1
|
Kebede M, Guadie D, Kidanemariam D, Abraham A. Serological, biological and molecular characterization of viruses causing mosaic diseases on cabbage ( Brassica sp L.) in Central Ethiopia. Virusdisease 2023; 34:213-220. [PMID: 37408550 PMCID: PMC10317906 DOI: 10.1007/s13337-023-00816-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/19/2023] [Indexed: 07/07/2023] Open
Abstract
The productivity of cabbage (Brassica oleracea var. capitata) in Ethiopia has been generally low due to several biotic and abiotic constraints among which are several viral diseases. There is a recent report indicating that this economically important vegetable is seriously affected in Ethiopia by cauliflower mosaic virus (CaMV) and turnip mosaic virus (TuMV). However, little information exists on the incidence and distribution of these viruses as the previous report is based on samples only from Addis Ababa. In this study, a total of 370 leaf samples were collected from 75 cabbage growing fields in Central Ethiopia in two rounds of survey. Two cabbage varieties locally known as "Habesha gomen" and "Tikur gomen" with virus-like symptoms were collected and tested with Double Antibody Sandwich Enzyme-Linked Immunosorbent Assay (DAS-ELISA) using polyclonal antibodies specific to CaMV and TuMV. Results from serological diagnosis were confirmed with PCR and Sanger sequencing. The results indicated a high incidence and wide distribution of both viruses in Central Ethiopia with an average of 29.5% infection for CaMV and 40% for TuMV. Biological inoculation tests for CaMV or TuMV or both on healthy cabbage seedlings gave similar symptoms as those observed in the field. Symptom severity was higher with co-infection of CaMV and TuMV followed by TuMV single infection. BLAST analysis showed that TuMV and CaMV isolates from Ethiopia have nucleotide identity of 95-98% and 93-98%, respectively to previously reported isolates. Phylogenetic analysis revealed that CaMV isolates from Ethiopia are closely related to isolates from USA and Italy within Group II clade whereas TuMV isolates have close similarities with isolates from World B clade including isolates from Kenya, UK, Japan and the Netherlands. The identification of the causative agents of the mosaic disease observed on cabbage in Central Ethiopia may lay the foundation for future management studies.
Collapse
Affiliation(s)
- Muluken Kebede
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, P.O box 16417, Addis Ababa, Ethiopia
| | - Demsachew Guadie
- Institute of Biotechnology, Addis Ababa University, P.O.Box 1176, Addis Ababa, Ethiopia
| | - Dawit Kidanemariam
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Adane Abraham
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, P.O box 16417, Addis Ababa, Ethiopia
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana
| |
Collapse
|
2
|
Wang L, Zhu J, Wang Q, Ji X, Wang W, Huang W, Rui C, Cui L. Hormesis effects of sulfoxaflor on Aphis gossypii feeding, growth, reproduction behaviour and the related mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162240. [PMID: 36796701 DOI: 10.1016/j.scitotenv.2023.162240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Sulfoxaflor, an important alternative insecticide in integrated pest management (IPM) strategies, can effectively control sap-feeding insect pests such as Aphis gossypii. Although the side effects of sulfoxaflor have recently attracted widespread attention, its toxicological characteristics and mechanisms are still largely undefined. Therefore, the biological characteristics, life table and feeding behaviour of A. gossypii were studied to evaluate the hormesis effect of sulfoxaflor. Then, the potential mechanisms of induced fecundity associated with the vitellogenin (Ag. Vg) and vitellogenin receptor (Ag. VgR) genes were investigated. Although the LC10 and LC30 concentrations of sulfoxaflor significantly reduced the fecundity and net reproduction rate (R0) of the directly exposed sulfoxaflor-resistant and susceptible aphids, hormesis effects on fecundity and R0 were observed in the F1 generation of Sus A. gossypii when the parental generation was exposed to the LC10 of sulfoxaflor. Moreover, the hormesis effects of sulfoxaflor on phloem feeding were observed in both A. gossypii strains. Additionally, enhanced expression levels and protein content of Ag. Vg and Ag. VgR were observed in progeny generations when F0 was subjected to the trans- and multigenerational sublethal sulfoxaflor exposure. Therefore, sulfoxaflor-induced resurgence might occur in A. gossypii after exposure to sublethal concentrations. Our study could contribute to a comprehensive risk assessment and provide convincing reference to optimize sulfoxaflor in IPM strategies.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Junshu Zhu
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qinqin Wang
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xuejiao Ji
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Wenjie Wang
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Weiling Huang
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Changhui Rui
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Li Cui
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
3
|
Pouresmaeil M, Dall'Ara M, Salvato M, Turri V, Ratti C. Cauliflower mosaic virus: Virus-host interactions and its uses in biotechnology and medicine. Virology 2023; 580:112-119. [PMID: 36812696 DOI: 10.1016/j.virol.2023.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Cauliflower mosaic virus (CaMV) was the first discovered plant virus with genomic DNA that uses reverse transcriptase for replication. The CaMV 35S promoter is a constitutive promoter and thus, an attractive driver of gene expression in plant biotechnology. It is used in most transgenic crops to activate foreign genes which have been artificially inserted into the host plant. In the last century, producing food for the world's population while preserving the environment and human health is the main topic of agriculture. The damage caused by viral diseases has a significant negative economic impact on agriculture, and disease control is based on two strategies: immunization and prevention to contain virus spread, so correct identification of plant viruses is important for disease management. Here, we discuss CaMV from different aspects: taxonomy, structure and genome, host plants and symptoms, transmission and pathogenicity, prevention, control and application in biotechnology as well as in medicine. Also, we calculated the CAI index for three ORFs IV, V, and VI of the CaMV virus in host plants, the results of which can be used in the discussion of gene transfer or antibody production to identify the CaMV.
Collapse
Affiliation(s)
- Mahin Pouresmaeil
- Department of Biotechnology, Faculty of Agriculture, Azarbijan Shahid Madani University, Tabriz, Iran.
| | - Mattia Dall'Ara
- Department of Agricultural and Food Sciences, School of Agriculture and Veterinary Medicine, University of Bologna, 40127, Bologna, Italy
| | - Maria Salvato
- University of Maryland, Department of Veterinary Medicine, College Park, MD, 20742, USA
| | - Valentina Turri
- Healthcare Direction, Istituto Scientifico Romagnolo per Lo Studio e La Cura Dei Tumori, IRCCS, 47014, Meldola, FC, Italy
| | - Claudio Ratti
- Department of Agricultural and Food Sciences, School of Agriculture and Veterinary Medicine, University of Bologna, 40127, Bologna, Italy
| |
Collapse
|
4
|
Verdier M, Chesnais Q, Pirolles E, Blanc S, Drucker M. The cauliflower mosaic virus transmission helper protein P2 modifies directly the probing behavior of the aphid vector Myzus persicae to facilitate transmission. PLoS Pathog 2023; 19:e1011161. [PMID: 36745680 PMCID: PMC9934384 DOI: 10.1371/journal.ppat.1011161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/16/2023] [Accepted: 01/27/2023] [Indexed: 02/07/2023] Open
Abstract
There is growing evidence that plant viruses manipulate their hosts and vectors in ways that increase transmission. However, to date only few viral components underlying these phenomena have been identified. Here we show that cauliflower mosaic virus (CaMV) protein P2 modifies the feeding behavior of its aphid vector. P2 is necessary for CaMV transmission because it mediates binding of virus particles to the aphid mouthparts. We compared aphid feeding behavior on plants infected with the wild-type CaMV strain Cabb B-JI or with a deletion mutant strain, Cabb B-JIΔP2, which does not produce P2. Only aphids probing Cabb B-JI infected plants doubled the number of test punctures during the first contact with the plant, indicating a role of P2. Membrane feeding assays with purified P2 and virus particles confirmed that these viral products alone are sufficient to cause the changes in aphid probing. The behavior modifications were not observed on plants infected with a CaMV mutant expressing P2Rev5, unable to bind to the mouthparts. These results are in favor of a virus manipulation, where attachment of P2 to a specific region in the aphid stylets-the acrostyle-exercises a direct effect on vector behavior at a crucial moment, the first vector contact with the infected plant, which is essential for virus acquisition.
Collapse
Affiliation(s)
- Maxime Verdier
- SVQV UMR 1131 INRAE Centre Grand Est–Colmar, Université Strasbourg, Colmar, France
| | - Quentin Chesnais
- SVQV UMR 1131 INRAE Centre Grand Est–Colmar, Université Strasbourg, Colmar, France,* E-mail: (QC); (MD)
| | - Elodie Pirolles
- PHIM, INRAE Centre Occitanie–Montpellier, CIRAD, IRD, Université Montpellier, Institut Agro, Montferrier-sur-Lez, France
| | - Stéphane Blanc
- PHIM, INRAE Centre Occitanie–Montpellier, CIRAD, IRD, Université Montpellier, Institut Agro, Montferrier-sur-Lez, France
| | - Martin Drucker
- SVQV UMR 1131 INRAE Centre Grand Est–Colmar, Université Strasbourg, Colmar, France,* E-mail: (QC); (MD)
| |
Collapse
|
5
|
Deshoux M, Monsion B, Pichon E, Jiménez J, Moreno A, Cayrol B, Thébaud G, Mugford ST, Hogenhout SA, Blanc S, Fereres A, Uzest M. Role of Acrostyle Cuticular Proteins in the Retention of an Aphid Salivary Effector. Int J Mol Sci 2022; 23:ijms232315337. [PMID: 36499662 PMCID: PMC9736059 DOI: 10.3390/ijms232315337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/09/2022] Open
Abstract
To avoid the activation of plant defenses and ensure sustained feeding, aphids are assumed to use their mouthparts to deliver effectors into plant cells. A recent study has shown that effectors detected near feeding sites are differentially distributed in plant tissues. However, the precise process of effector delivery into specific plant compartments is unknown. The acrostyle, a cuticular organ located at the tip of maxillary stylets that transiently binds plant viruses via its stylin proteins, may participate in this specific delivery process. Here, we demonstrate that Mp10, a saliva effector released into the plant cytoplasm during aphid probing, binds to the acrostyles of Acyrthosiphon pisum and Myzus persicae. The effector probably interacts with Stylin-03 as a lowered Mp10-binding to the acrostyle was observed upon RNAi-mediated reduction in Stylin-03 production. In addition, Stylin-03 and Stylin-01 RNAi aphids exhibited changes in their feeding behavior as evidenced by electrical penetration graph experiments showing longer aphid probing behaviors associated with watery saliva release into the cytoplasm of plant cells. Taken together, these data demonstrate that the acrostyle also has effector binding capacity and supports its role in the delivery of aphid effectors into plant cells.
