1
|
Ning X, Li L, Liu J, Wang F, Tan K, Li W, Zhou K, Jing S, Lin A, Bi J, Zhao S, Deng H, Zhu C, Lv S, Li J, Liang J, Zhao Q, Wang Y, Chen B, Zhu L, Shen G, Liu J, Li Z, Deng J, Zhao X, Shan M, Wang Y, Liu S, Jiang T, Chen X, Zhang Y, Cai S, Wang L, Lu X, Jiang J, Dong F, Ye L, Sun J, Yao K, Yang Y, Liu G. Invasive pneumococcal diseases in Chinese children: a multicentre hospital-based active surveillance from 2019 to 2021. Emerg Microbes Infect 2024; 13:2332670. [PMID: 38646911 PMCID: PMC11047219 DOI: 10.1080/22221751.2024.2332670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/15/2024] [Indexed: 04/23/2024]
Abstract
This study aimed to provide data for the clinical features of invasive pneumococcal disease (IPD) and the molecular characteristics of Streptococcus pneumoniae isolates from paediatric patients in China. We conducted a multi-centre prospective study for IPD in 19 hospitals across China from January 2019 to December 2021. Data of demographic characteristics, risk factors for IPD, death, and disability was collected and analysed. Serotypes, antibiotic susceptibility, and multi-locus sequence typing (MLST) of pneumococcal isolates were also detected. A total of 478 IPD cases and 355 pneumococcal isolates were enrolled. Among the patients, 260 were male, and the median age was 35 months (interquartile range, 12-46 months). Septicaemia (37.7%), meningitis (32.4%), and pneumonia (27.8%) were common disease types, and 46 (9.6%) patients died from IPD. Thirty-four serotypes were detected, 19F (24.2%), 14 (17.7%), 23F (14.9%), 6B (10.4%) and 19A (9.6%) were common serotypes. Pneumococcal isolates were highly resistant to macrolides (98.3%), tetracycline (94.1%), and trimethoprim/sulfamethoxazole (70.7%). Non-sensitive rates of penicillin were 6.2% and 83.3% in non-meningitis and meningitis isolates. 19F-ST271, 19A-ST320 and 14-ST876 showed high resistance to antibiotics. This multi-centre study reports the clinical features of IPD and demonstrates serotype distribution and antibiotic resistance of pneumococcal isolates in Chinese children. There exists the potential to reduce IPD by improved uptake of pneumococcal vaccination, and continued surveillance is warranted.
Collapse
Affiliation(s)
- Xue Ning
- Key Laboratory of Major Diseases in Children, Ministry of Education, Department of Infectious Diseases, National Center for Children’s Health, Beijing Children’s Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Lianmei Li
- Department of Infectious and Digestive Diseases, Qinghai Province Women and Children's Hospital, Xining, People’s Republic of China
| | - Jing Liu
- Department of Infectious Diseases, Hunan Children’s Hospital, Changsha, People’s Republic of China
| | - Fang Wang
- Department of Infectious Diseases, Henan Children’s Hospital, (Children's Hospital Affiliated of Zhengzhou University, Zhengzhou Children's Hospital), Zhengzhou, People’s Republic of China
| | - Kun Tan
- Department of Infectious Diseases, Shenzhen Children’s Hospital, Shenzhen, People’s Republic of China
| | - Wenhui Li
- Department of Infectious and Digestive Diseases, Children’s Hospital of Hebei Province, Shijiazhuang, People’s Republic of China
| | - Kai Zhou
- Department of Infectious Diseases, Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Shujun Jing
- Department of Infectious Diseases, Dalian Children’s Hospital, Dalian, People’s Republic of China
| | - Aiwei Lin
- Department of Infectious Diseases, Children’s Hospital Affiliated to Shandong University, Jinan, People’s Republic of China
- Jinan Children’s Hospital, Shandong University, Jinan, People’s Republic of China
| | - Jing Bi
- Department of Infectious Diseases, Baoding Children’s Hospital, Baoding, People’s Republic of China
| | - Shiyong Zhao
- Department of Infectious Diseases, Hangzhou Children’s Hospital, Hangzhou, People’s Republic of China
| | - Huiling Deng
- Department of Infectious Diseases, Xian Children’s Hospital, Xian, People’s Republic of China
| | - Chunhui Zhu
- Department of Infectious Diseases, Children’s Hospital of Jiangxi Province, Nanchang, People’s Republic of China
| | - Shanshan Lv
- Department of Infectious Diseases, Changchun Children’s Hospital, Changchun, People’s Republic of China
| | - Juan Li
- Department of Infectious Diseases, Urumqi Children’s Hospital, Urumqi, People’s Republic of China
| | - Jun Liang
- Department of Pediatric Intensive Care Unit, People’s Hospital of Liaocheng, Liaocheng, People’s Republic of China
| | - Qing Zhao
- Department of Infectious Diseases, Children’s Hospital of Shanxi Province, Taiyuan, People’s Republic of China
| | - Yumin Wang
- Department of Infectious Diseases, Maternal and Child Health Care Hospital of the Inner Mongolia autonomous region, Huhehaote, People’s Republic of China
| | - Biquan Chen
- Department of Infectious Diseases, Anhui Provincial Children’s Hospital, Hefei, People’s Republic of China
| | - Liang Zhu
- Key Laboratory of Major Diseases in Children, Ministry of Education, Department of Infectious Diseases, National Center for Children’s Health, Beijing Children’s Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Guowu Shen
- Department of clinical laboratory, Qinghai Province Women and Children's Hospital, Xining, People’s Republic of China
| | - Jianlong Liu
- Department of clinic laboratory, Hunan Children’s Hospital, Changsha, People’s Republic of China
| | - Zhi Li
- Department of Infectious Diseases, Henan Children’s Hospital, (Children's Hospital Affiliated of Zhengzhou University, Zhengzhou Children's Hospital), Zhengzhou, People’s Republic of China
| | - Jikui Deng
- Department of Infectious Diseases, Shenzhen Children’s Hospital, Shenzhen, People’s Republic of China
| | - Xin Zhao
- Department of Infectious and Digestive Diseases, Children’s Hospital of Hebei Province, Shijiazhuang, People’s Republic of China
| | - Mingfeng Shan
- Department of Infectious Diseases, Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yi Wang
- Department of Infectious Diseases, Dalian Children’s Hospital, Dalian, People’s Republic of China
| | - Shihua Liu
- Department of Infectious Diseases, Children’s Hospital Affiliated to Shandong University, Jinan, People’s Republic of China
- Jinan Children’s Hospital, Shandong University, Jinan, People’s Republic of China
| | - Tingting Jiang
- Department of Infectious Diseases, Baoding Children’s Hospital, Baoding, People’s Republic of China
| | - Xuexia Chen
- Department of Infectious Diseases, Hangzhou Children’s Hospital, Hangzhou, People’s Republic of China
| | - Yufeng Zhang
- Department of Infectious Diseases, Xian Children’s Hospital, Xian, People’s Republic of China
| | - Sha Cai
- Department of Infectious Diseases, Children’s Hospital of Jiangxi Province, Nanchang, People’s Republic of China
| | - Lixue Wang
- Department of Infectious Diseases, Changchun Children’s Hospital, Changchun, People’s Republic of China
| | - Xudong Lu
- Department of Infectious Diseases, Urumqi Children’s Hospital, Urumqi, People’s Republic of China
| | - Jinghui Jiang
- Department of Pediatric Intensive Care Unit, People’s Hospital of Liaocheng, Liaocheng, People’s Republic of China
| | - Fang Dong
- Department of Infectious Diseases, Children’s Hospital of Shanxi Province, Taiyuan, People’s Republic of China
| | - Lan Ye
- Department of Infectious Diseases, Maternal and Child Health Care Hospital of the Inner Mongolia autonomous region, Huhehaote, People’s Republic of China
| | - Jing Sun
- Department of Infectious Diseases, Anhui Provincial Children’s Hospital, Hefei, People’s Republic of China
| | - Kaihu Yao
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, People’s Republic of China
| | - Yonghong Yang
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, People’s Republic of China
| | - Gang Liu
- Key Laboratory of Major Diseases in Children, Ministry of Education, Department of Infectious Diseases, National Center for Children’s Health, Beijing Children’s Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Janssen AB, Gibson PS, Bravo AM, de Bakker V, Slager J, Veening JW. PneumoBrowse 2: an integrated visual platform for curated genome annotation and multiomics data analysis of Streptococcus pneumoniae. Nucleic Acids Res 2024:gkae923. [PMID: 39436044 DOI: 10.1093/nar/gkae923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
Streptococcus pneumoniae is an opportunistic human pathogen responsible for high morbidity and mortality rates. Extensive genome sequencing revealed its large pangenome, serotype diversity, and provided insight into genome dynamics. However, functional genome analysis has lagged behind, as that requires detailed and time-consuming manual curation of genome annotations and integration of genomic and phenotypic data. To remedy this, PneumoBrowse was presented in 2018, a user-friendly interactive online platform, which provided the detailed annotation of the S. pneumoniae D39V genome, alongside transcriptomic data. Since 2018, many new studies on S. pneumoniae genome biology and protein functioning have been performed. Here, we present PneumoBrowse 2 (https://veeninglab.com/pneumobrowse), fully rebuilt in JBrowse 2. We updated annotations for transcribed and transcriptional regulatory features in the D39V genome. We added genome-wide data tracks for high-resolution chromosome conformation capture (Hi-C) data, chromatin immunoprecipitation coupled to high-throughput sequencing (ChIP-Seq), ribosome profiling, CRISPRi-seq gene essentiality data and more. Additionally, we included 18 phylogenetically diverse S. pneumoniae genomes and their annotations. By providing easy access to diverse high-quality genome annotations and links to other databases (including UniProt and AlphaFold), PneumoBrowse 2 will further accelerate research and development into preventive and treatment strategies, through increased understanding of the pneumococcal genome.
Collapse
Affiliation(s)
- Axel B Janssen
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Paddy S Gibson
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Afonso M Bravo
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Vincent de Bakker
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Jelle Slager
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| |
Collapse
|
3
|
Miyazaki H, Chang B, Ogawa M, Shibuya R, Takata M, Nakamura S, Ubukata K, Miyazaki Y, Matsumoto T, Akeda Y. Bacteriological characteristics and changes of Streptococcus pneumoniae serotype 35B after vaccine implementation in Japan. Epidemiol Infect 2024; 152:e114. [PMID: 39363586 PMCID: PMC11450500 DOI: 10.1017/s0950268824001031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/25/2024] [Accepted: 06/25/2024] [Indexed: 10/05/2024] Open
Abstract
Streptococcus pneumoniae serotype 35B, a non-vaccine type, is a major contributor to the increase in pneumococcal infection post-vaccination. We aimed to understand the mechanism of its spread by characterizing 35B. The serotype, type 1 pilus (T1P) positivity, and antimicrobial susceptibility of 319 isolates in 2018-2022 were analysed and compared with those of isolates in 2014-2017 to find the changes. 35B accounted for 40 (12.5%) isolates. T1P positivity was notably higher in 35B (87.5%) than in the other serotypes. To confirm the role of T1P, an adhesion factor, we compared adherence to A549 cells between T1P-positive 35B isolates and their T1P-deficient mutants, showing contribution of T1P to adherence. Penicillin-non-susceptible rate of 35B was 87.5%, and meropenem-resistant 35B rate was 35.0%, which increased from 14.5% of 2014-2017 (p = 0.009). Multilocus sequence typing was performed in 35B strains. Prevalence of clonal complex 558, harbouring T1P and exhibiting multidrug non-susceptibility, suggested the advantages of 35B in attachment and survival in the host. The emergence of ST156 isolates, T1P-positive and non-susceptible to β-lactams, has raised concern about expansion in Japan. The increase of serotype 35B in pneumococcal diseases might have occurred due to its predominant colonizing ability after the elimination of the vaccine-serotypes.
Collapse
Affiliation(s)
- Haruko Miyazaki
- Department of Microbiology, Tokyo Medical University, Tokyo, Japan
| | - Bin Chang
- Department of Bacteriology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Michinaga Ogawa
- Department of Bacteriology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Rie Shibuya
- Department of Clinical Laboratory, Saiseikai Yokohamashi Tobu Hospital, Kanagawa, Japan
| | - Misako Takata
- Department of Microbiology, Tokyo Medical University, Tokyo, Japan
| | - Shigeki Nakamura
- Department of Microbiology, Tokyo Medical University, Tokyo, Japan
| | - Kimiko Ubukata
- Department of Microbiology, Tokyo Medical University, Tokyo, Japan
| | - Yoshitsugu Miyazaki
- Department of Fungal Infection, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsuya Matsumoto
- Department of Infectious Diseases, International University of Health and Welfare, Chiba, Japan
| | - Yukihiro Akeda
- Department of Bacteriology 1, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
4
|
Iqbal I, Shahid S, Kanwar S, Kabir F, Umrani F, Ahmed S, Khan W, Qazi MF, Aziz F, Muneer S, Kalam A, Hotwani A, Mehmood J, Qureshi AK, Hasan Z, Shakoor S, Mirza S, McGee L, Lo SW, Kumar N, Azam I, Bentley SD, Jehan F, Nisar MI. Pneumococcal carriage and changes in serotype distribution post- PCV13 introduction in children in Matiari, Pakistan. Vaccine 2024; 42:126238. [PMID: 39168078 PMCID: PMC11413484 DOI: 10.1016/j.vaccine.2024.126238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND In early 2021, the 10-valent Pneumococcal conjugate vaccine (PCV10) was replaced with 13-valent (PCV13) by the federal directorate of immunization (FDI), Pakistan. We assessed the impact of a higher valent vaccine, PCV13, on the serotype distribution of nasopharyngeal carriage in rural Pakistan. METHODS Children <2 years were randomly selected from two rural union councils of Matiari, Sindh in Pakistan between September-October,2022. Clinical, sociodemographic and vaccination histories were recorded. Nasopharyngeal swabs were collected and processed at Infectious Disease Research Laboratory, Aga Khan University, Karachi. Whole genome sequencing was performed on the culture positive isolates. RESULTS Of the 200 children enrolled, pneumococcus was detected in 140(70 %) isolates. Majority of age-eligible children (60.1 %,110/183) received 3 PCV13 doses. PCV10 carriage declined from 13.2 %(78/590) in 2017/18 to 7.2 % (10/140) in 2022, additional PCV13 serotypes (3, 6A/6C and 19A) decreased from 18.5 %(109/590) to 11.4 %(16/140) while non-PCV13 serotypes increased from 68.3 %(403/590) to 81.4 %(114/140). There were 88.5 %(n = 124), 80.7 %(n = 113), 55.0 %(n = 77), and 46.0 %(n = 65) isolates predicted to be resistant to cotrimoxazole, penicillin(meningitis cut-off), tetracycline, and erythromycin respectively. CONCLUSION Replacing PCV10 with PCV13 rapidly decreased prevalence of PCV13 carriage among vaccinated children in Matiari, Pakistan. Vaccine-driven selection pressure may have been responsible for the increase of non-PCV13 serotypes.
