Fc receptors limit the neutralization of gamma-herpesviruses such as MHV-68.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/immunology
- Antigen Presentation
- Cells, Cultured
- Cytomegalovirus/genetics
- DNA, Viral/genetics
- Fibroblasts/immunology
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Flow Cytometry
- Fluorescent Antibody Technique
- Glycoproteins/immunology
- Green Fluorescent Proteins/metabolism
- Herpesviridae Infections/immunology
- Herpesviridae Infections/metabolism
- Herpesviridae Infections/pathology
- Immediate-Early Proteins/genetics
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Macrophages, Peritoneal/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Neutralization Tests
- Promoter Regions, Genetic/genetics
- Receptors, Fc/immunology
- Receptors, IgG/immunology
- Rhadinovirus/immunology
- Tumor Virus Infections/immunology
- Tumor Virus Infections/metabolism
- Tumor Virus Infections/pathology
- Virion/immunology
- Virus Replication
Collapse
Affiliation(s)
- Gustavo T. Rosa
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Laurent Gillet
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Christopher M. Smith
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Brigitte D. de Lima
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Philip G. Stevenson
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
30
|
Fuse S, Bellfy S, Yagita H, Usherwood EJ. CD8+ T cell dysfunction and increase in murine gammaherpesvirus latent viral burden in the absence of 4-1BB ligand. THE JOURNAL OF IMMUNOLOGY 2007; 178:5227-36. [PMID: 17404306 PMCID: PMC4402709 DOI: 10.4049/jimmunol.178.8.5227] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Studies of costimulatory receptors belonging to the TNFR family have revealed their diverse roles in affecting different stages of the T cell response. The 4-1BB ligand (4-1BBL)/4-1BB pathway has emerged as a receptor-ligand pair that impacts not the initial priming, but later phases of the T cell response, such as sustaining clonal expansion and survival, maintaining memory CD8(+) T cells, and supporting secondary expansion upon Ag challenge. Although the role of this costimulatory pathway in CD8(+) T cell responses to acute viral infections has been well-studied, its role in controlling chronic viral infections in vivo is not known to date. Using the murine gammaherpesvirus-68 (MHV-68) model, we show that 4-1BBL-deficient mice lack control of MHV-68 during latency and show significantly increased latent viral loads. In contrast to acute influenza infection, the numbers of MHV-68-specific memory CD8(+) T cells were maintained during latency. However, the virus-specific CD8(+) T cells showed defects in function, including decreased cytolytic function and impaired secondary expansion. Thus, 4-1BBL deficiency significantly affects the function, but not the number, of virus-specific CD8(+) T cells during gammaherpesvirus latency, and its absence results in an increased viral burden. Our study suggests that the 4-1BB costimulatory pathway plays an important role in controlling chronic viral infections.
Collapse
Affiliation(s)
- Shinichiro Fuse
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, NH 03756
| | - Sarah Bellfy
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, NH 03756
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Edward J. Usherwood
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, NH 03756
- Address correspondence and reprint requests to Dr. Edward J. Usherwood, Department of Microbiology and Immunology, Dartmouth Medical School, 1 Medical Center Drive, Lebanon, NH 03756.
| |
Collapse
|
31
|
Smith CM, Rosa GTL, May JS, Bennett NJ, Mount AM, Belz GT, Stevenson PG. CD4+ T cells specific for a model latency-associated antigen fail to control a gammaherpesvirusin vivo. Eur J Immunol 2006; 36:3186-97. [PMID: 17109468 DOI: 10.1002/eji.200636164] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CD4(+) T cells play a major role in containing herpesvirus infections. However, their cellular targets remain poorly defined. In vitro CD4(+) T cells have been reported to kill B cells that harbor a latent gammaherpesvirus. We used the B cell-tropic murine gammaherpesvirus-68 (MHV-68) to test whether this also occurred in vivo. MHV-68 that expressed cytoplasmic ovalbumin (OVA) in tandem with its episome maintenance protein, ORF73, stimulated CD8(+) T cells specific for the H2-K(b)-restricted OVA epitope SIINFEKL and was rapidly eliminated from C57BL/6 (H2(b)) mice. However, the same virus failed to stimulate CD4(+) T cells specific for the I-A(d)/I-A(b)-restricted OVA(323-339) epitope. We overcame any barrier to the MHC class II-restricted presentation of an endogenous epitope by substituting OVA(323-339) for the CLIP peptide of the invariant chain (ORF73-IRES-Ii-OVA), again expressed in tandem with ORF73. This virus presented OVA(323-339) but showed little or no latency deficit in either BALB/c (H2(d)) or C57BL/6 mice. Latent antigen-specific CD4(+) T cells therefore either failed to recognize key virus-infected cell populations in vivo or lacked the effector functions required to control them.