Collapse
Affiliation(s)
- Maëlle Deshoux
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, 34000 Montpellier, France
| | - Baptiste Monsion
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, 34000 Montpellier, France
| | - Elodie Pichon
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, 34000 Montpellier, France
| | - Jaime Jiménez
- Instituto de Ciencias Agrarias (ICA), Consejo Superior de Investigaciones Científicas (CSIC), Calle Serrano 115dpdo, 28806 Madrid, Spain
| | - Aránzazu Moreno
- Instituto de Ciencias Agrarias (ICA), Consejo Superior de Investigaciones Científicas (CSIC), Calle Serrano 115dpdo, 28806 Madrid, Spain
| | - Bastien Cayrol
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, 34000 Montpellier, France
| | - Gaël Thébaud
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, 34000 Montpellier, France
| | - Sam T. Mugford
- John Innes Centre, Department of Crop Genetics, Norwich NR4 7UH, UK
| | | | - Stéphane Blanc
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, 34000 Montpellier, France
| | - Alberto Fereres
- Instituto de Ciencias Agrarias (ICA), Consejo Superior de Investigaciones Científicas (CSIC), Calle Serrano 115dpdo, 28806 Madrid, Spain
- Correspondence: (A.F.); (M.U.)
| | - Marilyne Uzest
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, 34000 Montpellier, France
- Correspondence: (A.F.); (M.U.)
| |
Collapse
|
6
|
Chesnais Q, Golyaev V, Velt A, Rustenholz C, Brault V, Pooggin MM, Drucker M. Comparative Plant Transcriptome Profiling of Arabidopsis thaliana Col-0 and Camelina sativa var. Celine Infested with Myzus persicae Aphids Acquiring Circulative and Noncirculative Viruses Reveals Virus- and Plant-Specific Alterations Relevant to Aphid Feeding Behavior and Transmission. Microbiol Spectr 2022; 10:e0013622. [PMID: 35856906 PMCID: PMC9430646 DOI: 10.1128/spectrum.00136-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/19/2022] [Indexed: 11/20/2022] Open
Abstract
Evidence is accumulating that plant viruses alter host plant traits in ways that modify their insect vectors' behavior. These alterations often enhance virus transmission, which has led to the hypothesis that these effects are manipulations caused by viral adaptation. However, we lack a mechanistic understanding of the genetic basis of these indirect, plant-mediated effects on vectors, their dependence on the plant host, and their relation to the mode of virus transmission. Transcriptome profiling of Arabidopsis thaliana and Camelina sativa plants infected with turnip yellows virus (TuYV) or cauliflower mosaic virus (CaMV) and infested with the common aphid vector Myzus persicae revealed strong virus- and host-specific differences in gene expression patterns. CaMV infection caused more severe effects on the phenotype of both plant hosts than did TuYV infection, and the severity of symptoms correlated strongly with the proportion of differentially expressed genes, especially photosynthesis genes. Accordingly, CaMV infection modified aphid behavior and fecundity more strongly than did infection with TuYV. Overall, infection with CaMV, relying on the noncirculative transmission mode, tends to have effects on metabolic pathways, with strong potential implications for insect vector-plant host interactions (e.g., photosynthesis, jasmonic acid, ethylene, and glucosinolate biosynthetic processes), while TuYV, using the circulative transmission mode, alters these pathways only weakly. These virus-induced deregulations of genes that are related to plant physiology and defense responses might impact both aphid probing and feeding behavior on infected host plants, with potentially distinct effects on virus transmission. IMPORTANCE Plant viruses change the phenotype of their plant hosts. Some of the changes impact interactions of the plant with insects that feed on the plants and transmit these viruses. These modifications may result in better virus transmission. We examine here the transcriptomes of two plant species infected with two viruses with different transmission modes to work out whether there are plant species-specific and transmission mode-specific transcriptome changes. Our results show that both are the case.
Collapse
Affiliation(s)
- Quentin Chesnais
- SVQV, UMR1131, INRAE Centre Grand Est–Colmar, Université Strasbourg, Strasbourg, France
| | - Victor Golyaev
- PHIM Plant Health Institute, Université Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier, France
| | - Amandine Velt
- SVQV, UMR1131, INRAE Centre Grand Est–Colmar, Université Strasbourg, Strasbourg, France
| | - Camille Rustenholz
- SVQV, UMR1131, INRAE Centre Grand Est–Colmar, Université Strasbourg, Strasbourg, France
| | - Véronique Brault
- SVQV, UMR1131, INRAE Centre Grand Est–Colmar, Université Strasbourg, Strasbourg, France
| | - Mikhail M. Pooggin
- PHIM Plant Health Institute, Université Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier, France
| | - Martin Drucker
- SVQV, UMR1131, INRAE Centre Grand Est–Colmar, Université Strasbourg, Strasbourg, France
| |
Collapse
|
7
|
Jayasinghe WH, Akhter MS, Nakahara K, Maruthi MN. Effect of aphid biology and morphology on plant virus transmission. PEST MANAGEMENT SCIENCE 2022; 78:416-427. [PMID: 34478603 DOI: 10.1002/ps.6629] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Aphids severely affect crop production by transmitting many plant viruses. Viruses are obligate intracellular pathogens that mostly depend on vectors for their transmission and survival. A majority of economically important plant viruses are transmitted by aphids. They transmit viruses either persistently (circulative or non-circulative) or non-persistently. Plant virus transmission by insects is a process that has evolved over time and is strongly influenced by insect morphological features and biology. Over the past century, a large body of research has provided detailed knowledge of the molecular processes underlying virus-vector interactions. In this review, we discuss how aphid biology and morphology can affect plant virus transmission. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wikum H Jayasinghe
- Department of Agricultural Biology, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Md Shamim Akhter
- Laboratory of Pathogen-Plant Interactions, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
- Plant Pathology Division, Bangladesh Agricultural Research Institute (BARI), Joydebpur, Bangladesh
| | - Kenji Nakahara
- Laboratory of Pathogen-Plant Interactions, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
8
|
Chesnais Q, Verdier M, Burckbuchler M, Brault V, Pooggin M, Drucker M. Cauliflower mosaic virus protein P6-TAV plays a major role in alteration of aphid vector feeding behaviour but not performance on infected Arabidopsis. MOLECULAR PLANT PATHOLOGY 2021; 22:911-920. [PMID: 33993609 PMCID: PMC8295513 DOI: 10.1111/mpp.13069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
Emerging evidence suggests that viral infection modifies host plant traits that in turn alter behaviour and performance of vectors colonizing the plants in a way conducive for transmission of both nonpersistent and persistent viruses. Similar evidence for semipersistent viruses like cauliflower mosaic virus (CaMV) is scarce. Here we compared the effects of Arabidopsis infection with mild (CM) and severe (JI) CaMV isolates on the feeding behaviour (recorded by the electrical penetration graph technique) and fecundity of the aphid vector Myzus persicae. Compared to mock-inoculated plants, feeding behaviour was altered similarly on CM- and JI-infected plants, but only aphids on JI-infected plants had reduced fecundity. To evaluate the role of the multifunctional CaMV protein P6-TAV, aphid feeding behaviour and fecundity were tested on transgenic Arabidopsis plants expressing wild-type (wt) and mutant versions of P6-TAV. In contrast to viral infection, aphid fecundity was unchanged on all transgenic lines, suggesting that other viral factors compromise fecundity. Aphid feeding behaviour was modified on wt P6-CM-, but not on wt P6-JI-expressing plants. Analysis of plants expressing P6 mutants identified N-terminal P6 domains contributing to modification of feeding behaviour. Taken together, we show that CaMV infection can modify both aphid fecundity and feeding behaviour and that P6 is only involved in the latter.
Collapse
Affiliation(s)
- Quentin Chesnais
- Virus Vection, SVQV, UMR 1131 INRAEUniversité de StrasbourgINRAE Centre Grand Est‐ColmarColmarFrance
| | - Maxime Verdier
- Virus Vection, SVQV, UMR 1131 INRAEUniversité de StrasbourgINRAE Centre Grand Est‐ColmarColmarFrance
| | - Myriam Burckbuchler
- Virus Vection, SVQV, UMR 1131 INRAEUniversité de StrasbourgINRAE Centre Grand Est‐ColmarColmarFrance
| | - Véronique Brault
- Virus Vection, SVQV, UMR 1131 INRAEUniversité de StrasbourgINRAE Centre Grand Est‐ColmarColmarFrance
| | - Mikhail Pooggin
- DEFENSIRNA, PHIM, INRAECIRADSupAgroIRDMUSEINRAE Centre Occitanie‐MontpellierMontferrier‐sur‐LezFrance
| | - Martin Drucker
- Virus Vection, SVQV, UMR 1131 INRAEUniversité de StrasbourgINRAE Centre Grand Est‐ColmarColmarFrance
- Present address:
Insect Models of Innate Immunity, IBMCUniversité de StrasbourgInstitut de Biologie Moléculaire et Cellulaire2 allée Konrad Roentgen67084 Strasbourg cedexFrance
| |
Collapse
|
9
|
Then C, Bak A, Morisset A, Dáder B, Ducousso M, Macia JL, Drucker M. The N-terminus of the cauliflower mosaic virus aphid transmission protein P2 is involved in transmission body formation and microtubule interaction. Virus Res 2021; 297:198356. [PMID: 33667624 DOI: 10.1016/j.virusres.2021.198356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 01/01/2023]
Abstract
Cauliflower mosaic virus (CaMV) is transmitted by aphids using the non-circulative transmission mode: when the insects feed on infected leaves, virus particles from infected cells attach rapidly to their stylets and are transmitted to a new host when the aphids change plants. Mandatory for CaMV transmission, the viral helper protein P2 mediates as a molecular linker binding of the virus particles to the aphid stylets. P2 is available in infected plant cells in a viral inclusion that is specialized for transmission and named the transmission body (TB). When puncturing an infected leaf cell, the aphid triggers an ultra-rapid viral response, necessary for virus acquisition and called transmission activation: The TB disrupts and P2 is redistributed onto cortical microtubules, together with virus particles that are simultaneously set free from virus factories and join P2 on the microtubules to form the so-called mixed networks (MNs). The MNs are the predominant structure from which CaMV is acquired by aphids. However, the P2 domains involved in microtubule interaction are not known. To identify P2 regions involved in its functions, we generated a set of P2 mutants by alanine scanning and analyzed them in the viral context for their capacity to form a TB, to interact with microtubules and to transmit CaMV. Our results show that contrary to the previously characterized P2-P2 and P2-virion binding sites in its C-terminus, the microtubule binding site is contained in the N-terminal half of P2. Further, this region is important for TB formation since some P2 mutant proteins did not accumulate in TBs but were retained in the viral factories where P2 is translated. Taken together, the N-terminus of P2 is not only involved in vector interaction as previously reported, but also in interaction with microtubules and in formation of TBs.
