1
|
Musa M, Bale BI, Suleman A, Aluyi-Osa G, Chukwuyem E, D’Esposito F, Gagliano C, Longo A, Russo A, Zeppieri M. Possible viral agents to consider in the differential diagnosis of blepharoconjunctivitis. World J Virol 2024; 13:97867. [DOI: 10.5501/wjv.v13.i4.97867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Blepharoconjunctivitis poses a diagnostic challenge due to its diverse etiology, including viral infections. Blepharoconjunctivits can be acute or chronic, self-limiting, or needing medical therapy.
AIM To review possible viral agents crucial for accurate differential diagnosis in cases of blepharoconjunctivitis.
METHODS The PubMed database was searched for records relating to viral blepharoconjunctivitis. The search string generated was “("virally"[All Fields] OR "virals"[All Fields] OR "virology"[MeSH Terms] OR "virology"[All Fields] OR "viral"[All Fields]) AND "Blepharoconjunctivitis"[All Fields]".
RESULTS A total of 24 publications were generated from the search string. Reference lists from each relevant article were also searched for more information and included in this review. Viral etiologies such as adenovirus, herpes simplex virus (HSV), varicella-zoster virus (VZV), and Epstein-Barr virus (EBV) are frequently implicated. Adenoviral infections manifest with follicular conjunctivitis and preauricular lymphadenopathy, often presenting as epidemic keratoconjunctivitis. HSV and VZV infections can result in herpetic keratitis and may exhibit characteristic dendritic corneal ulcers. EBV, although less common, can cause unilateral or bilateral follicular conjunctivitis, particularly in immunocompromised individuals. Other potential viral agents, such as enteroviruses and molluscum contagiosum virus, should also be considered, especially in pediatric cases.
CONCLUSION Prompt recognition of these viral etiologies is essential for appropriate management and prevention of complications. Thus, a thorough understanding of the clinical presentation, epidemiology, and diagnostic modalities is crucial for accurate identification and management of viral blepharoconjunctivitis.
Collapse
Affiliation(s)
- Mutali Musa
- Department of Optometry, University of Benin, Benin 300283, Nigeria
- Department of Ophthalmology, Africa Eye Laser Centre Ltd, Benin 300105, Nigeria
- Department of Ophthalmology, Centre for Sight Africa Ltd, Nkpor 434212, Nigeria
| | | | - Ayuba Suleman
- Department of Ophthalmology, Africa Eye Laser Centre Ltd, Benin 300105, Nigeria
| | - Gladness Aluyi-Osa
- Department of Ophthalmology, Africa Eye Laser Centre Ltd, Benin 300105, Nigeria
| | - Ekele Chukwuyem
- Department of Ophthalmology, Centre for Sight Africa Ltd, Nkpor 434212, Nigeria
| | - Fabiana D’Esposito
- Imperial College Ophthalmic Research Group Unit, Imperial College, London NW1 5QH, United Kingdom
- GENOFTA srl, Via A. Balsamo, 93, Naples 80065, Italy
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna "Kore", Catania 94100, Italy
- Eye Clinic, Catania University San Marco Hospital, Catania 95121, Italy
| | - Antonio Longo
- Department of Ophthalmology, University Hospital of Catania, Catania 95123, Italy
| | - Andrea Russo
- Department of Ophthalmology, University Hospital of Catania, Catania 95123, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| |
Collapse
|
2
|
Armstrong S, Arroyo M, Decker-Pulice K, Lane M, Mckinney M, Molesworth-Kenyon SJ. IL-1α Modulates IFN-γ-Induced Production of CXCL9/MIG during Herpes Simplex Virus Type-1 Corneal Infection. Curr Eye Res 2020; 46:309-317. [PMID: 32730721 DOI: 10.1080/02713683.2020.1803921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Investigating the modulation of neutrophil production of MIG and IP-10 during the inflammatory response to HSV-1 infection. MATERIALS AND METHODS An ex vivo model of human corneal infection by HSV-1 was used for this study. This model permits the study of cytokine production by human corneal buttons in the presence, or absence, of gradient purified human neutrophils, under conditions of HSV-1 infection. All experimental samples were stimulated with a baseline concentration of recombinant human IFN-γ at 1 ng/mL. The relative levels of production for 12 pro-inflammatory mediators were screened using a multi-analyte ELISA assay. Neutrophil production of chemokines MIG and IP-10, under conditions of IFN-γ and/or HSV-1 stimulation were measured by quantitative ELISA. Lastly, antibody neutralization (goat IgG anti-human IL-1α, 2 µg/mL) of de novo production of IL-1α by corneal tissue was performed to investigated the effect on MIG and IP-10 production in the ex vivo model for HSV-1 infection. RESULTS Four of the 12 pro-inflammatory mediators screened (IL-8, IL-6, IL-1α and IL-1β) demonstrated elevated levels of production during corneal cell infection with HSV-1 and communication with neutrophils. Neutrophils were demonstrated to produce significant levels of both MIG and IP-10 under conditions of IFN-γ stimulation, and production of MIG was further upregulated by co-stimulation with IFN-γ and HSV-1. Neutralization of de novo IL-1α production in the model resulted in increased production of the chemokine production MIG but had no observable effect on IP-10 production. CONCLUSIONS Our data provide evidence demonstrating the potential for expression patterns of MIG and IP-10 to be modulated by IL-1α, during the inflammatory response to HSV-1 corneal infection. Both corneal cells and neutrophils contribute to the production of T cell recruiting chemokines. However, IL-1α has the potential to upregulate MIG production by corneal cells while down-regulating MIG production by neutrophils.