Collapse
Affiliation(s)
- Christopher M Smith
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | |
Collapse
|
32
|
Fuse S, Obar JJ, Bellfy S, Leung EK, Zhang W, Usherwood EJ. CD80 and CD86 control antiviral CD8+ T-cell function and immune surveillance of murine gammaherpesvirus 68. J Virol 2006; 80:9159-70. [PMID: 16940527 PMCID: PMC1563936 DOI: 10.1128/jvi.00422-06] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Accepted: 06/27/2006] [Indexed: 11/20/2022] Open
Abstract
The interactions between CD80 and CD86 on antigen-presenting cells and CD28 on T cells serve as an important costimulatory signal in the activation of T cells. Although the simplistic two-signal hypothesis has been challenged in recent years by the identification of different costimulators, this classical pathway has been shown to significantly impact antiviral humoral and cellular immune responses. How the CD80/CD86-CD28 pathway affects the control of chronic or latent infections has been less well characterized. In this study, we investigated its role in antiviral immune responses against murine gammaherpesvirus 68 (MHV-68) and immune surveillance using CD80/CD86(-/-) mice. In the absence of CD80/CD86, primary antiviral CD8(+) T-cell responses and the induction of neutralizing antibodies were severely impaired. During long-term immune surveillance, the virus-specific CD8(+) T cells were impaired in IFN-gamma production and secondary expansion and exhibited an altered phenotype. Surprisingly, a low level of viral reactivation in the lung was observed, and this effect was independent of CD28 and CTLA-4. Thus, CD80 and CD86, signaling through CD28 and possibly another unidentified receptor, are required for optimal immune surveillance and antiviral immune responses to murine gammaherpesvirus.
Collapse
Affiliation(s)
- Shinichiro Fuse
- Department of Microbiology and Immunology, Dartmouth Medical School, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | | | | | | | | | | |
Collapse
|
33
|
Tibbetts SA, Suarez F, Steed AL, Simmons JA, Virgin HW. A gamma-herpesvirus deficient in replication establishes chronic infection in vivo and is impervious to restriction by adaptive immune cells. Virology 2006; 353:210-9. [PMID: 16797052 DOI: 10.1016/j.virol.2006.05.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 05/04/2006] [Accepted: 05/16/2006] [Indexed: 02/08/2023]
Abstract
Chronic gamma-herpesvirus infection is a dynamic process involving latent infection, reactivation from latency, and low level persistent replication. The gamma-herpesviruses maintain latent infection in restricted subsets of hematopoietic cells as a result of an intricate balance between host factors that suppress infection and viral factors that facilitate evasion of the immune response. Immune effectors limit reactivation and subsequent replication events, and the adaptive immune response ultimately restricts infection to a level compatible with life-long infection. However, it has not been possible to determine whether the immune system constrains chronic infection by directly targeting latently infected cells in vivo due to the complex nature of chronic infection. To begin to address this issue, we generated a murine gamma-herpesvirus 68 (gammaHV68) deficient in its ability to replicate or undergo reactivation from latency via a mutation in the single-stranded DNA binding protein encoded by ORF6. Even in the absence of lytic replication, this virus established long-term infection in peritoneal cells of wild-type mice at levels identical to that of wild-type gammaHV68, and generated an immune response that was sufficient to protect against secondary challenge with wild-type gammaHV68. Nevertheless, the number of latently infected cells was not significantly altered in mice deficient in T cells or both T cells and B cells, demonstrating that the adaptive immune system is incapable of altering infection with a virus lacking the capacity for lytic replication and reactivation from latency. Thus, these data support the conclusion that latency is immunologically silent.