Collapse
Affiliation(s)
| | - Aurélie Bak
- INRAE Centre Occitanie - Montpellier, France
| | | | | | | | | | - Martin Drucker
- INRAE Centre Occitanie - Montpellier, France; INRAE Centre Grand Est - Colmar, France.
| |
Collapse
|
10
|
Mauck KE, Chesnais Q. A synthesis of virus-vector associations reveals important deficiencies in studies on host and vector manipulation by plant viruses. Virus Res 2020; 285:197957. [PMID: 32380208 DOI: 10.1016/j.virusres.2020.197957] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/11/2020] [Accepted: 03/29/2020] [Indexed: 12/11/2022]
Abstract
Plant viruses face many challenges in agricultural environments. Although crop fields appear to be abundant resources for these pathogens, it may be difficult for viruses to "escape" from crop environments prior to host senescence or harvesting. One way for viruses to increase the odds of persisting outside of agricultural fields across seasons is by evolving traits that increase transmission opportunities between crops and wild plant communities. There is accumulating evidence that some viruses can achieve this by manipulating crop plant phenotypes in ways that enhance transmission by vectors. Putative manipulations occur through alteration of plant cues (color, size, texture, foliar volatiles, in-leaf metabolites, defenses, and leaf cuticles) that mediate vector orientation, feeding, and dispersal behaviors. Virus effects on host phenotypes are not uniform but appear to exhibit convergence depending on virus traits underlying transmission, particularly the duration of probing and feeding required to acquire and inoculate distinct types of plant viruses. This shared congruence in manipulation strategies and mechanisms across divergent virus lineages suggests that such effects may be adaptive. To discern if this is the case, researchers must consider molecular and environmental constraints on virus evolution, including those imposed by insect vectors from organismal to landscape scales. In this review, we synthesize applied research on vector-borne virus transmission in laboratory and field settings to identify the main factors determining transmission opportunities for plant viruses, and thus, selection pressure to evolve manipulative traits. We then examine these outputs in the context of studies reporting putative instances of plant virus manipulation. Our synthesis reveals important disconnects between virus manipulation studies and actual selection pressures imposed by vectors in real-world contexts.
Collapse
Affiliation(s)
- Kerry E Mauck
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA.
| | - Quentin Chesnais
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA; Université de Strasbourg, INRAE, SVQV UMR-A 1131, F-68000 Colmar, France
| |
Collapse
|
11
|
Bergès SE, Vasseur F, Bediée A, Rolland G, Masclef D, Dauzat M, van Munster M, Vile D. Natural variation of Arabidopsis thaliana responses to Cauliflower mosaic virus infection upon water deficit. PLoS Pathog 2020; 16:e1008557. [PMID: 32413076 PMCID: PMC7255604 DOI: 10.1371/journal.ppat.1008557] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 05/28/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Plant virus pathogenicity is expected to vary with changes in the abiotic environment that affect plant physiology. Conversely, viruses can alter the host plant response to additional stimuli from antagonism to mutualism depending on the virus, the host plant and the environment. Ecological theory, specifically the CSR framework of plant strategies developed by Grime and collaborators, states that plants cannot simultaneously optimize resistance to both water deficit and pathogens. Here, we investigated the vegetative and reproductive performance of 44 natural accessions of A. thaliana originating from the Iberian Peninsula upon simultaneous exposure to soil water deficit and viral infection by the Cauliflower mosaic virus (CaMV). Following the predictions of Grime's CSR theory, we tested the hypothesis that the ruderal character of a plant genotype is positively related to its tolerance to virus infection regardless of soil water availability. Our results showed that CaMV infection decreased plant vegetative performance and annihilated reproductive success of all accessions. In general, water deficit decreased plant performance, but, despite differences in behavior, ranking of accessions tolerance to CaMV was conserved under water deficit. Ruderality, quantified from leaf traits following a previously published procedure, varied significantly among accessions, and was positively correlated with tolerance to viral infection under both well-watered and water deficit conditions, although the latter to a lesser extent. Also, in accordance with the ruderal character of the accession and previous findings, our results suggest that accession tolerance to CaMV infection is positively correlated with early flowering. Finally, plant survival to CaMV infection increased under water deficit. The complex interactions between plant, virus and abiotic environment are discussed in terms of the variation in plant ecological strategies at the intraspecific level.
Collapse
Affiliation(s)
- Sandy E. Bergès
- LEPSE, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
- BGPI, Univ Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
| | - François Vasseur
- LEPSE, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
- CEFE, CNRS, EPHE, IRD, Univ Montpellier, Univ Paul Valéry Montpellier, Montpellier, France
| | - Alexis Bediée
- LEPSE, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
| | - Gaëlle Rolland
- LEPSE, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
| | - Diane Masclef
- LEPSE, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
| | - Myriam Dauzat
- LEPSE, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
| | | | - Denis Vile
- LEPSE, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
12
|
Jiménez J, Arias-Martín M, Moreno A, Garzo E, Fereres A. Barley yellow dwarf virus Can Be Inoculated During Brief Intracellular Punctures in Phloem Cells Before the Sieve Element Continuous Salivation Phase. PHYTOPATHOLOGY 2020; 110:85-93. [PMID: 31609680 DOI: 10.1094/phyto-07-19-0260-fi] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The distinguished intracellular stylet puncture called phloem-pd (potential drop [pd]) produced by Myzus persicae has been associated with the transmission of the semipersistently transmitted, phloem-limited Beet yellows virus (BYV, Closterovirus). However, the production of intracellular punctures in phloem cells (phloem-pd) by other aphid species and their role in the transmission of persistently transmitted, phloem-limited viruses are still unknown. Previous studies revealed that inoculation of the persistently transmitted, phloem-limited Barley yellow dwarf virus (BYDV, Luteovirus) is associated mainly with the sieve element continuous salivation phase (E1 waveform). However, the role of brief intracellular punctures that occur before the E1 phase in the inoculation of BYDV by aphids is unknown. We aimed to investigate whether the bird cherry-oat aphid Rhopalosiphum padi (Hemiptera: Aphididae) produced a stereotypical phloem-pd and to study its role in the inoculation of BYDV. The feeding behavior of viruliferous R. padi individuals in barley (Hordeum vulgare) was monitored via the electrical penetration graph (EPG) technique. The feeding process was artificially terminated after the observation of specific EPG waveforms: standard-pds, phloem-pd, and E1. Analysis of the EPG recordings revealed the production of a phloem-pd pattern by R. padi, in addition to a short, distinct E1-like pattern (short-E1), both resulting in successful inoculation of BYDV. Also, the transmission efficiency of BYDV was directly proportional to the time spent by aphids in intracellular salivation in phloem cells. Finally, we discussed the main differences between the inoculation process of semipersistent and persistently transmitted phloem-limited viruses by aphids.
Collapse
Affiliation(s)
- Jaime Jiménez
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - María Arias-Martín
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - Aránzazu Moreno
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - Elisa Garzo
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - Alberto Fereres
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| |
Collapse
|
13
|
Petersen SM, Keith C, Austin K, Howard S, Su L, Qiu W. A Natural Reservoir and Transmission Vector of Grapevine Vein Clearing Virus. PLANT DISEASE 2019; 103:571-577. [PMID: 30484754 DOI: 10.1094/pdis-06-18-1073-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Grapevine vein clearing virus (GVCV) is associated with a vein-clearing and vine-decline disease. In this study, we surveyed wild Ampelopsis cordata from the Vitaceae family and found that 31% (35 of 113) of native A. cordata plants are infected with GVCV. The full-length genome sequence of one GVCV isolate from A. cordata shared 99.8% identical nucleotides with an isolate from a nearby cultivated 'Chardonel' grapevine, suggesting the occurrence of an insect vector. To identify a vector, we collected Aphis illinoisensis (common name: grape aphids) from wild A. cordata plants and detected GVCV in the aphid populations. We found that A. illinoisensis is capable of transmitting GVCV from infected A. cordata to Chardonel grapevines in the greenhouse. Upon transmission, GVCV caused severe symptoms on the infected Chardonel 45 days post transmission. We conclude that wild GVCV isolates from A. cordata are capable of inducing a severe disease on cultivated grapevines once they spread from native A. cordata to vineyards via grape aphids. The discovery of a natural reservoir and an insect vector of GVCV provides timely knowledge for disease management in vineyards and critical clues on viral evolution and epidemiology.
Collapse
Affiliation(s)
- Sylvia M Petersen
- Center for Grapevine Biotechnology, William H. Darr College of Agriculture, Missouri State University, Mountain Grove, MO 65711
| | - Cory Keith
- Center for Grapevine Biotechnology, William H. Darr College of Agriculture, Missouri State University, Mountain Grove, MO 65711
| | - Kaylie Austin
- Center for Grapevine Biotechnology, William H. Darr College of Agriculture, Missouri State University, Mountain Grove, MO 65711
| | - Susanne Howard
- Center for Grapevine Biotechnology, William H. Darr College of Agriculture, Missouri State University, Mountain Grove, MO 65711
| | - Li Su
- Center for Grapevine Biotechnology, William H. Darr College of Agriculture, Missouri State University, Mountain Grove, MO 65711
| | - Wenping Qiu
- Center for Grapevine Biotechnology, William H. Darr College of Agriculture, Missouri State University, Mountain Grove, MO 65711
| |
Collapse
|
14
|
Chesnais Q, Couty A, Uzest M, Brault V, Ameline A. Plant infection by two different viruses induce contrasting changes of vectors fitness and behavior. INSECT SCIENCE 2019; 26:86-96. [PMID: 28731285 DOI: 10.1111/1744-7917.12508] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
Insect-vectored plant viruses can induce changes in plant phenotypes, thus influencing plant-vector interactions in a way that may promote their dispersal according to their mode of transmission (i.e., circulative vs. noncirculative). This indirect vector manipulation requires host-virus-vector coevolution and would thus be effective solely in very specific plant-virus-vector species associations. Some studies suggest this manipulation may depend on multiple factors relative to various intrinsic characteristics of vectors such as transmission efficiency. In anintegrative study, we tested the effects of infection of the Brassicaceae Camelina sativa with the noncirculative Cauliflower mosaic virus (CaMV) or the circulative Turnip yellows virus (TuYV) on the host-plant colonization of two aphid species differing in their virus transmission efficiency: the polyphagous Myzus persicae, efficient vector of both viruses, and the Brassicaceae specialist Brevicoryne brassicae, poor vector of TuYV and efficient vector of CaMV. Results confirmed the important role of virus mode of transmission as plant-mediated effects of CaMV on the two aphid species induced negative alterations of feeding behavior (i.e., decreased phloem sap ingestion) and performance that were both conducive for virus fitness by promoting dispersion after a rapid acquisition. In addition, virus transmission efficiency may also play a role in vector manipulation by viruses as only the responses of the efficient vector to plant-mediated effects of TuYV, that is, enhanced feeding behavior and performances, were favorable to their acquisition and further dispersal. Altogether, this work demonstrated that vector transmission efficiency also has to be considered when studying the mechanisms underlying vector manipulation by viruses. Our results also reinforce the idea that vector manipulation requires coevolution between plant, virus and vector.
