1
|
Springer AL, Agrawal S, Chang EP. Malate dehydrogenase in parasitic protozoans: roles in metabolism and potential therapeutic applications. Essays Biochem 2024; 68:235-251. [PMID: 38938216 PMCID: PMC11461325 DOI: 10.1042/ebc20230075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/31/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
The role of malate dehydrogenase (MDH) in the metabolism of various medically significant protozoan parasites is reviewed. MDH is an NADH-dependent oxidoreductase that catalyzes interconversion between oxaloacetate and malate, provides metabolic intermediates for both catabolic and anabolic pathways, and can contribute to NAD+/NADH balance in multiple cellular compartments. MDH is present in nearly all organisms; isoforms of MDH from apicomplexans (Plasmodium falciparum, Toxoplasma gondii, Cryptosporidium spp.), trypanosomatids (Trypanosoma brucei, T. cruzi) and anaerobic protozoans (Trichomonas vaginalis, Giardia duodenalis) are presented here. Many parasitic species have complex life cycles and depend on the environment of their hosts for carbon sources and other nutrients. Metabolic plasticity is crucial to parasite transition between host environments; thus, the regulation of metabolic processes is an important area to explore for therapeutic intervention. Common themes in protozoan parasite metabolism include emphasis on glycolytic catabolism, substrate-level phosphorylation, non-traditional uses of common pathways like tricarboxylic acid cycle and adapted or reduced mitochondria-like organelles. We describe the roles of MDH isoforms in these pathways, discuss unusual structural or functional features of these isoforms relevant to activity or drug targeting, and review current studies exploring the therapeutic potential of MDH and related genes. These studies show that MDH activity has important roles in many metabolic pathways, and thus in the metabolic transitions of protozoan parasites needed for success as pathogens.
Collapse
Affiliation(s)
- Amy L Springer
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, U.S.A
| | - Swati Agrawal
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, VA, U.S.A
| | - Eric P Chang
- Department of Chemistry and Physical Sciences, Pace University, New York, NY, U.S.A
| |
Collapse
|
2
|
Pietsch T, Arndt H. Comparison of mixotrophic and heterotrophic chrysomonads of similar size regarding bacterivory and growth rate. Eur J Protistol 2024; 95:126109. [PMID: 39126961 DOI: 10.1016/j.ejop.2024.126109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 08/12/2024]
Abstract
Small chrysomonads are important bacterivores in aquatic ecosystems with a high molecular diversity compared to low morphological differences observed by light microscopy. The high diversity of these morphologically almost indistinguishable species leads to the question to which extent their functional role in ecosystems differs and how their ecological traits can be defined. The present study investigates the prey size and population growth rate of different chrysomonad species. Eleven phylogenetically well-defined strains representing seven strains of heterotrophic and four strains of mixotrophic chrysomonads were compared. All investigated strains belonged to the same functional group of bacterivorous flagellates, feeding on the same bacteria size range, while population growth rates of chrysomonads depended on nutritional strategy and species-specific differences. We observed a high individual variability of growth rates within a population. Our results point to the necessity to consider not only differences in ecological traits among species but also among specimens within a population.
Collapse
Affiliation(s)
- Tobias Pietsch
- Department of General Ecology, Institute of Zoology, University of Cologne, Zülpicher Straße 47b, D-50674 Cologne, Germany
| | - Hartmut Arndt
- Department of General Ecology, Institute of Zoology, University of Cologne, Zülpicher Straße 47b, D-50674 Cologne, Germany.
| |
Collapse
|
3
|
Silva RA, Estevão VAO, Villela EFDM. Circulation of Trypanosoma cruzi in triatomines and Didelphis sp. in urban areas: Transmission risk assessment in the Metropolitan Region. Vet Parasitol Reg Stud Reports 2024; 52:101059. [PMID: 38880572 DOI: 10.1016/j.vprsr.2024.101059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024]
Abstract
The presence of Trypanosoma cruzi vectors in urban areas has been frequent, with colonization of homes and associated with reservoir animals that increase risk to humans, with simultaneous circulation of vectors and T. cruzi. The study aimed to describe the circulation of triatomines and T. cruzi in the Metropolitan Region of São Paulo, as well as evaluate risk situations. For analysis purposes, the triatomine notification information from January 2016 to July 2023 was used. While for Didelphis sp. collection with the aid of traps, notification information used was from 2019 to 2023. Information about triatomines came from spontaneous demand by the population and notification services were carried out by state field teams following defined protocols. 202 notifications were received with the capture of 448 triatomines. The positivity for T. cruzi observed was 60.5%. Regarding Didelphis sp., 416 animals were collected, 5.3% of which were positive for T. cruzi. There was overlapping areas of presence of infected triatomines and Didelphis sp., whose Discrete Typing Unit (DTU) was T. cruzi I. This work indicates the presence of infected vectors in urban areas, and the presence of a wild cycle of T. cruzi in didelphiids, reaffirming the need for and importance of vector surveillance work, through actions that can prevent the transmission of Chagas disease.
Collapse
Affiliation(s)
- Rubens Antonio Silva
- São Paulo State Department of Health, Disease Control Coordination, Pasteur Institute, Afonso Pessini 86, Mogi Guaçu, Brazil.
| | - Vera Aparecida Oliveira Estevão
- São Paulo State Department of Health, Disease Control Coordination, Vector Control, Avenue Dr Arnaldo 351, São Paulo, Brazil
| | - Edlaine Faria de Moura Villela
- São Paulo State Department of Health, Disease Control Coordination, Postgraduate Program in Sciences, Avenue Dr Arnaldo 351, São Paulo, Brazil
| |
Collapse
|
4
|
Ihnatenko I, Müller MJ, Orban OCF, Lindhof JC, Benítez D, Ortíz C, Dibello E, Seidl LL, Comini MA, Kunick C. The indole motif is essential for the antitrypanosomal activity of N5-substituted paullones. PLoS One 2023; 18:e0292946. [PMID: 38032881 PMCID: PMC10688702 DOI: 10.1371/journal.pone.0292946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/02/2023] [Indexed: 12/02/2023] Open
Abstract
Severe infections with potentially fatal outcomes are caused by parasites from the genera Trypanosoma and Leishmania (class Kinetoplastea). The diseases affect people of remote areas in the tropics and subtropics with limited access to adequate health care. Besides insufficient diagnostics, treatment options are limited, with tenuous developments in recent years. Therefore, new antitrypanosomal antiinfectives are required to fight these maladies. In the presented approach, new compounds were developed and tested on the target trypanothione synthetase (TryS). This enzyme is crucial to the kinetoplastids' unique trypanothione-based thiol redox metabolism and thus for pathogen survival. Preceding studies have shown that N5-substituted paullones display antitrypanosomal activity as well as TryS inhibition. Herein, this compound class was further examined regarding the structure-activity relationships (SAR). Diverse benzazepinone derivatives were designed and tested in cell-based assays on bloodstream Trypanosoma brucei brucei (T. b. brucei) and intracellular amastigotes of Leishmania infantum (L. infantum) as well as in enzyme-based assays on L. infantum TryS (LiTryS) and T. b. brucei TryS (TbTryS). While an exchange of just the substituent in the 9-position of paullones led to potent inhibitors on LiTryS and T. b. brucei parasites, new compounds lacking the indole moiety showed a total loss of activity in both assays. Conclusively, the indole as part of the paullone structure is pivotal for keeping the TryS inhibitory and antitrypanosomal activity of this substance class.