Collapse
Affiliation(s)
- Izn Iqbal
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Shahira Shahid
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Samiah Kanwar
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Furqan Kabir
- Infectious Diseases Research Laboratory (IDRL), Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Fayaz Umrani
- Department of Community Health Sciences, Aga Khan University, Karachi, Pakistan
| | - Sheraz Ahmed
- Department of Community Health Sciences, Aga Khan University, Karachi, Pakistan
| | - Waqasuddin Khan
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | | | - Fatima Aziz
- Infectious Diseases Research Laboratory (IDRL), Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Sahrish Muneer
- Infectious Diseases Research Laboratory (IDRL), Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Adil Kalam
- Infectious Diseases Research Laboratory (IDRL), Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Aneeta Hotwani
- Infectious Diseases Research Laboratory (IDRL), Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Junaid Mehmood
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | | | - Zahra Hasan
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Sadia Shakoor
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Shaper Mirza
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Lesley McGee
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephanie W Lo
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, UK
| | - Narender Kumar
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, UK
| | - Iqbal Azam
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | | | - Fyezah Jehan
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Muhammad Imran Nisar
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan.
| |
Collapse
|
5
|
Miranda FM, da Silva LD, Fortuna LBDP, Silva AB, Cabral AS, Lima JLC, Vieira CB, Teixeira LM, de Souza ARV, Neves FPG. Long-term predominance in childhood colonization of the multidrug-resistant lineage 6C/ST386 of Streptococcus pneumoniae after universal immunization with the 10-valent pneumococcal conjugate vaccine in Brazil. Vaccine 2024; 42:126414. [PMID: 39362010 DOI: 10.1016/j.vaccine.2024.126414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/02/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND A study conducted in the city of Niterói/RJ, four years after the introduction of the pneumococcal conjugate vaccine in Brazil, reported the emergence of non-vaccine serotype 6C Streptococcus pneumoniae associated with carriage in children. The multidrug-resistant (MDR) lineage ST386 was predominant among 6C isolates. A subsequent study, in 2019, reported the continued prevalence of 6C as the main serotype. This study aims to determine the genetic lineages of serotype 6C S. pneumoniae obtained from the 2019 study and evaluate the status of ST386 in this population. METHODS Serotype 6C S. pneumoniae isolates were obtained during the 2019 study. Lineages were determined by MLST and changes in ST386 status between 2014 and 2019 were verified by a two-tailed Fisher's exact test. RESULTS Of the 16 serotype 6C isolates recovered during 2019, 10 (62.5 %) belonged to ST386, remaining predominant in the population. The second most frequent was ST2777 represented by four (25 %) isolates. Both ST63 and ST3280 only had one (6.25 %) isolate each. Comparison of ST386 proportion between 2014 and 2019 showed no significant changes within the population. CONCLUSIONS This study was able to confirm the stability on the occurrence of the MDR lineage ST386 in children in our setting nine years after the introduction of PCV10 in Brazil.
Collapse
Affiliation(s)
- Filipe M Miranda
- Instituto Biomédico, Universidade Federal Fluminense. Alameda Barros Terra, s/n. São Domingos, Niterói, RJ 24020-150, Brazil..
| | - Lívia D da Silva
- Instituto Biomédico, Universidade Federal Fluminense. Alameda Barros Terra, s/n. São Domingos, Niterói, RJ 24020-150, Brazil
| | - Letícia B D P Fortuna
- Instituto Biomédico, Universidade Federal Fluminense. Alameda Barros Terra, s/n. São Domingos, Niterói, RJ 24020-150, Brazil
| | - Amanda B Silva
- Instituto Biomédico, Universidade Federal Fluminense. Alameda Barros Terra, s/n. São Domingos, Niterói, RJ 24020-150, Brazil..
| | - Amanda S Cabral
- Instituto Biomédico, Universidade Federal Fluminense. Alameda Barros Terra, s/n. São Domingos, Niterói, RJ 24020-150, Brazil..
| | - Jailton L C Lima
- Instituto Biomédico, Universidade Federal Fluminense. Alameda Barros Terra, s/n. São Domingos, Niterói, RJ 24020-150, Brazil..
| | - Carmen B Vieira
- Instituto Biomédico, Universidade Federal Fluminense. Alameda Barros Terra, s/n. São Domingos, Niterói, RJ 24020-150, Brazil..
| | - Lúcia M Teixeira
- Instituto de Microbiologia, Universidade Federal do Rio de Janeiro. Av. Carlos Chagas Filho, 373, Rio de Janeiro, RJ 21941-590, Brazil..
| | - Aline R V de Souza
- Instituto Biomédico, Universidade Federal Fluminense. Alameda Barros Terra, s/n. São Domingos, Niterói, RJ 24020-150, Brazil..
| | - Felipe P G Neves
- Instituto Biomédico, Universidade Federal Fluminense. Alameda Barros Terra, s/n. São Domingos, Niterói, RJ 24020-150, Brazil..
| |
Collapse
|
6
|
Sharew B, Moges F, Yismaw G, Mihret A, Lobie TA, Abebe W, Fentaw S, Frye S, Vestrheim D, Tessema B, Caugant DA. Molecular epidemiology of Streptococcus pneumoniae isolates causing invasive and noninvasive infection in Ethiopia. Sci Rep 2024; 14:21409. [PMID: 39271789 PMCID: PMC11399344 DOI: 10.1038/s41598-024-72762-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024] Open
Abstract
Streptococcus pneumoniae, a medically important opportunistic bacterial pathogen of the upper respiratory tract, is a major public health concern, causing a wide range of pneumococcal illnesses, both invasive and noninvasive. It is associated with significant global morbidity and mortality, including pneumonia, meningitis, sepsis, and acute otitis media. The major purpose of this study was to determine the molecular epidemiology of Streptococcus pneumoniae strains that cause invasive and noninvasive infections in Ethiopia. A prospective study was undertaken in two regional hospitals between January 2018 and December 2019. Whole-genome sequencing was used to analyze all isolates. Serotypes and multilocus sequence types (MLST) were derived from genomic data. The E-test was used for antimicrobial susceptibility testing. Patient samples obtained 54 Streptococcus pneumoniae isolates, 33 from invasive and 21 from noninvasive specimens. Our findings identified 32 serotypes expressed by 25 Global Pneumococcal Sequence Clusters (GPSCs) and 42 sequence types (STs), including 21 new STs. The most common sequence types among the invasive isolates were ST3500, ST5368, ST11162, ST15425, ST15555, ST15559, and ST15561 (2/33, 6% each). These sequence types were linked to serotypes 8, 7 C, 15B/C, 16 F, 10 A, 15B, and 6 A, respectively. Among the noninvasive isolates, only ST15432, associated with serotype 23 A, had numerous isolates (4/21, 19%). Serotype 14 was revealed as the most resistant strain to penicillin G, whereas isolates from serotypes 3, 8, 7 C, and 10 A were resistant to erythromycin. Notably, all serotype 6 A isolates were resistant to both erythromycin and penicillin G. Our findings revealed an abnormally significant number of novel STs, as well as extremely diversified serotypes and sequence types, implying that Ethiopia may serve as a breeding ground for novel STs. Recombination can produce novel STs that cause capsular switching. This has the potential to influence how immunization campaigns affect the burden of invasive pneumococcal illness. The findings highlight the importance of continuous genetic surveillance of the pneumococcal population as a vital step toward enhancing future vaccine design.
Collapse
Affiliation(s)
- Bekele Sharew
- Department of Medical Laboratory Sciences, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia.
| | - Feleke Moges
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | | | - Adane Mihret
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Tekle Airgecho Lobie
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science andTechnology (NTNU), 7491, Trondheim, Norway
| | - Wondwossen Abebe
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Surafal Fentaw
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Stephan Frye
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Didrik Vestrheim
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Belay Tessema
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
- Institute of Clinical Immunology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Dominique A Caugant
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Community Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Opavski N, Jovićević M, Kabić J, Kekić D, Gajić I. Effect of Childhood Pneumococcal Conjugate Vaccination on Invasive Disease Serotypes in Serbia. Vaccines (Basel) 2024; 12:940. [PMID: 39204064 PMCID: PMC11359874 DOI: 10.3390/vaccines12080940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
In Serbia, PCV10 was introduced into the routine immunization for children under 2 in 2018 and replaced by PCV13 in 2022. We evaluated their impact on the distribution of invasive pneumococcal disease (IPD) serotypes across all age groups. Overall, 756 isolates were obtained from patients with IPD between 2010 and 2023 through laboratory surveillance. In the post-vaccination period, serotypes 14, 19F, 23F, and 6A significantly declined, while 3 and 19A considerably increased. This was especially evident in the ≤2 years group, making these serotypes the most prevalent among them. Serotype 3 dominated, representing 19.1% of all invasive isolates prior to 2018 and 33.1% thereafter. While serotype coverage of PCV10 has significantly decreased in the ≤2 years group (from 74.2% before 2018 to 29.5% after 2018), PCV13 coverage was 63.9% after 2018. In the post-PCV period, non-PCV13 serotypes, such as 9N, 10A, 15A, 15B, 15C, 22F, 6C, 6D, and 7C, increased across all isolates. Antibiotic non-susceptibility considerably decreased after 2018. MLST analysis showed shifts in sequence type prevalence, with pre-PCV lineages replaced and ongoing serotype 3 persistence, alongside potential capsule-switching events. These findings emphasize a noticeable shift in the distribution of serotypes and adaptability of pneumococcal populations, highlighting the importance of ongoing surveillance and the requirement for the urgent introduction of higher valent vaccines into the National Immunization Program.
Collapse
Affiliation(s)
| | | | | | | | - Ina Gajić
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.J.); (D.K.)
| | | |
Collapse
|
8
|
Takeuchi N, Ohkusu M, Kusuya Y, Takahashi H, Yamaguchi M, Omata Y, Nakazawa T, Ishiwada N. Comparative genomic and morphological analyses of capsular and capsular-deficient pneumococcal strains simultaneously isolated from a patient with invasive pneumococcal disease. J Infect Chemother 2024:S1341-321X(24)00210-1. [PMID: 39111665 DOI: 10.1016/j.jiac.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 07/16/2024] [Accepted: 08/02/2024] [Indexed: 08/18/2024]
Abstract
INTRODUCTION To understand the in-vivo dynamics in pneumococci, investigation into the carriage in patients with invasive pneumococcal disease (IPD) is extremely important. METHODS To clarify genomic and morphological differences between pneumococcal strains simultaneously isolated from different sites in a patient with IPD, we conducted comparative analyses of two strains. A capsular strain isolated from the blood and a non-capsular strain isolated from the sputum of a patient with IPD were used. RESULTS The strain isolated from blood was serotype 24B with capsule. The strain isolated from sputum with capsular type 24 genes was non-encapsulated, and genomic analysis revealed an insertion region in the wcxK gene. Its biofilm-forming capacity was higher than that of the capsular strain, as was that of the pspK-positive true non-encapsulated strain. Furthermore, observing the microbe using transmission electron microscopy revealed that the strain isolated from sputum lacked a capsule, like the pspK-positive true non-encapsulated strain. CONCLUSIONS Our analysis of the two strains isolated from the blood and sputum of a patient with IPD showed one possible in-vivo morphological change in Streptococcus pneumoniae.
Collapse
Affiliation(s)
- Noriko Takeuchi
- Department of Infectious Diseases, Medical Mycology Research Center, Chiba University, Chiba, Japan.
| | - Misako Ohkusu
- Department of Infectious Diseases, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Yoko Kusuya
- Medical Mycology Research Center, Chiba University, Chiba, Japan; Biological Resource Center, National Institute of Technology and Evaluation, Chiba, Japan
| | - Hiroki Takahashi
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | | | - Yuko Omata
- Department of Pediatrics, Seikeikai Chiba Medical Centre, Chiba, Japan
| | - Tomoko Nakazawa
- Department of Pediatrics, Seikeikai Chiba Medical Centre, Chiba, Japan
| | - Naruhiko Ishiwada
- Department of Infectious Diseases, Medical Mycology Research Center, Chiba University, Chiba, Japan
| |
Collapse
|
9
|
King AC, Kumar N, Mellor KC, Hawkins PA, McGee L, Croucher NJ, Bentley SD, Lees JA, Lo SW. Comparison of gene-by-gene and genome-wide short nucleotide sequence-based approaches to define the global population structure of Streptococcus pneumoniae. Microb Genom 2024; 10. [PMID: 39196267 DOI: 10.1099/mgen.0.001278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
Defining the population structure of a pathogen is a key part of epidemiology, as genomically related isolates are likely to share key clinical features such as antimicrobial resistance profiles and invasiveness. Multiple different methods are currently used to cluster together closely related genomes, potentially leading to inconsistency between studies. Here, we use a global dataset of 26 306 Streptococcus pneumoniae genomes to compare four clustering methods: gene-by-gene seven-locus MLST, core genome MLST (cgMLST)-based hierarchical clustering (HierCC) assignments, life identification number (LIN) barcoding and k-mer-based PopPUNK clustering (known as GPSCs in this species). We compare the clustering results with phylogenetic and pan-genome analyses to assess their relationship with genome diversity and evolution, as we would expect a good clustering method to form a single monophyletic cluster that has high within-cluster similarity of genomic content. We show that the four methods are generally able to accurately reflect the population structure based on these metrics and that the methods were broadly consistent with each other. We investigated further to study the discrepancies in clusters. The greatest concordance was seen between LIN barcoding and HierCC (adjusted mutual information score=0.950), which was expected given that both methods utilize cgMLST, but have different methods for defining an individual cluster and different core genome schema. However, the existence of differences between the two methods shows that the selection of a core genome schema can introduce inconsistencies between studies. GPSC and HierCC assignments were also highly concordant (AMI=0.946), showing that k-mer-based methods which use the whole genome and do not require the careful selection of a core genome schema are just as effective at representing the population structure. Additionally, where there were differences in clustering between these methods, this could be explained by differences in the accessory genome that were not identified in cgMLST. We conclude that for S. pneumoniae, standardized and stable nomenclature is important as the number of genomes available expands. Furthermore, the research community should transition away from seven-locus MLST, whilst cgMLST, GPSC and LIN assignments should be used more widely. However, to allow for easy comparison between studies and to make previous literature relevant, the reporting of multiple clustering names should be standardized within the research.
Collapse
Affiliation(s)
- Alannah C King
- Parasites and Microbes, The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Narender Kumar
- Parasites and Microbes, The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Kate C Mellor
- Parasites and Microbes, The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Lesley McGee
- Emory Global Health Institute, Emory University, Atlanta, GA, USA
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Stephen D Bentley
- Parasites and Microbes, The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - John A Lees
- EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Stephanie W Lo
- Parasites and Microbes, The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, UK
| |
Collapse
|
10
|
Jansen van Rensburg MJ, Berger DJ, Yassine I, Shaw D, Fohrmann A, Bray JE, Jolley KA, Maiden MCJ, Brueggemann AB. Development of the Pneumococcal Genome Library, a core genome multilocus sequence typing scheme, and a taxonomic life identification number barcoding system to investigate and define pneumococcal population structure. Microb Genom 2024; 10:001280. [PMID: 39137139 PMCID: PMC11321556 DOI: 10.1099/mgen.0.001280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
Investigating the genomic epidemiology of major bacterial pathogens is integral to understanding transmission, evolution, colonization, disease, antimicrobial resistance and vaccine impact. Furthermore, the recent accumulation of large numbers of whole genome sequences for many bacterial species enhances the development of robust genome-wide typing schemes to define the overall bacterial population structure and lineages within it. Using the previously published data, we developed the Pneumococcal Genome Library (PGL), a curated dataset of 30 976 genomes and contextual data for carriage and disease pneumococci recovered between 1916 and 2018 in 82 countries. We leveraged the size and diversity of the PGL to develop a core genome multilocus sequence typing (cgMLST) scheme comprised of 1222 loci. Finally, using multilevel single-linkage clustering, we stratified pneumococci into hierarchical clusters based on allelic similarity thresholds and defined these with a taxonomic life identification number (LIN) barcoding system. The PGL, cgMLST scheme and LIN barcodes represent a high-quality genomic resource and fine-scale clustering approaches for the analysis of pneumococcal populations, which support the genomic epidemiology and surveillance of this leading global pathogen.