Collapse
Affiliation(s)
- S Armstrong
- Department of Biology, University of West Georgia , Carrollton, GA, USA
| | - M Arroyo
- Department of Biology, University of West Georgia , Carrollton, GA, USA
| | - K Decker-Pulice
- Department of Biology, University of West Georgia , Carrollton, GA, USA
| | - M Lane
- Department of Biology, University of West Georgia , Carrollton, GA, USA
| | - M Mckinney
- Department of Biology, University of West Georgia , Carrollton, GA, USA
| | | |
Collapse
|
3
|
Coulon PG, Dhanushkodi N, Prakash S, Srivastava R, Roy S, Alomari NI, Nguyen AM, Warsi WR, Ye C, Carlos-Cruz EA, Mai UT, Cruel AC, Ekmekciyan KM, Pearlman E, BenMohamed L. NLRP3, NLRP12, and IFI16 Inflammasomes Induction and Caspase-1 Activation Triggered by Virulent HSV-1 Strains Are Associated With Severe Corneal Inflammatory Herpetic Disease. Front Immunol 2019; 10:1631. [PMID: 31367214 PMCID: PMC6644090 DOI: 10.3389/fimmu.2019.01631] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/01/2019] [Indexed: 12/15/2022] Open
Abstract
The crosstalk between the host's inflammasome system and the invading virulent/less-virulent viruses determines the outcome of the ensuing inflammatory response. An appropriate activation of inflammasomes triggers antiviral inflammatory responses that clear the virus and heal the inflamed tissue. However, an aberrant activation of inflammasomes can result in a harmful and overwhelming inflammation that could damage the infected tissue. The underlying host's immune mechanisms and the viral virulent factors that impact severe clinical inflammatory disease remain to be fully elucidated. In this study, we used herpes simplex virus type 1 (HSV-1), the causative agent of corneal inflammatory herpetic disease, as a model pathogen to determine: (i) Whether and how the virulence of a virus affects the type and the activation level of the inflammasomes; and (ii) How triggering specific inflammasomes translates into protective or damaging inflammatory response. We showed that, in contrast to the less-virulent HSV-1 strains (RE, F, KOS, and KOS63), corneal infection of B6 mice with the virulent HSV-1 strains (McKrae, 17 or KOS79): (i) Induced simultaneous expression of the NLRP3, NLRP12, and IFI16 inflammasomes; (ii) Increased production of the biologically active Caspase-1 and pro-inflammatory cytokines IL-1β and IL-18; (iii) Heightened recruitment into the inflamed cornea of CD45highLy6C+Ly6G-F4/80+CD11b+CD11c- inflammatory monocytes and CD45highCD11b+F4/80-Ly6GhiLy6Cmed neutrophils; and (iv) This intensified inflammatory response was associated with a severe corneal herpetic disease, irrespective of the level of virus replication in the cornea. Similarly, in vitro infection of human corneal epithelial cells and human monocytic THP-1 cells with the virulent HSV-1 strains triggered a synchronized early expression of NLRP3, NLRP12 and IFI16, 2 h post-infection, associated with formation of single and dense specks of the adapter molecule ASC in HSV(+) cells, but not in the neighboring bystander HSV(-) cells. This was associated with increased cleavages of Caspase-1, IL-1β, and IL-18. These findings suggest a previously unappreciated role of viral virulence in a synchronized early induction of the NLRP3, NLRP12, and IFI16 inflammasomes that lead to a damaging inflammatory response. A potential role of common virus virulent factors that stimulate this harmful inflammatory corneal disease is currently under investigation.
Collapse
Affiliation(s)
- Pierre-Gregoire Coulon
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
| | - Nisha Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
| | - Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
| | - Soumyabrata Roy
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
| | - Nuha I. Alomari
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
| | - Angela M. Nguyen
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
| | - Wasay R. Warsi
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
| | - Caitlin Ye
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
| | - Edgar A. Carlos-Cruz
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
| | - Uyen T. Mai
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
| | - Audrey C. Cruel
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
| | - Keysi M. Ekmekciyan
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
| | - Eric Pearlman
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
- School of Medicine, Institute for Immunology, University of California, Irvine, Irvine, CA, United States
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
- School of Medicine, Institute for Immunology, University of California, Irvine, Irvine, CA, United States
- Department of Molecular Biology and Biochemistry, School of Medicine, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
4
|
Koujah L, Suryawanshi RK, Shukla D. Pathological processes activated by herpes simplex virus-1 (HSV-1) infection in the cornea. Cell Mol Life Sci 2019; 76:405-419. [PMID: 30327839 PMCID: PMC6349487 DOI: 10.1007/s00018-018-2938-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/03/2018] [Accepted: 10/08/2018] [Indexed: 12/13/2022]
Abstract
Herpes simplex virus type-1 (HSV-1) is a ubiquitous pathogen that infects a large majority of the human population worldwide. It is also a leading cause of infection-related blindness in the developed world. HSV-1 infection of the cornea begins with viral entry into resident cells via a multistep process that involves interaction of viral glycoproteins and host cell surface receptors. Once inside, HSV-1 infection induces a chronic immune-inflammatory response resulting in corneal scarring, thinning and neovascularization. This leads to development of various ocular diseases such as herpes stromal keratitis, resulting in visual impairment and eventual blindness. HSV-1 can also invade the central nervous system and lead to encephalitis, a relatively common cause of sporadic fetal encephalitis worldwide. In this review, we discuss the pathological processes activated by corneal HSV-1 infection and existing antiviral therapies as well as novel therapeutic options currently under development.
Collapse
Affiliation(s)
- Lulia Koujah
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St, Chicago, IL, 60612, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Rahul K Suryawanshi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St, Chicago, IL, 60612, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St, Chicago, IL, 60612, USA.
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
5
|
Drevets P, Chucair-Elliott A, Shrestha P, Jinkins J, Karamichos D, Carr DJJ. The use of human cornea organotypic cultures to study herpes simplex virus type 1 (HSV-1)-induced inflammation. Graefes Arch Clin Exp Ophthalmol 2015; 253:1721-8. [PMID: 26047535 DOI: 10.1007/s00417-015-3073-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/11/2015] [Accepted: 05/21/2015] [Indexed: 10/23/2022] Open
Abstract
PURPOSE To determine the utility of human organotypic cornea cultures as a model to study herpes simplex virus type 1 (HSV-1)-induced inflammation and neovascularization. METHODS Human organotypic cornea cultures were established from corneas with an intact limbus that were retrieved from donated whole globes. One cornea culture was infected with HSV-1 (10(4) plaque-forming units), while the other cornea from the same donor was mock-infected. Supernatants were collected at intervals post-culture with and without infection to determine viral titer (by plaque assay) and pro-angiogenic and proinflammatory cytokine concentration by suspension array analysis. In some experiments, the cultured corneas were collected and evaluated for HSV-1 antigens by immunohistochemical means. Another set of experiments measured susceptibility of human three-dimensional cornea fibroblast constructs, in the presence and absence of TGF-β1, to HSV-1 infection in terms of viral replication and the inflammatory response to infection as a comparison to the organotypic cornea cultures. RESULTS Organotypic cornea cultures and three-dimensional fibroblast constructs exhibited varying degrees of susceptibility to HSV-1. Fibroblast constructs were more susceptible to infection in terms of infectious virus recovered in a shorter period of time. There were changes in the levels of select pro-angiogenic or proinflammatory cytokines that were dictated as much by the cultures producing them as by whether they were infected with HSV-1 or treated with TGF-β1. CONCLUSION Organotypic cornea and three-dimensional fibroblast cultures are likely useful for the identification and short-term study of novel antiviral compounds and virus replication, but are limited in the study of the local immune response to infection.