Collapse
Affiliation(s)
- Irina Ihnatenko
- Institute of Medicinal and Pharmaceutical Chemistry, TU Braunschweig, Braunschweig, Germany
- PVZ-Center of Pharmaceutical Engineering, TU Braunschweig, Braunschweig, Germany
| | - Marco J Müller
- Institute of Medicinal and Pharmaceutical Chemistry, TU Braunschweig, Braunschweig, Germany
- PVZ-Center of Pharmaceutical Engineering, TU Braunschweig, Braunschweig, Germany
| | - Oliver C F Orban
- Institute of Medicinal and Pharmaceutical Chemistry, TU Braunschweig, Braunschweig, Germany
- PVZ-Center of Pharmaceutical Engineering, TU Braunschweig, Braunschweig, Germany
| | - Jens C Lindhof
- Institute of Medicinal and Pharmaceutical Chemistry, TU Braunschweig, Braunschweig, Germany
- PVZ-Center of Pharmaceutical Engineering, TU Braunschweig, Braunschweig, Germany
| | - Diego Benítez
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Cecilia Ortíz
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Estefanía Dibello
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Leonardo L Seidl
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Marcelo A Comini
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Conrad Kunick
- Institute of Medicinal and Pharmaceutical Chemistry, TU Braunschweig, Braunschweig, Germany
- PVZ-Center of Pharmaceutical Engineering, TU Braunschweig, Braunschweig, Germany
| |
Collapse
|
5
|
Gigeroff AS, Eglit Y, Simpson AG. Characterisation and Cultivation of New Lineages of Colponemids, a Critical Assemblage for Inferring Alveolate Evolution. Protist 2023; 174:125949. [PMID: 37019068 DOI: 10.1016/j.protis.2023.125949] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/24/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023]
Abstract
There are several alveolate groups outside the well-studied trio - ciliates, dinoflagellates, and apicomplexans - that are crucial for understanding the evolution of this major taxon. One such assemblage is the "colponemids", which are eukaryotrophic biflagellates, usually with a ventral groove associated with the posterior flagellum. Previous phylogenetic studies show colponemids forming up to three distinct deep branches within alveolates (e.g. sister groups to Myzozoa or all other alveolates). We have developed dieukaryotic (predator-prey) cultures of four colponemid isolates. One represents the first stable culture of the halophile Palustrimonas (feeding on Pharyngomonas), while SSU rDNA phylogenies show the other isolates as two distinct new lineages. Neocolponema saponarium gen. et sp. nov. is a swimming alkaliphile with a large groove, which feeds on a kinetoplastid. Loeffela hirca gen. et sp. nov. is halophilic, has a subtle groove, usually moves along surfaces, and feeds on Pharyngomonas and Percolomonas. Prey capture in both new genera is raptorial, involves a specialized structure/region to the right of the proximal posterior flagellum, and presumed extrusomes. The relationships amongst Myzozoa, ciliates, and the (now) five described colponemid clades are unresolved, signaling that colponemid diversity represents both a challenge and important resource for tracing deep alveolate evolution.
Collapse
|
6
|
Alves FM, Lisboa CV, Dario MA, Novaes RLM, Tiepolo LM, Moratelli R, Jansen AM. Old Methods, New Insights: Reviewing Concepts on the Ecology of Trypanosomatids and Bodo sp. by Improving Conventional Diagnostic Tools. Pathogens 2023; 12:71. [PMID: 36678419 PMCID: PMC9864408 DOI: 10.3390/pathogens12010071] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023] Open
Abstract
Mixed infections by different Trypanosoma species or genotypes are a common and puzzling phenomenon. Therefore, it is critical to refine the diagnostic techniques and to understand to what extent these methods detect trypanosomes. We aimed to develop an accessible strategy to enhance the sensitivity of the hemoculture, as well as to understand the limitations of the hemoculture and the blood clot as a source of parasitic DNA. We investigated trypanosomatid infections in 472 bats by molecular characterization (18S rDNA gene) of the DNA obtained from the blood clot and, innovatively, from three hemoculture sample types: the amplified flagellates ("isolate"), the pellet of the culture harvested in its very initial growth stage ("first aliquot"), and the pellet of non-grown cultures with failure of amplification ("sediment"). We compared (a) the characterization of the flagellates obtained by first aliquots and isolates; and (b) the performance of the hemoculture and blood clot for trypanosomatid detection. We observed: (i) a putative new species of Bodo in Artibeus lituratus; (ii) the potential of Trypanosoma cruzi selection in the hemoculture; (iii) that the first aliquots and sediments overcome the selective pressure of the hemoculture; and (iv) that the blood clot technique performs better than the hemoculture. However, combining these methods enhances the detection of single and mixed infections.
Collapse
Affiliation(s)
- Fernanda Moreira Alves
- Laboratory of Trypanosomatid Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Cristiane Varella Lisboa
- Laboratory of Trypanosomatid Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Maria Augusta Dario
- Laboratory of Trypanosomatid Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | | | - Liliani Marilia Tiepolo
- Laboratory for Analysis and Monitoring of the Atlantic Forest, Coastal Campus, Federal University of Paraná, Matinhos 83260-000, Brazil
| | - Ricardo Moratelli
- Oswaldo Cruz Foundation, Fiocruz Atlantic Forest, Rio de Janeiro 22713-375, Brazil
| | - Ana Maria Jansen
- Laboratory of Trypanosomatid Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
7
|
High molecular diversity in the functional group of small bacterivorous non-scaled chrysomonad flagellates. Eur J Protistol 2022; 86:125915. [DOI: 10.1016/j.ejop.2022.125915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/21/2022]
|
8
|
Belyaev AO, Zagumyonnyi DG, Mylnikov AP, Tikhonenkov DV. The Morphology, Ultrastructure and Molecular Phylogeny of a New Soil-Dwelling Kinetoplastid Avlakibodo gracilis gen. et sp. nov. (Neobodonida; Kinetoplastea). Protist 2022; 173:125885. [DOI: 10.1016/j.protis.2022.125885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 01/04/2023]
|
9
|
Pinho SRC, Rodríguez-Málaga S, Lozano-Osorio R, Correa FS, Silva IB, Santos-Costa MC. Effects of the habitat on anuran blood parasites in the Eastern Brazilian Amazon. AN ACAD BRAS CIENC 2021; 93:e20201703. [PMID: 34909821 DOI: 10.1590/0001-3765202120201703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 09/19/2021] [Indexed: 11/21/2022] Open
Abstract
Biological interactions play an important role in regulating and maintaining natural populations. Like most interactions, parasitism may be influenced by environmental conditions. Therefore, changes caused by human activity may drastically affect the equilibrium of the assemblages of parasitized organisms (hosts). Herein, we described the composition of hemoparasites of anurans from two distinct environments: forest and oil palm plantations. We identified the most frequent groups of blood parasites, and whether infections differ between habitats (forest and plantation) and between microhabitats (arboreal or terrestrial). We collected 128 anurans, of which 46 (36%) were parasitized by hemoparasites. The genus Trypanosoma spp. was found in 30% (n = 37/128) of the infected anurans in both habitats, recorded mostly in terrestrial anurans in oil palm plantations. Apicomplexa hemoprotozoans were also found in 13% (n=17/128) of the anurans, which mainly were terrestrial species collected in oil palm plantations. There was no difference in parasitism between the two assemblies and between the studied microhabitats. This is the first study that has analyzed the ecological relationship between anurans as hosts and their blood parasites, in a region under intense anthropic pressure, in the Brazilian Amazon.
Collapse
Affiliation(s)
- Sílvia R C Pinho
- Programa de Pós-Graduação em Zoologia, Universidade Federal do Pará e Museu Paraense Emílio Goeldi, Augusto Correia, 1, 66075-110 Belém, PA, Brazil.,Universidade Federal do Pará, Instituto de Ciências Biológicas, Laboratório de Ecologia e Zoologia de Vertebrados, Augusto Correia, 1, 66075-110 Belém, PA, Brazil
| | - Sérgio Rodríguez-Málaga
- Universidade Federal do Pará, Instituto de Ciências Biológicas, Laboratório de Parasitologia, Augusto Correia, 1, 66075-110 Belém, PA, Brazil
| | - Rodrigo Lozano-Osorio
- Programa de Pós-Graduação em Zoologia, Universidade Federal do Pará e Museu Paraense Emílio Goeldi, Augusto Correia, 1, 66075-110 Belém, PA, Brazil.,Universidade Federal do Pará, Instituto de Ciências Biológicas, Laboratório de Ecologia e Zoologia de Vertebrados, Augusto Correia, 1, 66075-110 Belém, PA, Brazil
| | - Fabrício S Correa
- Universidade Federal do Pará, Instituto de Ciências Biológicas, Laboratório de Ecologia e Zoologia de Vertebrados, Augusto Correia, 1, 66075-110 Belém, PA, Brazil.,Secretaria de Estado de Meio Ambiente e Sustentabilidade, Av. Magalhães Barata, 130, 66040-170 Belém, PA, Brazil
| | - Iago B Silva
- Programa de Pós-Graduação em Zoologia, Universidade Federal do Pará e Museu Paraense Emílio Goeldi, Augusto Correia, 1, 66075-110 Belém, PA, Brazil.,Universidade Federal do Pará, Instituto de Ciências Biológicas, Laboratório de Ecologia e Zoologia de Vertebrados, Augusto Correia, 1, 66075-110 Belém, PA, Brazil
| | - Maria C Santos-Costa
- Programa de Pós-Graduação em Zoologia, Universidade Federal do Pará e Museu Paraense Emílio Goeldi, Augusto Correia, 1, 66075-110 Belém, PA, Brazil.,Universidade Federal do Pará, Instituto de Ciências Biológicas, Laboratório de Ecologia e Zoologia de Vertebrados, Augusto Correia, 1, 66075-110 Belém, PA, Brazil
| |
Collapse
|
10
|
Borges AR, Engstler M, Wolf M. 18S rRNA gene sequence-structure phylogeny of the Trypanosomatida (Kinetoplastea, Euglenozoa) with special reference to Trypanosoma. Eur J Protistol 2021; 81:125824. [PMID: 34352687 DOI: 10.1016/j.ejop.2021.125824] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/08/2021] [Accepted: 07/06/2021] [Indexed: 11/30/2022]
Abstract
Parasites of the order Trypanosomatida are known due to their medical relevance. Despite the progress made in the past decades on understanding the evolution of this group of organisms, there are still many open questions that require robust phylogenetic markers to increase the resolution of trees. Using two known 18S rRNA gene template structures (from Trypanosoma cruzi Chagas, 1909 and Trypanosoma brucei Plimmer and Bradford, 1899), individual 18S rRNA gene secondary structures were predicted by homology modeling. Sequences and their secondary structures, automatically encoded by a 12-letter alphabet (each nucleotide with its three structural states, paired left, paired right, unpaired), were simultaneously aligned. Sequence-structure trees were generated by neighbor joining and/or maximum likelihood. The reconstructed trees allowed us to discuss not only the big picture of trypanosomatid phylogeny but also a comprehensive sampling of trypanosomes evaluated in the context of trypanosomatid diversity. The robust support (bootstrap > 75) for well-known clades and critical branches suggests that the simultaneous use of 18S rRNA sequence and secondary structure data can reconstruct robust phylogenetic trees and can be used by the trypanosomatid research community for future analysis.