Collapse
Affiliation(s)
- Quentin Chesnais
- FRE CNRS 3498 EDYSAN (Écologie et Dynamique des Systèmes Anthropisés), Université de Picardie Jules Verne, 33 rue St Leu, 80039, Amiens Cedex, France
| | - Aude Couty
- FRE CNRS 3498 EDYSAN (Écologie et Dynamique des Systèmes Anthropisés), Université de Picardie Jules Verne, 33 rue St Leu, 80039, Amiens Cedex, France
| | - Maryline Uzest
- INRA, UMR 0385 BGPI, CIRAD-INRA-Montpellier SupAgro, TA A54/KCampus International de Baillarguet, 34394, Montpellier Cedex 5, France
| | - Véronique Brault
- UMR 1131 SVQV, INRA-UDS, 28, rue de Herrlisheim, 68021, Colmar Cedex, France
| | - Arnaud Ameline
- FRE CNRS 3498 EDYSAN (Écologie et Dynamique des Systèmes Anthropisés), Université de Picardie Jules Verne, 33 rue St Leu, 80039, Amiens Cedex, France
| |
Collapse
|
15
|
Zhou JS, Drucker M, Ng JC. Direct and indirect influences of virus-insect vector-plant interactions on non-circulative, semi-persistent virus transmission. Curr Opin Virol 2018; 33:129-136. [PMID: 30212752 DOI: 10.1016/j.coviro.2018.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 01/28/2023]
Abstract
Plant viruses that are transmitted in a non-circulative, semi-persistent (NCSP) manner have determinants on, and/or accessories to, their capsids that facilitate virion binding to specific retention sites in their insect vectors. Bilateral interactions and interactions occurring at the nexus of all three partners (virus, vector and plant) also contribute to transmission by influencing virus acquisition and inoculation. Vector feeding behavior lies at the core of this trio of virus transmission processes (retention-acquisition-inoculation), but transmission may also be mediated by virus infection-triggered and/or vector feeding-triggered plant cues that influence behavioral responses such as vector attraction, deterrence and dispersal. Insights into the multiphasic interactions and coordinated processes will lead to a better understanding of the mechanisms of NCSP transmission.
Collapse
Affiliation(s)
- Jaclyn S Zhou
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA; Center for Infectious Diseases and Vector Research, University of California, Riverside, CA 92521, USA
| | - Martin Drucker
- Virus Vector Interactions, SVQV, INRA, Université de Strasbourg, Colmar, France
| | - James Ck Ng
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA; Center for Infectious Diseases and Vector Research, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
16
|
Benatto A, Mogor AF, Penteado SC, Pereira LS, Salas FJS, Zawadneak MAC. Influence of Trichomes in Strawberry Cultivars on the Feeding Behavior of Chaetosiphon fragaefolii (Cockerell) (Hemiptera: Aphididae). NEOTROPICAL ENTOMOLOGY 2018; 47:569-576. [PMID: 29550984 DOI: 10.1007/s13744-018-0596-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/29/2018] [Indexed: 06/08/2023]
Abstract
Chaetosiphon fragaefolii (Cockerell) (Hemiptera: Aphididae) is the predominant aphid in strawberry (Fragaria × ananassa Duchesne) production systems in Brazil. This pest species directly damages the plants and is also responsible for spreading viruses. Further, C. fragaefolii often renders strawberry cultivation unviable, because of its high reproductive rate, as well as the large number of individuals generated through parthenogenesis. The present study aimed to (1) evaluate the feeding behavior of C. fragaefolii in four strawberry cultivars (Albion, Aromas, Camarosa, and San Andreas) and (2) identify the resistance factors associated with the number and type of trichomes in the cultivars, and also its effect on the feeding behavior of C. fragaefolii, using the electrical penetration graph (EPG) technique. The results revealed an intrinsic relationship between the number of trichomes on the cultivar and feeding behavior of C. fragaefolii. A higher number of trichomes, both tector and glandular, was observed in Albion compared to that of other cultivars, resulting in a longer no probing (Np) period per insect, and a longer Np phase. A relatively short phloem phase and ingestion time of the phloem sieve elements were also observed in Albion. These results suggest that the trichomes act as a physical barrier creating difficulties for C. fragaefolii to feed, thereby altering its feeding behavior in the four cultivars studied.
Collapse
Affiliation(s)
- A Benatto
- Depto de Zoologia, Programa de Pós-graduação em Entomologia, Univ Federal do Paraná, Curitiba, PR, Brasil
| | - A F Mogor
- Depto de Fitotecnia e Fitossanitarismo, Programa de Pós-graduação em Agronomia - Produção Vegetal, Univ Federal do Paraná, Rua dos Funcionários 1540, Curitiba, PR, 80035-050, Brasil
| | | | - L S Pereira
- Promip Manejo de Pragas Ltda, Limeira, SP, Brasil
| | | | - M A C Zawadneak
- Depto de Fitotecnia e Fitossanitarismo, Programa de Pós-graduação em Agronomia - Produção Vegetal, Univ Federal do Paraná, Rua dos Funcionários 1540, Curitiba, PR, 80035-050, Brasil.
| |
Collapse
|
17
|
Webster CG, Pichon E, van Munster M, Monsion B, Deshoux M, Gargani D, Calevro F, Jimenez J, Moreno A, Krenz B, Thompson JR, Perry KL, Fereres A, Blanc S, Uzest M. Identification of Plant Virus Receptor Candidates in the Stylets of Their Aphid Vectors. J Virol 2018; 92:e00432-18. [PMID: 29769332 PMCID: PMC6026765 DOI: 10.1128/jvi.00432-18] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/25/2018] [Indexed: 12/23/2022] Open
Abstract
Plant viruses transmitted by insects cause tremendous losses in most important crops around the world. The identification of receptors of plant viruses within their insect vectors is a key challenge to understanding the mechanisms of transmission and offers an avenue for future alternative control strategies to limit viral spread. We here report the identification of two cuticular proteins within aphid mouthparts, and we provide experimental support for the role of one of them in the transmission of a noncirculative virus. These two proteins, named Stylin-01 and Stylin-02, belong to the RR-1 cuticular protein subfamily and are highly conserved among aphid species. Using an immunolabeling approach, they were localized in the maxillary stylets of the pea aphid Acyrthosiphon pisum and the green peach aphid Myzus persicae, in the acrostyle, an organ earlier shown to harbor receptors of a noncirculative virus. A peptide motif present at the C termini of both Stylin-01 and Stylin-02 is readily accessible all over the surface of the acrostyle. Competition for in vitro binding to the acrostyle was observed between an antibody targeting this peptide and the helper component protein P2 of Cauliflower mosaic virus Furthermore, silencing the stylin-01 but not stylin-02 gene through RNA interference decreased the efficiency of Cauliflower mosaic virus transmission by Myzus persicae These results identify the first cuticular proteins ever reported within arthropod mouthparts and distinguish Stylin-01 as the best candidate receptor for the aphid transmission of noncirculative plant viruses.IMPORTANCE Most noncirculative plant viruses transmitted by insect vectors bind to their mouthparts. They are acquired and inoculated within seconds when insects hop from plant to plant. The receptors involved remain totally elusive due to a long-standing technical bottleneck in working with insect cuticle. Here we characterize the role of the two first cuticular proteins ever identified in arthropod mouthparts. A domain of these proteins is directly accessible at the surface of the cuticle of the acrostyle, an organ at the tip of aphid stylets. The acrostyle has been shown to bind a plant virus, and we consistently demonstrated that one of the identified proteins is involved in viral transmission. Our findings provide an approach to identify proteins in insect mouthparts and point at an unprecedented gene candidate for a plant virus receptor.
Collapse
Affiliation(s)
- Craig G Webster
- BGPI, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Elodie Pichon
- BGPI, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Manuella van Munster
- BGPI, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Baptiste Monsion
- BGPI, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Maëlle Deshoux
- BGPI, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Daniel Gargani
- BGPI, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Federica Calevro
- Université de Lyon, INSA-Lyon, INRA, BF2I, UMR0203, Villeurbanne, France
| | - Jaime Jimenez
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Aranzazu Moreno
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Björn Krenz
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Jeremy R Thompson
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Keith L Perry
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Alberto Fereres
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Stéphane Blanc
- BGPI, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Marilyne Uzest
- BGPI, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
18
|
Chapwanya M, Dumont Y. On crop vector-borne diseases. Impact of virus lifespan and contact rate on the traveling-wave speed of infective fronts. ECOLOGICAL COMPLEXITY 2018. [DOI: 10.1016/j.ecocom.2017.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Chen C, Ye S, Hu H, Xue C, Yu X. Use of electrical penetration graphs (EPG) and quantitative PCR to evaluate the relationship between feeding behaviour and Pandora neoaphidis infection levels in green peach aphid, Myzus persicae. JOURNAL OF INSECT PHYSIOLOGY 2018; 104:9-14. [PMID: 29133229 DOI: 10.1016/j.jinsphys.2017.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 06/07/2023]
Abstract
A real-time qPCR method was developed, validated, and used to quantity the fungal pathogen, P. neoaphidis, within aphids at different times during infection; colonization rate fitted the Gompertz model well (R2 = 0.9356). Feeding behaviour of P. neoaphidis-infected and uninfected M. persicae were investigated, for the first time, using DC-electrical penetration graphs (DC-EPG) that characterized the waveforms made during different aphid stylet probing periods corresponding to epidermis penetration, salivation and ingestion. In the 6 h following the 12-h incubation period (to achieve infection), there were significant differences in the number of events of Np (non-probing) and C (stylet pathway) between infected and uninfected aphids. However, the difference between total duration of Np and C were not significantly different between infected and uninfected aphids. There were no significant differences in the number of events or total duration of E1 (phloem salivation) or E2 (phloem ingestion) between infected and uninfected aphids. There were significant differences in mean number of events and total duration of the pd waveform (intracellular punctures) in infected and uninfected aphids. In the 16 h prior to death, the same differences in behaviour were observed but they were even more obvious. Furthermore, the total duration time of E2 was significantly greater in uninfected aphids than infected aphids, a change that had not been observed in the first 6 h observation period. In conclusion, qPCR quantification demonstrated 'molecular' colonization levels throughout infection, and EPG data analysis during the two periods (during early infection and then during late infection just prior to death) demonstrated the actual physical effects of fungal infection on feeding behaviour of M. persicae; this has the potential to decrease the aphid's capacity of transmission and dispersal. These studies increase our understanding of the interaction between P. neoaphidis and its host aphid.