Collapse
Affiliation(s)
| | - Duncan J. Berger
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Iman Yassine
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - David Shaw
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Andy Fohrmann
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - James E. Bray
- Department of Biology, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
11
|
Kalizang'oma A, Swarthout TD, Mwalukomo TS, Kamng’ona A, Brown C, Msefula J, Demetriou H, Chan JM, Roalfe L, Obolski U, Lourenço J, Goldblatt D, Chaguza C, French N, Heyderman RS. Clonal Expansion of a Streptococcus pneumoniae Serotype 3 Capsule Variant Sequence Type 700 With Enhanced Vaccine Escape Potential After 13-Valent Pneumococcal Conjugate Vaccine Introduction. J Infect Dis 2024; 230:e189-e198. [PMID: 39052729 PMCID: PMC11272040 DOI: 10.1093/infdis/jiae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/21/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Streptococcus pneumoniae serotype 3 remains a problem globally. Malawi introduced 13-valent pneumococcal conjugate vaccine (PCV13) in 2011, but there has been no direct protection against serotype 3 carriage. We explored whether vaccine escape by serotype 3 is due to clonal expansion of a lineage with a competitive advantage. METHODS The distribution of serotype 3 Global Pneumococcal Sequence Clusters (GPSCs) and sequence types (STs) globally was assessed using sequences from the Global Pneumococcal Sequencing Project. Whole-genome sequences of 135 serotype 3 carriage isolates from Blantyre, Malawi (2015-2019) were analyzed. Comparative analysis of the capsule locus, entire genomes, antimicrobial resistance, and phylogenetic reconstructions were undertaken. Opsonophagocytosis was evaluated using serum samples from vaccinated adults and children. RESULTS Serotype 3 GPSC10-ST700 isolates were most prominent in Malawi. Compared with the prototypical serotype 3 capsular polysaccharide locus sequence, 6 genes are absent, with retention of capsule polysaccharide biosynthesis. This lineage is characterized by increased antimicrobial resistance and lower susceptibility to opsonophagocytic killing. CONCLUSIONS A serotype 3 variant in Malawi has genotypic and phenotypic characteristics that could enhance vaccine escape and clonal expansion after post-PCV13 introduction. Genomic surveillance among high-burden populations is essential to improve the effectiveness of next-generation pneumococcal vaccines.
Collapse
Affiliation(s)
- Akuzike Kalizang'oma
- NIHR Mucosal Pathogens Research Unit, Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
- Pneumonia and Meningitis Pathogens Associate Research Group, Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| | - Todd D Swarthout
- NIHR Mucosal Pathogens Research Unit, Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
- Pneumonia and Meningitis Pathogens Associate Research Group, Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Thandie S Mwalukomo
- School of Medicine and Oral Health, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Arox Kamng’ona
- School of Life Sciences and Allied Health Professionals, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Comfort Brown
- Pneumonia and Meningitis Pathogens Associate Research Group, Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| | - Jacquline Msefula
- Pneumonia and Meningitis Pathogens Associate Research Group, Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| | - Hayley Demetriou
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Jia Mun Chan
- NIHR Mucosal Pathogens Research Unit, Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Lucy Roalfe
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Uri Obolski
- Porter School of the Environment and Earth Science, Tel-Aviv University, Tel-Aviv, Israel
| | - Jose Lourenço
- Faculdade de Ciências, BioISI, Universidade de Lisboa, Lisbon, Portugal
| | - David Goldblatt
- NIHR Mucosal Pathogens Research Unit, Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Chrispin Chaguza
- NIHR Mucosal Pathogens Research Unit, Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut, USA
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, USA
| | - Neil French
- Institute of Infection, Veterinary and Ecological Sciences, Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Robert S Heyderman
- NIHR Mucosal Pathogens Research Unit, Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
- Pneumonia and Meningitis Pathogens Associate Research Group, Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| |
Collapse
|
12
|
Dalmieda J, Hitchcock M, Xu J. High diversity within and low but significant genetic differentiation among geographic and temporal populations of the global Streptococcus pneumoniae. Can J Microbiol 2024; 70:226-237. [PMID: 38422492 DOI: 10.1139/cjm-2023-0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Streptococcus pneumoniae is the major cause of invasive pneumococcal disease. However, the global population structure remains largely unexplored. In this study, we investigated the spatial and temporal patterns of genetic variation of S. pneumoniae based on archived multilocus sequence typing data from PubMLST.org. Our analyses demonstrated both shared and unique distributions of sequence types (STs) and allele types among regional populations. Among the 17 915 global STs, 36 representing 15 263 isolates were broadly shared among all six continents, consistent with recent clonal dispersal and expansion of this pathogen. The analysis of molecular variance revealed that >96% genetic variations were found within individual regional populations. However, though low (<4%), statistically significant genetic differentiation among regional populations was observed. Comparisons between non-clone-corrected and clone-corrected datasets showed that localized clonal expansion contributed significantly to the observed genetic differentiations among regions. Temporal analyses of the isolates showed that implementation of pneumococcal conjugate vaccine impacted the distributions of STs, but the effect on population structure was relatively limited. Linkage disequilibrium analyses identified evidence for recombination in all continental populations; however, the inferred recombination was not random. We discussed the limitations and implications of our analyses to the global epidemiology and future vaccine developments for S. pneumoniae.
Collapse
Affiliation(s)
- Jezreel Dalmieda
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Megan Hitchcock
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
13
|
Cave R, Kalizang'oma A, Chaguza C, Mwalukomo TS, Kamng’ona A, Brown C, Msefula J, Bonomali F, Nyirenda R, Swarthout TD, Kwambana-Adams B, French N, Heyderman RS. Expansion of pneumococcal serotype 23F and 14 lineages with genotypic changes in capsule polysaccharide locus and virulence gene profiles post introduction of pneumococcal conjugate vaccine in Blantyre, Malawi. Microb Genom 2024; 10:001264. [PMID: 38896467 PMCID: PMC11261835 DOI: 10.1099/mgen.0.001264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Since the introduction of the 13-valent pneumococcal conjugate vaccine (PCV13) in Malawi in 2011, there has been persistent carriage of vaccine serotype (VT) Streptococcus pneumoniae, despite high vaccine coverage. To determine if there has been a genetic change within the VT capsule polysaccharide (cps) loci since the vaccine's introduction, we compared 1022 whole-genome-sequenced VT isolates from 1998 to 2019. We identified the clonal expansion of a multidrug-resistant, penicillin non-susceptible serotype 23F GPSC14-ST2059 lineage, a serotype 14 GPSC9-ST782 lineage and a novel serotype 14 sequence type GPSC9-ST18728 lineage. Serotype 23F GPSC14-ST2059 had an I253T mutation within the capsule oligosaccharide repeat unit polymerase Wzy protein, which is predicted in silico to alter the protein pocket cavity. Moreover, serotype 23F GPSC14-ST2059 had SNPs in the DNA binding sites for the cps transcriptional repressors CspR and SpxR. Serotype 14 GPSC9-ST782 harbours a non-truncated version of the large repetitive protein (Lrp), containing a Cna protein B-type domain which is also present in proteins associated with infection and colonisation. These emergent lineages also harboured genes associated with antibiotic resistance, and the promotion of colonisation and infection which were absent in other lineages of the same serotype. Together these data suggest that in addition to serotype replacement, modifications of the capsule locus associated with changes in virulence factor expression and antibiotic resistance may promote vaccine escape. In summary, the study highlights that the persistence of vaccine serotype carriage despite high vaccine coverage in Malawi may be partly caused by expansion of VT lineages post-PCV13 rollout.
Collapse
Affiliation(s)
- Rory Cave
- Mucosal Pathogens Research Group, Research Department of Infection, Division of Infection & Immunity, University College London, London, UK
| | - Akuzike Kalizang'oma
- Mucosal Pathogens Research Group, Research Department of Infection, Division of Infection & Immunity, University College London, London, UK
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
| | - Chrispin Chaguza
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT, USA
| | | | | | - Comfort Brown
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
| | | | | | | | - Todd D. Swarthout
- Mucosal Pathogens Research Group, Research Department of Infection, Division of Infection & Immunity, University College London, London, UK
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Brenda Kwambana-Adams
- Mucosal Pathogens Research Group, Research Department of Infection, Division of Infection & Immunity, University College London, London, UK
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
| | - Neil French
- Clinical Infection, Microbiology and Immunology, Institute of Infection Veterinary & Ecological Science, University of Liverpool, Liverpool, UK
| | - Robert S. Heyderman
- Mucosal Pathogens Research Group, Research Department of Infection, Division of Infection & Immunity, University College London, London, UK
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
| |
Collapse
|
14
|
de Felipe B, Aboza-García M, González-Galán V, Salamanca de la Cueva I, Martín-Quintero JA, Amil-Pérez B, Coronel-Rodríguez C, Palacios-Soria MÁ, García Ruiz-Santaquiteria MI, Torres-Sánchez MJ, Morón FJ, Cordero-Varela JA, Obando-Pacheco P, Obando I. Molecular epidemiology of pneumococcal carriage in children from Seville, following implementation of the PCV13 immunization program in Andalusia, Spain. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2024; 42:172-178. [PMID: 37085445 DOI: 10.1016/j.eimce.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 04/23/2023]
Abstract
INTRODUCTION The 13-valent pneumococcal conjugate vaccine (PCV13) universal vaccination programme was introduced in December 2016 in Andalusia. METHODS A cross-sectional study was conducted on the molecular epidemiology of pneumococcal nasopharyngeal colonization. A total of 397 healthy children were recruited from primary healthcare centres in Seville for the periods 1/4/2018 to 28/2/2020 and 1/11/2021 to 28/2/2022 (PCV13 period). Data from a previous carriage study conducted among healthy and sick children from 1/01/2006 to 30/06/2008 (PCV7 period), were used for comparison of serotype/genotype distributions and antibiotic resistance rates. RESULTS Overall, 76 (19%) children were colonized with S. pneumoniae during the PCV13 period and there were information available from 154 isolates collected during the PCV7 period. Colonization with PCV13 serotypes declined significantly in the PCV13 period compared with historical controls (11% vs 38%, p = 0.0001), being serotypes 19F (8%), 3 (1%) and 6B (1%) the only circulating vaccine types. Serotypes 15B/C and 11A were the most frequently identified non-PCV13 serotypes during the PCV13 period (14% and 11%, respectively); the later one increased significantly between time periods (p = 0.04). Serotype 11A was exclusively associated in the PCV13 period with ampicillin-resistant variants of the Spain9V-ST156 clone (ST6521 and genetically related ST14698), not detected in the preceding period. CONCLUSIONS There was a residual circulation of vaccine types following PCV13 introduction, apart from serotype 19F. Serotype 11A increased between PCV13 and PCV7 periods due to emergence and clonal expansion of ampicillin-resistant genotype ST6521.
Collapse
Affiliation(s)
- Beatriz de Felipe
- Alteraciones Congénitas de la Inmunidad, Instituto de Biomedicina de Sevilla (IBIS), Universidad de Sevilla/Hospital Universitario Virgen del Rocío (HUVR)/CSIC, Sevilla, Spain
| | - Marta Aboza-García
- Alteraciones Congénitas de la Inmunidad, Instituto de Biomedicina de Sevilla (IBIS), Universidad de Sevilla/Hospital Universitario Virgen del Rocío (HUVR)/CSIC, Sevilla, Spain; Centro de Salud Polígono Norte, Sevilla, Spain
| | | | | | | | - Benito Amil-Pérez
- Servicio de Pediatría, Grupo Instituto Hispalense de Pediatría, Sevilla, Spain
| | - Cristóbal Coronel-Rodríguez
- Centro de Salud Amante Laffón, Distrito de Atención Primaria Sevilla, Servicio Andaluz de Salud, Sevilla, Spain
| | | | | | | | - Francisco Javier Morón
- Unidad de Genómica, Instituto de Biomedicina de Sevilla, Universidad de Sevilla/Hospital Universitario Virgen del Rocío/CSIC, Sevilla, Spain
| | - Juan A Cordero-Varela
- Unidad de Bioinformática, Instituto de Biomedicina de Sevilla, Universidad de Sevilla/Hospital Universitario Virgen del Rocío/CSIC, Sevilla, Spain
| | | | - Ignacio Obando
- Alteraciones Congénitas de la Inmunidad, Instituto de Biomedicina de Sevilla (IBIS), Universidad de Sevilla/Hospital Universitario Virgen del Rocío (HUVR)/CSIC, Sevilla, Spain; Sección de Infectología e Inmunopatologías Pediátricas, Hospital Universitario Virgen de Valme, Sevilla, Spain
| |
Collapse
|
15
|
Huang L, Bao Y, Yi Q, Yu D, Wang H, Wang H, Liu Z, Zhu C, Meng Q, Chen Y, Wang W, Deng J, Liu G, Zheng Y, Yang Y. Molecular characteristics and antimicrobial resistance of invasive pneumococcal isolates from children in the post-13-valent pneumococcal conjugate vaccine era in Shenzhen, China. J Glob Antimicrob Resist 2024; 36:399-406. [PMID: 38266961 DOI: 10.1016/j.jgar.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 12/24/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
OBJECTIVES This study aimed to evaluate the molecular epidemiology and antimicrobial resistance of invasive pneumococcal isolates from children in Shenzhen, China, in the early stage of the pneumococcal 13-valent conjugated vaccine (PCV-13) era from 2018 to 2020. METHODS Invasive pneumococcal strains were isolated from hospitalized children with invasive pneumococcal diseases (IPDs) from January 2018 to December 2020. The serotype identification, multilocus sequence typing (MLST), and antibiotic susceptibility tests were performed on all culture-confirmed strains. RESULTS Sixty-four invasive strains were isolated mainly from blood (70.3%). Prevalent serotypes were 23F (28.1%), 14 (18.8%), 19F (15.6%), 6A/B (14.1%), and 19A (12.5%), with a serotype coverage rate of 96.9% for PCV13. The most common sequence types (STs) were ST876 (17.1%), ST271 (10.9%), and ST320 (7.8%). Half of the strains were grouped in clonal complexes (CCs): CC271 (21.9%), CC876 (20.3%), and CC90 (14.1%). Meningitis isolates showed a higher resistance rate (90.9% and 45.5%) to penicillin and ceftriaxone than the rate (3.8% and 9.4%) of non-meningitis isolates. The resistance rates for penicillin (oral), cefuroxime, and erythromycin were 53.13%, 73.4%, and 96.9%, respectively. The dual ermB and mefA genotype was found in 81.3% of erythromycin-resistant strains. The elevated minimum inhibitory concentration (MIC) of β-lactam antibiotics and dual-genotype macrolide resistance were related mainly to three major serotype-CC combinations: 19F-CC271, 19A-CC271, and 14-CC876. CONCLUSION Invasive pneumococcus with elevated MICs of β-lactams and increased dual ermB and mefA genotype macrolide resistance were alarming. Expanded PCV13 vaccination is expected to reduce the burden of paediatric IPD and to combat antibiotic-resistant pneumococcus in Shenzhen.