Collapse
Affiliation(s)
- Scott A Tibbetts
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid, Box 8118, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
34
|
Abstract
CD4(+) T cells co-ordinate adaptive immunity and are required for immunological memory establishment and maintenance. They are thought to primarily recognize extracellular antigens, which are endocytosed, processed by lysosomal proteases and then presented on major histocompatibility complex (MHC) class II. However, recent studies have demonstrated that viral, tumour and autoantigens can gain access to this antigen presentation pathway from within cells by autophagy. This review will discuss the autophagic pathways that contribute to endogenous MHC class II antigen processing. Furthermore, potential characteristics of autophagy substrates, qualifying them to access these pathways, and regulation of autophagy will be considered. Finally, I will suggest how antigen presentation after autophagy might contribute to immune surveillance of infected and transformed cells.
Collapse
Affiliation(s)
- Christian Münz
- Laboratory of Viral Immunobiology and Christopher H. Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, NY 10021, USA.
| |
Collapse
|
35
|
Braaten DC, McClellan JS, Messaoudi I, Tibbetts SA, McClellan KB, Nikolich-Zugich J, Virgin HW. Effective control of chronic gamma-herpesvirus infection by unconventional MHC Class Ia-independent CD8 T cells. PLoS Pathog 2006; 2:e37. [PMID: 16733540 PMCID: PMC1464388 DOI: 10.1371/journal.ppat.0020037] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 03/23/2006] [Indexed: 01/25/2023] Open
Abstract
Control of virus infection is mediated in part by major histocompatibility complex (MHC) Class Ia presentation of viral peptides to conventional CD8 T cells. Although important, the absolute requirement for MHC Class Ia–dependent CD8 T cells for control of chronic virus infection has not been formally demonstrated. We show here that mice lacking MHC Class Ia molecules (Kb−/−xDb−/− mice) effectively control chronic γ-herpesvirus 68 (γHV68) infection via a robust expansion of β2-microglobulin (β2-m)-dependent, but CD1d-independent, unconventional CD8 T cells. These unconventional CD8 T cells expressed: (1) CD8αβ and CD3, (2) cell surface molecules associated with conventional effector/memory CD8 T cells, (3) TCRαβ with a significant Vβ4, Vβ3, and Vβ10 bias, and (4) the key effector cytokine interferon-γ (IFNγ). Unconventional CD8 T cells utilized a diverse TCR repertoire, and CDR3 analysis suggests that some of that repertoire may be utilized even in the presence of conventional CD8 T cells. This is the first demonstration to our knowledge that β2-m–dependent, but Class Ia–independent, unconventional CD8 T cells can efficiently control chronic virus infection, implicating a role for β2-n–dependent non-classical MHC molecules in control of chronic viral infection. We speculate that similar unconventional CD8 T cells may be able to control of other chronic viral infections, especially when viruses evade immunity by inhibiting generation of Class Ia–restricted T cells. In this paper the authors identify a β2-microglobulin–dependent but major histocompatibility complex (MHC) Class Ia– and CD1-independent class of CD8 T cells that effectively control chronic γ-herpesvirus infection in mice. The important point that should be of general interest to the readers of PLoS Pathogens is that an effective CD8 T cell response develops during chronic infection of mice lacking MHC Class Ia molecules. Enormous efforts have gone into characterizing the role of conventional CD8 T cells that recognize viral peptides together with MHC Class Ia molecules during chronic viral infection, and many vaccine approaches focus solely on this response. This paper shows that additional types of CD8 T cells can operate during chronic infection, and that indeed, conventional MHC Class Ia–restricted T cells may be dispensable for control of chronic herpesvirus infection. The authors believe this is a fundamentally important point because it raises the question of whether unconventional CD8 T cells are important for control of other chronic viral infections such as infection with HIV, Hepatitis C virus, Hepatitis B virus, or human herpesviruses.
Collapse
Affiliation(s)
- Douglas C Braaten
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - James Scott McClellan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ilhem Messaoudi
- Department of Microbiology and Immunology, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Scott A Tibbetts
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kelly B McClellan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Janko Nikolich-Zugich
- Department of Microbiology and Immunology, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
Schmid D, Münz C. Immune surveillance of intracellular pathogens via autophagy. Cell Death Differ 2006; 12 Suppl 2:1519-27. [PMID: 16247499 DOI: 10.1038/sj.cdd.4401727] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MHC class II molecules are thought to present peptides derived from extracellular proteins to CD4+ T cells, which are important mediators of adaptive immunity to infections. In contrast, autophagy delivers constitutively cytosolic material for lysosomal degradation and has so far been recognized as an efficient mechanism of innate immunity against bacteria and viruses. Recent studies, however, link these two pathways and suggest that intracellular cytosolic and nuclear antigens are processed for MHC class II presentation after autophagy.