Collapse
Affiliation(s)
- Alyssa R Borges
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Matthias Wolf
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
11
|
Huggins LG, Colella V, Koehler AV, Schunack B, Traub RJ. A multipronged next-generation sequencing metabarcoding approach unearths hyperdiverse and abundant dog pathogen communities in Cambodia. Transbound Emerg Dis 2021; 69:1933-1950. [PMID: 34096687 DOI: 10.1111/tbed.14180] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 12/25/2022]
Abstract
Recent surveys in Southeast Asia, including Cambodia, have identified canine vector-borne pathogens (VBPs), including those with zoonotic potential, as highly prevalent. The lack of veterinary care alongside the close association semidomesticated dogs have with humans in the region exacerbates these zoonotic risks. Nonetheless, the number of studies investigating such pathogens and the threats they pose to dog and human health is limited. Here, we utilize a next-generation sequencing (NGS)-based metabarcoding protocol to conduct an assumption-free characterization of the bacterial, apicomplexan, and kinetoplastid blood-borne pathogens of free-roaming dogs from across Cambodia. From 467 dogs at five field sites, 62% were infected with one of eight confirmed pathogens, comprising Anaplasma platys (32%), Ehrlichia canis (20%), Hepatozoon canis (18%), Babesia vogeli (14%), Mycoplasma haemocanis (13%), the zoonotic pathogen Bartonella clarridgeiae (3%), Candidatus Mycoplasma haematoparvum (0.2%), and Trypanosoma evansi (0.2%). Coinfections of between two and four VBPs were common with 28% of dogs found to have a mixed infection. Moreover, DNA from putatively infectious agents belonging to the bacterial family and genera Coxiella, Mycobacterium, Neisseria, Rickettsiaceae, Treponema, and two uncharacterized Mycoplasma species were identified, in addition to protozoan genera Colpodella, Parabodo, and Bodo. Using a multiple logistic regression model, the presence of ectoparasites, abnormal mucous membranes, anemia, and total protein were found as predictors of canine VBP exposure. This study represents the first time an NGS metabarcoding technique has been used to holistically detect the bacterial and protozoan hemoparasites communities of dogs through an in-depth survey, highlighting the power of such methods to unearth a wide spectrum of pathogenic organisms in an unbiased manner.
Collapse
Affiliation(s)
- Lucas G Huggins
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Vito Colella
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Anson V Koehler
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | | | - Rebecca J Traub
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
12
|
Kostygov AY, Karnkowska A, Votýpka J, Tashyreva D, Maciszewski K, Yurchenko V, Lukeš J. Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biol 2021; 11:200407. [PMID: 33715388 PMCID: PMC8061765 DOI: 10.1098/rsob.200407] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Euglenozoa is a species-rich group of protists, which have extremely diverse lifestyles and a range of features that distinguish them from other eukaryotes. They are composed of free-living and parasitic kinetoplastids, mostly free-living diplonemids, heterotrophic and photosynthetic euglenids, as well as deep-sea symbiontids. Although they form a well-supported monophyletic group, these morphologically rather distinct groups are almost never treated together in a comparative manner, as attempted here. We present an updated taxonomy, complemented by photos of representative species, with notes on diversity, distribution and biology of euglenozoans. For kinetoplastids, we propose a significantly modified taxonomy that reflects the latest findings. Finally, we summarize what is known about viruses infecting euglenozoans, as well as their relationships with ecto- and endosymbiotic bacteria.
Collapse
Affiliation(s)
- Alexei Y. Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Zoological Institute, Russian Academy of Sciences, St Petersburg, Russia
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Jan Votýpka
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Daria Tashyreva
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Kacper Maciszewski
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Julius Lukeš
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
13
|
Tikhonenkov DV, Gawryluk RMR, Mylnikov AP, Keeling PJ. First finding of free-living representatives of Prokinetoplastina and their nuclear and mitochondrial genomes. Sci Rep 2021; 11:2946. [PMID: 33536456 PMCID: PMC7859406 DOI: 10.1038/s41598-021-82369-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/19/2021] [Indexed: 01/30/2023] Open
Abstract
Kinetoplastids are heterotrophic flagellated protists, including important parasites of humans and animals (trypanosomatids), and ecologically important free-living bacterial consumers (bodonids). Phylogenies have shown that the earliest-branching kinetoplastids are all parasites or obligate endosymbionts, whose highly-derived state makes reconstructing the ancestral state of the group challenging. We have isolated new strains of unusual free-living flagellates that molecular phylogeny shows to be most closely related to endosymbiotic and parasitic Perkinsela and Ichthyobodo species that, together with unidentified environmental sequences, form the clade at the base of kinetoplastids. These strains are therefore the first described free-living prokinetoplastids, and potentially very informative in understanding the evolution and ancestral states of morphological and molecular characteristics described in other kinetoplastids. Overall, we find that these organisms morphologically and ultrastructurally resemble some free-living bodonids and diplonemids, and possess nuclear genomes with few introns, polycistronic mRNA expression, high coding density, and derived traits shared with other kinetoplastids. Their genetic repertoires are more diverse than the best-studied free-living kinetoplastids, which is likely a reflection of their higher metabolic potential. Mitochondrial RNAs of these new species undergo the most extensive U insertion/deletion editing reported so far, and limited deaminative C-to-U and A-to-I editing, but we find no evidence for mitochondrial trans-splicing.
Collapse
Affiliation(s)
- Denis V. Tikhonenkov
- grid.4886.20000 0001 2192 9124Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, 152742 Russia ,grid.446209.d0000 0000 9203 3563AquaBioSafe Laboratory, University of Tyumen, 625003 Tyumen, Russia
| | - Ryan M. R. Gawryluk
- grid.143640.40000 0004 1936 9465Department of Biology, University of Victoria, Victoria, British Columbia V8W 2Y2 Canada
| | - Alexander P. Mylnikov
- grid.4886.20000 0001 2192 9124Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, 152742 Russia
| | - Patrick J. Keeling
- grid.17091.3e0000 0001 2288 9830Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4 Canada
| |
Collapse
|
14
|
Phillips Savage ACN, Suepaul R, Smith SA, Ali A, Ramcharan N, Ramnarine S, Sookdeo R. Cryptobia iubilans Infections in Discus Fish in Trinidad and Tobago. J Parasitol 2021; 106:506-512. [PMID: 32745169 DOI: 10.1645/18-98] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Discus (Symphysodon spp.) are costly and prized specimens in the international ornamental fish trade. The majority of discus submitted to the Aquatic Animal Health Unit at the University of the West Indies School of Veterinary Medicine for necropsy between September 2010 and September 2015 had lesions consistent with Cryptobia iubilans infection, thus prompting this study. To determine the prevalence of the flagellated gastrointestinal protozoan C. iubilans in discus fish, 32 discus were sourced from 10 suppliers, including breeders, importers, and hobbyists across Trinidad. Fish were euthanized, and the internal organs, particularly the stomach and intestine, were observed under a light microscope for characteristic granulomatous lesions and/or live C. iubilans parasites. All wet-mount slides on which granulomas were observed were also Ziehl-Neelsen acid-fast stained to presumptively exclude the presence of Mycobacterium spp., the main differential when diagnosing C. iubilans-associated granulomatous gastritis or to determine the presence of dual infections. Further histological analyses were performed on stomach and intestinal sections, and transmission electron microscopy was used to confirm the parasite in stomach sections. The prevalence of C. iubilans infection was found to be 81.3%, and the prevalence of presumptive dual infections with Mycobacterium spp. was found to be 21.9%. To the best of our knowledge, this is the first documented study of C. iubilans infections in the wider Caribbean region.