Collapse
Affiliation(s)
- Lu Huang
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, PR China; Shenzhen Children's Hospital, Guangdong, 518000, PR China
| | - Yanmin Bao
- Shenzhen Children's Hospital, Guangdong, 518000, PR China
| | - Qiuwei Yi
- Shenzhen Children's Hospital, Guangdong, 518000, PR China
| | - Dingle Yu
- Shenzhen Children's Hospital, Guangdong, 518000, PR China
| | - Heping Wang
- Shenzhen Children's Hospital, Guangdong, 518000, PR China
| | - Hongmei Wang
- Shenzhen Children's Hospital, Guangdong, 518000, PR China
| | - Zihao Liu
- Shenzhen Children's Hospital, Guangdong, 518000, PR China
| | - Chunqing Zhu
- Shenzhen Children's Hospital, Guangdong, 518000, PR China
| | - Qing Meng
- Shenzhen Children's Hospital, Guangdong, 518000, PR China
| | - Yunsheng Chen
- Shenzhen Children's Hospital, Guangdong, 518000, PR China
| | - Wenjian Wang
- Shenzhen Children's Hospital, Guangdong, 518000, PR China
| | - Jikui Deng
- Shenzhen Children's Hospital, Guangdong, 518000, PR China
| | - Gang Liu
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, PR China
| | - Yuejie Zheng
- Shenzhen Children's Hospital, Guangdong, 518000, PR China.
| | - Yonghong Yang
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, PR China.
| |
Collapse
|
16
|
Salsabila K, Winarti Y, Paramaiswari WT, Tafroji W, Putri HFM, Daningrat WOD, Wulandari IGAI, Soebandrio A, Safari D. Characterization of MultidrugResistant serogroup 19 Streptococcus pneumoniae isolated from healthy children below 5 years of age in Indonesia. Access Microbiol 2024; 6:000680.v4. [PMID: 38482349 PMCID: PMC10928408 DOI: 10.1099/acmi.0.000680.v4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/18/2024] [Indexed: 11/07/2024] Open
Abstract
We investigated the resistance genes, pilus islets, biofilm formation ability and sequence types of multidrug-resistant Streptococcus pneumoniae (MDRSP) isolated from healthy children below 5 years of age in Indonesia. In all, 104 archived MDRSP isolates from previous carriage studies in Indonesia in 2016-2019 were screened for the presence of antibiotic resistance genes and the rrgC (pilus islet 1) and pitB (pilus islet 2) genes. Multilocus sequence typing and biofilm formation were determined by PCR sequencing and the ability of cells to adhere to the walls, respectively. Results have shown that the mefA, ermB and tetM genes were found in 93, 52 and 100 % of MDRSP isolates, respectively. Insertions of arginine, proline and Ile-100-Leu were the most common mutations in the folA and folP genes. Pilus islets 1 and 2 were discovered in 93 and 82 % of MDRSP isolates, respectively. The MDRSP isolates showed no biofilm formation ability (64 %), and 5 out of 10 strains of MDRSP strains were ST1464. This finding can be used to provide further considerations in implementing and monitoring pneumococcal vaccination in Indonesia.
Collapse
Affiliation(s)
- Korrie Salsabila
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Cibinong, West Java, Indonesia
- Master’s Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Yayah Winarti
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Cibinong, West Java, Indonesia
- Master’s Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Wisiva Tofriska Paramaiswari
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Cibinong, West Java, Indonesia
- Master’s Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Wisnu Tafroji
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Cibinong, West Java, Indonesia
- Master’s Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Hanifah Fajri Maharani Putri
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Cibinong, West Java, Indonesia
| | - Wa Ode Dwi Daningrat
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Cibinong, West Java, Indonesia
| | - I Gusti Ayu Inten Wulandari
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Cibinong, West Java, Indonesia
| | - Amin Soebandrio
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Cibinong, West Java, Indonesia
- Department of Clinical Microbiology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Dodi Safari
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Cibinong, West Java, Indonesia
| |
Collapse
|
17
|
Mokaddas E, Asadzadeh M, Syed S, Albert MJ. High Prevalence of Novel Sequence Types in Streptococcus pneumoniae That Caused Invasive Diseases in Kuwait in 2018. Microorganisms 2024; 12:225. [PMID: 38276209 PMCID: PMC10819824 DOI: 10.3390/microorganisms12010225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Multilocus sequence typing (MLST) is used to gain insight into the population genetics of bacteria in the form of sequence type (ST). MLST has been used to study the evolution and spread of virulent clones of Streptococcus pneumoniae in many parts of the world. Such data for S. pneumoniae are lacking for the countries of the Arabian Peninsula, including Kuwait. METHODS We determined the STs of all 31 strains of S. pneumoniae from invasive diseases received at a reference laboratory from various health centers in Kuwait during 2018 by MLST. The relationship among the isolates was determined by phylogenetic analysis. We also determined the serotypes by Quellung reaction, and antimicrobial susceptibility by Etest, against 15 antibiotics belonging to 10 classes. RESULTS There were 28 STs among the 31 isolates, of which 14 were new STs (45.2%) and 5 were rare STs (16.1%). Phylogenetic analysis revealed that 26 isolates (83.9%) were unrelated singletons, and the Kuwaiti isolates were related to those from neighboring countries whose information was gleaned from unpublished data available at the PubMLST website. Many of our isolates were resistant to penicillin, erythromycin, and azithromycin, and some were multidrug-resistant. Virulent serotype 8-ST53, and serotype 19A with new STs, were detected. CONCLUSIONS Our study detected an unusually large number of novel STs, which may indicate that Kuwait provides a milieu for the evolution of novel STs. Novel STs may arise due to recombination and can result in capsular switching. This can impact the effect of vaccination programs on the burden of invasive pneumococcal disease. This first report from the Arabian Peninsula justifies the continuous monitoring of S. pneumoniae STs for the possible evolution of new virulent clones and capsular switching.
Collapse
Affiliation(s)
| | | | | | - M. John Albert
- Department of Microbiology, College of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait; (E.M.); (M.A.); (S.S.)
| |
Collapse
|
18
|
Manna S, Werren JP, Ortika BD, Bellich B, Pell CL, Nikolaou E, Gjuroski I, Lo S, Hinds J, Tundev O, Dunne EM, Gessner BD, Bentley SD, Russell FM, Mulholland EK, Mungun T, von Mollendorf C, Licciardi PV, Cescutti P, Ravenscroft N, Hilty M, Satzke C. Streptococcus pneumoniae serotype 33G: genetic, serological, and structural analysis of a new capsule type. Microbiol Spectr 2024; 12:e0357923. [PMID: 38059623 PMCID: PMC10782959 DOI: 10.1128/spectrum.03579-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023] Open
Abstract
IMPORTANCE Streptococcus pneumoniae (the pneumococcus) is a bacterial pathogen with the greatest burden of disease in Asia and Africa. The pneumococcal capsular polysaccharide has biological relevance as a major virulence factor as well as public health importance as it is the target for currently licensed vaccines. These vaccines have limited valency, covering up to 23 of the >100 known capsular types (serotypes) with higher valency vaccines in development. Here, we have characterized a new pneumococcal serotype, which we have named 33G. We detected serotype 33G in nasopharyngeal swabs (n = 20) from children and adults hospitalized with pneumonia, as well as healthy children in Mongolia. We show that the genetic, serological, and biochemical properties of 33G differ from existing serotypes, satisfying the criteria to be designated as a new serotype. Future studies should focus on the geographical distribution of 33G and any changes in prevalence following vaccine introduction.
Collapse
Affiliation(s)
- Sam Manna
- Infection, Immunity, and Global Health, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Pediatrics, The University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Joel P. Werren
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Belinda D. Ortika
- Infection, Immunity, and Global Health, Murdoch Children’s Research Institute, Melbourne, Australia
| | - Barbara Bellich
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Casey L. Pell
- Infection, Immunity, and Global Health, Murdoch Children’s Research Institute, Melbourne, Australia
| | - Elissavet Nikolaou
- Infection, Immunity, and Global Health, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Ilche Gjuroski
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Stephanie Lo
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Jason Hinds
- Institute for Infection and Immunity, St. George’s, University of London, London, United Kingdom
- BUGS Bioscience, London Bioscience Innovation Center, London, United Kingdom
| | - Odgerel Tundev
- National Center for Communicable Diseases, Ministry of Health, Ulaanbaatar, Mongolia
| | | | | | - Stephen D. Bentley
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Fiona M. Russell
- Infection, Immunity, and Global Health, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Pediatrics, The University of Melbourne, Melbourne, Australia
| | - E. Kim Mulholland
- Infection, Immunity, and Global Health, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Tuya Mungun
- National Center for Communicable Diseases, Ministry of Health, Ulaanbaatar, Mongolia
| | - Claire von Mollendorf
- Infection, Immunity, and Global Health, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Pediatrics, The University of Melbourne, Melbourne, Australia
| | - Paul V. Licciardi
- Infection, Immunity, and Global Health, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Pediatrics, The University of Melbourne, Melbourne, Australia
| | - Paola Cescutti
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Rondebosch, South Africa
| | - Markus Hilty
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Catherine Satzke
- Infection, Immunity, and Global Health, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Pediatrics, The University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
19
|
Kobayashi J, Ohkusu M, Matsumoto T, Kubota N, Ishiwada N. Bacteriological and molecular characterization of temperature- and CO 2-dependent Streptococcus pneumoniae serotype 24F ST162 isolated from Japanese children. Microbiol Spectr 2023; 11:e0216523. [PMID: 37823633 PMCID: PMC10714769 DOI: 10.1128/spectrum.02165-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/06/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE We characterized Streptococcus pneumoniae serotype 24F sequence type (ST) 162 isolated from Japanese children with invasive pneumococcal disease (IPD). Owing to its highly invasive nature, serotype 24F is expected to be isolated from clinically significant cases. Serotype 24F ST162 isolates tested in the present study did not grow at 35°C in ambient air. Therefore, antimicrobial susceptibility testing using the broth microdilution method, which is usually conducted in ambient air, cannot be performed, posing a clinical challenge. Clinical practitioners and laboratory personnel should be aware of the epidemiological, bacteriological, and molecular characteristics of serotype 24F ST162. We believe that our findings can help diagnose and treat IPD caused by serotype 24F ST162, a serotype expected to become problematic in the post-13 valent pneumococcal conjugate vaccine era.
Collapse
Affiliation(s)
- Jun Kobayashi
- Department of Laboratory Medicine, Nagano Children’s Hospital, Azumino, Japan
- Life Science Research Center, Nagano Children’s Hospital, Azumino, Japan
| | - Misako Ohkusu
- Department of Infectious Diseases, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Takehisa Matsumoto
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Japan
| | - Noriko Kubota
- Department of Laboratory Medicine, Nagano Children’s Hospital, Azumino, Japan
- Life Science Research Center, Nagano Children’s Hospital, Azumino, Japan
| | - Naruhiko Ishiwada
- Department of Infectious Diseases, Medical Mycology Research Center, Chiba University, Chiba, Japan
| |
Collapse
|
20
|
Opavski N, Jovicevic M, Kabic J, Kekic D, Vasiljevic Z, Tosic T, Medic D, Laban S, Ranin L, Gajic I. Serotype distribution, antimicrobial susceptibility and molecular epidemiology of invasive Streptococcus pneumoniae in the nine-year period in Serbia. Front Microbiol 2023; 14:1244366. [PMID: 37670985 PMCID: PMC10475725 DOI: 10.3389/fmicb.2023.1244366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
Streptococcus pneumoniae is one of the leading bacterial pathogens that can cause severe invasive diseases. The aim of the study was to characterize invasive isolates of S. pneumoniae obtained during the nine-year period in Serbia before the introduction of the pneumococcal conjugate vaccines (PCVs) into routine vaccination programs by determining: serotype distribution, the prevalence and genetic basis of antimicrobial resistance, and genetic relatedness of the circulating pneumococcal clones. A total of 490 invasive S. pneumoniae isolates were included in this study. The serotype, antimicrobial susceptibility, and ST of the strains were determined by the Quellung reaction, disk- and gradient-diffusion methods, and multilocus sequence typing (MLST), respectively. The most common serotypes in this study were 3, 19F, 14, 6B, 6A, 19A, and 23F. The serotype coverages of PCV10 and PCV13 in children less than 2 years were 71.3 and 86.1%, respectively, while PPV23 coverage in adults was in the range of 85-96%, depending on the age group. Penicillin and ceftriaxone-non-susceptible isolates account for 47.6 and 16.5% of all isolates, respectively. Macrolide non-susceptibility was detected in 40.4% of isolates, while the rate of multidrug- and extensive-drug resistance was 20.0 and 16.9%, respectively. The MLST analysis of 158 pneumococci identified 60 different STs belonging to the 16 Clonal Complexes (CCs) (consisting of 42 STs) and 18 singletons. The most common CC/ST were ST1377, CC320, CC15, CC273, CC156, CC473, CC81, and CC180. Results obtained in this study indicate that the pre-vaccine pneumococcal population in Serbia is characterized by high penicillin and macrolides non-susceptibility, worrisome rates of MDR and XDR, as well as a high degree of genetic diversity. These findings provide a basis for further investigation of the changes in serotypes and genotypes that can be expected after the routine introduction of PCVs.
Collapse
Affiliation(s)
- Natasa Opavski
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, Belgrade, Serbia
| | - Milos Jovicevic
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, Belgrade, Serbia
| | - Jovana Kabic
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, Belgrade, Serbia
| | - Dusan Kekic
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, Belgrade, Serbia
| | - Zorica Vasiljevic
- Department of Clinical Microbiology, Mother and Child Health Care Institute of Serbia "Dr. Vukan Cupic", Belgrade, Serbia
| | - Tanja Tosic
- Department of Microbiology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Deana Medic
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
- Center for Microbiology, Institute of Public Health of Vojvodina, Novi Sad, Serbia
| | - Suzana Laban
- Department of Microbiology, University Children's Hospital, Belgrade, Serbia
| | - Lazar Ranin
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, Belgrade, Serbia
| | - Ina Gajic
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
21
|
Le Gallou B, Pastuszka A, Lemaire C, Mereghetti L, Lanotte P. Group B Streptococcus CRISPR1 Typing of Maternal, Fetal, and Neonatal Infectious Disease Isolates Highlights the Importance of CC1 in In Utero Fetal Death. Microbiol Spectr 2023; 11:e0522122. [PMID: 37341591 PMCID: PMC10434043 DOI: 10.1128/spectrum.05221-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/24/2023] [Indexed: 06/22/2023] Open
Abstract
We performed a descriptive analysis of group B Streptococcus (GBS) isolates responsible for maternal and fetal infectious diseases from 2004 to 2020 at the University Hospital of Tours, France. This represents 115 isolates, including 35 isolates responsible for early-onset disease (EOD), 48 isolates responsible for late-onset disease (LOD), and 32 isolates from maternal infections. Among the 32 isolates associated with maternal infection, 9 were isolated in the context of chorioamnionitis associated with in utero fetal death. Analysis of neonatal infection distribution over time highlighted the decrease in EOD since the early 2000s, while LOD incidence has remained relatively stable. All GBS isolates were analyzed by sequencing their CRISPR1 locus, which is an efficient way to determine the phylogenetic affiliation of strains, as it correlates with the lineages defined by multilocus sequence typing (MLST). Thus, the CRISPR1 typing method allowed us to assign a clonal complex (CC) to all isolates; among these isolates, CC17 was predominant (60/115, 52%), and the other main CCs, such as CC1 (19/115, 17%), CC10 (9/115, 8%), CC19 (8/115, 7%), and CC23 (15/115, 13%), were also identified. As expected, CC17 isolates (39/48, 81.3%) represented the majority of LOD isolates. Unexpectedly, we found mainly CC1 isolates (6/9) and no CC17 isolates that were responsible for in utero fetal death. Such a result highlights the possibility of a particular role of this CC in in utero infection, and further investigations should be conducted on a larger group of GBS isolated in a context of in utero fetal death. IMPORTANCE Group B Streptococcus is the leading bacterium responsible for maternal and neonatal infections worldwide, also involved in preterm birth, stillbirth, and fetal death. In this study, we determined the clonal complex of all GBS isolates responsible for neonatal diseases (early- and late-onset diseases) and maternal invasive infections, including chorioamnionitis associated with in utero fetal death. All GBS was isolated at the University Hospital of Tours from 2004 to 2020. We described the local group B Streptococcus epidemiology, which confirmed national and international data concerning neonatal disease incidence and clonal complex distribution. Indeed, neonatal diseases are mainly characterized by CC17 isolates, especially in late-onset disease. Interestingly, we identified mainly CC1 isolates responsible for in utero fetal death. CC1 could have a particular role in this context, and such a result should be confirmed on a larger group of GBS isolated from in utero fetal death.