Collapse
Affiliation(s)
- D Schmid
- Laboratory of Viral Immunobiology, The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
37
|
Schmid D, Dengjel J, Schoor O, Stevanovic S, Münz C. Autophagy in innate and adaptive immunity against intracellular pathogens. J Mol Med (Berl) 2006; 84:194-202. [PMID: 16501849 DOI: 10.1007/s00109-005-0014-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Accepted: 09/19/2005] [Indexed: 12/19/2022]
Abstract
Autophagy delivers cytoplasmic constituents for lysosomal degradation. Recent studies have demonstrated that this pathway mediates resistance to pathogens and is targeted for immune evasion by viruses and bacteria. Lysosomal degradation products, including pathogenic determinants, are then surveyed by the adaptive immune system to elicit antigen-specific T cell responses. CD4(+) T helper cells have been shown to recognize nuclear and cytosolic antigens via presentation by major histocompatibility complex (MHC) class II molecules after autophagy. Furthermore, some sources of natural MHC class II ligands display characteristics of autophagy substrates, and autophagosomes fuse with late endosomes, in which MHC class II loading is thought to occur. Although MHC class II antigen processing via autophagy has so far mainly been described for professional antigen-presenting cells like B cells, macrophages, and dendritic cells, it might be even more important for cells with less endocytic potential, like epithelial cells, when these express MHC class II at sites of inflammation. Therefore, autophagy might contribute to immune surveillance of intracellular pathogens via MHC class II presentation of intracellular pathogen-derived peptides.
Collapse
Affiliation(s)
- Dorothee Schmid
- Laboratory of Viral Immunobiology, and Christopher H. Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
38
|
Abstract
The murine gamma-herpesvirus-68 (MHV-68) is a relative of the Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) that infects mice. All these gamma-herpesviruses are subject to immune control, but limit the impact of this control through immune evasion. Molecular evasion mechanisms have been described in abundance. However, we can only speculate what EBV and KSHV immune evasion contributes to the viral lifecycle. With MHV-68, we can analyze in vivo the contribution of immunological and virological gene expression to pathogenesis. While the physiology of infection seems quite well conserved between these viruses, the pathologies associated with immune suppression are obviously very different. MHV-68 is therefore more suited to uncovering the basic biology of gamma-herpesvirus infection than to testing disease interventions. Nevertheless, it may make some useful predictions about effective strategies of vaccination and infection control. This review aims to outline our current state of knowledge and to highlight some limitations of the MHV-68 model as it stands, in the hope of stimulating constructive progress.
Collapse
Affiliation(s)
- Philip G Stevenson
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | | |
Collapse
|
39
|
Tarakanova VL, Suarez F, Tibbetts SA, Jacoby MA, Weck KE, Hess JL, Speck SH, Virgin HW. Murine gammaherpesvirus 68 infection is associated with lymphoproliferative disease and lymphoma in BALB beta2 microglobulin-deficient mice. J Virol 2005; 79:14668-79. [PMID: 16282467 PMCID: PMC1287585 DOI: 10.1128/jvi.79.23.14668-14679.2005] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Accepted: 09/12/2005] [Indexed: 11/20/2022] Open
Abstract
Human gammaherpesvirus infections are associated with development of lymphoproliferative disease. Understanding of the mechanisms of gammaherpesvirus lymphomagenesis during chronic infection in a natural host has been limited by the exquisite species specificity of human gammaherpesviruses and the expense of primates. Murine gammaherpesvirus gammaHV68 is genetically and biologically related to human gammaherpesviruses and herpesvirus saimiri and has been reported to be associated with lymphoproliferative disease in mice (N. P. Sunil-Chandra, J. Arno, J. Fazakerley, and A. A. Nash, Am. J. Pathol. 145:818-826, 1994). We report the development of an animal model of gammaHV68 lymphomagenesis in BALB/c beta2 microglobulin-deficient mice (BALB beta2m-/-). GammaHV68 infection induced two lymphoproliferative lesions: B-cell lymphoma and atypical lymphoid hyperplasia (ALH). ALH lesion histology resembled lesions of Epstein-Barr virus-associated posttransplant lymphoproliferative disease and was characterized by the abnormal infiltration of the white pulp with cells expressing the plasma cell marker CD138. Lymphomas observed in gammaHV68-infected animals were B220+/CD3- large-cell lymphomas. GammaHV68-infected cells were common in ALH lesions as measured by in situ hybridization with a probe specific for viral tRNAs (vtRNAs), but they were scarce in gammaHV68-infected spleens with normal histology. Unlike ALH lesions, gammaHV68 vtRNA-positive cells were rare in lymphomas. GammaHV68 infection of BALB beta2m-/- mice results in lymphoproliferation and lymphoma, providing a valuable tool for identifying viral and host genes involved in gammaherpesvirus-associated malignancies. Our findings suggest that gammaHV68 induces lymphomas via hit-and-run oncogenesis, paracrine effects, or stimulation of chronic inflammation.