Collapse
Affiliation(s)
- Peter Drevets
- Department of Ophthalmology, Dean A. McGee Eye Institute, Acers Pavilion, 415A, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., Oklahoma City, OK, 73104, USA
| | - Ana Chucair-Elliott
- Department of Ophthalmology, Dean A. McGee Eye Institute, Acers Pavilion, 415A, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., Oklahoma City, OK, 73104, USA
| | - Priyadarsini Shrestha
- Department of Ophthalmology, Dean A. McGee Eye Institute, Acers Pavilion, 415A, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., Oklahoma City, OK, 73104, USA
| | - Jeremy Jinkins
- Department of Ophthalmology, Dean A. McGee Eye Institute, Acers Pavilion, 415A, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., Oklahoma City, OK, 73104, USA
| | - Dimitrios Karamichos
- Department of Ophthalmology, Dean A. McGee Eye Institute, Acers Pavilion, 415A, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., Oklahoma City, OK, 73104, USA.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Daniel J J Carr
- Department of Ophthalmology, Dean A. McGee Eye Institute, Acers Pavilion, 415A, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., Oklahoma City, OK, 73104, USA. .,Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
6
|
Animal models of herpes simplex virus immunity and pathogenesis. J Neurovirol 2014; 21:8-23. [PMID: 25388226 DOI: 10.1007/s13365-014-0302-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/07/2014] [Accepted: 10/27/2014] [Indexed: 12/20/2022]
Abstract
Herpes simplex viruses are ubiquitous human pathogens represented by two distinct serotypes: herpes simplex virus (HSV) type 1 (HSV-1); and HSV type 2 (HSV-2). In the general population, adult seropositivity rates approach 90% for HSV-1 and 20-25% for HSV-2. These viruses cause significant morbidity, primarily as mucosal membrane lesions in the form of facial cold sores and genital ulcers, with much less common but more severe manifestations causing death from encephalitis. HSV infections in humans are difficult to study in many cases because many primary infections are asymptomatic. Moreover, the neurotropic properties of HSV make it much more difficult to study the immune mechanisms controlling reactivation of latent infection within the corresponding sensory ganglia and crossover into the central nervous system of infected humans. This is because samples from the nervous system can only be routinely obtained at the time of autopsy. Thus, animal models have been developed whose use has led to a better understanding of multiple aspects of HSV biology, molecular biology, pathogenesis, disease, and immunity. The course of HSV infection in a spectrum of animal models depends on important experimental parameters including animal species, age, and genotype; route of infection; and viral serotype, strain, and dose. This review summarizes the animal models most commonly used to study HSV pathogenesis and its establishment, maintenance, and reactivation from latency. It focuses particularly on the immune response to HSV during acute primary infection and the initial invasion of the ganglion with comparisons to the events governing maintenance of viral latency.
Collapse
|
7
|
Molesworth-Kenyon SJ, Milam A, Rockette A, Troupe A, Oakes JE, Lausch RN. Expression, Inducers and Cellular Sources of the Chemokine MIG (CXCL 9), During Primary Herpes Simplex Virus Type-1 Infection of the Cornea. Curr Eye Res 2014; 40:800-8. [PMID: 25207638 DOI: 10.3109/02713683.2014.957779] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To investigate the production of monokine induced by gamma-interferon (MIG) during a primary Herpes simplex virus type 1 (HSV-1) infection of the cornea. We hypothesize that multiple CXCR3 ligands are involved in T cell recruitment during HSV-1 corneal infection and that neutrophils have the potential to contribute to their production. MATERIALS AND METHODS Levels of MIG were evaluated in an in vivo murine model of HSV-1 corneal infection by quantitative ELISA. Cultured murine corneal fibroblast (MCF) cells and purified neutrophils were stimulated in vitro with IFN-γ and IL-1α to determine inducers of MIG. Cellular sources of MIG production in vivo were investigated via cellular depletion studies. Additionally, MIG production resulting from interaction between resident human corneal cells and neutrophils was evaluated in an ex vivo model of human corneal infection. RESULTS MIG was significantly elevated on days 2-6 and on day 8 following corneal infection. MCF and neutrophils secreted MIG in response to IFN-γ, but not IL-1α stimulation. Co-stimulation with IFN-γ and IL-1α induced a four-fold increase in MIG production by MCF. However, the same combination led to a three-fold decrease in MIG production by neutrophils. In vivo, a 52% reduction in MIG levels was observed in the neutrophil depleted host. In the human ex vivo model, MIG levels were significantly elevated in response to communication between HSV-1 infected corneal tissue and neutrophils. CONCLUSIONS Here, we report the evidence for the production of MIG, a second CXCR3 ligand, during the primary immune response to HSV-1 corneal infection. Our results support the hypothesis that both neutrophils and resident corneal cells contribute to MIG production in vivo. However, neutrophils produce MIG in response to communication with HSV-1-infected resident corneal cells more efficiently than by direct interaction with virus. In addition, we found that MIG production by neutrophils and resident corneal cells was differentially regulated by IL-1α.
Collapse
|
8
|
Altered expression of cytokines in mice infected intranasally with two syncytial variants of Herpes simplex virus type 1. Microb Pathog 2014; 71-72:68-72. [PMID: 24768928 DOI: 10.1016/j.micpath.2014.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 04/11/2014] [Accepted: 04/15/2014] [Indexed: 11/22/2022]
Abstract
Immune evasion strategies are important for the onset and the maintenance of viral infections. Many viruses have evolved mechanisms to counteract or suppress the host immune response. We have previously characterized two syncytial (syn) variants of Herpes simplex 1 (HSV-1) strain F, syn14-1 and syn17-2, obtained by selective pressure with a natural carrageenan. These variants showed a differential pathology in vaginal and respiratory mucosa infection in comparison with parental strain. In this paper, we evaluated the modulation of immune response in respiratory mucosa by these HSV-1 variants. We observed altered levels of Tumor Necrosis Factor-α and Interleukin-6 in lungs of animals infected with the syn14-1 and syn17-2 variants compared with the parental strain. Also, we detected differences in the recruitment of immune cells to the lung in syn variants infected mice. Both variants exhibit one point mutation in the sequence of the gene of glycoprotein D detected in the ectodomain of syn14-1 and the cytoplasmic tail of syn17-2. Results obtained in the present study contribute to the characterization of HSV-1 syn variants and the participation of the cellular inflammatory response in viral pathogenesis.