Collapse
Affiliation(s)
- Brice Le Gallou
- Université de Tours, INRAE, Infectiologie et Santé Publique, BRMF, Tours, France
- Service de Bactériologie-Virologie, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | - Adeline Pastuszka
- Université de Tours, INRAE, Infectiologie et Santé Publique, BRMF, Tours, France
- Service de Bactériologie-Virologie, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | - Coralie Lemaire
- Université de Tours, INRAE, Infectiologie et Santé Publique, BRMF, Tours, France
- Service de Bactériologie-Virologie, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | - Laurent Mereghetti
- Université de Tours, INRAE, Infectiologie et Santé Publique, BRMF, Tours, France
- Service de Bactériologie-Virologie, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | - Philippe Lanotte
- Université de Tours, INRAE, Infectiologie et Santé Publique, BRMF, Tours, France
- Service de Bactériologie-Virologie, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| |
Collapse
|
22
|
Bezdicek M, Hanslikova J, Nykrynova M, Dufkova K, Kocmanova I, Kubackova P, Mayer J, Lengerova M. New Multilocus Sequence Typing Scheme for Enterococcus faecium Based on Whole Genome Sequencing Data. Microbiol Spectr 2023; 11:e0510722. [PMID: 37306567 PMCID: PMC10434285 DOI: 10.1128/spectrum.05107-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/24/2023] [Indexed: 06/13/2023] Open
Abstract
The MLST scheme currently used for Enterococcus faecium typing was designed in 2002 and is based on putative gene functions and Enterococcus faecalis gene sequences available at that time. As a result, the original MLST scheme does not correspond to the real genetic relatedness of E. faecium strains and often clusters genetically distant strains to the same sequence types (ST). Nevertheless, typing has a significant impact on the subsequent epidemiological conclusions and introduction of appropriate epidemiological measures, thus it is crucial to use a more accurate MLST scheme. Based on the genome analysis of 1,843 E. faecium isolates, a new scheme, consisting of 8 highly discriminative loci, was created in this study. These strains were divided into 421 STs using the new MLST scheme, as opposed to 223 STs assigned by the original MLST scheme. The proposed MLST has a discriminatory power of D = 0.983 (CI95% 0.981 to 0.984), compared to the original scheme's D = 0.919 (CI95% 0.911 to 0.927). Moreover, we identified new clonal complexes with our newly designed MLST scheme. The scheme proposed here is available within the PubMLST database. Although whole genome sequencing availability has increased rapidly, MLST remains an integral part of clinical epidemiology, mainly due to its high standardization and excellent robustness. In this study, we proposed and validated a new MLST scheme for E. faecium, which is based on genome-wide data and thus reflects the tested isolates' more accurate genetic similarity. IMPORTANCE Enterococcus faecium is one of the most important pathogens causing health care associated infections. One of the main reasons for its clinical importance is a rapidly spreading resistance to vancomycin and linezolid, which significantly complicates antibiotic treatment of infections caused by such resistant strains. Monitoring the spread and relationships between resistant strains causing severe conditions represents an important tool for implementing appropriate preventive measures. Therefore, there is an urgent need to establish a robust method enabling strain monitoring and comparison at the local, national, and global level. Unfortunately, the current, extensively used MLST scheme does not reflect the real genetic relatedness between individual strains and thus does not provide sufficient discriminatory power. This can lead directly to incorrect epidemiological measures due to insufficient accuracy and biased results.
Collapse
Affiliation(s)
- Matej Bezdicek
- Department of Internal Medicine - Haematology and Oncology, University Hospital Brno, Brno, Czech Republic
- Department of Internal Medicine - Haematology and Oncology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jana Hanslikova
- Department of Internal Medicine - Haematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Marketa Nykrynova
- Department of Internal Medicine - Haematology and Oncology, University Hospital Brno, Brno, Czech Republic
- Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Kristyna Dufkova
- Department of Internal Medicine - Haematology and Oncology, University Hospital Brno, Brno, Czech Republic
- Department of Internal Medicine - Haematology and Oncology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Iva Kocmanova
- Department of Clinical Microbiology and Immunology, University Hospital Brno, Brno, Czech Republic
| | - Petra Kubackova
- Department of Clinical Microbiology and Immunology, University Hospital Brno, Brno, Czech Republic
| | - Jiri Mayer
- Department of Internal Medicine - Haematology and Oncology, University Hospital Brno, Brno, Czech Republic
- Department of Internal Medicine - Haematology and Oncology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martina Lengerova
- Department of Internal Medicine - Haematology and Oncology, University Hospital Brno, Brno, Czech Republic
- Department of Internal Medicine - Haematology and Oncology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
23
|
García E. Two putative glutamate decarboxylases of Streptococcus pneumoniae as possible antigens for the production of anti-GAD65 antibodies leading to type 1 diabetes mellitus. Int Microbiol 2023; 26:675-690. [PMID: 37154976 PMCID: PMC10165594 DOI: 10.1007/s10123-023-00364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023]
Abstract
Type 1 diabetes mellitus (T1DM) has been increasing in prevalence in the last decades and has become a global burden. Autoantibodies against human glutamate decarboxylase (GAD65) are among the first to be detected at the onset of T1DM. Diverse viruses have been proposed to be involved in the triggering of T1DM because of molecular mimicry, i.e., similarity between parts of some viral proteins and one or more epitopes of GAD65. However, the possibility that bacterial proteins might also be responsible for GAD65 mimicry has been seldom investigated. To date, many genomes of Streptococcus pneumoniae (the pneumococcus), a prominent human pathogen particularly prevalent among children and the elderly, have been sequenced. A dataset of more than 9000 pneumococcal genomes was mined and two different (albeit related) genes (gadA and gadB), presumably encoding two glutamate decarboxylases similar to GAD65, were found. The various gadASpn alleles were present only in serotype 3 pneumococci belonging to the global lineage GPSC83, although some homologs have also been discovered in two subspecies of Streptococcus constellatus (pharyngis and viborgensis), an isolate of the group B streptococci, and several strains of Lactobacillus delbrueckii. Besides, gadBSpn alleles are present in > 10% of the isolates in our dataset and represent 16 GPSCs with 123 sequence types and 20 different serotypes. Sequence analyses indicated that gadA- and gadB-like genes have been mobilized among different bacteria either by prophage(s) or by integrative and conjugative element(s), respectively. Substantial similarities appear to exist between the putative pneumococcal glutamate decarboxylases and well-known epitopes of GAD65. In this sense, the use of broader pneumococcal conjugate vaccines such as PCV20 would prevent the majority of serotypes expressing those genes that might potentially contribute to T1DM. These results deserve upcoming studies on the possible involvement of S. pneumoniae in the etiopathogenesis and clinical onset of T1DM.
Collapse
Affiliation(s)
- Ernesto García
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
24
|
Wambugu P, Shah MM, Nguyen HA, Le KA, Le HH, Vo HM, Toizumi M, Bui MX, Dang DA, Yoshida LM. Molecular Epidemiology of Streptococcus pneumoniae Detected in Hospitalized Pediatric Acute Respiratory Infection Cases in Central Vietnam. Pathogens 2023; 12:943. [PMID: 37513790 PMCID: PMC10385502 DOI: 10.3390/pathogens12070943] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Streptococcus pneumoniae is the major bacterial pathogen causing high pneumonia morbidity and mortality in children <5 years of age. This study aimed to determine the molecular epidemiology of S. pneumoniae detected among hospitalized pediatric ARI cases at Khanh Hoa General Hospital, Nha Trang, Vietnam, from October 2015 to September 2016 (pre-PCV). We performed semi-quantitative culture to isolate S. pneumoniae. Serotyping, antimicrobial susceptibility testing, resistance gene detection and multi-locus sequence typing were also performed. During the study period, 1300 cases were enrolled and 413 (31.8%) S. pneumoniae were isolated. School attendance, age <3 years old and prior antibiotic use before admission were positively associated with S. pneumoniae isolation. Major serotypes were 6A/B (35.9%), 19F (23.7%) and 23F (12.7%), which accounted for 80.3% of vaccine-type pneumococci. High resistance to Clarithromycin, Erythromycin and Clindamycin (86.7%, 85%, 78.2%) and the mutant drug-resistant genes pbp1A (98.1%), pbp2b (98.8%), pbp2x (99.6%) ermB (96.6%) and mefA (30.3%) were detected. MLST data showed high genetic diversity among the isolates with dominant ST 320 (21.2%) and ST 13223 (19.3%), which were mainly found in Vietnam. Non-typeables accounted for most of the new STs found in the study. Vaccine-type pneumococcus and macrolide resistance were commonly detected among hospitalized pediatric ARI cases.
Collapse
Affiliation(s)
- Peris Wambugu
- Department of Pediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi 54840-00200, Kenya
| | - Mohammad-Monir Shah
- Department of Pediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Hien-Anh Nguyen
- Department of Bacteriology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Kim-Anh Le
- Department of Bacteriology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Huy-Hoang Le
- Department of Bacteriology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Hien-Minh Vo
- Department of Pediatrics, Khanh Hoa General Hospital, Nha Trang 650000, Vietnam
| | - Michiko Toizumi
- Department of Pediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Minh-Xuan Bui
- Khanh Hoa Health Service Department, Nha Trang 650000, Vietnam
| | - Duc-Anh Dang
- Department of Bacteriology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Lay-Myint Yoshida
- Department of Pediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
25
|
Kielbik K, Grywalska E, Glowniak A, Mielnik-Niedzielska G, Korona-Glowniak I. The Molecular Epidemiology of Pneumococcal Strains Isolated from the Nasopharynx of Preschool Children 3 Years after the Introduction of the PCV Vaccination Program in Poland. Int J Mol Sci 2023; 24:ijms24097883. [PMID: 37175589 PMCID: PMC10178342 DOI: 10.3390/ijms24097883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The genetic mechanisms of resistance, clonal composition, and the occurrence of pili were analyzed in 39 pneumococcal strains isolated from healthy children in the southeastern region of Poland. Strains with resistance to combinations of erythromycin, clindamycin, and tetracycline were found in clonal groups (CGs) related to Tennessee 23F-4 and Taiwan 19F-14 clones. Capsular switching possibly occurred in the Spain 9V-3 clone and its variants to serotypes 35B and 6A, as well as DLVs of Tennessee 23F-4 to serotype 23A. The double-locus variants of Colombia 23F-26 presented serotype 23B. The major transposons carrying the erythromycin and tetracycline resistance genes were Tn6002 (66.6%), followed by Tn916 (22.2%) and Tn2009 (11.1%). The macrolide efflux genetic assembly (MEGA) element was found in 41.7% of all erythromycin-resistant isolates. The majority of the isolates carrying the PI-1 gene belonged to the CGs related to the Spain 9V-3 clone expressing serotypes 35B and 6A, and the presence of both PI-1 and PI-2 was identified in CG4 consisting of the isolates related to the Taiwan 19F-14 clone expressing serotypes 19F and 19A. Importantly, in the nearest future, the piliated strains of serogroups 23B, 23A, and 35B may be of concern, being a possible origin of the emerging clones of piliated non-vaccine pneumococcal serotypes in Poland. This study reveals that nasopharyngeal carriage in children is an important reservoir for the selection and spreading of new drug-resistant pneumococcal clones in the community after the elimination of vaccine serotypes.
Collapse
Affiliation(s)
- Karolina Kielbik
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland
| | - Ewelina Grywalska
- Department of Clinical Immunology, Faculty of Medicine, Medical University of Lublin, 20-093 Lublin, Poland
| | - Andrzej Glowniak
- Department of Cardiology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Grażyna Mielnik-Niedzielska
- Department of Pediatric Otolaryngology, Phoniatrics and Audiology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Izabela Korona-Glowniak
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
26
|
Puzia W, Gawor J, Gromadka R, Skoczyńska A, Sadowy E. Comparative genomic analysis of two ST320 Streptococcus pneumoniae isolates, representing serotypes 19A and 19F. BMC Genom Data 2023; 24:19. [PMID: 37032356 PMCID: PMC10084702 DOI: 10.1186/s12863-023-01118-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/03/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND Streptococcus pneumoniae (pneumococcus) represents an important human pathogen, responsible for respiratory and invasive infections in the community. The efficacy of polysaccharide conjugate vaccines formulated against pneumococci is reduced by the phenomenon of serotype replacement in population of this pathogen. The aim of the current study was to obtain and compare complete genomic sequences of two pneumococcal isolates, both belonging to ST320 but differing by the serotype. RESULTS Here, we report genomic sequences of two isolates of important human pathogen, S. pneumoniae. Genomic sequencing resulted in complete sequences of chromosomes of both isolates, 2,069,241 bp and 2,103,144 bp in size, and confirmed the presence of cps loci specific for serotypes 19A and 19F. The comparative analysis of these genomes revealed several instances of recombination, which involved not only S. pneumoniae but also presumably other streptococci as donors. CONCLUSIONS We report the complete genomic sequences of two S. pneumoniae isolates of ST320 and serotypes 19A and 19F. The detailed comparative analysis of these genomes revealed the history of several recombination events, clustered in the region including the cps locus.
Collapse
Affiliation(s)
- Weronika Puzia
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Warsaw, Poland
- DNA Sequencing and Synthesis Facility, Institute of Biochemistry and Biophysics PAS, Warsaw, Poland
| | - Jan Gawor
- DNA Sequencing and Synthesis Facility, Institute of Biochemistry and Biophysics PAS, Warsaw, Poland
| | - Robert Gromadka
- DNA Sequencing and Synthesis Facility, Institute of Biochemistry and Biophysics PAS, Warsaw, Poland
| | - Anna Skoczyńska
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Warsaw, Poland
- National Reference Centre for Bacterial Meningitis, National Medicines Institute, Warsaw, Poland
| | - Ewa Sadowy
- Department of Molecular Microbiology, National Medicines Institute, Ul. Chelmska 30/34, 00-725, Warsaw, Poland.
| |
Collapse
|
27
|
Candeias C, Félix S, Handem S, de Lencastre H, Sá-Leão R. Clonal Changes in the Pneumococcal Population Carried by Portuguese Children during Six Years of Private Use of the 13-Valent Pneumococcal Conjugate Vaccine: the Relative Contribution of Clonal Expansion, Clonal Emergence, and Capsular Switch Events. Microbiol Spectr 2023:e0290922. [PMID: 36946753 PMCID: PMC10100364 DOI: 10.1128/spectrum.02909-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
In Portugal, the 13-valent pneumococcal conjugate vaccine (PCV13) was available for private use from 2010 to 2015 and it was introduced in the National Immunization Program in 2015. We have reported that private use of PCV13 led to extensive serotype replacement and an increase in antimicrobial susceptibility among pneumococci carried by healthy children. We investigated which clonal changes concurred with these observations. A total of 657 pneumococcal strains, representative of a collection of 2,615 isolates, were genotyped by multilocus sequence typing (MLST). The isolates were recovered in 2009 to 2010 (pre-PCV13), 2011 to 2012 (early PCV13), and 2015 to 2016 (late PCV13) from children attending day care centers in two regions of Portugal (one urban, one rural). One-hundred seventy-one sequence types (STs) were identified, corresponding to 18 clonal complexes (CCs) and 58 singletons. Most CCs (n = 17) and several singletons (n = 16) were found in both regions, indicating that they were geographically disseminated. Clonal complexes expressing PCV13 serotypes in circulation in the late PCV13 period were a subset of the ones identified in the pre-PCV13 period and were often associated with antimicrobial resistance. Among those, the most frequent in both regions was CC179, a multidrug-resistant clone of serotype 19F. Serotype replacement, following PCV13 use, was mainly due to expansion of the susceptible lineages expressing non-PCV13 serotypes already in circulation in the pre-PCV13 period. The emergence of ST53, associated with serotype 8, a major cause of disease in several European countries, was observed in the rural region. Potential capsular switching events, unrelated to PCV13 use, were detected. This study improves our understanding of changes triggered by the private use of PCV13 in Portugal. IMPORTANCE Streptococcus pneumoniae (pneumococcus) is a major human respiratory pathogen linked with high morbidity, mortality, and health care-associated costs worldwide. This bacterium often colonizes asymptomatically healthy children. Colonization is a prerequisite for disease and is also essential for transmission between individuals. The 13-valent pneumococcal conjugate vaccine targets 13 of 101 capsular types of pneumococci described to date. This vaccine not only prevents pneumococcal disease but also impacts colonization by decreasing the carriage of vaccine serotypes. Consequently, serotype replacement occurs. The clonal changes occurring during serotype replacement may be due to various mechanisms, such as clonal expansion, emergence, extinction, or capsular switch (vaccine escape). This study shows that in Portugal, the use of PCV13 has led to significant changes in clonal composition and that these were mainly due to the clonal expansion of lineages expressing serotypes not included in the vaccine.