Collapse
Affiliation(s)
- Vera L Tarakanova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Chen G, Tai AK, Lin M, Chang F, Terhorst C, Huber BT. Signaling Lymphocyte Activation Molecule-Associated Protein Is a Negative Regulator of the CD8 T Cell Response in Mice. THE JOURNAL OF IMMUNOLOGY 2005; 175:2212-8. [PMID: 16081788 DOI: 10.4049/jimmunol.175.4.2212] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The primary manifestation of X-linked lymphoproliferative syndrome, caused by a dysfunctional adapter protein, signaling lymphocyte activation molecule-associated protein (SAP), is an excessive T cell response upon EBV infection. Using the SAP-/- mouse as a model system for the human disease, we compared the response of CD8+ T cells from wild-type (wt) and mutant mice to various stimuli. First, we observed that CD8+ T cells from SAP-/- mice proliferate more vigorously than those from wt mice upon CD3/CD28 cross-linking in vitro. Second, we analyzed the consequence of SAP deficiency on CTL effector function and homeostasis. For this purpose, SAP-/- and wt mice were infected with the murine gamma-herpesvirus 68 (MHV-68). At 2 wk postinfection, the level of viral-specific CTL was much higher in mutant than in wt mice, measured both ex vivo and in vivo. In addition, we established that throughout 45 days of MHV-68 infection the frequency of virus-specific CD8+ T cells producing IFN-gamma was significantly higher in SAP-/- mice. Consequently, the level of latent infection by MHV-68 was considerably lower in SAP-/- mice, which indicates that SAP-/- CTL control this infection more efficiently than wt CTL. Finally, we found that the Vbeta4-specific CD8+ T cell expansion triggered by MHV-68 infection is also enhanced and prolonged in SAP-/- mice. Taken together, our data indicate that SAP functions as a negative regulator of CD8+ T cell activation.
Collapse
MESH Headings
- Animals
- Antigens, CD
- BALB 3T3 Cells
- CD28 Antigens/immunology
- CD28 Antigens/metabolism
- CD3 Complex/immunology
- CD3 Complex/metabolism
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/virology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Line, Tumor
- Cell Proliferation
- Cross-Linking Reagents/metabolism
- Cytotoxicity, Immunologic/genetics
- Down-Regulation/immunology
- Epitopes, T-Lymphocyte/immunology
- Gammaherpesvirinae/immunology
- Glycoproteins/metabolism
- Herpesviridae Infections/genetics
- Herpesviridae Infections/immunology
- Immunoglobulins/metabolism
- Intracellular Signaling Peptides and Proteins/deficiency
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/physiology
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Lymphocyte Count
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Cell Surface
- Signal Transduction/immunology
- Signaling Lymphocytic Activation Molecule Associated Protein
- Signaling Lymphocytic Activation Molecule Family Member 1
- Spleen/cytology
- Spleen/immunology
- Spleen/virology
- Virus Latency/immunology
Collapse
Affiliation(s)
- Gang Chen
- Department of Pathology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | | | |
Collapse
|
41
|
Häusler M, Sellhaus B, Scheithauer S, Engler M, Alberg E, Teubner A, Ritter K, Kleines M. Murine gammaherpesvirus-68 infection of mice: A new model for human cerebral Epstein-Barr virus infection. Ann Neurol 2005; 57:600-3. [PMID: 15786475 DOI: 10.1002/ana.20440] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epstein-Barr virus infection may cause severe neurological complications that are not mirrored by animal models. Here, we show that nasal inoculation of newborn BALB/c wild-type mice with MHV-68, a murine gammaherpesvirus, causes cerebral infection with inflammation in 50% of the animals. The inflammatory patterns are strikingly similar to those known from Epstein-Barr virus, including hydrocephalus, meningitis, cerebellitis, focal or diffuse encephalitis, and temporal lobe encephalitis. This offers a new powerful tool to study the virological and immunological characteristics of cerebral gammaherpesvirus infections.