Collapse
|
9
|
Zhao G, Chen H, Song Z, Yin H, Xu Y, Chen M. Glial fibrillary acidic protein expression during HSV-1 infection in mouse cornea. APMIS 2013; 122:128-35. [PMID: 23758602 DOI: 10.1111/apm.12118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 04/02/2013] [Indexed: 01/17/2023]
Abstract
This study aimed to investigate the dynamic expression of glial fibrillary acidic protein (GFAP), a common neural factor, in cornea and stromal cells during herpes simplex virus-1 (HSV-1) infection. For each anesthetized BALB/c mouse, the cornea in one eye was inoculated with 1 × 10(5) plaque forming unit (PFU) of HSV-1, while the contralateral cornea was mock-infected as the control. At different timepoints post-infection, corneal lesion examination by slit-lamp biomicroscopy, corneal histology and HSV-1 DNA detection by real-time PCR were performed to estimate the different stage of HSV-1 infection. The expression of GFAP was examined using real-time PCR, western blotting and immunofluorescence staining. After infected with HSV-1 for 15 days, the mouse corneas began to become clear, the corneal pathology recovered to normal, and HSV-1 DNA almost could not be detected, indicating that HSV-1 was entering a relative quiescent state from the acute infection. The expression of GFAP in HSV-1-infected corneas was comparatively low on day 3, increased slightly on day 7, and further increased thereafter, higher than that in mock-infected corneas on day 15. GFAP detection on the cellular level also indicated that the expression was downregulated in acute HSV-1 infection. GFAP was found to be downregulated in HSV-1 acute infection in cornea and upregulated in late stage, suggesting that GFAP might play some role during HSV-1 infection in cornea.
Collapse
Affiliation(s)
- Ge Zhao
- Shandong Provincial Key Laboratory of Ophthalmology, Shandong Provincial Excellent Innovation Team Program, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | | | | | | | | | | |
Collapse
|
10
|
Ghasemi H, Ghazanfari T, Yaraee R, Owlia P, Hassan ZM, Faghihzadeh S. Roles of IL-10 in ocular inflammations: a review. Ocul Immunol Inflamm 2012; 20:406-18. [PMID: 23163602 DOI: 10.3109/09273948.2012.723109] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION This review represents the current in vitro, in vivo, animal and human investigations on the roles of IL-10 in ocular inflammatory conditions. MATERIALS AND METHODS The data sources were literature reviews, including Pub Med, Medline, and ISI databases (since 1989 to mid-2012). Search items were, IL-10, chemokines, cytokines, alone or in combination with, serum, aqueous, vitreous eye, ocular, ocular tissues, ophthalmic, and review. RESULTS Ocular effects of IL-10 depend on the sources of the secretion and sites of the action. IL-10 plays important anti-inflammatory and especially anti-angiogenic activities in ocular tissues such as the conjunctiva, cornea, retina, choroid, and orbit. CONCLUSION IL-10 plays major anti-inflammatory and anti-angiogenic roles in most of the ocular inflammations. Also, IL-10 plays a role in development of anterior chamber-associated immune deviation (ACAID). Any manipulation of IL-10 for treatment purposes should be considered very cautiously due to its potential hazards to the immune system.
Collapse
Affiliation(s)
- Hassan Ghasemi
- Department of Ophthalmology, Shahed University, Tehran, Iran.
| | | | | | | | | | | |
Collapse
|
11
|
HSV-1 miR-H6 inhibits HSV-1 replication and IL-6 expression in human corneal epithelial cells in vitro. Clin Dev Immunol 2012; 2012:192791. [PMID: 22550533 PMCID: PMC3329371 DOI: 10.1155/2012/192791] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Accepted: 02/01/2012] [Indexed: 11/17/2022]
Abstract
HSV-1 infection in the cornea could lead to blindness. The infected cell polypeptide 4 (ICP4) of herpes simplex virus 1 (HSV-1) is a regulator of viral transcription that is required for productive infection. It has been previously demonstrated that miR-H6 encoded from HSV-1 genome targets ICP4 to help maintain latency. In this study, synthesized miR-H6 mimics were transfected into HSV-1-infected human cornea epithelial (HCE) cells. The inhibition of HSV-1 replication and viral ICP4 expression in miR-H6-transfected HCE was confirmed by plaque assay, immunofluorescence, and Western blot. Compared to nontransfection or mock, miR-H6 produced a low-titer HSV-1 and weak ICP4 expression. In addition, miR-H6 can decrease the interleukin 6 released into the medium, which was determined by ELISA. Taken together, the data suggests that miR-H6 targeting of ICP4 inhibits HSV-1 productive infection and decreases interleukin 6 production in HCE, and this may provide an approach to prevent HSV-1 lytic infection and inhibit corneal inflammation.
Collapse
|
12
|
Resident Corneal Cells Communicate with Neutrophils Leading to the Production of IP-10 during the Primary Inflammatory Response to HSV-1 Infection. Int J Inflam 2012; 2012:810359. [PMID: 22518343 PMCID: PMC3317199 DOI: 10.1155/2012/810359] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/28/2011] [Accepted: 12/19/2011] [Indexed: 01/17/2023] Open
Abstract
In this study we show that murine and human neutrophils are capable of secreting IP-10 in response to communication from the HSV-1 infected cornea and that they do so in a time frame associated with the recruitment of CD8+ T cells and CXCR3-expressing cells. Cellular markers were used to establish that neutrophil influx corresponded in time to peak IP-10 production, and cellular depletion confirmed neutrophils to be a significant source of IP-10 during HSV-1 corneal infection in mice. A novel ex vivo model for human corneal tissue infection with HSV-1 was used to confirm that cells resident in the cornea are also capable of stimulating neutrophils to secrete IP-10. Our results support the hypothesis that neutrophils play a key role in T-cell recruitment and control of viral replication during HSV-1 corneal infection through the production of the T-cell recruiting chemokine IP-10.