Collapse
Affiliation(s)
- Chun Chen
- China Jiliang University, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, Hangzhou 310018, China.
| | - Sudan Ye
- Zhejiang Economic & Trade Polytechnic, Hangzhou 310018, China
| | - Huajun Hu
- China Jiliang University, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, Hangzhou 310018, China
| | - Chengmei Xue
- China Jiliang University, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, Hangzhou 310018, China
| | - Xiaoping Yu
- China Jiliang University, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, Hangzhou 310018, China
| |
Collapse
|
20
|
Abstract
Viruses transmitted by whiteflies are predominantly classified as having either persistent circulative or semipersistent transmission, and the majority of studies have addressed transmission of viruses in the genera Begomovirus (family Geminiviridae) and Crinivirus (family Closteroviridae), respectively. Early studies on vector transmission primarily addressed individual aspects of transmission; however, with the breadth of new technology now available, an increasingly greater number of studies involve coordinated research that is beginning to assemble a more complete picture of how whiteflies and viruses have coevolved to facilitate transmission. In particular the integration of gene expression and metabolomic studies into broader research topics is providing knowledge of changes within the whitefly vector in response to the presence of viruses that would have been impossible to identify previously. Examples include comparative studies on the response of Bemisia tabaci to begomovirus and crinivirus infection of common host plants, evolution of whitefly endosymbiont relationships, and opportunities to evaluate responses to specific transmission-related events. Integration of metabolomics, as well as the application of electrical penetration graphing, can lead to an ability to monitor the changes that occur in vector insects associated with specific aspects of virus transmission. Through gaining more complete knowledge of the mechanisms behind whitefly transmission of viruses new control strategies will undoubtedly emerge for control of whiteflies and the viruses they transmit.
Collapse
|
21
|
Jiménez J, Webster CG, Moreno A, Almeida RPP, Blanc S, Fereres A, Uzest M. Fasting alters aphid probing behaviour but does not universally increase the transmission rate of non-circulative viruses. J Gen Virol 2017; 98:3111-3121. [PMID: 29134940 DOI: 10.1099/jgv.0.000971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A fasting period prior to non-circulative virus acquisition has been shown to increase the rate of transmission by aphids. However, this effect has only been studied for a few virus-vector combinations, and there are contradictory results in the literature as to the role of fasting on virus acquisition. We analysed the influence of fasting on the transmission of three non-circulative viruses, Cucumber mosaic virus, Zucchini yellow mosaic virus and Cauliflower mosaic virus, by two aphid vector species: Myzus persicae Sulzer (Hemiptera: Aphididae) and Aphis gossypii Glover (Hemiptera: Aphididae). All variables tested, including the virus species and isolate, and the species of aphid, influenced the effect of a fasting period on virus transmission efficiency. Furthermore, when aphids were subjected to an overnight feeding period on a sucrose solution, the fasting effect disappeared and the probing behaviour of these aphids was markedly different to plant-reared aphids. The electrical penetration graph (EPG) technique revealed that fasting altered the probing behaviour of M. persicae and A. gossypii, with fasted aphids beginning to feed sooner and having a significantly longer first intracellular puncture, measured as a potential drop. Significantly longer sub-phase II-3 of the potential drop and more archlets during this sub-phase were also observed for fasted aphids of both species. However, these behavioural changes were not predictive of increasing virus transmission following a fasting period. The impacts of pre-acquisition fasting on aphid probing behaviour and on the mechanisms of non-circulative virus transmission are discussed.
Collapse
Affiliation(s)
- Jaime Jiménez
- Instituto de Ciencias Agrarias - Consejo Superior de Investigaciones Científicas, C/ Serrano 115 dpdo, Madrid 28006, Spain
| | - Craig G Webster
- INRA, UMR 0385 BGPI, CIRAD-INRA-Montpellier SupAgro, TA-A54/K, Campus International de Baillarguet, 34394 Montpellier Cedex 05, France
| | - Aránzazu Moreno
- Instituto de Ciencias Agrarias - Consejo Superior de Investigaciones Científicas, C/ Serrano 115 dpdo, Madrid 28006, Spain
| | - Rodrigo P P Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| | - Stéphane Blanc
- INRA, UMR 0385 BGPI, CIRAD-INRA-Montpellier SupAgro, TA-A54/K, Campus International de Baillarguet, 34394 Montpellier Cedex 05, France
| | - Alberto Fereres
- Instituto de Ciencias Agrarias - Consejo Superior de Investigaciones Científicas, C/ Serrano 115 dpdo, Madrid 28006, Spain
| | - Marilyne Uzest
- INRA, UMR 0385 BGPI, CIRAD-INRA-Montpellier SupAgro, TA-A54/K, Campus International de Baillarguet, 34394 Montpellier Cedex 05, France
| |
Collapse
|
22
|
Effect of elevated CO 2 and O 3 on phytohormone-mediated plant resistance to vector insects and insect-borne plant viruses. SCIENCE CHINA-LIFE SCIENCES 2017; 60:816-825. [PMID: 28785951 DOI: 10.1007/s11427-017-9126-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/01/2017] [Indexed: 10/19/2022]
Abstract
Climatic variations are becoming important limiting factors for agriculture productivity, as they not only directly affect the plant net primary productivity but can also modulate the outbreak of plant diseases and pests. Elevated CO2 and O3 are two important climatic factors that have been widely studied before. Elevated CO2 or O3 alters the host plant physiology and affects the vector insects and plant viruses via bottom-up effects of the host plants. Many studies have shown that elevated CO2 or O3 decreases the plant nitrogen content, which modulates the characteristics of vector insects. Recent evidence also reveals that hormone-dependent signaling pathways play a critical role in regulating the response of insects and plant viruses to elevated CO2 or O3. In the current review, we describe how elevated CO2 or O3 affects the vector insects and plant viruses by altering the SA and JA signaling pathways. We also discuss how changes in the feeding behavior of vector insects or the occurrence of plant viruses affects the interactions between vector insects and plant viruses under elevated CO2 or O3. We suggest that new insights into the upstream network that regulates hormone signaling and top-down effects of natural enemies would provide a comprehensive understanding of the complex interactions taking place under elevated CO2 or O3.
Collapse
|
23
|
Valenzuela I, Trebicki P, Powell KS, Vereijssen J, Norng S, Yen AL. Acizzia solanicola (Hemiptera: Psyllidae) probing behaviour on two Solanum spp. and implications for possible pathogen spread. PLoS One 2017; 12:e0178609. [PMID: 28575085 PMCID: PMC5456099 DOI: 10.1371/journal.pone.0178609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 05/16/2017] [Indexed: 11/19/2022] Open
Abstract
Piercing-sucking insects are vectors of plant pathogens, and an understanding of their feeding behaviour is crucial for studies on insect population dynamics and pathogen spread. This study examines probing behaviour of the eggplant psyllid, Acizzia solanicola (Hemiptera: Psyllidae), using the electrical penetration graph (EPG) technique, on two widespread and common hosts: eggplant (Solanum melongena) and tobacco bush (S. mauritianum). Six EPG waveforms were observed: waveform NP (non-probing phase), waveform C (pathway phase), G (feeding activities in xylem tissues), D (first contact with phloem tissues), E1 (salivation in the sieve elements) and E2 (ingestion from phloem tissues). Results showed that A. solanicola is predominantly a phloem feeder and time spent in salivation and ingestion phases (E1 and E2) differed between hosts. Feeding was enhanced on eggplant compared to tobacco bush which showed some degree of resistance, as evidenced by shorter periods of phloem ingestion, a higher propensity to return to the pathway phase once in the sieve elements and higher number of salivation events on tobacco bush. We discuss how prolonged phloem feeding could indicate the potential for A. solanicola to become an important pest of eggplant and potential pathogen vector.
Collapse
Affiliation(s)
- Isabel Valenzuela
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia
- * E-mail:
| | - Piotr Trebicki
- Agriculture Victoria, Horsham Centre, Horsham, Victoria, Australia
| | - Kevin S. Powell
- Agriculture Victoria, Rutherglen Centre, Rutherglen, Victoria, Australia
| | - Jessica Vereijssen
- The New Zealand Institute for Plant & Food Research Limited, Christchurch, New Zealand
| | - Sorn Norng
- Agriculture Victoria, Parkville Centre, Parkville, Victoria, Australia
| | - Alan L. Yen
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
24
|
Insect vector-mediated transmission of plant viruses. Virology 2015; 479-480:278-89. [DOI: 10.1016/j.virol.2015.03.026] [Citation(s) in RCA: 307] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 02/17/2015] [Accepted: 03/06/2015] [Indexed: 12/24/2022]
|
25
|
Hohn T. Plant pararetroviruses: interactions of cauliflower mosaic virus with plants and insects. Curr Opin Virol 2013; 3:629-38. [PMID: 24075119 DOI: 10.1016/j.coviro.2013.08.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/26/2013] [Accepted: 08/26/2013] [Indexed: 10/26/2022]
Abstract
Virion associated protein (VAP) binds to the icosahedral capsid of cauliflower mosaic virus (CaMV) - a plant pararetrovirus. The interactive coiled-coil domains of this protein can interact with the coiled-coils of either the movement protein or the aphid transmission factor, thereby mediating both cell-to-cell movement and aphid transmission. The host counters CaMV infection with two lines of defense: innate immunity and silencing. The viral protein 'transactivator/viroplasmin' (TAV) is recognized as an effector and either initiates the innate immunity reaction in a non-permissive host or interferes with it in a permissive host. As a silencing suppressor, TAV interferes with dicing of dsRNAs.
Collapse
Affiliation(s)
- Thomas Hohn
- Basel University, Botanical Institute, Basel, Switzerland.
| |
Collapse
|
26
|
Circulating virus load determines the size of bottlenecks in viral populations progressing within a host. PLoS Pathog 2012; 8:e1003009. [PMID: 23133389 PMCID: PMC3486874 DOI: 10.1371/journal.ppat.1003009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 09/19/2012] [Indexed: 01/07/2023] Open
Abstract
For any organism, population size, and fluctuations thereof, are of primary importance in determining the forces driving its evolution. This is particularly true for viruses--rapidly evolving entities that form populations with transient and explosive expansions alternating with phases of migration, resulting in strong population bottlenecks and associated founder effects that increase genetic drift. A typical illustration of this pattern is the progression of viral disease within a eukaryotic host, where such demographic fluctuations are a key factor in the emergence of new variants with altered virulence. Viruses initiate replication in one or only a few infection foci, then move through the vasculature to seed secondary infection sites and so invade distant organs and tissues. Founder effects during this within-host colonization might depend on the concentration of infectious units accumulating and circulating in the vasculature, as this represents the infection dose reaching new organs or "territories". Surprisingly, whether or not the easily measurable circulating (plasma) virus load directly drives the size of population bottlenecks during host colonization has not been documented in animal viruses, while in plants the virus load within the sap has never been estimated. Here, we address this important question by monitoring both the virus concentration flowing in host plant sap, and the number of viral genomes founding the population in each successive new leaf. Our results clearly indicate that the concentration of circulating viruses directly determines the size of bottlenecks, which hence controls founder effects and effective population size during disease progression within a host.