Collapse
Affiliation(s)
- Catarina Candeias
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Sofia Félix
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Sara Handem
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Hermínia de Lencastre
- Laboratory of Molecular Genetics, ITQB NOVA, Oeiras, Portugal
- Laboratory of Microbiology and Infectious Diseases, The Rockefeller University, New York, New York, USA
| | - Raquel Sá-Leão
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| |
Collapse
|
28
|
Ono T, Watanabe M, Hashimoto K, Kume Y, Chishiki M, Okabe H, Sato M, Norito S, Chang B, Hosoya M. Serotypes and Antibiotic Resistance of Streptococcus pneumoniae before and after the Introduction of the 13-Valent Pneumococcal Conjugate Vaccine for Adults and Children in a Rural Area in Japan. Pathogens 2023; 12:pathogens12030493. [PMID: 36986414 PMCID: PMC10056172 DOI: 10.3390/pathogens12030493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The increase in non-vaccine serotypes of Streptococcus pneumoniae and their multidrug resistance have become an issue following the introduction of the 13-valent pneumococcal conjugate vaccine (PCV13). In this study, we investigated the serotypes and drug resistance of S. pneumoniae detected in adult and pediatric outpatients at a hospital in a rural area of Japan between April 2012 and December 2016. Serotypes of the bacterium were identified using the capsular swelling test and multiplex polymerase chain reaction testing of DNA extracted from the specimens. Antimicrobial susceptibility was determined using the broth microdilution method. The serotype 15A was classified using multilocus sequence typing. The results showed that the prevalence of non-vaccine serotypes increased significantly in children from 50.0% in 2012-2013 to 74.1% in 2016 (p ≤ 0.006) and in adults from 15.8% in 2012-2013 to 61.5% in 2016 (p ≤ 0.026), but no increase in drug-resistant isolates was evident. However, an increase in the drug-resistant serotypes 15A and 35B was observed in children. Although isolates of these two serotypes showed cefotaxime susceptibility, cefotaxime resistance was confirmed for the serotype 15A isolates. Future trends in the spread of these isolates should be monitored with caution.
Collapse
Affiliation(s)
- Takashi Ono
- Department of Pediatrics, Minamiaizu Hospital, Minamiaizu 967-0006, Fukushima, Japan
- Department of Pediatrics, Fukushima Medical University, Fukushima 960-1295, Fukushima, Japan
| | - Masahiro Watanabe
- Department of Pediatrics, Fukushima Medical University, Fukushima 960-1295, Fukushima, Japan
| | - Koichi Hashimoto
- Department of Pediatrics, Fukushima Medical University, Fukushima 960-1295, Fukushima, Japan
| | - Yohei Kume
- Department of Pediatrics, Fukushima Medical University, Fukushima 960-1295, Fukushima, Japan
| | - Mina Chishiki
- Department of Pediatrics, Fukushima Medical University, Fukushima 960-1295, Fukushima, Japan
| | - Hisao Okabe
- Department of Pediatrics, Fukushima Medical University, Fukushima 960-1295, Fukushima, Japan
| | - Masatoki Sato
- Department of Pediatrics, Fukushima Medical University, Fukushima 960-1295, Fukushima, Japan
| | - Sakurako Norito
- Department of Pediatrics, Fukushima Medical University, Fukushima 960-1295, Fukushima, Japan
| | - Bin Chang
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku 162-8640, Tokyo, Japan
| | - Mitsuaki Hosoya
- Department of Pediatrics, Fukushima Medical University, Fukushima 960-1295, Fukushima, Japan
| |
Collapse
|
29
|
Novel Multilocus Sequence Typing and Global Sequence Clustering Schemes for Characterizing the Population Diversity of Streptococcus mitis. J Clin Microbiol 2023; 61:e0080222. [PMID: 36515506 PMCID: PMC9879099 DOI: 10.1128/jcm.00802-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Streptococcus mitis is a common oral commensal and an opportunistic pathogen that causes bacteremia and infective endocarditis; however, the species has received little attention compared to other pathogenic streptococcal species. Effective and easy-to-use molecular typing tools are essential for understanding bacterial population diversity and biology, but schemes specific for S. mitis are not currently available. We therefore developed a multilocus sequence typing (MLST) scheme and defined sequence clusters or lineages of S. mitis using a comprehensive global data set of 322 genomes (148 publicly available and 174 newly sequenced). We used internal 450-bp sequence fragments of seven housekeeping genes (accA, gki, hom, oppC, patB, rlmN, and tsf) to define the MLST scheme and derived the global S. mitis sequence clusters using the PopPUNK clustering algorithm. We identified an initial set of 259 sequence types (STs) and 258 global sequence clusters. The schemes showed high concordance (100%), capturing extensive S. mitis diversity with strains assigned to multiple unique STs and global sequence clusters. The tools also identified extensive within- and between-host S. mitis genetic diversity among isolates sampled from a cohort of healthy individuals, together with potential transmission events, supported by both phylogeny and pairwise single nucleotide polymorphism (SNP) distances. Our novel molecular typing and strain clustering schemes for S. mitis allow for the integration of new strain data, are electronically portable at the PubMLST database (https://pubmlst.org/smitis), and offer a standardized approach to understanding the population structure of S. mitis. These robust tools will enable new insights into the epidemiology of S. mitis colonization, disease and transmission.
Collapse
|
30
|
de Felipe B, Aboza-García M, González-Galán V, Salamanca de la Cueva I, Martín-Quintero JA, Amil-Pérez B, Coronel-Rodríguez C, Palacios-Soria MÁ, García Ruiz-Santaquiteria MI, Torres-Sánchez MJ, Morón FJ, Cordero-Varela JA, Obando-Pacheco P, Obando I. Epidemiología molecular de la colonización nasofaríngea neumocócica en niños de Sevilla, tras la implementación del programa de vacunación con VNC13 en Andalucía (España). Enferm Infecc Microbiol Clin 2023. [DOI: 10.1016/j.eimc.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
31
|
Kim GR, Kim EY, Kim SH, Lee HK, Lee J, Shin JH, Kim YR, Song SA, Jeong J, Uh Y, Kim YK, Yong D, Kim HS, Kim S, Kim YA, Shin KS, Jeong SH, Ryoo N, Shin JH. Serotype Distribution and Antimicrobial Resistance of Streptococcus pneumoniae Causing Invasive Pneumococcal Disease in Korea Between 2017 and 2019 After Introduction of the 13-Valent Pneumococcal Conjugate Vaccine. Ann Lab Med 2023; 43:45-54. [PMID: 36045056 PMCID: PMC9467834 DOI: 10.3343/alm.2023.43.1.45] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/02/2022] [Accepted: 08/20/2022] [Indexed: 01/14/2023] Open
Abstract
Background Streptococcus pneumoniae is a serious pathogen causing various infections in humans. We evaluated the serotype distribution and antimicrobial resistance of S. pneumoniae causing invasive pneumococcal disease (IPD) after introduction of pneumococcal conjugate vaccine (PCV)13 in Korea and investigated the epidemiological characteristics of multidrug-resistant (MDR) isolates. Methods S. pneumoniae isolates causing IPD were collected from 16 hospitals in Korea between 2017 and 2019. Serotyping was performed using modified sequential multiplex PCR and the Quellung reaction. Antimicrobial susceptibility tests were performed using the broth microdilution method. Multilocus sequence typing was performed on MDR isolates for epidemiological investigations. Results Among the 411 S. pneumoniae isolates analyzed, the most prevalent serotype was 3 (12.2%), followed by 10A (9.5%), 34 (7.3%), 19A (6.8%), 23A (6.3%), 22F (6.1%), 35B (5.8%), 11A (5.1%), and others (40.9%). The coverage rates of PCV7, PCV10, PCV13, and pneumococcal polysaccharide vaccine (PPSV)23 were 7.8%, 7.8%, 28.7%, and 59.4%, respectively. Resistance rates to penicillin, ceftriaxone, erythromycin, and levofloxacin were 13.1%, 9.2%, 80.3%, and 4.1%, respectively. MDR isolates accounted for 23.4% of all isolates. Serotypes 23A, 11A, 19A, and 15B accounted for the highest proportions of total isolates at 18.8%, 16.7%, 14.6%, and 8.3%, respectively. Sequence type (ST)166 (43.8%) and ST320 (12.5%) were common among MDR isolates. Conclusions Non-PCV13 serotypes are increasing among invasive S. pneumoniae strains causing IPD. Differences in antimicrobial resistance were found according to the specific serotype. Continuous monitoring of serotypes and antimicrobial resistance is necessary for the appropriate management of S. pneumoniae infections.
Collapse
Affiliation(s)
- Gyu Ri Kim
- Department of Laboratory Medicine, Inje University College of Medicine, Busan, Korea
| | - Eun-Young Kim
- Department of Laboratory Medicine, Inje University College of Medicine, Busan, Korea.,Paik Institute for Clinical Research, Inje University College of Medicine, Busan, Korea
| | - Si Hyun Kim
- Department of Clinical Laboratory Science, Semyung University, Jecheon, Korea
| | - Hae Kyung Lee
- Department of Laboratory Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jaehyeon Lee
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Korea
| | - Jong Hee Shin
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Young Ree Kim
- Department of Laboratory Medicine, College of Medicine, Jeju National University, Jeju, Korea
| | - Sae Am Song
- Department of Laboratory Medicine, Inje University College of Medicine, Busan, Korea
| | - Joseph Jeong
- Department of Laboratory Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Young Uh
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Yu Kyung Kim
- Department of Laboratory Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Soo Kim
- Department of Laboratory Medicine, Hallym University College of Medicine, Chuncheon, Korea
| | - Sunjoo Kim
- Department of Laboratory Medicine, Gyeongsang National University College of Medicine, Jinju, Korea
| | - Young Ah Kim
- Department of Laboratory Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Kyeong Seob Shin
- Department of Laboratory Medicine, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Seok Hoon Jeong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Namhee Ryoo
- Department of Laboratory Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Jeong Hwan Shin
- Department of Laboratory Medicine, Inje University College of Medicine, Busan, Korea.,Paik Institute for Clinical Research, Inje University College of Medicine, Busan, Korea
| |
Collapse
|
32
|
Amblar M, Zaballos Á, de la Campa AG. Role of PatAB Transporter in Efflux of Levofloxacin in Streptococcus pneumoniae. Antibiotics (Basel) 2022; 11:antibiotics11121837. [PMID: 36551495 PMCID: PMC9774293 DOI: 10.3390/antibiotics11121837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
PatAB is an ABC bacterial transporter that facilitates the export of antibiotics and dyes. The overexpression of patAB genes conferring efflux-mediated fluoroquinolone resistance has been observed in several laboratory strains and clinical isolates of Streptococcus pneumoniae. Using transformation and whole-genome sequencing, we characterized the fluoroquinolone-resistance mechanism of one S. pneumoniae clinical isolate without mutations in the DNA topoisomerase genes. We identified the PatAB fluoroquinolone efflux-pump as the mechanism conferring a low-level resistance to ciprofloxacin (8 µg/mL) and levofloxacin (4 µg/mL). Genetic transformation experiments with different amplimers revealed that the entire patA plus the 5'-terminus of patB are required for levofloxacin-efflux. By contrast, only the upstream region of the patAB operon, plus the region coding the N-terminus of PatA containing the G39D, T43A, V48A and D100N amino acid changes, are sufficient to confer a ciprofloxacin-efflux phenotype, thus suggesting differences between fluoroquinolones in their binding and/or translocation pathways. In addition, we identified a novel single mutation responsible for the constitutive and ciprofloxacin-inducible upregulation of patAB. This mutation is predicted to destabilize the putative rho-independent transcriptional terminator located upstream of patA, increasing transcription of downstream genes. This is the first report demonstrating the role of the PatAB transporter in levofloxacin-efflux in a pneumoccocal clinical isolate.
Collapse
Affiliation(s)
- Mónica Amblar
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra Majadahonda-Pozuelo Km 2.200, Majadahonda, 28220 Madrid, Spain
- Correspondence: (M.A.); (A.G.d.l.C.); Tel.: +34-91448283 (M.A.); +34-91448944 (A.G.d.l.C.)
| | - Ángel Zaballos
- Unidades Centrales Científico Técnicas, Instituto de Salud Carlos III, Ctra Majadahonda-Pozuelo Km 2.200, Majadahonda, 28220 Madrid, Spain
| | - Adela G de la Campa
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra Majadahonda-Pozuelo Km 2.200, Majadahonda, 28220 Madrid, Spain
- Presidencia, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
- Correspondence: (M.A.); (A.G.d.l.C.); Tel.: +34-91448283 (M.A.); +34-91448944 (A.G.d.l.C.)
| |
Collapse
|
33
|
Jalil M, Quddos F, Anwer F, Nasir S, Rahman A, Alharbi M, Alshammari A, Alshammari HK, Ali A. Comparative Pan-Genomic Analysis Revealed an Improved Multi-Locus Sequence Typing Scheme for Staphylococcus aureus. Genes (Basel) 2022; 13:2160. [PMID: 36421834 PMCID: PMC9690842 DOI: 10.3390/genes13112160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 08/20/2024] Open
Abstract
The growing prevalence of antibiotic-resistant Staphylococcus aureus strains mandates selective susceptibility testing and epidemiological investigations. It also draws attention to an efficient typing strategy. Whole genome sequencing helps in genetic comparison, strain differentiation, and typing; however, it is not that cost-effective. In comparison, Multi-Locus Sequence Typing (MLST) is an efficient typing method employed for bacterial strain typing and characterizations. In this paper, a comprehensive pangenome and phylogenetic analysis of 502/1279 S. aureus genomes is carried out to understand the species divergence. Additionally, the current Multi-Locus Sequence Typing (MLST) scheme was evaluated, and genes were excluded or substituted by alternative genes based on reported shortcomings, genomic data, and statistical scores calculated. The data generated were helpful in devising a new Multi-Locus Sequence Typing (MLST) scheme for the efficient typing of S. aureus strains. The revised scheme is now a blend of previously used genes and new candidate genes. The genes yQil, aroE, and gmk are replaced with better gene candidates, opuCC, aspS, and rpiB, based on their genome localization, representation, and statistical scores. Therefore, the proposed Multi-Locus Sequence Typing (MLST) method offers a greater resolution with 58 sequence types (STs) in comparison to the prior scheme's 42 STs.
Collapse
Affiliation(s)
- Maira Jalil
- Atta Ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
- Department of Biology, University of Virginia College and Graduate School of Arts & Sciences, Charlottesville, VA 22903, USA
| | - Fatima Quddos
- Atta Ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
- Translational Biology, Medicine, & Health Graduate Program at Virginia Tech, 1 Riverside Circle Suite 201, Roanoke, VA 24016, USA
| | - Farha Anwer
- Atta Ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Samavi Nasir
- Atta Ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Abdur Rahman
- Atta Ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Huda Kamel Alshammari
- Department of Pharmacy, Riyadh Security Forces Hospital, Ministry of Interior, Riyadh 11564, Saudi Arabia
| | - Amjad Ali
- Atta Ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| |
Collapse
|
34
|
Pham H, Tran TDT, Yang Y, Ahn JH, Hur HG, Kim YH. Analysis of phylogenetic markers for classification of a hydrogen peroxide producing Streptococcus oralis isolated from saliva by a newly devised differential medium. J Microbiol 2022; 60:795-805. [DOI: 10.1007/s12275-022-2261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022]
|
35
|
Kassaza K, Wasswa F, Nielsen K, Bazira J. Cryptococcus neoformans Genotypic Diversity and Disease Outcome among HIV Patients in Africa. J Fungi (Basel) 2022; 8:734. [PMID: 35887489 PMCID: PMC9325144 DOI: 10.3390/jof8070734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
Cryptococcal meningoencephalitis, a disease with poor patient outcomes, remains the most prevalent invasive fungal infection worldwide, accounting for approximately 180,000 deaths each year. In several areas of sub-Saharan Africa with the highest HIV prevalence, cryptococcal meningitis is the leading cause of community-acquired meningitis, with a high mortality among HIV-infected individuals. Recent studies show that patient disease outcomes are impacted by the genetics of the infecting isolate. Yet, there is still limited knowledge of how these genotypic variations contribute to clinical disease outcome. Further, it is unclear how the genetic heterogeneity of C. neoformans and the extensive phenotypic variation observed between and within isolates affects infection and disease. In this review, we discuss current knowledge of how various genotypes impact disease progression and patient outcome in HIV-positive populations in sub-Saharan African, a setting with a high burden of cryptococcosis.