Collapse
Affiliation(s)
- Martin Häusler
- Department of Pediatrics, University Hospital RWTH Aachen, Aachen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Persistent viruses, such as herpesviruses, transmit infection by evading cytotoxic T cells during lytic replication. The gamma-herpesviruses additionally evade T cells during the proliferation of latently infected lymphocytes to establish a persistent viral reservoir. Lytic gene expression in sites of lymphoproliferation appears to make a vital contribution to this latent immune evasion. Lytic antigens may therefore be a key immune target. Investigations into a murine gamma-herpesvirus have now provided evidence that vaccination with apathogenic, latency-deficient mutants can largely protect against subsequent wild-type gamma-herpesvirus latency establishment.
Collapse
Affiliation(s)
- Philip G Stevenson
- University of Cambridge, Division of Virology, Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, UK.
| |
Collapse
|
43
|
Bennett NJ, May JS, Stevenson PG. Gamma-herpesvirus latency requires T cell evasion during episome maintenance. PLoS Biol 2005; 3:e120. [PMID: 15769185 PMCID: PMC1065266 DOI: 10.1371/journal.pbio.0030120] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Accepted: 02/01/2005] [Indexed: 01/28/2023] Open
Abstract
The gamma-herpesviruses persist as latent episomes in a dynamic lymphocyte pool. Their consequent need to express a viral episome maintenance protein presents a potential immune target. The glycine-alanine repeat of the Epstein-Barr virus episome maintenance protein, EBNA-1, limits EBNA-1 epitope presentation to CD8(+) T lymphocytes (CTLs). However, CTL recognition occurs in vitro, so the significance of such evasion for viral fitness is unclear. We used the murine gamma-herpesvirus-68 (MHV-68) to define the in vivo contribution of cis-acting CTL evasion to host colonisation. Although the ORF73 episome maintenance protein of MHV-68 lacks a glycine-alanine repeat, it was equivalent to EBNA-1 in conferring limited presentation on linked epitopes. This was associated with reduced protein synthesis and reduced protein degradation. We bypassed the cis-acting evasion of ORF73 by using an internal ribosome entry site to express in trans-a CTL target from the same mRNA. This led to a severe, MHC class I-restricted and CTL-dependent reduction in viral latency. Thus, despite MHV-68 encoding at least two trans-acting CTL evasion proteins, cis-acting evasion during episome maintenance was essential for normal host colonisation.
Collapse
Affiliation(s)
- Neil J Bennett
- 1Division of Virology, Department of PathologyUniversity of CambridgeUnited Kingdom
| | - Janet S May
- 1Division of Virology, Department of PathologyUniversity of CambridgeUnited Kingdom
| | - Philip G Stevenson
- 1Division of Virology, Department of PathologyUniversity of CambridgeUnited Kingdom
| |
Collapse
|
44
|
Haque A, Rachinel N, Quddus MR, Haque S, Kasper LH, Usherwood E. Co-infection of malaria and gamma-herpesvirus: exacerbated lung inflammation or cross-protection depends on the stage of viral infection. Clin Exp Immunol 2004; 138:396-404. [PMID: 15544614 PMCID: PMC1809251 DOI: 10.1111/j.1365-2249.2004.02652.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2004] [Indexed: 11/27/2022] Open
Abstract
In order to study the interaction between a gamma-herpesvirus and malaria we established a co-infection model that involves infection of mice with murine gamma-herpesvirus (MHV-68) and Plasmodium yoelii non-lethal strain (PYNL). To investigate the interaction between acute malaria and the lytic stage of MHV-68, the timing of infections was chosen such that the peak virus and parasite burdens would be present at the same time. Under this condition, we observed significant mortality in co-infected mice and aggressive lung inflammation with a marked influx of neutrophils and megakaryocytes. If mice were latently infected with MHV-68 and then co-infected with malaria we noticed significantly less viral load and parasitaemia. Using MHC/peptide tetramer staining we found that acute malaria reduces the anti-MHV-68 CD8+ T cell response in the animals that develop severe disease. Our study provides important fundamental information, which will be of use when devising strategies to combat infections with more than one agent, a situation that often occurs naturally.