Collapse
|
27
|
Doumayrou J, Avellan A, Froissart R, Michalakis Y. An experimental test of the transmission-virulence trade-off hypothesis in a plant virus. Evolution 2012; 67:477-86. [PMID: 23356619 DOI: 10.1111/j.1558-5646.2012.01780.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The transmission-virulence trade-off hypothesis is one of the few adaptive explanations of virulence evolution, and assumes that there is an overall positive correlation between parasite transmission and virulence. The shape of the transmission-virulence relationship predicts whether virulence should evolve toward either a maximum or to an intermediate optimum. A positive correlation between each of these traits and within-host growth is often suggested to underlie the relationship between virulence and transmission. There are few experimental tests of this hypothesis; this study reports on the first empirical test on a plant pathogen. We infected Brassica rapa plants with nine natural isolates of Cauliflower mosaic virus and then estimated three traits: transmission, virulence, and within-host viral accumulation. As predicted by the trade-off hypothesis, we observed a positive correlation between transmission and virulence, suggestive of the existence of an intermediate optimum. We discovered the unexpected existence of two groups of within-host accumulation, differing by at least an order of magnitude. When accumulation groups were not accounted for, within-host accumulation was correlated neither to virulence nor transmission, although our results suggest that within each group these correlations exist.
Collapse
Affiliation(s)
- Juliette Doumayrou
- Laboratoire Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR 5290 CNRS-IRD-Université de Montpellier I-Université de Montpellier II, 911 avenue Agropolis, 34394 Montpellier, France
| | | | | | | |
Collapse
|
28
|
Mauck K, Bosque-Pérez NA, Eigenbrode SD, De Moraes CM, Mescher MC. Transmission mechanisms shape pathogen effects on host-vector interactions: evidence from plant viruses. Funct Ecol 2012. [DOI: 10.1111/j.1365-2435.2012.02026.x] [Citation(s) in RCA: 268] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Kerry Mauck
- Department of Entomology; The Pennsylvania State University; University Park; Pennsylvania; 16802; USA
| | - Nilsa A. Bosque-Pérez
- Department of Plant, Soil and Entomological Sciences; University of Idaho; Moscow; Idaho; 83844-2339; USA
| | - Sanford D. Eigenbrode
- Department of Plant, Soil and Entomological Sciences; University of Idaho; Moscow; Idaho; 83844-2339; USA
| | - Consuelo M. De Moraes
- Department of Entomology; The Pennsylvania State University; University Park; Pennsylvania; 16802; USA
| | - Mark C. Mescher
- Department of Entomology; The Pennsylvania State University; University Park; Pennsylvania; 16802; USA
| |
Collapse
|
29
|
Bak A, Irons SL, Martinière A, Blanc S, Drucker M. Host cell processes to accomplish mechanical and non-circulative virus transmission. PROTOPLASMA 2012; 249:529-39. [PMID: 21984344 DOI: 10.1007/s00709-011-0328-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 09/28/2011] [Indexed: 05/22/2023]
Abstract
Mechanical vector-less transmission of viruses, as well as vector-mediated non-circulative virus transmission, where the virus attaches only to the exterior of the vector during the passage to a new host, are apparently simple processes: the viruses are carried along with the wind, the food or by the vector to a new host. We discuss here, using the examples of the non-circulatively transmitted Cauliflower mosaic virus that binds to its aphid vector's exterior mouthparts, and that of the mechanically (during feeding activity) transmitted Autographa californica multicapsid nucleopolyhedrovirus, that transmission of these viruses is not so simple as previously thought. Rather, these viruses prepare their transmission carefully and long before the actual acquisition event. Host-virus interactions play a pivotal and specialised role in the future encounter with the vector or the new host. This ensures optimal propagation and enlarges the tremendous bottleneck transmission presents for viruses and other pathogens.
Collapse
Affiliation(s)
- Aurélie Bak
- INRA, Equipe CaGeTE, UMR BGPI Plant Pathogen Interactions, TA A54K Campus International de Baillarguet, 34398, Montpellier Cedex 5, France
| | | | | | | | | |
Collapse
|
30
|
Moreno A, Tjallingii WF, Fernandez-Mata G, Fereres A. Differences in the mechanism of inoculation between a semi-persistent and a non-persistent aphid-transmitted plant virus. J Gen Virol 2011; 93:662-667. [PMID: 22090212 DOI: 10.1099/vir.0.037887-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inoculation of the semi-persistent cauliflower mosaic virus (CaMV, genus Caulimovirus) is associated with successive brief (5-10 s) intracellular stylet punctures (pd) when aphids probe in epidermal and mesophyll cells. In contrast to non-persistent viruses, there is no evidence for which of the pd subphases (II-1, II-2 and II-3) is involved in the inoculation of CaMV. Experiments were conducted using the electrical penetration graph (EPG) technique to investigate which particular subphases of the pd are associated with the inoculation of CaMV to turnip by its aphid vector Brevicoryne brassicae. In addition, the same aphid species/test plant combination was used to compare the role of the pd subphases in the inoculation of the non-persistent turnip mosaic virus (TuMV, genus Potyvirus). Inoculation of TuMV was found to be related to subphase II-1, confirming earlier results, but CaMV inoculation appeared to be related exclusively to subphase II-2 instead. The mechanism of CaMV inoculation and the possible nature of subphase II-2 are discussed in the scope of our findings.
Collapse
Affiliation(s)
- Aranzazu Moreno
- Departamento de Protección Vegetal, Instituto de Ciencias Agrarias, CSIC, Serrano 115 Dpdo, 28006 Madrid, Spain
| | - W Freddy Tjallingii
- EPG systems, Dillenburg 12, 6703 CJ Wageningen, The Netherlands.,Laboratory of Entomology, Wageningen University, PO Box 8031, 6700 EH Wageningen, The Netherlands
| | - Gabriela Fernandez-Mata
- Departamento de Protección Vegetal, Instituto de Ciencias Agrarias, CSIC, Serrano 115 Dpdo, 28006 Madrid, Spain
| | - Alberto Fereres
- Departamento de Protección Vegetal, Instituto de Ciencias Agrarias, CSIC, Serrano 115 Dpdo, 28006 Madrid, Spain
| |
Collapse
|
31
|
A virus capsid component mediates virion retention and transmission by its insect vector. Proc Natl Acad Sci U S A 2011; 108:16777-82. [PMID: 21930903 DOI: 10.1073/pnas.1109384108] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Numerous pathogens of humans, animals, and plants are transmitted by specific arthropod vectors. However, understanding the mechanisms governing these pathogen-vector interactions is hampered, in part, by the lack of easy-to-use analytical tools. We investigated whitefly transmission of Lettuce infectious yellows virus (LIYV) by using a unique immunofluorescent localization approach in which we fed virions or recombinant virus capsid components to whiteflies, followed by feeding them antibodies to the virions or capsid components, respectively. Fluorescent signals, indicating the retention of virions, were localized in the anterior foregut or cibarium of a whitefly vector biotype but not within those of a whitefly nonvector biotype. Retention of virions in these locations strongly corresponded with the whitefly vector transmission of LIYV. When four recombinant LIYV capsid components were individually fed to whitefly vectors, significantly more whiteflies retained the recombinant minor coat protein (CPm). As demonstrated previously and in the present study, whitefly vectors failed to transmit virions preincubated with anti-CPm antibodies but transmitted virions preincubated with antibodies recognizing the major coat protein (CP). Correspondingly, the number of insects that specifically retained virions preincubated with anti-CPm antibodies were significantly reduced compared with those that specifically retained virions preincubated with anti-CP antibodies. Notably, a transmission-defective CPm mutant was deficient in specific virion retention, whereas the CPm-restored virus showed WT levels of specific virion retention and transmission. These data provide strong evidence that transmission of LIYV is determined by a CPm-mediated virion retention mechanism in the anterior foregut or cibarium of whitefly vectors.
Collapse
|
32
|
VAPA, an innovative "virus-acquisition phenotyping assay" opens new horizons in research into the vector-transmission of plant viruses. PLoS One 2011; 6:e23241. [PMID: 21853093 PMCID: PMC3154327 DOI: 10.1371/journal.pone.0023241] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 07/08/2011] [Indexed: 11/24/2022] Open
Abstract
Host-to-host transmission—a key step in plant virus infection cycles—is ensured predominantly by vectors, especially aphids and related insects. A deeper understanding of the mechanisms of virus acquisition, which is critical to vector-transmission, might help to design future virus control strategies, because any newly discovered molecular or cellular process is a potential target for hampering viral spread within host populations. With this aim in mind, an aphid membrane-feeding assay was developed where aphids transmitted two non-circulative viruses [cauliflower mosaic virus (CaMV) and turnip mosaic virus] from infected protoplasts. In this assay, virus acquisition occurs exclusively from living cells. Most interestingly, we also show that CaMV is less efficiently transmitted by aphids in the presence of oryzalin—a microtubule-depolymerising drug. The example presented here demonstrates that our technically simple “virus-acquisition phenotyping assay” (VAPA) provides a first opportunity to implement correlative studies relating the physiological state of infected plant cells to vector-transmission efficiency.
Collapse
|
33
|
Froissart R, Doumayrou J, Vuillaume F, Alizon S, Michalakis Y. The virulence-transmission trade-off in vector-borne plant viruses: a review of (non-)existing studies. Philos Trans R Soc Lond B Biol Sci 2010; 365:1907-18. [PMID: 20478886 PMCID: PMC2880117 DOI: 10.1098/rstb.2010.0068] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The adaptive hypothesis invoked to explain why parasites harm their hosts is known as the trade-off hypothesis, which states that increased parasite transmission comes at the cost of shorter infection duration. This correlation arises because both transmission and disease-induced mortality (i.e. virulence) are increasing functions of parasite within-host density. There is, however, a glaring lack of empirical data to support this hypothesis. Here, we review empirical investigations reporting to what extent within-host viral accumulation determines the transmission rate and the virulence of vector-borne plant viruses. Studies suggest that the correlation between within-plant viral accumulation and transmission rate of natural isolates is positive. Unfortunately, results on the correlation between viral accumulation and virulence are very scarce. We found only very few appropriate studies testing such a correlation, themselves limited by the fact that they use symptoms as a proxy for virulence and are based on very few viral genotypes. Overall, the available evidence does not allow us to confirm or refute the existence of a transmission-virulence trade-off for vector-borne plant viruses. We discuss the type of data that should be collected and how theoretical models can help us refine testable predictions of virulence evolution.