Collapse
|
13
|
Of mice and not humans: how reliable are animal models for evaluation of herpes CD8(+)-T cell-epitopes-based immunotherapeutic vaccine candidates? Vaccine 2011; 29:5824-36. [PMID: 21718746 DOI: 10.1016/j.vaccine.2011.06.083] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/09/2011] [Accepted: 06/14/2011] [Indexed: 11/23/2022]
Abstract
Herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2)-specific CD8(+) T cells that reside in sensory ganglia, appear to control recurrent herpetic disease by aborting or reducing spontaneous and sporadic reactivations of latent virus. A reliable animal model is the ultimate key factor to test the efficacy of therapeutic vaccines that boost the level and the quality of sensory ganglia-resident CD8(+) T cells against spontaneous herpes reactivation from sensory neurons, yet its relevance has been often overlooked. Herpes vaccinologists are hesitant about using mouse as a model in pre-clinical development of therapeutic vaccines because they do not adequately mimic spontaneous viral shedding or recurrent symptomatic diseases, as occurs in human. Alternatives to mouse models are rabbits and guinea pigs in which reactivation arise spontaneously with clinical herpetic features relevant to human disease. However, while rabbits and guinea pigs develop spontaneous HSV reactivation and recurrent ocular and genital disease none of them can mount CD8(+) T cell responses specific to Human Leukocyte Antigen- (HLA-)restricted epitopes. In this review, we discuss the advantages and limitations of these animal models and describe a novel "humanized" HLA transgenic rabbit, which shows spontaneous HSV-1 reactivation, recurrent ocular disease and mounts CD8(+) T cell responses to HLA-restricted epitopes. Adequate investments are needed to develop reliable preclinical animal models, such as HLA class I and class II double transgenic rabbits and guinea pigs to balance the ethical and financial concerns associated with the rising number of unsuccessful clinical trials for therapeutic vaccine formulations tested in unreliable mouse models.
Collapse
|
14
|
Gr-1+ cells, but not neutrophils, limit virus replication and lesion development following flank infection of mice with herpes simplex virus type-1. Virology 2010; 407:143-51. [DOI: 10.1016/j.virol.2010.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 06/08/2010] [Accepted: 08/02/2010] [Indexed: 12/19/2022]
|
15
|
Wojtasiak M, Pickett DL, Tate MD, Londrigan SL, Bedoui S, Brooks AG, Reading PC. Depletion of Gr-1+, but not Ly6G+, immune cells exacerbates virus replication and disease in an intranasal model of herpes simplex virus type 1 infection. J Gen Virol 2010; 91:2158-66. [DOI: 10.1099/vir.0.021915-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
16
|
Chentoufi AA, Dasgupta G, Christensen ND, Hu J, Choudhury ZS, Azeem A, Jester JV, Nesburn AB, Wechsler SL, BenMohamed L. A novel HLA (HLA-A*0201) transgenic rabbit model for preclinical evaluation of human CD8+ T cell epitope-based vaccines against ocular herpes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:2561-71. [PMID: 20124097 PMCID: PMC3752373 DOI: 10.4049/jimmunol.0902322] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We introduced a novel humanized HLA-A*0201 transgenic (HLA Tg) rabbit model to assess the protective efficacy of a human CD8(+) T cell epitope-based vaccine against primary ocular herpes infection and disease. Each of the three immunodominant human CD8(+) T cell peptide epitopes from HSV-1 glycoprotein D (gD(53-61), gD(70-78), and gD(278-286)) were joined with a promiscuous human CD4(+) T cell peptide epitope (gD(49-82)) to construct three separate pairs of CD4-CD8 peptides. Each CD4-CD8 peptide pair was then covalently linked to an N(epsilon)-palmitoyl-lysine residue via a functional base lysine amino group to construct CD4-CD8 lipopeptides. HLA Tg rabbits were immunized s.c. with a mixture of the three CD4-CD8 HSV-1 gD lipopeptides. The HSV-gD-specific T cell responses induced by the mixture of CD4-CD8 lipopeptide vaccine and the protective efficacy against acute virus replication and ocular disease were determined. Immunization induced HSV-gD(49-82)-specific CD4(+) T cells in draining lymph node (DLN); induced HLA-restricted HSV-gD(53-61), gD(70-78), and gD(278-286)-specific CD8(+) T cells in DLN, conjunctiva, and trigeminal ganglia and reduced HSV-1 replication in tears and corneal eye disease after ocular HSV-1 challenge. In addition, the HSV-1 epitope-specific CD8(+) T cells induced in DLNs, conjunctiva, and the trigeminal ganglia were inversely proportional with corneal disease. The humanized HLA Tg rabbits appeared to be a useful preclinical animal model for investigating the immunogenicity and protective efficacy of human CD8(+) T cell epitope-based prophylactic vaccines against ocular herpes. The relevance of HLA Tg rabbits for future investigation of human CD4-CD8 epitope-based therapeutic vaccines against recurrent HSV-1 is discussed.
Collapse
Affiliation(s)
- Aziz A. Chentoufi
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697
| | - Gargi Dasgupta
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697
| | | | - Jiafen Hu
- Hershey Medical Center, Pennsylvania State University, Hershey, PA 17033
| | - Zareen S. Choudhury
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697
| | - Arfan Azeem
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697
| | - James V. Jester
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697
| | - Anthony B. Nesburn
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697
| | - Steven L. Wechsler
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA 92697
- The Center for Virus Research, University of California Irvine, Irvine, CA 92697
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697
- Institute for Immunology, University of California Irvine, Irvine, CA 92697
| |
Collapse
|
17
|
Dong-Newsom P, Powell N, Bailey M, Padgett D, Sheridan J. Repeated social stress enhances the innate immune response to a primary HSV-1 infection in the cornea and trigeminal ganglia of Balb/c mice. Brain Behav Immun 2010; 24:273-80. [PMID: 19822203 PMCID: PMC2818401 DOI: 10.1016/j.bbi.2009.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 09/22/2009] [Accepted: 10/05/2009] [Indexed: 10/20/2022] Open
Abstract
Three to 5 days after a primary HSV-1 infection, macrophages infiltrate into the trigeminal ganglia (TG) and produce anti-viral cytokines to reduce viral replication. Previous research demonstrated that social disruption stress (SDR) enhances the trafficking of monocytes/macrophages from the bone marrow to the spleen and increases pro-inflammatory cytokine production in vitro and in vivo. The impact of SDR on the trafficking of these cells to loci of herpes simplex virus type 1 (HSV-1) infection and subsequent function has not been examined. The following studies were designed to determine whether SDR would enhance the innate immune response during a primary HSV-1 infection by increasing the number of macrophages in the cornea and TG, thus increasing anti-viral cytokine production and reducing viral replication. BALB/c mice were exposed to six cycles of SDR prior to ocular infection with HSV-1 McKrae virus. Flow cytometric analysis of cells from the TG revealed an increase in the percentage of CD11b+ macrophages in SDR mice compared to controls. Immune cell infiltration into the cornea, however, could not be determined due to low cell numbers. Although gene expression of IFN-beta was decreased, SDR increased gene expression of IFN-alpha, and TNF-alpha, in the cornea and TG. Examination of viral proteins showed decreased expression of infected cell protein 0 (ICP0), glycoprotein B (gB), glycoprotein H (gH) and latency-associated transcript (LAT) in the TG, however, expression of ICP0 and gB were elevated in the cornea of SDR mice. These results indicate that the innate immune response to HSV-1 was altered and enhanced by the experience of repeated social defeat.