Collapse
Affiliation(s)
- Ayanna Carla N Phillips Savage
- Department of Clinical Veterinary Sciences, Faculty of Medical Sciences, School of Veterinary Medicine, University of the West Indies, St. Augustine, Trinidad and Tobago, West Indies
| | - Rod Suepaul
- Department of Basic Veterinary Sciences, Faculty of Medical Sciences, School of Veterinary Medicine, University of the West Indies, St. Augustine, Trinidad and Tobago, West Indies
| | - Stephen A Smith
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia 24061
| | - Arianne Ali
- Department of Clinical Veterinary Sciences, Faculty of Medical Sciences, School of Veterinary Medicine, University of the West Indies, St. Augustine, Trinidad and Tobago, West Indies
| | - Nirveeta Ramcharan
- Department of Clinical Veterinary Sciences, Faculty of Medical Sciences, School of Veterinary Medicine, University of the West Indies, St. Augustine, Trinidad and Tobago, West Indies
| | - Shivana Ramnarine
- Department of Clinical Veterinary Sciences, Faculty of Medical Sciences, School of Veterinary Medicine, University of the West Indies, St. Augustine, Trinidad and Tobago, West Indies
| | - Risha Sookdeo
- Department of Clinical Veterinary Sciences, Faculty of Medical Sciences, School of Veterinary Medicine, University of the West Indies, St. Augustine, Trinidad and Tobago, West Indies
| |
Collapse
|
15
|
Gupta CM, Ambaru B, Bajaj R. Emerging Functions of Actins and Actin Binding Proteins in Trypanosomatids. Front Cell Dev Biol 2020; 8:587685. [PMID: 33163497 PMCID: PMC7581878 DOI: 10.3389/fcell.2020.587685] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/22/2020] [Indexed: 01/20/2023] Open
Abstract
Actin is the major protein constituent of the cytoskeleton that performs wide range of cellular functions. It exists in monomeric and filamentous forms, dynamics of which is regulated by a large repertoire of actin binding proteins. However, not much was known about existence of these proteins in trypanosomatids, till the genome sequence data of three important organisms of this class, viz. Trypanosoma brucei, Trypanosoma cruzi and Leishmania major, became available. Here, we have reviewed most of the findings reported to date on the intracellular distribution, structure and functions of these proteins and based on them, we have hypothesized some of their functions. The major findings are as follows: (1) All the three organisms encode at least a set of ten actin binding proteins (profilin, twinfilin, ADF/cofilin, CAP/srv2, CAPz, coronin, two myosins, two formins) and one isoform of actin, except that T. cruzi encodes for three formins and several myosins along with four actins. (2) Actin 1 and a few actin binding proteins (ADF/cofilin, profilin, twinfilin, coronin and myosin13 in L. donovani; ADF/cofilin, profilin and myosin1 in T. brucei; profilin and myosin-F in T.cruzi) have been identified and characterized. (3) In all the three organisms, actin cytoskeleton has been shown to regulate endocytosis and intracellular trafficking. (4) Leishmania actin1 has been the most characterized protein among trypanosomatid actins. (5) This protein is localized to the cytoplasm as well as in the flagellum, nucleus and kinetoplast, and in vitro, it binds to DNA and displays scDNA relaxing and kDNA nicking activities. (6) The pure protein prefers to form bundles instead of thin filaments, and does not bind DNase1 or phalloidin. (7) Myosin13, myosin1 and myosin-F regulate endocytosis and intracellular trafficking, respectively, in Leishmania, T. brucei and T. cruzi. (8) Actin-dependent myosin13 motor is involved in dynamics and assembly of Leishmania flagellum. (9) Leishmania twinfilin localizes mostly to the nucleolus and coordinates karyokinesis by effecting splindle elongation and DNA synthesis. (10) Leishmania coronin binds and promotes actin filament formation and exists in tetrameric form rather than trimeric form, like other coronins. (11) Trypanosomatid profilins are essential for survival of all the three parasites.
Collapse
Affiliation(s)
- Chhitar M Gupta
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
| | - Bindu Ambaru
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India.,Manipal Academy of Higher Education, Manipal, India
| | - Rani Bajaj
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India.,Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
16
|
Winterhoff ML, Achmadi AS, Roycroft EJ, Handika H, Putra RTJ, Rowe KMC, Perkins SL, Rowe KC. Native and Introduced Trypanosome Parasites in Endemic and Introduced Murine Rodents of Sulawesi. J Parasitol 2020; 106:523-536. [PMID: 32931567 DOI: 10.1645/19-136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Indonesian island of Sulawesi is a globally significant biodiversity hotspot with substantial undescribed biota, particularly blood-borne parasites of endemic wildlife. Documenting the blood parasites of Sulawesi's murine rodents is the first fundamental step towards the discovery of pathogens likely to be of concern for the health and conservation of Sulawesi's endemic murines. We screened liver samples from 441 specimens belonging to 20 different species of murine rodents from 2 mountain ranges on Sulawesi, using polymerase chin reaction (PCR) primers targeting the conserved 18S rDNA region across the protozoan class Kinetoplastea. We detected infections in 156 specimens (10 host species) with a mean prevalence of 35.4% (95% confidence interval [CI] = 30.9-39.8%). Sequences from these samples identified 4 infections to the genus Parabodo, 1 to Blechomonas, and the remaining 151 to the genus Trypanosoma. Within Trypanosoma, we recovered 17 haplotypes nested within the Trypanosoma theileri clade infecting 117 specimens (8 host species) and 4 haplotypes nested within the Trypanosoma lewisi clade infecting 34 specimens (6 host species). Haplotypes within the T. theileri clade were related to regional Indo-Australian endemic trypanosomes, displayed geographic structuring but with evidence of long-term connectivity between mountains, and had substantial phylogenetic diversity. These results suggest T. theileri clade parasites are native to Sulawesi. Conversely, T. lewisi clade haplotypes were recovered from both endemic and introduced rodents, demonstrated complete geographic separation between clades, and had low genetic diversity. These results suggest that the T. lewisi clade parasites invaded Sulawesi recently and likely in 2 separate invasion events. Our results provide the first records of metakinetoplastids in Sulawesi's rodents and highlight the need for more extensive sampling for pathogens in this biodiversity hotspot.
Collapse
Affiliation(s)
- Monique L Winterhoff
- School of Biosciences, The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
- Sciences Department, Museums Victoria, Carlton, Melbourne, Victoria 3053, Australia
| | - Anang S Achmadi
- Museum Zoologicum Bogoriense, Research Center for Biology-LIPI, Jl. Raya Jakarta-Bogor Km. 46, Cibinong 16911, Indonesia
| | - Emily J Roycroft
- School of Biosciences, The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
- Sciences Department, Museums Victoria, Carlton, Melbourne, Victoria 3053, Australia
| | - Heru Handika
- School of Biosciences, The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
- Sciences Department, Museums Victoria, Carlton, Melbourne, Victoria 3053, Australia
- Department of Biology and Museum of Natural Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | | | - Karen M C Rowe
- School of Biosciences, The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
- Sciences Department, Museums Victoria, Carlton, Melbourne, Victoria 3053, Australia
| | - Susan L Perkins
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York 10024
- The City College of New York, 160 Convent Avenue, New York, New York 10031
| | - Kevin C Rowe
- School of Biosciences, The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
- Sciences Department, Museums Victoria, Carlton, Melbourne, Victoria 3053, Australia
| |
Collapse
|
17
|
Flegontova O, Flegontov P, Londoño PAC, Walczowski W, Šantić D, Edgcomb VP, Lukeš J, Horák A. Environmental determinants of the distribution of planktonic diplonemids and kinetoplastids in the oceans. Environ Microbiol 2020; 22:4014-4031. [PMID: 32779301 DOI: 10.1111/1462-2920.15190] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/07/2020] [Indexed: 12/26/2022]
Abstract
We analysed a widely used barcode, the V9 region of the 18S rRNA gene, to study the effect of environmental conditions on the distribution of two related heterotrophic protistan lineages in marine plankton, kinetoplastids and diplonemids. We relied on a major published dataset (Tara Oceans) where samples from the mesopelagic zone were available from just 32 of 123 locations, and both groups are most abundant in this zone. To close sampling gaps and obtain more information from the deeper ocean, we collected 57 new samples targeting especially the mesopelagic zone. We sampled in three geographic regions: the Arctic, two depth transects in the Adriatic Sea, and the anoxic Cariaco Basin. In agreement with previous studies, both protist groups are most abundant and diverse in the mesopelagic zone. In addition to that, we found that their abundance, richness, and community structure also depend on geography, oxygen concentration, salinity, temperature, and other environmental variables reflecting the abundance of algae and nutrients. Both groups studied here demonstrated similar patterns, although some differences were also observed. Kinetoplastids and diplonemids prefer tropical regions and nutrient-rich conditions and avoid high oxygen concentration, high salinity, and high density of algae.