Collapse
Affiliation(s)
- R Froissart
- Laboratoire Génétique & évolution des maladies infectieuses (GEMI), UMR 2724 CNRS IRD, 911 avenue Agropolis, 34394 Montpellier, France.
| | | | | | | | | |
Collapse
|
34
|
Abstract
Plant viruses have evolved a wide array of strategies to ensure efficient transfer from one host to the next. Any organism feeding on infected plants and traveling between plants can potentially act as a virus transport device. Such organisms, designated vectors, are found among parasitic fungi, root nematodes and plant-feeding arthropods, particularly insects. Due to their extremely specialized feeding behavior - exploring and sampling all plant tissues, from the epidermis to the phloem and xylem - aphids are by far the most important vectors, transmitting nearly 30% of all plant virus species described to date. Several different interaction patterns have evolved between viruses and aphid vectors and, over the past century, a tremendous number of studies have provided details of the underlying mechanisms. This article presents an overview of the different types of virus-aphid relationships, state-of-the-art knowledge of the molecular processes underlying these interactions, and the remaining black boxes waiting to be opened in the near future.
Collapse
|
35
|
Quantitative estimation of plum pox virus targets acquired and transmitted by a single Myzus persicae. Arch Virol 2009; 154:1391-9. [PMID: 19597934 DOI: 10.1007/s00705-009-0450-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Accepted: 06/28/2009] [Indexed: 10/20/2022]
Abstract
The viral charge acquired and inoculated by single aphids in a non-circulative transmission is estimated using plum pox virus (PPV). A combination of electrical penetration graph and TaqMan real-time RT-PCR techniques was used to establish the average number of PPV RNA targets inoculated by an aphid in a single probe (26,750), approximately half of the acquired ones. This number of PPV targets is responsible for a systemic infection of 20% on the inoculated receptor plants. No significant differences were found between the number of PPV RNA targets acquired after one and after five intracellular punctures (pd), but the frequency of infected receptor plants was higher after 5 pd. The percentage of PPV-positive leaf discs after just 1 pd of inoculation probe (28%/4,603 targets) was lower than after 5 pd (45.8%/135 x 10(6) targets). The methodology employed could be easily extended to other virus-vector-host combinations to improve the accuracy of models used in virus epidemiology.
Collapse
|
36
|
Martinière A, Zancarini A, Drucker M. Aphid transmission of cauliflower mosaic virus: the role of the host plant. PLANT SIGNALING & BEHAVIOR 2009; 4:548-50. [PMID: 19816139 PMCID: PMC2688309 DOI: 10.4161/psb.4.6.8712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 04/10/2009] [Indexed: 05/21/2023]
Abstract
Transmission of plant viruses is the result of interactions between a given virus, the host plant and the vector. Most research has focused on molecular and cellular virus-vector interactions, and the host has only been regarded as a reservoir from which the virus is acquired by the vector more or less accidentally. However, a growing body of evidence suggests that the host can play a crucial role in transmission. Indeed, at least one virus, Cauliflower mosaic virus, exploits the host's cellular pathways to form specialized intracellular structures that optimize virus uptake by the vector and hence transmission.
Collapse
Affiliation(s)
- Alexandre Martinière
- Equipe CaGeTE, UMR 385 BGPI, INRA-CIRAD-SupAgro, Campus International de Baillarguet, Montpellier, France
| | | | | |
Collapse
|
37
|
Fereres A, Moreno A. Behavioural aspects influencing plant virus transmission by homopteran insects. Virus Res 2009; 141:158-68. [DOI: 10.1016/j.virusres.2008.10.020] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2008] [Indexed: 10/21/2022]
|
38
|
Martinière A, Gargani D, Uzest M, Lautredou N, Blanc S, Drucker M. A role for plant microtubules in the formation of transmission-specific inclusion bodies of Cauliflower mosaic virus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:135-146. [PMID: 19077170 DOI: 10.1111/j.1365-313x.2008.03768.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Interactions between microtubules and viruses play important roles in viral infection. The best-characterized examples involve transport of animal viruses by microtubules to the nucleus or other intracellular destinations. In plant viruses, most work to date has focused on interaction between viral movement proteins and the cytoskeleton, which is thought to be involved in viral cell-to-cell spread. We show here, in Cauliflower mosaic virus (CaMV)-infected plant cells, that viral electron-lucent inclusion bodies (ELIBs), whose only known function is vector transmission, require intact microtubules for their efficient formation. The kinetics of the formation of CaMV-related inclusion bodies in transfected protoplasts showed that ELIBs represent newly emerging structures, appearing at late stages of the intracellular viral life cycle. Viral proteins P2 and P3 are first produced in multiple electron-dense inclusion bodies, and are later specifically exported to transiently co-localize with microtubules, before concentrating in a single, massive ELIB in each infected cell. Treatments with cytoskeleton-affecting drugs suggested that P2 and P3 might be actively transported on microtubules, by as yet unknown motors. In addition to providing information on the intracellular life cycle of CaMV, our results show that specific interactions between host cell and virus may be dedicated to a later role in vector transmission. More generally, they indicate a new unexpected function for plant cell microtubules in the virus life cycle, demonstrating that microtubules act not only on immediate intracellular or intra-host phenomena, but also on processes ultimately controlling inter-host transmission.
Collapse
Affiliation(s)
- Alexandre Martinière
- Equipe CaGeTE, UMR 385 BGPI CIRAD-INRA-SupAgro, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Most phytoviruses rely on vectors for their spread and survival. Although a great variety of virus vectors have been described, there are relatively few different mechanisms mediating virus transmission by vectors: virions can either be internalized into vector cells where replication may or may not take place or they can simply be adsorbed on the vector's surface or cuticle. Virus transmission by vectors requires tight associations between viral proteins, generally capsid proteins, and vector compounds, usually referred to as receptors. This review will focus on the viral determinants involved in virus transmission. Only the best-known models for which molecular data are available are described.
Collapse
Affiliation(s)
- Véronique Ziegler-Graff
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, 12 Rue du Général Zimmer, Strasbourg, 67084, France
| | | |
Collapse
|
40
|
Khelifa M, Journou S, Krishnan K, Gargani D, Espérandieu P, Blanc S, Drucker M. Electron-lucent inclusion bodies are structures specialized for aphid transmission of cauliflower mosaic virus. J Gen Virol 2007; 88:2872-2880. [PMID: 17872542 DOI: 10.1099/vir.0.83009-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cauliflower mosaic virus (CaMV) is transmitted by aphids. For acquisition by the vector, a transmissible complex must form, composed of the virus particle, the viral coat-associated protein P3 and the helper protein P2. However, the components of the transmissible complex are largely separated in infected plant cells: most P3 virions are confined in electron-dense inclusion bodies, whereas P2 is sequestered in electron-lucent inclusion bodies (elIBs). This spatial separation controls virus acquisition by favouring the binding of virus-free P2 to the vector first, rendering the vector competent for later uptake of P3 virions. Consequently, sequential acquisition of virus from different cells or tissues is possible, with important implications for the biology of CaMV transmission. CaMV strains Campbell and CM1841 contain a single amino acid mutation (G94R) in the helper protein P2, rendering them non-transmissible from plant to plant. However, the mutant P2-94 protein supports aphid transmission when expressed heterologously and supplied to P3-CaMV complexes in vitro. The non-transmissibility of P2-94 was re-examined in vivo and it is shown here that the non-transmissibility of this P2 mutant is not due to low accumulation levels in infected plants, as suggested previously, but more specifically to the failure to form elIBs within infected plant cells. This demonstrates that elIBs are complex viral structures specialized for aphid transmission and suggests that viral inclusion bodies other than viral factories, most often considered as 'garbage cans', can in fact exhibit specific functions.
Collapse
Affiliation(s)
- Mounia Khelifa
- Equipe CaGeTE, UMR BGPI Interactions Plantes-Parasites (CIRAD-INRA-SupAgro), Bat. K (TA A 54K), Campus International de Baillarguet, 34 398 Montpellier Cedex 5, France
| | - Sandra Journou
- Equipe CaGeTE, UMR BGPI Interactions Plantes-Parasites (CIRAD-INRA-SupAgro), Bat. K (TA A 54K), Campus International de Baillarguet, 34 398 Montpellier Cedex 5, France
| | - Kalpana Krishnan
- Equipe CaGeTE, UMR BGPI Interactions Plantes-Parasites (CIRAD-INRA-SupAgro), Bat. K (TA A 54K), Campus International de Baillarguet, 34 398 Montpellier Cedex 5, France
| | - Daniel Gargani
- Equipe CaGeTE, UMR BGPI Interactions Plantes-Parasites (CIRAD-INRA-SupAgro), Bat. K (TA A 54K), Campus International de Baillarguet, 34 398 Montpellier Cedex 5, France
| | - Pascal Espérandieu
- Equipe CaGeTE, UMR BGPI Interactions Plantes-Parasites (CIRAD-INRA-SupAgro), Bat. K (TA A 54K), Campus International de Baillarguet, 34 398 Montpellier Cedex 5, France
| | - Stéphane Blanc
- Equipe CaGeTE, UMR BGPI Interactions Plantes-Parasites (CIRAD-INRA-SupAgro), Bat. K (TA A 54K), Campus International de Baillarguet, 34 398 Montpellier Cedex 5, France
| | - Martin Drucker
- Equipe CaGeTE, UMR BGPI Interactions Plantes-Parasites (CIRAD-INRA-SupAgro), Bat. K (TA A 54K), Campus International de Baillarguet, 34 398 Montpellier Cedex 5, France
| |
Collapse
|
41
|
A protein key to plant virus transmission at the tip of the insect vector stylet. Proc Natl Acad Sci U S A 2007; 104:17959-64. [PMID: 17962414 DOI: 10.1073/pnas.0706608104] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hundreds of species of plant viruses, many of them economically important, are transmitted by noncirculative vector transmission (acquisition by attachment of virions to vector mouthparts and inoculation by subsequent release), but virus receptors within the vector remain elusive. Here we report evidence for the existence, precise location, and chemical nature of the first receptor for a noncirculative virus, cauliflower mosaic virus, in its insect vector. Electron microscopy revealed virus-like particles in a previously undescribed anatomical zone at the extreme tip of the aphid maxillary stylets. A novel in vitro interaction assay characterized binding of cauliflower mosaic virus protein P2 (which mediates virus-vector interaction) to dissected aphid stylets. A P2-GFP fusion exclusively labeled a tiny cuticular domain located in the bottom-bed of the common food/salivary duct. No binding to stylets of a non-vector species was observed, and a point mutation abolishing P2 transmission activity correlated with impaired stylet binding. The novel receptor appears to be a nonglycosylated protein deeply embedded in the chitin matrix. Insight into such insect receptor molecules will begin to open the major black box of this scientific field and might lead to new strategies to combat viral spread.