Collapse
Affiliation(s)
- P. Dong-Newsom
- The Ohio State University, College of Dentistry, Section of Oral Biology, Department of Molecular Virology, Immunology and Medical Genetics, Columbus, OH 43210, USA
| | - N.D. Powell
- The Ohio State University, College of Dentistry, Section of Oral Biology, Department of Molecular Virology, Immunology and Medical Genetics, Columbus, OH 43210, USA
| | - M.T. Bailey
- The Ohio State University, College of Dentistry, Section of Oral Biology, Department of Molecular Virology, Immunology and Medical Genetics, Columbus, OH 43210, USA
| | - D.A. Padgett
- The Ohio State University, College of Dentistry, Section of Oral Biology, Department of Molecular Virology, Immunology and Medical Genetics, Columbus, OH 43210, USA, The Ohio State University, College of Medicine, Department of Molecular Virology, Immunology and Medical Genetics, Columbus, OH 43210, USA, Institute for Behavioral Medicine Research, Columbus, OH 43210, USA
| | - J.F. Sheridan
- The Ohio State University, College of Dentistry, Section of Oral Biology, Department of Molecular Virology, Immunology and Medical Genetics, Columbus, OH 43210, USA, The Ohio State University, College of Medicine, Department of Molecular Virology, Immunology and Medical Genetics, Columbus, OH 43210, USA, Institute for Behavioral Medicine Research, Columbus, OH 43210, USA,Corresponding author. Address: The Ohio State University, College of Dentistry, Section of Oral Biology, Department of Molecular Virology, Immunology and Medical Genetics, Postle Hall, 305 W. 12th Ave., Columbus, OH 43210, USA. Fax: +1 614 292 6087. (J.F. Sheridan)
| |
Collapse
|
18
|
Keadle TL, Alexander DE, Leib DA, Stuart PM. Interferon gamma is not required for recurrent herpetic stromal keratitis. Virology 2008; 380:46-51. [PMID: 18755490 DOI: 10.1016/j.virol.2008.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 05/09/2008] [Accepted: 07/15/2008] [Indexed: 02/04/2023]
Abstract
The role that interferon-gamma (IFNgamma) plays during herpetic stromal keratitis (HSK) has not been definitively determined. In primary HSK most reports suggest that IFNgamma may help control viral replication and contribute to corneal pathology. However, its role in recurrent HSK has not been directly addressed. The present study addresses its role in recurrent HSK by comparing HSK in latently infected normal and IFNgamma gene knockout (GKO) on the C57BL/6 background. We initially evaluated HSK following primary infection and observed that GKO mice had higher tear film virus titers, but virtually identical ocular disease as normal mice. In contrast, following reactivation of latent virus, GKO mice had a greater incidence and severity of opacity, neovascularization, and blepharitis. Interestingly, the incidence of reactivation after UV-B exposure was equivalent in GKO and normal mice, but virus shedding was increased in the GKO groups. We also observed diminished delayed-type hypersensitivity responses in GKO mice, as expected. These data indicate that IFNgamma is important for the control of virus replication in both primary and recurrent ocular HSV infection in C57BL/6 mice. The enhanced recurrent disease seen in GKO mice may be the result of increased viral titers and persistence in these mice which act to prolong the stimulation of an inflammatory response.
Collapse
Affiliation(s)
- Tammie L Keadle
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | |
Collapse
|
19
|
Abstract
Although the normal cornea is devoid of vasculature and lymphatics, there are still several immune-mediated corneal conditions that can occur in dogs and cats. An overview of corneal immunology is presented. Diseases of dogs, including chronic superficial keratitis, superficial punctate keratitis, and canine adenovirus endotheliitis, as well as feline diseases, including eosinophilic keratitis and herpesvirus-related conditions, are discussed.
Collapse
Affiliation(s)
- Stacy E Andrew
- Georgia Veterinary Specialists, 455 Abernathy Road NE, Atlanta, GA 30328, USA
| |
Collapse
|
20
|
Reading PC, Whitney PG, Barr DP, Wojtasiak M, Mintern JD, Waithman J, Brooks AG. IL-18, but not IL-12, regulates NK cell activity following intranasal herpes simplex virus type 1 infection. THE JOURNAL OF IMMUNOLOGY 2007; 179:3214-21. [PMID: 17709537 DOI: 10.4049/jimmunol.179.5.3214] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Infection of the respiratory tract with HSV type 1 (HSV-1) can have severe clinical complications, yet little is known of the immune mechanisms that control the replication and spread of HSV-1 in this site. The present study investigated the protective role of IL-12 and IL-18 in host defense against intranasal HSV-1 infection. Both IL-12 and IL-18 were detected in lung fluids following intranasal infection of C57BL/6 (B6) mice. IL-18-deficient (B6.IL-18(-/-)) mice were more susceptible to HSV-1 infection than wild-type B6 mice as evidenced by exacerbated weight loss and enhanced virus growth in the lung. IL-12-deficient (B6.IL-12(-/-)) mice behaved similarly to B6 controls. Enhanced susceptibility of B6.IL-18(-/-) mice to HSV-1 infection correlated with a profound impairment in the ability of NK cells recovered from the lungs to produce IFN-gamma or to mediate cytotoxic activity ex vivo. The weak cytotoxic capacity of NK cells from the lungs of B6.IL-18(-/-) mice correlated with reduced expression of the cytolytic effector molecule granzyme B. Moreover, depletion of NK cells from B6 or B6.IL-12(-/-) mice led to enhanced viral growth in lungs by day 3 postinfection; however, this treatment had no effect on viral titers in lungs of B6.IL-18(-/-) mice. Together these studies demonstrate that IL-18, but not IL-12, plays a key role in the rapid activation of NK cells and therefore in control of early HSV-1 replication in the lung.