Collapse
Affiliation(s)
- Olga Flegontova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Pavel Flegontov
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.,Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Paula Andrea Castañeda Londoño
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Biocenter, University of Würzburg, Würzburg, Germany
| | | | | | - Virginia P Edgcomb
- Geology and Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Department of Molecular Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Aleš Horák
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Department of Molecular Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
18
|
Butenko A, Opperdoes FR, Flegontova O, Horák A, Hampl V, Keeling P, Gawryluk RMR, Tikhonenkov D, Flegontov P, Lukeš J. Evolution of metabolic capabilities and molecular features of diplonemids, kinetoplastids, and euglenids. BMC Biol 2020; 18:23. [PMID: 32122335 PMCID: PMC7052976 DOI: 10.1186/s12915-020-0754-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/17/2020] [Indexed: 12/24/2022] Open
Abstract
Background The Euglenozoa are a protist group with an especially rich history of evolutionary diversity. They include diplonemids, representing arguably the most species-rich clade of marine planktonic eukaryotes; trypanosomatids, which are notorious parasites of medical and veterinary importance; and free-living euglenids. These different lifestyles, and particularly the transition from free-living to parasitic, likely require different metabolic capabilities. We carried out a comparative genomic analysis across euglenozoan diversity to see how changing repertoires of enzymes and structural features correspond to major changes in lifestyles. Results We find a gradual loss of genes encoding enzymes in the evolution of kinetoplastids, rather than a sudden decrease in metabolic capabilities corresponding to the origin of parasitism, while diplonemids and euglenids maintain more metabolic versatility. Distinctive characteristics of molecular machines such as kinetochores and the pre-replication complex that were previously considered specific to parasitic kinetoplastids were also identified in their free-living relatives. Therefore, we argue that they represent an ancestral rather than a derived state, as thought until the present. We also found evidence of ancient redundancy in systems such as NADPH-dependent thiol-redox. Only the genus Euglena possesses the combination of trypanothione-, glutathione-, and thioredoxin-based systems supposedly present in the euglenozoan common ancestor, while other representatives of the phylum have lost one or two of these systems. Lastly, we identified convergent losses of specific metabolic capabilities between free-living kinetoplastids and ciliates. Although this observation requires further examination, it suggests that certain eukaryotic lineages are predisposed to such convergent losses of key enzymes or whole pathways. Conclusions The loss of metabolic capabilities might not be associated with the switch to parasitic lifestyle in kinetoplastids, and the presence of a highly divergent (or unconventional) kinetochore machinery might not be restricted to this protist group. The data derived from the transcriptomes of free-living early branching prokinetoplastids suggests that the pre-replication complex of Trypanosomatidae is a highly divergent version of the conventional machinery. Our findings shed light on trends in the evolution of metabolism in protists in general and open multiple avenues for future research.
Collapse
Affiliation(s)
- Anzhelika Butenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Fred R Opperdoes
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Olga Flegontova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Aleš Horák
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Vladimír Hampl
- Faculty of Science, Charles University, Biocev, Vestec, Czech Republic
| | - Patrick Keeling
- Department of Botany, University of British Columbia, Vancouver, Canada
| | | | - Denis Tikhonenkov
- Department of Botany, University of British Columbia, Vancouver, Canada.,Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Pavel Flegontov
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic. .,Faculty of Science, University of Ostrava, Ostrava, Czech Republic. .,Present address: Department of Genetics, Harvard Medical School, Boston, USA.
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic. .,Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic.
| |
Collapse
|
19
|
Kolisko M, Flegontova O, Karnkowska A, Lax G, Maritz JM, Pánek T, Táborský P, Carlton JM, Čepička I, Horák A, Lukeš J, Simpson AGB, Tai V. EukRef-excavates: seven curated SSU ribosomal RNA gene databases. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2020:5996027. [PMID: 33216898 PMCID: PMC7678783 DOI: 10.1093/database/baaa080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/04/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022]
Abstract
The small subunit ribosomal RNA (SSU rRNA) gene is a widely used molecular marker to study the diversity of life. Sequencing of SSU rRNA gene amplicons has become a standard approach for the investigation of the ecology and diversity of microbes. However, a well-curated database is necessary for correct classification of these data. While available for many groups of Bacteria and Archaea, such reference databases are absent for most eukaryotes. The primary goal of the EukRef project (eukref.org) is to close this gap and generate well-curated reference databases for major groups of eukaryotes, especially protists. Here we present a set of EukRef-curated databases for the excavate protists—a large assemblage that includes numerous taxa with divergent SSU rRNA gene sequences, which are prone to misclassification. We identified 6121 sequences, 625 of which were obtained from cultures, 3053 from cell isolations or enrichments and 2419 from environmental samples. We have corrected the classification for the majority of these curated sequences. The resulting publicly available databases will provide phylogenetically based standards for the improved identification of excavates in ecological and microbiome studies, as well as resources to classify new discoveries in excavate diversity.
Collapse
Affiliation(s)
- Martin Kolisko
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budeějovice (Budweis), Czech Republic.,Faculty of Science, University of South Bohemia, 370 05 České Budeějovice (Budweis), Czech Republic
| | - Olga Flegontova
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budeějovice (Budweis), Czech Republic
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, 02-089 Warsaw, Poland.,Department of Parasitology, BIOCEV, Faculty of Science, Charles University, 128 43 Vestec, Czech Republic
| | - Gordon Lax
- Department of Biology and Centre of Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Julia M Maritz
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Tomáš Pánek
- Department of Zoology, Charles University, 128 00 Prague, Czech Republic
| | - Petr Táborský
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budeějovice (Budweis), Czech Republic
| | - Jane M Carlton
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Ivan Čepička
- Department of Zoology, Charles University, 128 00 Prague, Czech Republic
| | - Aleš Horák
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budeějovice (Budweis), Czech Republic.,Faculty of Science, University of South Bohemia, 370 05 České Budeějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budeějovice (Budweis), Czech Republic.,Faculty of Science, University of South Bohemia, 370 05 České Budeějovice (Budweis), Czech Republic
| | - Alastair G B Simpson
- Department of Biology and Centre of Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Vera Tai
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
20
|
Natural infection by the protozoan Leptomonas wallacei impacts the morphology, physiology, reproduction, and lifespan of the insect Oncopeltus fasciatus. Sci Rep 2019; 9:17468. [PMID: 31767875 PMCID: PMC6877526 DOI: 10.1038/s41598-019-53678-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 11/05/2019] [Indexed: 11/20/2022] Open
Abstract
Trypanosomatids are protozoan parasites that infect thousands of globally dispersed hosts, potentially affecting their physiology. Several species of trypanosomatids are commonly found in phytophagous insects. Leptomonas wallacei is a gut-restricted insect trypanosomatid only retrieved from Oncopeltus fasciatus. The insects get infected by coprophagy and transovum transmission of L. wallacei cysts. The main goal of the present study was to investigate the effects of a natural infection by L. wallacei on the hemipteran insect O. fasciatus, by comparing infected and uninfected individuals in a controlled environment. The L. wallacei-infected individuals showed reduced lifespan and morphological alterations. Also, we demonstrated a higher infection burden in females than in males. The infection caused by L. wallacei reduced host reproductive fitness by negatively impacting egg load, oviposition, and eclosion, and promoting an increase in egg reabsorption. Moreover, we associated the egg reabsorption observed in infected females, with a decrease in the intersex gene expression. Finally, we suggest alterations in population dynamics induced by L. wallacei infection using a mathematical model. Collectively, our findings demonstrated that L. wallacei infection negatively affected the physiology of O. fasciatus, which suggests that L. wallacei potentially has a vast ecological impact on host population growth.