Collapse
Affiliation(s)
- A Haque
- Department of Microbiology and Immunology, Dartmouth Medical School, New Hampshire 03756, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Loh J, Thomas DA, Revell PA, Ley TJ, Virgin HW. Granzymes and caspase 3 play important roles in control of gammaherpesvirus latency. J Virol 2004; 78:12519-28. [PMID: 15507639 PMCID: PMC525076 DOI: 10.1128/jvi.78.22.12519-12528.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Gammaherpesviruses can establish lifelong latent infections in lymphoid cells of their hosts despite active antiviral immunity. Identification of the immune mechanisms which regulate gammaherpesvirus latent infection is therefore essential for understanding how gammaherpesviruses persist for the lifetime of their host. Recently, an individual with chronic active Epstein-Barr virus infection was found to have mutations in perforin, and studies using murine gammaherpesvirus 68 (gammaHV68) as a small-animal model for gammaherpesvirus infection have similarly revealed a critical role for perforin in regulating latent infection. These results suggest involvement of the perforin/granzyme granule exocytosis pathway in immune regulation of gammaherpesvirus latent infection. In this study, we examined gammaHV68 infection of knockout mice to identify specific molecules within the perforin/granzyme pathway which are essential for regulating gammaherpesvirus latent infection. We show that granzymes A and B and the granzyme B substrate, caspase 3, are important for regulating gammaHV68 latent infection. Interestingly, we show for the first time that orphan granzymes encoded in the granzyme B gene cluster are also critical for regulating viral infection. The requirement for specific granzymes differs for early versus late forms of latent infection. These data indicate that different granzymes play important and distinct roles in regulating latent gammaherpesvirus infection.
Collapse
Affiliation(s)
- Joy Loh
- Dept. of Pathology & Immunology, Washington University School of Medicine, 660 S. Euclid, Box 8118, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
46
|
Obar JJ, Donovan DC, Crist SG, Silvia O, Stewart JP, Usherwood EJ. T-cell responses to the M3 immune evasion protein of murid gammaherpesvirus 68 are partially protective and induced with lytic antigen kinetics. J Virol 2004; 78:10829-32. [PMID: 15367651 PMCID: PMC516430 DOI: 10.1128/jvi.78.19.10829-10832.2004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Accepted: 06/24/2004] [Indexed: 11/20/2022] Open
Abstract
DNA vaccination with the M3 gene, encoding an immune evasion molecule expressed during both the acute lytic and persistent phases of murid gammaherpesvirus 68 infection, yielded a significantly lower titer of virus in the lung than controls. The protection seen was dependent on T cells, and we mapped an epitope recognized by CD8 T cells. The immune response to this epitope follows the same kinetics as lytic cycle antigens, despite the fact that this gene is expressed in both lytic and persistent stages of infection. This has important implications for our understanding of T-cell responses to putative latency-associated gammaherpesvirus proteins and how vaccination may improve control of these viruses.
Collapse
Affiliation(s)
- Joshua J Obar
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, NH, USA
| | | | | | | | | | | |
Collapse
|
47
|
Fowler P, Efstathiou S. Vaccine potential of a murine gammaherpesvirus-68 mutant deficient for ORF73. J Gen Virol 2004; 85:609-613. [PMID: 14993644 DOI: 10.1099/vir.0.19760-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A murine gammaherpesvirus (MHV-68) containing a deletion of the putative plasmid maintenance protein ORF73 exhibits a severe latency deficit. In this study the ability of an ORF73 deletion mutant (Delta73) to confer in vivo protection against subsequent challenge with wild-type virus has been examined. Vaccination studies have shown that Delta73 vaccination reduced latent infection of wild-type challenge virus to a level below the limit of detection. These results indicate that a live-attenuated gammaherpesvirus that cannot persist is an effective vaccine.