Collapse
Affiliation(s)
- Patrick C Reading
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | | | | | | | |
Collapse
|
21
|
Bauer D, Wasmuth S, Hermans P, Hennig M, Meller K, Meller D, van Rooijen N, Tseng SCG, Steuhl KP, Heiligenhaus A. On the influence of neutrophils in corneas with necrotizing HSV-1 keratitis following amniotic membrane transplantation. Exp Eye Res 2007; 85:335-45. [PMID: 17637463 PMCID: PMC3209667 DOI: 10.1016/j.exer.2007.05.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 05/23/2007] [Accepted: 05/26/2007] [Indexed: 12/12/2022]
Abstract
Necrotizing herpetic stromal keratitis (HSK) in mice rapidly improved after amniotic membrane transplantation (AMT). In this study we determined the fate of polymorphonuclear neutrophils (PMN) after AMT. AMT or tarsorrhaphy (T) was performed in BALB/c mice with ulcerative HSK. After 2 days, corneas were studied histologically and by transmission electron microscopy (TEM). CD11b, Gr-1, and TUNEL-positive cells were identified. Macrophages were depleted by subconjunctival injection of dichloromethylene-diphosphonate-liposomes (Cl(2)MDP-LIP) before AMT. Corneas were studied for interleukin (IL)-1alpha, IL-2, interferon (IFN)-gamma, CXCL1, CXCL2, and tumor necrosis factor (TNF)-alpha production by ELISA. PMN-enriched cell preparations co-cultured with amniotic membrane (AM) or with AM and such recombinant (r) cytokines as rIL-1alpha, rIL-2, and rTNF-alpha or supernatants from activated lymphocytes were investigated by flow cytometry (Annexin-V/7-AAD and TUNEL), and a dimethylthiazolyl-diphenyltetrazolium-bromide (MTT)-viability assay. Corneas in the AMT mice had less inflammation, fewer PMN-like cells and fewer CD11b+, and Gr-1+ cells (P<0.01), but a higher ratio of apoptotic to viable PMN-resembling cells (P<0.01) than the T mice. Phagocytic removal of apoptotic PMN-like cells by macrophages was evident in the AMT group. After Cl(2)MDP-LIP treatment, the corneas had more cell debris and apoptotic cells with PMN-like morphology. The concentrations of IL-1alpha, IL-2, CXCL1, and TNF-alpha were reduced in corneas of the AMT group as compared to that of the T group, while the concentration of CXCL2 was increased. Apoptosis of PMN-resembling cells was detected following cocultivation with AM, even when proinflammatory cytokines were present. Resolution of corneal inflammation in mice with necrotizing HSK after AMT is associated with increased apoptosis of PMN-like cells, reduction of pro-inflammatory cytokines, an increase of CXCL2, and increased removal of apoptotic PMN-like cells by macrophages.
Collapse
Affiliation(s)
- Dirk Bauer
- Ophtha-Lab, Department of Ophthalmology, St. Franziskus Hospital, Hohenzollernring 74, 48145 Muenster, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lundberg P, Welander PV, Edwards CK, van Rooijen N, Cantin E. Tumor necrosis factor (TNF) protects resistant C57BL/6 mice against herpes simplex virus-induced encephalitis independently of signaling via TNF receptor 1 or 2. J Virol 2006; 81:1451-60. [PMID: 17108044 PMCID: PMC1797509 DOI: 10.1128/jvi.02243-06] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tumor necrosis factor (TNF) is a multifunctional cytokine that has a role in induction and regulation of host innate and adaptive immune responses. The importance of TNF antiviral mechanisms is reflected by the diverse strategies adopted by different viruses, particularly members of the herpesvirus family, to block TNF responses. TNF binds and signals through two receptors, Tnfrsf1a (TNF receptor 1 [TNFR1], or p55) and Tnfrsf1b (TNFR2, or p75). We report here that herpes simplex virus 1 (HSV-1) infection of TNF-/- mice on the resistant C57BL/6 genetic background results in significantly increased susceptibility (P < 0.0001, log rank test) to fatal HSV encephalitis (HSE) and prolonged persistence of elevated levels of virus in neural tissues. In contrast, although virus titers in neural tissues of p55-/- N13 mice were elevated to levels comparable to what was found for the TNF-/- mice, the p55-/- N13 mice were as resistant as control C57BL/6 mice (P > 0.05). The incidence of fatal HSE was significantly increased by in vivo neutralization of TNF using soluble TNFR1 (sTNFR1) or depletion of macrophages in C57BL/6 mice (P = 0.0038 and P = 0.0071, respectively). Strikingly, in vivo neutralization of TNF in HSV-1-infected p55-/- p75-/- mice by use of three independent approaches (treatment with soluble p55 receptor, anti-TNF monoclonal antibody, or in vivo small interfering RNA against TNF) resulted in significantly increased mortality rates (P = 0.005), comparable in magnitude to those for C57BL/6 mice treated with sTNFR1 (P = 0.0018). Overall, these results indicate that while TNF is required for resistance to fatal HSE, both p55 and p75 receptors are dispensable. Precisely how TNF mediates protection against HSV-1 mortality in p55-/- p75-/- mice remains to be determined.
Collapse
Affiliation(s)
- Patric Lundberg
- City of Hope Medical Center and Beckman Research Institute, Department of Virology, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | | | | | | | | |
Collapse
|
23
|
Reading PC, Whitney PG, Barr DP, Smyth MJ, Brooks AG. NK cells contribute to the early clearance of HSV-1 from the lung but cannot control replication in the central nervous system following intranasal infection. Eur J Immunol 2006; 36:897-905. [PMID: 16552715 DOI: 10.1002/eji.200535710] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
While infection of the respiratory tract with herpes simplex virus type 1 (HSV-1) can have severe clinical complications, little is known of the immune mechanisms that control both the replication and spread of HSV-1 in this site. To better understand the contribution of innate immunity and in particular natural killer (NK) cells to the control of infection at this site, we have utilized a mouse model of intranasal HSV-1 infection. NK cell numbers increased in the lung following intranasal infection and they produced IFN-gamma and acquired an enhanced cytotoxic capacity. While depletion of NK cells resulted in increased HSV-1 titres in the lung, the time taken to clear the virus was unaffected. Interestingly, HSV-1 was also effectively cleared from the lungs of RAG-1-/- mice that lack both B and T cells. However, RAG-1-/- mice could not control the spread of virus to the central nervous system and its subsequent replication in the brain. Together, these data demonstrate that NK cells are recruited, activated and contribute to early protection of the lung during acute HSV-1 infection of the respiratory tract, but in the absence of adaptive immunity are unable to control the replication and spread of virus in the nervous system.