Collapse
|
21
|
Mendes PMS, Lansac-Tôha FM, Meira BR, Oliveira FR, Velho LFM, Lansac-Tôha FA. Heterotrophic flagellates (Amorpha and Diaphoretiches) in phytotelmata bromeliad (Bromeliaceae). BRAZ J BIOL 2019; 80:648-660. [PMID: 31644658 DOI: 10.1590/1519-6984.218742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/21/2019] [Indexed: 11/22/2022] Open
Abstract
Many plants may accumulate rainwater, forming phytotelmata, aquatic microhabitats inhabited by various organisms. The aim of this study was to conduct an inventory of heterotrophic flagellates associated with phytotelmata of the bromeliad Aechmea distichantha Lem., found in rocky cliffs on the Upper Paraná River. The bromeliads were removed manually from the rocky wall, the water was removed and cultures of organisms of each plant were mounted in Petri dishes. Sixteen species of heterotrophic flagellate were recorded, drawn and described, among them one species belonging to the Amorpha Domain and 15 species to the Diaphoretiches Domain. The groups with most species were Euglenida and Kinetoplastea. The low diversity of heterotrophic flagellates recorded in this study, compared to the plankton of lakes and reservoirs, is probably related to the fact that phytotelmata are habitats with extreme environmental conditions, thus selecting organisms tolerant to these environments.
Collapse
Affiliation(s)
- P M Sachertt Mendes
- Programa de Pós-graduação em Biologia Comparada, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - F M Lansac-Tôha
- Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura, Programa de Pós-graduação em Ecologia de Ambientes Aquáticos Continentais, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - B R Meira
- Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura, Programa de Pós-graduação em Ecologia de Ambientes Aquáticos Continentais, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - F R Oliveira
- Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura, Programa de Pós-graduação em Ecologia de Ambientes Aquáticos Continentais, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - L F M Velho
- Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura, Programa de Pós-graduação em Ecologia de Ambientes Aquáticos Continentais, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - F A Lansac-Tôha
- Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura, Programa de Pós-graduação em Ecologia de Ambientes Aquáticos Continentais, Universidade Estadual de Maringá, Maringá, PR, Brasil
| |
Collapse
|
22
|
Mukherjee I, Hodoki Y, Okazaki Y, Fujinaga S, Ohbayashi K, Nakano SI. Widespread Dominance of Kinetoplastids and Unexpected Presence of Diplonemids in Deep Freshwater Lakes. Front Microbiol 2019; 10:2375. [PMID: 31681232 PMCID: PMC6805782 DOI: 10.3389/fmicb.2019.02375] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/30/2019] [Indexed: 11/17/2022] Open
Abstract
Kinetoplastid flagellates are generally abundant in the deep sea and recently they were even found to be dominant in the hypolimnion of a deep freshwater lake. Therefore, to understand the distribution of kinetoplastids in deep freshwater lakes, we have collected vertical samples from five lakes in Japan. The abundance of kinetoplastids was enumerated by Catalyzed Reporter Deposition-Fluorescence in situ Hybridization, and the diversity was determined by 18S amplicon sequencing using universal eukaryote and kinetoplastid-specific primers. Kinetoplastids were abundant in the deep waters of all the lakes, contributing up to 53.6% of total nanoeukaryotes. Despite this significant contribution, kinetoplastids remain undetected by amplicon sequencing using universal primers that are widely used in eukaryotic diversity studies. However, they were detected with specific primers, and the communities were characterized by both ubiquitous and lake-specific unique OTUs. Oligotyping of a ubiquitous and dominant OTU revealed the presence of lake-specific sequence types (oligotypes). Remarkably, we also detected diplonemids (a sister group of kinetoplastids and considered to be specific in the marine habitat) using kinetoplastid-specific primers, showing their presence in freshwaters. Underestimation of kinetoplastids and diplonemids using universal primers indicates that euglenozoan flagellates are overlooked in diversity studies worldwide. The present study highlighted the importance of kinetoplastids in the hypolimnion of deep lakes, thereby indicating their role in material cycling in deep waters.
Collapse
Affiliation(s)
| | | | - Yusuke Okazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Shohei Fujinaga
- Center for Ecological Research, Kyoto University, Otsu, Japan
| | - Kako Ohbayashi
- Center for Ecological Research, Kyoto University, Otsu, Japan.,Department of General Systems Studies, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
23
|
Zheng F, Colasante C, Voncken F. Characterisation of a mitochondrial iron transporter of the pathogen Trypanosoma brucei. Mol Biochem Parasitol 2019; 233:111221. [DOI: 10.1016/j.molbiopara.2019.111221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 12/25/2022]
|
24
|
Camacho E, Rastrojo A, Sanchiz Á, González-de la Fuente S, Aguado B, Requena JM. Leishmania Mitochondrial Genomes: Maxicircle Structure and Heterogeneity of Minicircles. Genes (Basel) 2019; 10:genes10100758. [PMID: 31561572 PMCID: PMC6826401 DOI: 10.3390/genes10100758] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/21/2019] [Accepted: 09/24/2019] [Indexed: 01/27/2023] Open
Abstract
The mitochondrial DNA (mtDNA), which is present in almost all eukaryotic organisms, is a useful marker for phylogenetic studies due to its relative high conservation and its inheritance manner. In Leishmania and other trypanosomatids, the mtDNA (also referred to as kinetoplast DNA or kDNA) is composed of thousands of minicircles and a few maxicircles, catenated together into a complex network. Maxicircles are functionally similar to other eukaryotic mtDNAs, whereas minicircles are involved in RNA editing of some maxicircle-encoded transcripts. Next-generation sequencing (NGS) is increasingly used for assembling nuclear genomes and, currently, a large number of genomic sequences are available. However, most of the time, the mitochondrial genome is ignored in the genome assembly processes. The aim of this study was to develop a pipeline to assemble Leishmania minicircles and maxicircle DNA molecules, exploiting the raw data generated in the NGS projects. As a result, the maxicircle molecules and the plethora of minicircle classes for Leishmania major, Leishmania infantum and Leishmania braziliensis have been characterized. We have observed that whereas the heterogeneity of minicircle sequences existing in a single cell hampers their use for Leishmania typing and classification, maxicircles emerge as an extremely robust genetic marker for taxonomic studies within the clade of kinetoplastids.
Collapse
Affiliation(s)
- Esther Camacho
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Excelencia Internacional (CEI) UAM+CSIC, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Alberto Rastrojo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Excelencia Internacional (CEI) UAM+CSIC, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - África Sanchiz
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Excelencia Internacional (CEI) UAM+CSIC, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Sandra González-de la Fuente
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Excelencia Internacional (CEI) UAM+CSIC, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Begoña Aguado
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Excelencia Internacional (CEI) UAM+CSIC, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Jose M Requena
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Excelencia Internacional (CEI) UAM+CSIC, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
25
|
A novel metabarcoding diagnostic tool to explore protozoan haemoparasite diversity in mammals: a proof-of-concept study using canines from the tropics. Sci Rep 2019; 9:12644. [PMID: 31477800 PMCID: PMC6718641 DOI: 10.1038/s41598-019-49118-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/19/2019] [Indexed: 01/07/2023] Open
Abstract
Haemoparasites are responsible for some of the most prevalent and debilitating canine illnesses across the globe, whilst also posing a significant zoonotic risk to humankind. Nowhere are the effects of such parasites more pronounced than in developing countries in the tropics where the abundance and diversity of ectoparasites that transmit these pathogens reaches its zenith. Here we describe the use of a novel next-generation sequencing (NGS) metabarcoding based approach to screen for a range of blood-borne apicomplexan and kinetoplastid parasites from populations of temple dogs in Bangkok, Thailand. Our methodology elucidated high rates of Hepatozoon canis and Babesia vogeli infection, whilst also being able to characterise co-infections. In addition, our approach was confirmed to be more sensitive than conventional endpoint PCR diagnostic methods. Two kinetoplastid infections were also detected, including one by Trypanosoma evansi, a pathogen that is rarely screened for in dogs and another by Parabodo caudatus, a poorly documented organism that has been previously reported inhabiting the urinary tract of a dog with haematuria. Such results demonstrate the power of NGS methodologies to unearth rare and unusual pathogens, especially in regions of the world where limited information on canine vector-borne haemoparasites exist.
Collapse
|
26
|
Maslov DA. Separating the Wheat from the Chaff: RNA Editing and Selection of Translatable mRNA in Trypanosome Mitochondria. Pathogens 2019; 8:E105. [PMID: 31323762 PMCID: PMC6789859 DOI: 10.3390/pathogens8030105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/14/2019] [Accepted: 07/16/2019] [Indexed: 11/16/2022] Open
Abstract
In the mitochondria of trypanosomes and related kinetoplastid protists, most mRNAs undergo a long and sophisticated maturation pathway before they can be productively translated by mitochondrial ribosomes. Some of the aspects of this pathway (identity of the promotors, transcription initiation, and termination signals) remain obscure, and some (post-transcriptional modification by U-insertion/deletion, RNA editing, 3'-end maturation) have been illuminated by research during the last decades. The RNA editing creates an open reading frame for a productive translation, but the fully edited mRNA often represents a minor fraction in the pool of pre-edited and partially edited precursors. Therefore, it has been expected that the final stages of the mRNA processing generate molecular hallmarks, which allow for the efficient and selective recognition of translation-competent templates. The general contours and several important details of this process have become known only recently and represent the subject of this review.