Collapse
Affiliation(s)
- Polly Fowler
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Stacey Efstathiou
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
48
|
Sarawar SR, Lee BJ, Giannoni F. Cytokines and Costimulatory Molecules in the Immune Response to Murine Gammaherpesvirus-68. Viral Immunol 2004; 17:3-11. [PMID: 15018658 DOI: 10.1089/088282404322875412] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Murine gammaherpesvirus 68 (MHV-68) infection of mice provides a useful small animal model for studying gammaherpesvirus pathogenesis and immunity. Recent work has elucidated the cytokine and chemokine profiles during MHV-68 infection and has identified some of the costimulatory interactions that are important for an effective immune response to this virus. Several themes emerge from this work. There is a differential requirement for certain cytokines and costimulatory molecules in the acute and long-term control of MHV-68, and for control of the virus in different anatomical sites. CD4 T cell help is not required for short-term control of MHV-68 in the lung by cytotoxic CD8 T cells, but is essential for effective long-term control. Stimulation via CD40 is an important component of this CD4 T cell help, and interestingly, some of its effects appear to be independent of CD28. MHV-68 infection also increases the expression of several chemokines, which could potentially play important roles in leukocyte trafficking to sites of infection. However, to counter this response, MHV-68 has evolved strategies that enable it to evade or subvert the host chemokine system. Studying the role of cytokines and costimulatory molecules in immunity to MHV-68 may provide useful insights for the development of agents to control gammaherpesviruses that cause human disease.
Collapse
Affiliation(s)
- Sally R Sarawar
- Torrey Pines Institute for Molecular Studies, San Diego, California, USA.
| | | | | |
Collapse
|
49
|
Boname JM, Coleman HM, May JS, Stevenson PG. Protection against wild-type murine gammaherpesvirus-68 latency by a latency-deficient mutant. J Gen Virol 2004; 85:131-135. [PMID: 14718627 DOI: 10.1099/vir.0.19592-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A murine gammaherpesvirus-68 (MHV-68) mutant with deregulated transcription of its ORF50 transactivator was severely impaired in latency establishment. The deregulated virus showed reduced immunogenicity, probably reflecting a lower antigen load. However, it still elicited effective immunity to a subsequent wild-type (WT) virus challenge. Infection was not completely prevented, but was very substantially reduced in extent and the long-term level of WT viral DNA in lungs and spleens remained low. Thus latency-deficient MHV-68 illustrates a possible general approach to creating attenuated gammaherpesvirus vaccines that can protect against pathogenic WT infections.
Collapse
Affiliation(s)
- Jessica M Boname
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Heather M Coleman
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Janet S May
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Philip G Stevenson
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
50
|
Andreansky S, Liu H, Adler H, Koszinowski UH, Efstathiou S, Doherty PC. The limits of protection by "memory" T cells in Ig-/- mice persistently infected with a gamma-herpesvirus. Proc Natl Acad Sci U S A 2004; 101:2017-22. [PMID: 14764895 PMCID: PMC357044 DOI: 10.1073/pnas.0307320101] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Can CD4(+) and CD8(+) "memory" T cells that are generated and maintained in the context of low-level virus persistence protect, in the absence of antibody, against a repeat challenge with the same pathogen? Although immune T cells exert effective, long-term control of a persistent gamma-herpesvirus (gammaHV68) in Ig(-/-) microMT mice, subsequent exposure to a high dose of the same virus leads to further low-level replication in the lung. This lytic phase in the respiratory tract is dealt with effectively by the recall of memory T cells induced by a gammaHV68 recombinant (M3LacZ) that does not express the viral M3 chemokine binding protein. At least for the CD8(+) response, greater numbers of memory T cells confer enhanced protection in the M3LacZ-immune mice. However, neither WT gammaHV68 nor the minimally persistent M3LacZ primes the T cell response to the extent that a WT gammaHV68 challenge fails to establish latency in the microMT mice. Memory CD4(+) and CD8(+) T cells thus act together to limit gammaHV68 infection but are unable to provide absolute protection against a high-dose, homologous challenge.
Collapse
Affiliation(s)
- Samita Andreansky
- Department of Immunology, St. Jude Children's Research Hospital, 332 North Lauderdale, Memphis, TN 38105, USA
| | | | | | | | | | | |
Collapse
|