Collapse
Affiliation(s)
- Patrick C Reading
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Australia.
| | | | | | | | | |
Collapse
|
24
|
Prechtel AT, Turza NM, Kobelt DJ, Eisemann JI, Coffin RS, McGrath Y, Hacker C, Ju X, Zenke M, Steinkasserer A. Infection of mature dendritic cells with herpes simplex virus type 1 dramatically reduces lymphoid chemokine-mediated migration. J Gen Virol 2005; 86:1645-1657. [PMID: 15914842 DOI: 10.1099/vir.0.80852-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is able to establish latency in infected individuals. In order to characterize potential new immune-escape mechanisms, mature dendritic cells (DCs) were infected with HSV-1 and total cellular RNA was isolated from infected and mock-infected populations at different time points. RNA profiling on Affymetrix Human Genome U133A arrays demonstrated a dramatic downregulation of the migration-mediating surface molecules CCR7 and CXCR4, an observation that was further confirmed by RT-PCR and fluorescence-activated cell sorting analyses. Furthermore, migration assays revealed that, upon infection of mature DCs, CCR7- and CXCR4-mediated migration towards the corresponding CCL19 and CXCL12 chemokine gradients was strongly reduced. It is noteworthy that the infection of immature DCs with HSV-1 prior to maturation led to a failure of CCR7 and CXCR4 upregulation during DC maturation and, as a consequence, also induced a block in their migratory capacity. Additional migration assays with a Δvhs mutant virus lacking the virion host shutoff (vhs) gene, which is known to degrade cellular mRNAs, suggested a vhs-independent mechanism. These results indicate that HSV-1-infected mature DCs are limited in their capacity to migrate to secondary lymphoid organs, the areas of antigen presentation and T-cell stimulation, thus inhibiting an antiviral immune response. This represents a novel, previously unrecognized mechanism for HSV-1 to escape the human immune system.
Collapse
Affiliation(s)
- Alexander T Prechtel
- Department of Dermatology, University Hospital Erlangen, Hartmannstrasse 14, D-91052 Erlangen, Germany
| | - Nadine M Turza
- Department of Dermatology, University Hospital Erlangen, Hartmannstrasse 14, D-91052 Erlangen, Germany
| | - Dieter J Kobelt
- Department of Dermatology, University Hospital Erlangen, Hartmannstrasse 14, D-91052 Erlangen, Germany
| | - Jutta I Eisemann
- Department of Dermatology, University Hospital Erlangen, Hartmannstrasse 14, D-91052 Erlangen, Germany
| | - Robert S Coffin
- BioVex Ltd, Oxford OX14 4RX, UK
- Department of Immunology and Molecular Pathology, University College London, London W1P 6DB, UK
| | | | - Christine Hacker
- Max Delbruck Center for Molecular Medicine, MDC, Robert-Rossle-Str. 10, 13092 Berlin, Germany
| | - Xinsheng Ju
- Institute for Biomedical Technology, Department of Cell Biology, University Hospital Aachen, Aachen, Germany
- Max Delbruck Center for Molecular Medicine, MDC, Robert-Rossle-Str. 10, 13092 Berlin, Germany
| | - Martin Zenke
- Institute for Biomedical Technology, Department of Cell Biology, University Hospital Aachen, Aachen, Germany
- Max Delbruck Center for Molecular Medicine, MDC, Robert-Rossle-Str. 10, 13092 Berlin, Germany
| | - Alexander Steinkasserer
- Department of Dermatology, University Hospital Erlangen, Hartmannstrasse 14, D-91052 Erlangen, Germany
| |
Collapse
|
25
|
Richards CM, Case R, Hirst TR, Hill TJ, Williams NA. Protection against recurrent ocular herpes simplex virus type 1 disease after therapeutic vaccination of latently infected mice. J Virol 2003; 77:6692-9. [PMID: 12767989 PMCID: PMC156198 DOI: 10.1128/jvi.77.12.6692-6699.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2002] [Accepted: 03/24/2003] [Indexed: 11/20/2022] Open
Abstract
The potential of therapeutic vaccination of animals latently infected with herpes simplex virus type 1 (HSV-1) to enhance protective immunity to the virus and thereby reduce the incidence and severity of recurrent ocular disease was assessed in a mouse model. Mice latently infected with HSV-1 were vaccinated intranasally with a mixture of HSV-1 glycoproteins and recombinant Escherichia coli heat-labile enterotoxin B subunit (rEtxB) as an adjuvant. The systemic immune response induced was characterized by high levels of virus-specific immunoglobulin G1 (IgG1) in serum and very low levels of IgG2a. Mucosal immunity was demonstrated by high levels of IgA in eye and vaginal secretions. Proliferating T cells from lymph nodes of vaccinated animals produced higher levels of interleukin-10 (IL-10) than were produced by such cells from mock-vaccinated animals. This profile suggests that vaccination of latently infected mice modulates the Th1-dominated proinflammatory response usually induced upon infection. After reactivation of latent virus by UV irradiation, vaccinated mice showed reduced viral shedding in tears as well as a reduction in the incidence of recurrent herpetic corneal epithelial disease and stromal disease compared with mock-vaccinated mice. Moreover, vaccinated mice developing recurrent ocular disease showed less severe signs and a quicker recovery rate. Spread of virus to other areas close to the eye, such as the eyelid, was also significantly reduced. Encephalitis occurred in a small percentage (11%) of mock-vaccinated mice, but vaccinated animals were completely protected from such disease. The possible immune mechanisms involved in protection against recurrent ocular herpetic disease in therapeutically vaccinated animals are discussed.
Collapse
Affiliation(s)
- C M Richards
- Department of Pathology and Microbiology, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom.
| | | | | | | | | |
Collapse
|