Collapse
Affiliation(s)
- Dmitri A Maslov
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
27
|
Flegontova O, Flegontov P, Malviya S, Poulain J, de Vargas C, Bowler C, Lukeš J, Horák A. Neobodonids are dominant kinetoplastids in the global ocean. Environ Microbiol 2019; 20:878-889. [PMID: 29266706 DOI: 10.1111/1462-2920.14034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 12/01/2017] [Accepted: 12/17/2017] [Indexed: 11/29/2022]
Abstract
Kinetoplastid flagellates comprise basal mostly free-living bodonids and derived obligatory parasitic trypanosomatids, which belong to the best-studied protists. Due to their omnipresence in aquatic environments and soil, the bodonids are of ecological significance. Here, we present the first global survey of marine kinetoplastids and compare it with the strikingly different patterns of abundance and diversity in their sister clade, the diplonemids. Based on analysis of 18S rDNA V9 ribotypes obtained from 124 sites sampled during the Tara Oceans expedition, our results show generally low to moderate abundance and diversity of planktonic kinetoplastids. Although we have identified all major kinetoplastid lineages, 98% of kinetoplastid reads are represented by neobodonids, namely specimens of the Neobodo and Rhynchomonas genera, which make up 59% and 18% of all reads, respectively. Most kinetoplastids have small cell size (0.8-5 µm) and tend to be more abundant in the mesopelagic as compared to the euphotic zone. Some of the most abundant operational taxonomic units have distinct geographical distributions, and three novel putatively parasitic neobodonids were identified, along with their potential hosts.
Collapse
Affiliation(s)
- Olga Flegontova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Pavel Flegontov
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Shruti Malviya
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.,Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR 8197, INSERM U1024, 46 rue d'Ulm, Paris F-75005, France
| | - Julie Poulain
- CEA - GENOSCOPE - Institut François Jacob, 2 rue Gaston Crémieux, 91057 Evry, France.,CNRS, UMR 8030, CP5706, Evry, France.,Université d'Evry, UMR 8030, CP5706, Evry, France
| | - Colomban de Vargas
- Station Biologique de Roscoff, Roscoff, France.,Sorbonne Universités, Paris, France
| | - Chris Bowler
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR 8197, INSERM U1024, 46 rue d'Ulm, Paris F-75005, France
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Aleš Horák
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
28
|
Vesteg M, Hadariová L, Horváth A, Estraño CE, Schwartzbach SD, Krajčovič J. Comparative molecular cell biology of phototrophic euglenids and parasitic trypanosomatids sheds light on the ancestor of Euglenozoa. Biol Rev Camb Philos Soc 2019; 94:1701-1721. [PMID: 31095885 DOI: 10.1111/brv.12523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 01/23/2023]
Abstract
Parasitic trypanosomatids and phototrophic euglenids are among the most extensively studied euglenozoans. The phototrophic euglenid lineage arose relatively recently through secondary endosymbiosis between a phagotrophic euglenid and a prasinophyte green alga that evolved into the euglenid secondary chloroplast. The parasitic trypanosomatids (i.e. Trypanosoma spp. and Leishmania spp.) and the freshwater phototrophic euglenids (i.e. Euglena gracilis) are the most evolutionary distant lineages in the Euglenozoa phylogenetic tree. The molecular and cell biological traits they share can thus be considered as ancestral traits originating in the common euglenozoan ancestor. These euglenozoan ancestral traits include common mitochondrial presequence motifs, respiratory chain complexes containing various unique subunits, a unique ATP synthase structure, the absence of mitochondria-encoded transfer RNAs (tRNAs), a nucleus with a centrally positioned nucleolus, closed mitosis without dissolution of the nuclear membrane and nucleoli, a nuclear genome containing the unusual 'J' base (β-D-glucosyl-hydroxymethyluracil), processing of nucleus-encoded precursor messenger RNAs (pre-mRNAs) via spliced-leader RNA (SL-RNA) trans-splicing, post-transcriptional gene silencing by the RNA interference (RNAi) pathway and the absence of transcriptional regulation of nuclear gene expression. Mitochondrial uridine insertion/deletion RNA editing directed by guide RNAs (gRNAs) evolved in the ancestor of the kinetoplastid lineage. The evolutionary origin of other molecular features known to be present only in either kinetoplastids (i.e. polycistronic transcripts, compaction of nuclear genomes) or euglenids (i.e. monocistronic transcripts, huge genomes, many nuclear cis-spliced introns, polyproteins) is unclear.
Collapse
Affiliation(s)
- Matej Vesteg
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, 974 01, Banská Bystrica, Slovakia
| | - Lucia Hadariová
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), 252 50, Vestec, Czech Republic.,Department of Parasitology, Faculty of Science, Charles University in Prague, 128 44, Prague, Czech Republic
| | - Anton Horváth
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, 842 15, Bratislava, Slovakia
| | - Carlos E Estraño
- Department of Biological Sciences, University of Memphis, Memphis, TN, 38152-3560, USA
| | - Steven D Schwartzbach
- Department of Biological Sciences, University of Memphis, Memphis, TN, 38152-3560, USA
| | - Juraj Krajčovič
- Department of Biology, Faculty of Natural Sciences, University of ss. Cyril and Methodius, 917 01, Trnava, Slovakia
| |
Collapse
|
29
|
Complete assembly of the Leishmania donovani (HU3 strain) genome and transcriptome annotation. Sci Rep 2019; 9:6127. [PMID: 30992521 PMCID: PMC6467909 DOI: 10.1038/s41598-019-42511-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 04/02/2019] [Indexed: 01/05/2023] Open
Abstract
Leishmania donovani is a unicellular parasite that causes visceral leishmaniasis, a fatal disease in humans. In this study, a complete assembly of the genome of L. donovani is provided. Apart from being the first published genome of this strain (HU3), this constitutes the best assembly for an L. donovani genome attained to date. The use of a combination of sequencing platforms enabled to assemble, without any sequence gap, the 36 chromosomes for this species. Additionally, based on this assembly and using RNA-seq reads derived from poly-A + RNA, the transcriptome for this species, not yet available, was delineated. Alternative SL addition sites and heterogeneity in the poly-A addition sites were commonly observed for most of the genes. After a complete annotation of the transcriptome, 2,410 novel transcripts were defined. Additionally, the relative expression for all transcripts present in the promastigote stage was determined. Events of cis-splicing have been documented to occur during the maturation of the transcripts derived from genes LDHU3_07.0430 and LDHU3_29.3990. The complete genome assembly and the availability of the gene models (including annotation of untranslated regions) are important pieces to understand how differential gene expression occurs in this pathogen, and to decipher phenotypic peculiarities like tissue tropism, clinical disease, and drug susceptibility.
Collapse
|
30
|
Abstract
Phylogenetics is an important component of the systems biology approach. Knowledge about evolution of the genus Leishmania is essential to understand various aspects of basic biology of these parasites, such as parasite-host or parasite-vector relationships, biogeography, or epidemiology. Here, we present a comprehensive guideline for performing phylogenetic studies based on DNA sequence data, but with principles that can be adapted to protein sequences or other molecular markers. It is presented as a compilation of the most commonly used genetic targets for phylogenetic studies of Leishmania, including their respective primers for amplification and references, as well as details of PCR assays. Guidelines are, then, presented to choose the best targets in relation to the types of samples under study. Finally, and importantly, instructions are given to obtain optimal sequences, alignments, and datasets for the subsequent data analysis and phylogenetic inference. Different bioinformatics methods and software for phylogenetic inference are presented and explained. This chapter aims to provide a compilation of methods and generic guidelines to conduct phylogenetics of Leishmania for nonspecialists.