Collapse
Affiliation(s)
- Kennedy Kassaza
- Department of Microbiology and Parasitology, Mbarara University of Science and Technology, Mbarara P.O. Box 1410, Uganda; (K.K.); (F.W.)
| | - Fredrickson Wasswa
- Department of Microbiology and Parasitology, Mbarara University of Science and Technology, Mbarara P.O. Box 1410, Uganda; (K.K.); (F.W.)
| | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joel Bazira
- Department of Microbiology and Parasitology, Mbarara University of Science and Technology, Mbarara P.O. Box 1410, Uganda; (K.K.); (F.W.)
| |
Collapse
|
36
|
Chaguza C, Yang M, Jacques LC, Bentley SD, Kadioglu A. Serotype 1 pneumococcus: epidemiology, genomics, and disease mechanisms. Trends Microbiol 2022; 30:581-592. [PMID: 34949516 PMCID: PMC7613904 DOI: 10.1016/j.tim.2021.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022]
Abstract
Streptococcus pneumoniae (the 'pneumococcus') is a significant cause of morbidity and mortality worldwide, causing life-threatening diseases such as pneumonia, bacteraemia, and meningitis, with an annual death burden of over one million. Discovered over a century ago, pneumococcal serotype 1 (S1) is a significant cause of these life-threatening diseases. Our understanding of the epidemiology and biology of pneumococcal S1 has significantly improved over the past two decades, informing the development of preventative and surveillance strategies. However, many questions remain unanswered. Here, we review the current state of knowledge of pneumococcal S1, with a special emphasis on clinical epidemiology, genomics, and disease mechanisms.
Collapse
Affiliation(s)
- Chrispin Chaguza
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK; Darwin College, University of Cambridge, Silver Street, Cambridge, UK; Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, The Ronald Ross Building, West Derby St, Liverpool, UK; NIHR Mucosal Pathogens Research Unit, Division of Infection and Immunity, University College London, London, UK.
| | - Marie Yang
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, The Ronald Ross Building, West Derby St, Liverpool, UK
| | - Laura C Jacques
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, The Ronald Ross Building, West Derby St, Liverpool, UK.
| | - Stephen D Bentley
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK; Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, The Ronald Ross Building, West Derby St, Liverpool, UK; Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Aras Kadioglu
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, The Ronald Ross Building, West Derby St, Liverpool, UK
| |
Collapse
|
37
|
Chaguza C, Ebruke C, Senghore M, Lo SW, Tientcheu PE, Gladstone RA, Tonkin-Hill G, Cornick JE, Yang M, Worwui A, McGee L, Breiman RF, Klugman KP, Kadioglu A, Everett DB, Mackenzie G, Croucher NJ, Roca A, Kwambana-Adams BA, Antonio M, Bentley SD. Comparative Genomics of Disease and Carriage Serotype 1 Pneumococci. Genome Biol Evol 2022; 14:evac052. [PMID: 35439297 PMCID: PMC9048925 DOI: 10.1093/gbe/evac052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2022] [Indexed: 11/14/2022] Open
Abstract
The isolation of Streptococcus pneumoniae serotypes in systemic tissues of patients with invasive disease versus the nasopharynx of healthy individuals with asymptomatic carriage varies widely. Some serotypes are hyper-invasive, particularly serotype 1, but the underlying genetics remain poorly understood due to the rarity of carriage isolates, reducing the power of comparison with invasive isolates. Here, we use a well-controlled genome-wide association study to search for genetic variation associated with invasiveness of serotype 1 pneumococci from a serotype 1 endemic setting in Africa. We found no consensus evidence that certain genomic variation is overrepresented among isolates from patients with invasive disease than asymptomatic carriage. Overall, the genomic variation explained negligible phenotypic variability, suggesting a minimal effect on the disease status. Furthermore, changes in lineage distribution were seen with lineages replacing each other over time, highlighting the importance of continued pathogen surveillance. Our findings suggest that the hyper-invasiveness is an intrinsic property of the serotype 1 strains, not specific for a "disease-associated" subpopulation disproportionately harboring unique genomic variation.
Collapse
Affiliation(s)
- Chrispin Chaguza
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Darwin College, University of Cambridge, Silver Street, Cambridge, UK
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Chinelo Ebruke
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Madikay Senghore
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- Department of Epidemiology, Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Stephanie W. Lo
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Peggy-Estelle Tientcheu
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Rebecca A. Gladstone
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Gerry Tonkin-Hill
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Jennifer E. Cornick
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Marie Yang
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Archibald Worwui
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Lesley McGee
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Robert F. Breiman
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Keith P. Klugman
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Aras Kadioglu
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Dean B. Everett
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, UAE
| | - Grant Mackenzie
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- Murdoch Children’s Research Institute, Parkville, Melbourne, VIC, Australia
- London School of Hygiene & Tropical Medicine, London, UK
| | - Nicholas J. Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| | - Anna Roca
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- London School of Hygiene & Tropical Medicine, London, UK
| | - Brenda A. Kwambana-Adams
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London, UK
| | - Martin Antonio
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- London School of Hygiene & Tropical Medicine, London, UK
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Stephen D. Bentley
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| |
Collapse
|
38
|
Incidence rates, emerging serotypes and genotypes, and antimicrobial susceptibility of pneumococcal disease in Taiwan: A multi-center clinical microbiological study after PCV13 implementation. J Infect 2022; 84:788-794. [DOI: 10.1016/j.jinf.2022.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/19/2022] [Accepted: 04/08/2022] [Indexed: 11/21/2022]
|
39
|
Agnew HN, Brazel EB, Tikhomirova A, van der Linden M, McLean KT, Paton JC, Trappetti C. Streptococcus pneumoniae Strains Isolated From a Single Pediatric Patient Display Distinct Phenotypes. Front Cell Infect Microbiol 2022; 12:866259. [PMID: 35433506 PMCID: PMC9008571 DOI: 10.3389/fcimb.2022.866259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pneumoniae is the leading cause of bacterial paediatric meningitis after the neonatal period worldwide, but the bacterial factors and pathophysiology that drive pneumococcal meningitis are not fully understood. In this work, we have identified differences in raffinose utilization by S. pneumoniae isolates of identical serotype and sequence type from the blood and cerebrospinal fluid (CSF) of a single pediatric patient with meningitis. The blood isolate displayed defective raffinose metabolism, reduced transcription of the raffinose utilization pathway genes, and an inability to grow in vitro when raffinose was the sole carbon source. The fitness of these strains was then assessed using a murine intranasal infection model. Compared with the CSF isolate, mice infected with the blood isolate displayed higher bacterial numbers in the nose, but this strain was unable to invade the ears of infected mice. A premature stop codon was identified in the aga gene in the raffinose locus, suggesting that this protein likely displays impaired alpha-galactosidase activity. These closely related strains were assessed by Illumina sequencing, which did not identify any single nucleotide polymorphisms (SNPs) between the two strains. However, these wider genomic analyses identified the presence of an alternative alpha-galactosidase gene that appeared to display altered sequence coverage between the strains, which may account for the observed differences in raffinose metabolic capacity. Together, these studies support previous findings that raffinose utilization capacity contributes to disease progression, and provide insight into a possible alternative means by which perturbation of this pathway may influence the behavior of pneumococci in the host environment, particularly in meningitis.
Collapse
Affiliation(s)
- Hannah N. Agnew
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SAAustralia
| | - Erin B. Brazel
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SAAustralia
| | - Alexandra Tikhomirova
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SAAustralia
| | - Mark van der Linden
- German National Reference Center for Streptoccocci, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Kimberley T. McLean
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SAAustralia
| | - James C. Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SAAustralia
- *Correspondence: Claudia Trappetti, ; James C. Paton,
| | - Claudia Trappetti
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SAAustralia
- *Correspondence: Claudia Trappetti, ; James C. Paton,
| |
Collapse
|
40
|
Kim EY, Kim SH, Kim GR, Shin JH. Characteristics of Clonal Complex Changes and Quinolone Resistance-Determining Region Mutations of Levofloxacin-Resistant Streptococcus pneumoniae in South Korea. Microb Drug Resist 2022; 28:559-565. [PMID: 35325563 DOI: 10.1089/mdr.2021.0341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pneumoniae is the most common causative agent of community-acquired pneumonia and invasive pneumococcal diseases with high mortality rates. The aims of this study were to evaluate clonal complex (CC) changes of levofloxacin-resistant S. pneumoniae (LRSP) strains and to investigate the relationship between levofloxacin resistance and pneumococcal serotypes. We analyzed the antimicrobial susceptibility of 145 LRSP strains to 18 antimicrobial agents and the quinolone resistance-determining region mutation. Multilocus sequence typing was performed to investigate the genetic relatedness among LRSP strains. Most LRSP strains (96.6%) were multidrug resistant and had simultaneous mutations in gyrA, parC, and parE (91.7%). The serotypes 11A (44.1%) and 13 (14.5%) accounted for 58.6% of LRSP strains, and 32.0% were nonvaccine serotypes. Most LRSP strains were grouped as CC8279 (N = 83; 57.2%), CC189 (N = 10; 6.9%), or CC320 (N = 5; 3.4%). CC8279 was commonly combined with serotypes 11A and 13. There were numerous changes of serotype and CC accompanying the emergence and spread of LRSP. Continuous monitoring of changes in the serotype and sequence type of LRSP is required to follow the spread of LRSP for public health monitoring.
Collapse
Affiliation(s)
- Eun-Young Kim
- Paik Institute for Clinical Research, Inje University College of Medicine, Busan, Republic of Korea.,Department of Laboratory Medicine, Inje University College of Medicine, Busan, Republic of Korea
| | - Si Hyun Kim
- Department of Clinical Laboratory Science, Semyung University, Jecheon, Republic of Korea
| | - Gyu Ri Kim
- Department of Laboratory Medicine, Inje University College of Medicine, Busan, Republic of Korea
| | - Jeong Hwan Shin
- Paik Institute for Clinical Research, Inje University College of Medicine, Busan, Republic of Korea.,Department of Laboratory Medicine, Inje University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
41
|
Epidemiological characteristics in serotype 24 pediatric invasive pneumococcal disease according to an 11-year population-based study in Japan. Epidemiol Infect 2022; 150:e66. [PMID: 35311634 PMCID: PMC8950979 DOI: 10.1017/s0950268822000395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
After the introduction of the 13-valent pneumococcal conjugate vaccine (PCV13), serotype replacement has occurred in Japan, and serotype 24 has become the most common serotype in paediatric invasive pneumococcal disease (IPD). To understand the characteristics of serotype 24-IPD in Japanese children in the post-PCV13 era, we conducted a retrospective study in children aged ≤15 years from 2010 to 2020 using a database of paediatric IPD surveillance in Chiba prefecture, Japan. We identified a total of 357 IPD cases and collected clinical information on 225 cases (24: 32 cases, non-24: 193 cases). Compared with the non-serotype 24-IPD, serotype 24-IPD was independently related to be <2 years of age [odds ratio (OR) 3.91, 95% confidence interval (CI) 1.47–10.44; P = 0.0064] and bacteremia (OR 2.28, 95% CI 1.01–5.13; P = 0.0475), as a result of the multivariate regression analysis. We also conducted a bacterial analysis, and the isolates of serotype 24-IPD had tendencies of PCG-susceptible (24: 100.0%, non-24: 61.3%; P < 0.0001) and macrolide-resistance (24: 100.0%, non-24: 87.3%; P = 0.0490). Their multilocus sequence typing was mostly ST2572 and the variants, which were unique to Japan. This tendency might have been a result of the progress made in the Japanese PCV13 immunisation programme.
Collapse
|
42
|
Jia J, Shi W, Dong F, Meng Q, Yuan L, Chen C, Yao K. Identification and molecular epidemiology of routinely determined Streptococcus pneumoniae with negative Quellung reaction results. J Clin Lab Anal 2022; 36:e24293. [PMID: 35170080 PMCID: PMC8993597 DOI: 10.1002/jcla.24293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/08/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background Some streptococci strains identified as Streptococcus pneumoniae (S. pneumoniae) by routine clinical methods exhibiting negative Quellung reaction results may belong to other species of viridans group streptococci or non‐typeable S. pneumoniae. The purpose of this study was to investigate the identification and molecular characteristics of S. pneumoniae with negative Quellung reaction results. Methods One hundred and five isolates identified as S. pneumoniae using routine microbiological methods with negative Quellung reaction results were included. Multilocus sequence analysis (MLSA) was used as a gold standard in species identification, and the capacity of matrix‐assisted laser desorption ionization‐time of flight mass spectrometry (MALDI‐TOF MS) in identification was evaluated. Capsular genes and sequence types of S. pneumoniae isolates were determined by sequential multiplex PCR and multilocus sequence typing. Antimicrobial susceptibility patterns were determined via broth microdilution with a commercialized 96‐well plate. Results Among the isolates, 81 were identified as S. pneumoniae and 24 were S. pseudopneumoniae by MLSA. MALDI‐TOF MS misidentified six S. pneumoniae isolates as S. pseudopneumoniae and nine S. pseudopneumoniae isolates as S. pneumoniae or S. mitis/S. oralis. Thirty‐one sequence types (STs) were detected for these 81 S. pneumoniae isolates, and the dominant ST was ST‐bj12 (16, 19.8%). The non‐susceptibility rates of S. pseudopneumoniae were comparable to those of NESp strains. Conclusions Some S. pneumoniae isolates identified by routine methods were S. pseudopneumoniae. Most NESp strains have a different genetic background compared with capsulated S. pneumoniae strains. The resistance patterns of S. pseudopneumoniae against common antibiotics were comparable to those of NESp.
Collapse
Affiliation(s)
- Ju Jia
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Wei Shi
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Fang Dong
- Clinical Laboratory, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Qingying Meng
- Clinical Laboratory, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Lin Yuan
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Changhui Chen
- Department of Pediatrics, Youyang County People's Hospital, Chongqing, China
| | - Kaihu Yao
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| |
Collapse
|
43
|
Khan K, Jalal K, Khan A, Al-Harrasi A, Uddin R. Comparative Metabolic Pathways Analysis and Subtractive Genomics Profiling to Prioritize Potential Drug Targets Against Streptococcus pneumoniae. Front Microbiol 2022; 12:796363. [PMID: 35222301 PMCID: PMC8866961 DOI: 10.3389/fmicb.2021.796363] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/28/2021] [Indexed: 02/01/2023] Open
Abstract
Streptococcus pneumoniae is a notorious pathogen that affects ∼450 million people worldwide and causes up to four million deaths per annum. Despite availability of antibiotics (i.e., penicillin, doxycycline, or clarithromycin) and conjugate vaccines (e.g., PCVs), it is still challenging to treat because of its drug resistance ability. The rise of antibiotic resistance in S. pneumoniae is a major source of concern across the world. Computational subtractive genomics is one of the most applied techniques in which the whole proteome of the bacterial pathogen is gradually reduced to a limited number of potential therapeutic targets. Whole-genome sequencing has greatly reduced the time required and provides more opportunities for drug target identification. The goal of this work is to evaluate and analyze metabolic pathways in serotype 14 of S. pneumonia to identify potential drug targets. In the present study, 47 potent drug targets were identified against S. pneumonia by employing the computational subtractive genomics approach. Among these, two proteins are prioritized (i.e., 4-oxalocrotonate tautomerase and Sensor histidine kinase uniquely present in S. pneumonia) as novel drug targets and selected for further structure-based studies. The identified proteins may provide a platform for the discovery of a lead drug candidate that may be capable of inhibiting these proteins and, therefore, could be helpful in minimizing the associated risk related to the drug-resistant S. pneumoniae. Finally, these enzymatic proteins could be of prime interest against S. pneumoniae to design rational targeted therapy.