Collapse
|
42
|
Herron CM, Mirkov TE, da Graça JV, Lee RF. Citrus tristeza virus transmission by the Toxoptera citricida vector: in vitro acquisition and transmission and infectivity immunoneutralization experiments. J Virol Methods 2006; 134:205-11. [PMID: 16490262 DOI: 10.1016/j.jviromet.2006.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 01/11/2006] [Accepted: 01/12/2006] [Indexed: 11/21/2022]
Abstract
Citrus tristeza virus (CTV) is transmitted by several aphid species in a semi-persistent manner with Toxoptera citricida, the brown citrus aphid (BrCA), being the most efficient. As yet, the molecular interactions between the virus and its aphid vectors have not been determined. This is the first report of aphids acquiring CTV from preparations through an artificial membrane and then transmitting it to receptor plants. The BrCA fed across artificial membranes on crude tissue preparations made from CTV-infected bark tissue were able to transmit CTV to virus-free receptor plants at low rates. CTV p20, p27 and p25 proteins, detected by Western blots, were present in all crude tissue preparations from CTV-infected plants. Partially purified CTV preparations were not transmitted by the BrCA in this manner. Infectivity immunoneutralization experiments were conducted where aphids were forced to feed in vitro on three CTV-specific antibodies (p25, p27 and p20) before being placed on receptor plants following a 48h acquisition feed on CTV-infected source plants. There were no differences in transmission rates among the majority of treatments and the control treatments. However, in one infectivity immunoneutralization experiment, the CTV p20 antibodies significantly enhanced CTV transmission compared to buffer only, pre-immune antiserum or no antibody control treatments. This suggests the inactivity of CTV p20 aids BrCA transmission of virions.
Collapse
Affiliation(s)
- C M Herron
- Texas A and M University-Kingsville Citrus Center, Weslaco, TX, USA
| | | | | | | |
Collapse
|
43
|
Ng JCK, Falk BW. Virus-vector interactions mediating nonpersistent and semipersistent transmission of plant viruses. ANNUAL REVIEW OF PHYTOPATHOLOGY 2006; 44:183-212. [PMID: 16602948 DOI: 10.1146/annurev.phyto.44.070505.143325] [Citation(s) in RCA: 242] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Most plant viruses are absolutely dependent on a vector for plant-to-plant spread. Although a number of different types of organisms are vectors for different plant viruses, phloem-feeding Hemipterans are the most common and transmit the great majority of plant viruses. The complex and specific interactions between Hemipteran vectors and the viruses they transmit have been studied intensely, and two general strategies, the capsid and helper strategies, are recognized. Both strategies are found for plant viruses that are transmitted by aphids in a nonpersistent manner. Evidence suggests that these strategies are found also for viruses transmitted in a semipersistent manner. Recent applications of molecular and cell biology techniques have helped to elucidate the mechanisms underlying the vector transmission of several plant viruses. This review examines the fundamental contributions and recent developments in this area.
Collapse
Affiliation(s)
- James C K Ng
- Department of Plant Pathology, University of California, Riverside, California 92521, USA.
| | | |
Collapse
|
44
|
Moreno A, Hébrard E, Uzest M, Blanc S, Fereres A. A single amino acid position in the helper component of cauliflower mosaic virus can change the spectrum of transmitting vector species. J Virol 2005; 79:13587-93. [PMID: 16227279 PMCID: PMC1262581 DOI: 10.1128/jvi.79.21.13587-13593.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viruses frequently use insect vectors to effect rapid spread through host populations. In plant viruses, vector transmission is the major mode of transmission, used by nearly 80% of species described to date. Despite the importance of this phenomenon in epidemiology, the specificity of the virus-vector relationship is poorly understood at both the molecular and the evolutionary level, and very limited data are available on the precise viral protein motifs that control specificity. Here, using the aphid-transmitted Cauliflower mosaic virus (CaMV) as a biological model, we confirm that the "noncirculative" mode of transmission dominant in plant viruses (designated "mechanical vector transmission" in animal viruses) involves extremely specific virus-vector recognition, and we identify an amino acid position in the "helper component" (HC) protein of CaMV involved in such recognition. Site-directed mutagenesis revealed that changing the residue at this position can differentially affect transmission rates obtained with various aphid species, thus modifying the spectrum of vector species for CaMV. Most interestingly, in a virus line transmitted by a single vector species, we observed the rapid appearance of a spontaneous mutant specifically losing its transmissibility by another aphid species. Hence, in addition to the first identification of an HC motif directly involved in specific vector recognition, we demonstrate that change of a virus to a different vector species requires only a single mutation and can occur rapidly and spontaneously.
Collapse
Affiliation(s)
- Aranzazu Moreno
- UMR Biologie et Génétique des Interactions Plantes-Parasites, CIRAD-INRA-ENSAM, TA 41/K, Campus International de Baillarguet, 34398 Montpellier cedex 05, France
| | | | | | | | | |
Collapse
|
45
|
Stenger DC, Hein GL, Gildow FE, Horken KM, French R. Plant virus HC-Pro is a determinant of eriophyid mite transmission. J Virol 2005; 79:9054-61. [PMID: 15994799 PMCID: PMC1168748 DOI: 10.1128/jvi.79.14.9054-9061.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Accepted: 03/25/2005] [Indexed: 11/20/2022] Open
Abstract
The eriophyid mite transmitted Wheat streak mosaic virus (WSMV; genus Tritimovirus, family Potyviridae) shares a common genome organization with aphid transmitted species of the genus Potyvirus. Although both tritimoviruses and potyviruses encode helper component-proteinase (HC-Pro) homologues (required for nonpersistent aphid transmission of potyviruses), sequence conservation is low (amino acid identity, approximately 16%), and a role for HC-Pro in semipersistent transmission of WSMV by the wheat curl mite (Aceria tosichella [Keifer]) has not been investigated. Wheat curl mite transmissibility was abolished by replacement of WSMV HC-Pro with homologues of an aphid transmitted potyvirus (Turnip mosaic virus), a rymovirus (Agropyron mosaic virus) vectored by a different eriophyid mite, or a closely related tritimovirus (Oat necrotic mottle virus; ONMV) with no known vector. In contrast, both WSMV-Sidney 81 and a chimeric WSMV genome bearing HC-Pro of a divergent strain (WSMV-El Batán 3; 86% amino acid sequence identity) were efficiently transmitted by A. tosichella. Replacing portions of WSMV-Sidney 81 HC-Pro with the corresponding regions from ONMV showed that determinants of wheat curl mite transmission map to the 5'-proximal half of HC-Pro. WSMV genomes bearing HC-Pro of heterologous species retained the ability to form virions, indicating that loss of vector transmissibility was not a result of failure to encapsidate. Although titer in systemically infected leaves was reduced for all chimeric genomes relative to WSMV-Sidney 81, titer was not correlated with loss of vector transmissibility. Collectively, these results demonstrate for the first time that HC-Pro is required for virus transmission by a vector other than aphids.
Collapse
Affiliation(s)
- Drake C Stenger
- United States Department of Agriculture-Agricultural Research Service and Department of Plant Pathology, 344 Keim Hall, University of Nebraska, Lincoln, NE 68583, USA.
| | | | | | | | | |
Collapse
|
46
|
Plisson C, Uzest M, Drucker M, Froissart R, Dumas C, Conway J, Thomas D, Blanc S, Bron P. Structure of the Mature P3-virus Particle Complex of Cauliflower Mosaic Virus Revealed by Cryo-electron Microscopy. J Mol Biol 2005; 346:267-77. [PMID: 15663943 DOI: 10.1016/j.jmb.2004.11.052] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 11/15/2004] [Accepted: 11/17/2004] [Indexed: 11/30/2022]
Abstract
The cauliflower mosaic virus (CaMV) has an icosahedral capsid composed of the viral protein P4. The viral product P3 is a multifunctional protein closely associated with the virus particle within host cells. The best-characterized function of P3 is its implication in CaMV plant-to-plant transmission by aphid vectors, involving a P3-virion complex. In this transmission process, the viral protein P2 attaches to virion-bound P3, and creates a molecular bridge between the virus and a putative receptor in the aphid's stylets. Recently, the virion-bound P3 has been suggested to participate in cell-to-cell or long-distance movement of CaMV within the host plant. Thus, as new data accumulate, the importance of the P3-virion complex during the virus life-cycle is becoming more and more evident. To provide a first insight into the knowledge of the transmission process of the virus, we determined the 3D structures of native and P3-decorated virions by cryo-electron microscopy and computer image processing. By difference mapping and biochemical analysis, we show that P3 forms a network around the capsomers and we propose a structural model for the binding of P3 to CaMV capsid in which its C terminus is anchored deeply in the inner shell of the virion, while the N-terminal extremity is facing out of the CaMV capsid, forming dimers by coiled-coil interactions. Our results combined with existing data reinforce the hypothesis that this coiled-coil N-terminal region of P3 could coordinate several functions during the virus life-cycle, such as cell-to-cell movement and aphid-transmission.
Collapse
Affiliation(s)
- Célia Plisson
- Université Rennes I, UMR 6026 CNRS, Campus de Beaulieu, 35042 Rennes, France
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
SUMMARY Aphids are the most common vector of plant viruses. Mechanisms of transmission are best understood by considering the routes of virus movement in the aphid (circulative versus non-circulative) and the sites of retention or target tissues (e.g. stylets, salivary glands). Capsid proteins are a primary, but not necessarily sole, viral determinant of transmission. A summary is presented of the taxonomic affiliations of the aphid transmitted viruses, including 8 families, 18 genera, and taxonomically unassigned viruses.
Collapse
Affiliation(s)
- James C K Ng
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
48
|
Seddas P, Boissinot S, Strub JM, Van Dorsselaer A, Van Regenmortel MHV, Pattus F. Rack-1, GAPDH3, and actin: proteins of Myzus persicae potentially involved in the transcytosis of beet western yellows virus particles in the aphid. Virology 2004; 325:399-412. [PMID: 15246278 DOI: 10.1016/j.virol.2004.05.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 04/09/2004] [Accepted: 05/11/2004] [Indexed: 10/26/2022]
Abstract
Beet western yellows virus (BWYV) is a Polerovirus that relies on the aphid Myzus persicae for its transmission, in a persistent-circulative mode. To be transmitted, the virus must cross the midgut and the accessory salivary glands (ASG) epithelial barriers in a transcytosis mechanism where vector receptors interact with virions. In this paper, we report in vitro interaction experiments between BWYV and aphid components. Using the M. persicae clone from Colmar, we showed that a set of aphid polypeptides, separated by SDS-PAGE or 2D electrophoresis (2DE), can bind in vitro to purified wild type or mutant particles. Using subcellular fractionation, we showed that the 65-kDa polypeptide identified as symbionin is a soluble protein whereas the other polypeptides seem to be associated more or less strongly to the membrane. We hypothesize that three polypeptides, identified by mass spectrometry as Rack-1, GAPDH3, and actin, may be involved in the epithelial transcytosis of virus particles in the aphid vector.
Collapse
Affiliation(s)
- Pascale Seddas
- Unité de Recherche Biologie des Interactions Virus/vecteurs, Institut National de la Recherche Agronomique, 68021 Colmar cedex, France.
| | | | | | | | | | | |
Collapse
|