Collapse
Affiliation(s)
- Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Khurshid Jalal
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Reaz Uddin
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
44
|
Shi W, Du Q, Yuan L, Gao W, Wang Q, Yao K. Antibiotic Resistance and Molecular Biological Characteristics of Non-13-Valent-Pneumococcal Conjugate Vaccine Serogroup 15 Streptococcus pneumoniae Isolated From Children in China. Front Microbiol 2022; 12:778985. [PMID: 35069480 PMCID: PMC8766798 DOI: 10.3389/fmicb.2021.778985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/10/2021] [Indexed: 11/25/2022] Open
Abstract
Background: The isolation rate of serogroup 15 Streptococcus pneumoniae has been increasing since developing countries began administering the 13-valent pneumococcal conjugate vaccine. Methods: We detected the antibiotic resistance and molecular characteristics of 126 serogroup 15 S. pneumoniae strains isolated from children in China. Serotypes were determined via the Quellung reaction. Antibiotic resistance was tested using the E-test or disc diffusion method. Sequence types were assigned via multilocus sequence typing. Data were analyzed using WHONET 5.6 software. Results: The frequencies of S. pneumoniae serotypes 15A, 15B, 15C, and 15F were 29.37, 40.48, 28.57, and 1.59%, respectively. Continuous-monitoring data from Beijing showed that the annual isolation rates of serogroup 15 S. pneumoniae were 7.64, 7.17, 2.58, 4.35, 3.85, 7.41, and 10.53%, respectively, from 2013 to 2019. All 126 serogroup 15 strains were susceptible to vancomycin and ceftriaxone. The non-susceptibility rate to penicillin was 78.57%. All strains were resistant to erythromycin with high minimum inhibitory concentrations (MICs). The multidrug resistance rate was 78.57%. The most common clonal complexes were CC3397, CC6011, CC10088, CC9785, and ST8589. Conclusion: Serogroup 15 S. pneumoniae is common among children in China, and these strains should be continuously monitored.
Collapse
Affiliation(s)
- Wei Shi
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Qianqian Du
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Lin Yuan
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Wei Gao
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Qing Wang
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Kaihu Yao
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
45
|
Du S, Yan C, Du B, Zhao H, Xue G, Zheng P, Feng Y, Cui J, Gan L, Feng J, Fan Z, Xu Z, Fu T, Fu H, Zhang Q, Li N, Zhang R, Liu S, Li X, Cui X, Zhou Y, Zhang Q, Chen Y, Yuan J. Development of Loop-Mediated Isothermal Amplification Assay Targeting lytA and psaA Genes for Rapid and Visual Diagnosis of Streptococcus pneumoniae Pneumonia in Children. Front Microbiol 2022; 12:816997. [PMID: 35111144 PMCID: PMC8803124 DOI: 10.3389/fmicb.2021.816997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/20/2021] [Indexed: 02/02/2023] Open
Abstract
Streptococcus pneumoniae (S. pneumoniae) is a common major human pathogen associated with community-acquired pneumonia, septicemia, meningitis, and otitis media. It is difficult to isolate and identify S. pneumoniae form clinical samples. To evaluate a novel, rapid, sensitive, and specific loop-mediated isothermal amplification (LAMP) assay to detect S. pneumoniae pneumonia in children, we designed specific LAMP primers targeting lytA and psaA genes. We optimized the reaction time and reaction system, and evaluated its sensitivity and specificity of detection using real-time turbidity monitoring and visual observation. We also analyzed the molecular characteristics of the isolates obtained from the positive samples. The primer sets LytA-1 and PsaA-2 amplified the genes in the shortest times, and 63°C was confirmed as the optimum reaction temperature. The detection sensitivity of each reaction was 10 and 100 copies/μL with primer sets LytA-1 and PsaA-2, respectively. This LAMP assay showed no cross-reactivity with other 27 pathogens. To describe the availability of this method, we collected 748 clinical samples from children with pneumonia. Among them, 135 were confirmed to be S. pneumoniae positive by LAMP. The sensitivity was 100% (95% CI 96.4–100%), specificity 99.0% (95% CI 97.8–99.6%). Including them, 50 were co-infected with Mycoplasma pneumoniae. This LAMP assay detected S. pneumoniae in 1 h and the results can be identified with visual naked eyes. Thus, it will be a powerful tool for S. pneumoniae early diagnosis and effective antibiotic therapy.
Collapse
Affiliation(s)
- Shuheng Du
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
| | - Chao Yan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Bing Du
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
- College of Biomedicine, Beijing City College, Beijing, China
| | - Hanqing Zhao
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Guanhua Xue
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Ping Zheng
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Yanling Feng
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Jinghua Cui
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Lin Gan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Junxia Feng
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Zheng Fan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Ziying Xu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Tongtong Fu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Hanyu Fu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Qun Zhang
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Nannan Li
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Rui Zhang
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Shiyu Liu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Xiaoran Li
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Xiaohu Cui
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Yao Zhou
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Qi Zhang
- College of Biomedicine, Beijing City College, Beijing, China
| | - Yaodong Chen
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
- Yaodong Chen,
| | - Jing Yuan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
- *Correspondence: Jing Yuan,
| |
Collapse
|
46
|
Whole-genome analysis-based phylogeographic investigation of Streptococcus pneumoniae serotype 19A sequence type 320 isolates in Japan. Antimicrob Agents Chemother 2021; 66:e0139521. [PMID: 34930035 PMCID: PMC8846463 DOI: 10.1128/aac.01395-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
After the introduction of the seven-valent pneumococcal conjugate vaccine, the global spread of multidrug-resistant serotype 19A-sequence type 320 (ST320) strains of Streptococcus pneumoniae became a public health concern. In Japan, the main genotype of serotype 19A was ST3111, and the identification rate of ST320 was low. Although the isolates were sporadically detected in both adults and children, their origin remains unknown. Thus, by combining pneumococcal isolates collected in three nationwide pneumococcal surveillance studies conducted in Japan between 2008 and 2020, we analyzed 56 serotype 19A-ST320 isolates along with 931 global isolates, using whole-genome sequencing to uncover the transmission route of the globally distributed clone in Japan. The clone was frequently detected in Okinawa Prefecture, where the United States returned to Japan in 1972. Phylogenetic analysis demonstrated that the isolates from Japan were genetically related to those from the United States; therefore, the common ancestor may have originated in the United States. In addition, Bayesian analysis suggested that the time to the most recent common ancestor of the isolates from Japan and the U.S. was approximately the 1990s to 2000, suggesting the possibility that the common ancestor could have already spread in the United States before the Taiwan 19F-14 isolate was first identified in a Taiwanese hospital in 1997. The phylogeographical analysis supported the transmission of the clone from the United States to Japan, but the analysis could be influenced by sampling bias. These results suggested the possibility that the serotype 19A-ST320 clone had already spread in the United States before being imported into Japan.
Collapse
|
47
|
Ganaie F, Branche AR, Peasley M, Rosch JW, Nahm MH. Oral streptococci expressing pneumococci-like cross-reactive capsule types can affect WHO recommended pneumococcal carriage procedure. Clin Infect Dis 2021; 75:647-656. [PMID: 34891152 DOI: 10.1093/cid/ciab1003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Carriage studies are fundamental to assess the effects of pneumococcal vaccines. Since a large proportion of oral streptococci carry homologs of pneumococcal genes, nonculture-based detection and serotyping of upper respiratory tract (URT) samples can be problematic. Herein, we investigated if culture-free molecular methods could differentiate pneumococci from oral streptococci carried by adults in URT. METHODS Paired nasopharyngeal (NP) and oropharyngeal (OP) samples were collected from 100 older adults twice a month for one year. Extracts from the combined NP+OP samples (n=2400) were subjected to lytA real-time PCR. Positive samples were subjected to pure culture isolation followed by species confirmation using multiple approaches. Multibead assay and whole-genome sequencing were used for serotyping. RESULTS lytA-PCR was positive in 301 combined NP+OP extracts, 20 of which grew probable pneumococcal-like colonies based on colony morphology and biochemical tests. Multiple approaches confirmed that four isolates were S. pneumoniae, three were S. psuedopneumoniae, and thirteen were S. mitis. Eight nonpneumococcal strains carried pneumococcus-like cps loci (size: ~18 to 25 kb) that showed >70% of nucleotide identity with their pneumococcal counterparts. While investigating the antigenic profile, we found some S. mitis strains (P066 and P107) reacted with both serotype-specific polyclonal (Type 39 and FS17b) and monoclonal (Hyp10AG1 and Hyp17FM1) antisera, whereas some strains (P063 and P074) reacted only with polyclonal antisera (Type 5 and FS35a). CONCLUSION The extensive capsular overlap suggests that pneumococcal vaccines could reduce carriage of oral streptococci expressing cross-reactive capsules. Further, direct use of culture-free PCR-based methods in URT samples has limited usefulness for carriage studies.
Collapse
Affiliation(s)
- Feroze Ganaie
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Angela R Branche
- Department of Medicine, University of Rochester, Rochester, NY, USA
| | - Michael Peasley
- Department of Medicine, University of Rochester, Rochester, NY, USA
| | - Jason W Rosch
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Moon H Nahm
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
48
|
Ngoi ST, Muhamad AN, Teh CSJ, Chong CW, Abdul Jabar K, Chai LC, Leong KC, Tee LH, AbuBakar S. β-Lactam Resistance in Upper Respiratory Tract Pathogens Isolated from a Tertiary Hospital in Malaysia. Pathogens 2021; 10:pathogens10121602. [PMID: 34959557 PMCID: PMC8705930 DOI: 10.3390/pathogens10121602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
The rise of antimicrobial resistance (AMR) among clinically important bacteria, including respiratory pathogens, is a growing concern for public health worldwide. Common causative bacteria for upper respiratory tract infections (URTIs) include Streptococcus pneumoniae and Haemophilus influenzae, and sometimes Staphylococcus aureus. We assessed the β-lactam resistant trends and mechanisms of 150 URTI strains isolated in a tertiary care hospital in Kuala Lumpur Malaysia. High rates of non-susceptibility to penicillin G (38%), amoxicillin-clavulanate (48%), imipenem (60%), and meropenem (56%) were observed in S. pneumoniae. Frequent mutations at STMK and SRNVP motifs in PBP1a (41%), SSNT motif in PBP2b (32%), and STMK and LKSG motifs in PBP2x (41%) were observed in S. pneumoniae. H. influenzae remained highly susceptible to most β-lactams, except for ampicillin. Approximately half of the ampicillin non-susceptible H. influenzae harboured PBP3 mutations (56%) and only blaTEM was detected in the ampicillin-resistant strains (47%). Methicillin-susceptible S. aureus (MSSA) strains were mostly resistant to penicillin G (92%), with at least two-fold higher median minimum inhibitory concentrations (MIC) for all penicillin antibiotics (except ticarcillin) compared to S. pneumoniae and H. influenzae. Almost all URTI strains (88-100%) were susceptible to cefcapene and flomoxef. Overall, β-lactam antibiotics except penicillins remained largely effective against URTI pathogens in this region.
Collapse
Affiliation(s)
- Soo Tein Ngoi
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (S.T.N.); (A.N.M.); (K.A.J.); (S.A.)
| | - Anis Najwa Muhamad
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (S.T.N.); (A.N.M.); (K.A.J.); (S.A.)
| | - Cindy Shuan Ju Teh
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (S.T.N.); (A.N.M.); (K.A.J.); (S.A.)
- Correspondence: ; Tel.: +603-79676674
| | - Chun Wie Chong
- School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
| | - Kartini Abdul Jabar
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (S.T.N.); (A.N.M.); (K.A.J.); (S.A.)
| | - Lay Ching Chai
- Faculty of Science, Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Kin Chong Leong
- Shionogi Singapore Pte Ltd., Anson Road, #34-14 International Plaza, Singapore 079903, Singapore; (K.C.L.); (L.H.T.)
| | - Loong Hua Tee
- Shionogi Singapore Pte Ltd., Anson Road, #34-14 International Plaza, Singapore 079903, Singapore; (K.C.L.); (L.H.T.)
| | - Sazaly AbuBakar
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (S.T.N.); (A.N.M.); (K.A.J.); (S.A.)
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
49
|
Martín-Galiano AJ, García E. Streptococcus pneumoniae: a Plethora of Temperate Bacteriophages With a Role in Host Genome Rearrangement. Front Cell Infect Microbiol 2021; 11:775402. [PMID: 34869076 PMCID: PMC8637289 DOI: 10.3389/fcimb.2021.775402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/29/2021] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages (phages) are viruses that infect bacteria. They are the most abundant biological entity on Earth (current estimates suggest there to be perhaps 1031 particles) and are found nearly everywhere. Temperate phages can integrate into the chromosome of their host, and prophages have been found in abundance in sequenced bacterial genomes. Prophages may modulate the virulence of their host in different ways, e.g., by the secretion of phage-encoded toxins or by mediating bacterial infectivity. Some 70% of Streptococcus pneumoniae (the pneumococcus)—a frequent cause of otitis media, pneumonia, bacteremia and meningitis—isolates harbor one or more prophages. In the present study, over 4000 S. pneumoniae genomes were examined for the presence of prophages, and nearly 90% were found to contain at least one prophage, either defective (47%) or present in full (43%). More than 7000 complete putative integrases, either of the tyrosine (6243) or serine (957) families, and 1210 full-sized endolysins (among them 1180 enzymes corresponding to 318 amino acid-long N-acetylmuramoyl-L-alanine amidases [LytAPPH]) were found. Based on their integration site, 26 different pneumococcal prophage groups were documented. Prophages coding for tRNAs, putative virulence factors and different methyltransferases were also detected. The members of one group of diverse prophages (PPH090) were found to integrate into the 3’ end of the host lytASpn gene encoding the major S. pneumoniae autolysin without disrupting it. The great similarity of the lytASpnand lytAPPH genes (85–92% identity) allowed them to recombine, via an apparent integrase-independent mechanism, to produce different DNA rearrangements within the pneumococcal chromosome. This study provides a complete dataset that can be used to further analyze pneumococcal prophages, their evolutionary relationships, and their role in the pathogenesis of pneumococcal disease.
Collapse
Affiliation(s)
- Antonio J Martín-Galiano
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
| | - Ernesto García
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
50
|
Abstract
Streptococcus pneumoniae is a highly adept human pathogen. A frequent asymptomatic member of the respiratory microbiota, the pneumococcus has a remarkable capacity to cause mucosal (pneumonia and otitis media) and invasive diseases (bacteremia, meningitis). In addition, the organism utilizes a vast battery of virulence factors for tissue and immune evasion. Though recognized as a significant cause of pneumonia for over a century, efforts to develop more effective vaccines remain ongoing. The pathogen’s inherent capacity to exchange genetic material is critical to the pneumococcus’ success. This feature historically facilitated essential discoveries in genetics and is vital for disseminating antibiotic resistance and vaccine evasion.
Collapse
Affiliation(s)
- Tina H Dao
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis TN 38105, USA
| | - Jason W Rosch
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis TN 38105, USA
| |
Collapse
|