Collapse
Affiliation(s)
- Katrin Kuhls
- Molekulare Biotechnologie und Funktionelle Genomik, Technische Hochschule Wildau, Wildau, Germany.
| | - Isabel Mauricio
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| |
Collapse
|
31
|
Goodwin JD, Lee TF, Kugrens P, Simpson AGB. Allobodo chlorophagus n. gen. n. sp., a Kinetoplastid that Infiltrates and Feeds on the Invasive Alga Codium fragile. Protist 2018; 169:911-925. [PMID: 30445354 DOI: 10.1016/j.protis.2018.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/21/2018] [Accepted: 07/24/2018] [Indexed: 11/24/2022]
Abstract
A novel biflagellate protist that consumed chloroplasts inside material of the invasive marine green alga Codium fragile was reported from the U.S. east coast in 2003. We observed a similar association in C. fragile from five sites in Nova Scotia, Canada during 2013 and 2014. After incubating Codium fragments for 2-3 days, some utricles and filaments contained numerous chloroplast-consuming cells. Transmission electron microscopy (TEM) confirmed that these were kinetoplastids with a pankinetoplast, large electron-dense droplets in the cytoplasm and a connective between the paraxonemal rod bases, but no conspicuous para-cytopharyngeal rod, all consistent with U.S. material observed in 2003. The ITS1-5.8S rRNA-ITS2 sequences from 13 Nova Scotia isolates were identical. SSU rRNA gene phylogenies placed the Codium-associated kinetoplastid in neobodonid clade '1E'. Clade 1E likely contains no previously described species, and branches outside all other major neobodonid groups, either as their sister or as a separate lineage, depending on rooting. These results indicate that the kinetoplastid represents a single species that merits a new genus (and family), and we describe it as Allobodo chlorophagus n. gen., n. sp. The lack of evidence for food sources other than Codium is consistent with a parasitic association, but other possibilities exist (e.g. necrotrophy).
Collapse
Affiliation(s)
- Joshua D Goodwin
- Department of Biology, and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax B3H 4R2, Canada
| | | | | | - Alastair G B Simpson
- Department of Biology, and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax B3H 4R2, Canada.
| |
Collapse
|
32
|
An evaluation of lipid metabolism in the insect trypanosomatid Herpetomonas muscarum uncovers a pathway for the uptake of extracellular insect lipoproteins. Parasitol Int 2018; 67:97-106. [DOI: 10.1016/j.parint.2017.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 10/28/2017] [Accepted: 10/31/2017] [Indexed: 11/18/2022]
|
33
|
Singh N, Goel R, Jain E. Differential Metabolic Pathway Analysis of the Proteomes of Leishmania donovani and Leptomonas seymouri. Proteomics Clin Appl 2018; 12:e1600087. [PMID: 29469990 DOI: 10.1002/prca.201600087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 12/14/2017] [Indexed: 12/26/2022]
Abstract
PURPOSE Although in trypanosomatids, monoxeny (Leptomonas) is ancestral to dixeny (Leishmania), however clinical cases of visceral leishmanisis with Leptomonas co-infection are increasingly being reported from India. Using a proteogenomic approach, a detailed proteome analysis of these two kinetoplastid parasites viz., Leishmania and its sister Leptomonas, to catalog the key proteins associated with and therefore possibly responsible for phenotype changes in Leptomonas evolution and domestication as co-infection with Leishmania is carried out. EXPERIMENTAL DESIGN LC-MS/MS is utilized for this proteomic purpose. One Leishmania donovani WHO reference strain and two Leptomonas seymouri isolates, which are originally isolated from clinical cases of kala azar patients with different inherent drug sensitivity viz., responsive and unresponsive, are used in this study. RESULTS A network analysis, leveraging protein-protein interaction data helped to find the roles of the proteins in carbon metabolism and biosynthesis of secondary metabolites which is seen to be altered under stress conditions like drug resistance. CONCLUSIONS AND CLINICAL RELEVANCE The information provided about the metabolic pathways modulated when contrasting these two phenotypes may lead to the development of new strategies to block parasite differentiation within the host and to also circumvent the problem of drug resistance. This proteomic study also offers new grounds for the investigation of novel hypothetical proteins potentially playing a role in evolutionary biology the knowledge of which is essential for treatment of patients co-infected with these two kinetoplastid parasites.
Collapse
Affiliation(s)
- Neeloo Singh
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Renu Goel
- Drug Discovery Research Centre (DDRC), Translational Health Science and Technology Institute (THSTI), Haryana, India
| | - Ekta Jain
- Consulting Bioinformatician, M.res Bioinformatics, University of Newcastle Upon Tyne, UK, Affiliated with Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| |
Collapse
|
34
|
Tomasini N. Introgression of the Kinetoplast DNA: An Unusual Evolutionary Journey in Trypanosoma cruzi. Curr Genomics 2018; 19:133-139. [PMID: 29491741 PMCID: PMC5814961 DOI: 10.2174/1389202918666170815124832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/02/2017] [Accepted: 04/16/2017] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Phylogenetic relationships between different lineages of Trypanosoma cruzi, the agent of Chagas disease, have been controversial for several years. However, recent phylogenetic and phylogenomic analyses clarified the nuclear relationships among such lineages. However, incongruence between nuclear and kinetoplast DNA phylogenies has emerged as a new challenge. This incongruence implies several events of mitochondrial introgression at evolutionary level. However, the mechanism that gave origin to introgressed lineages is unknown. Here, I will review and discuss how maxicircles of the kinetoplast were horizontally and vertically transferred between different lineages of T. cruzi. CONCLUSION Finally, I will discuss what we know - and what we don't - about the kDNA transference and inheritance in the context of sexual reproduction in this parasite.
Collapse
Affiliation(s)
- Nicolás Tomasini
- Instituto de Patología Experimental, Facultad de Ciencias de la Salud, Universidad Nacional de Salta, CONICET, Salta, Argentina
| |
Collapse
|
35
|
de Souza DAS, Pavoni DP, Krieger MA, Ludwig A. Evolutionary analyses of myosin genes in trypanosomatids show a history of expansion, secondary losses and neofunctionalization. Sci Rep 2018; 8:1376. [PMID: 29358582 PMCID: PMC5778035 DOI: 10.1038/s41598-017-18865-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/18/2017] [Indexed: 11/09/2022] Open
Abstract
Myosins are motor proteins that comprise a large and diversified family important for a broad range of functions. Two myosin classes, I and XIII, were previously assigned in Trypanosomatids, based mainly on the studies of Trypanosoma cruzi, T. brucei and Leishmania major, and important human pathogenic species; seven orphan myosins were identified in T. cruzi. Our results show that the great variety of T. cruzi myosins is also present in some closely related species and in Bodo saltans, a member of an early divergent branch of Kinetoplastida. Therefore, these myosins should no longer be considered "orphans". We proposed the classification of a kinetoplastid-specific myosin group into a new class, XXXVI. Moreover, our phylogenetic data suggest that a great repertoire of myosin genes was present in the last common ancestor of trypanosomatids and B. saltans, mainly resulting from several gene duplications. These genes have since been predominantly maintained in synteny in some species, and secondary losses explain the current distribution. We also found two interesting genes that were clearly derived from myosin genes, demonstrating that possible redundant or useless genes, instead of simply being lost, can serve as raw material for the evolution of new genes and functions.
Collapse
Affiliation(s)
- Denise Andréa Silva de Souza
- Laboratório de Genômica Funcional, Instituto Carlos Chagas- ICC/Fiocruz-, PR, Curitiba, 81350-010, Brazil.,Programa de Pós-graduação em Biociências e Biotecnologia - ICC/Fiocruz-, PR, Curitiba, 81350-010, Brazil
| | - Daniela Parada Pavoni
- Laboratório de Genômica Funcional, Instituto Carlos Chagas- ICC/Fiocruz-, PR, Curitiba, 81350-010, Brazil.,Programa de Pós-graduação em Biociências e Biotecnologia - ICC/Fiocruz-, PR, Curitiba, 81350-010, Brazil
| | - Marco Aurélio Krieger
- Laboratório de Genômica Funcional, Instituto Carlos Chagas- ICC/Fiocruz-, PR, Curitiba, 81350-010, Brazil. .,Programa de Pós-graduação em Biociências e Biotecnologia - ICC/Fiocruz-, PR, Curitiba, 81350-010, Brazil. .,Instituto de Biologia Molecular do Paraná, Curitiba, 81350-010, Brazil.
| | - Adriana Ludwig
- Laboratório de Genômica Funcional, Instituto Carlos Chagas- ICC/Fiocruz-, PR, Curitiba, 81350-010, Brazil. .,Instituto de Biologia Molecular do Paraná, Curitiba, 81350-010, Brazil.
| |
Collapse
|
36
|
Resequencing of the Leishmania infantum (strain JPCM5) genome and de novo assembly into 36 contigs. Sci Rep 2017; 7:18050. [PMID: 29273719 PMCID: PMC5741766 DOI: 10.1038/s41598-017-18374-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/05/2017] [Indexed: 01/08/2023] Open
Abstract
Leishmania parasites are the causative of leishmaniasis, a group of potentially fatal human diseases. Control strategies for leishmaniasis can be enhanced by genome based investigations. The publication in 2005 of the Leishmania major genome sequence, and two years later the genomes for the species Leishmania braziliensis and Leishmania infantum were major milestones. Since then, the L. infantum genome, although highly fragmented and incomplete, has been used widely as the reference genome to address whole transcriptomics and proteomics studies. Here, we report the sequencing of the L. infantum genome by two NGS methodologies and, as a result, the complete genome assembly on 36 contigs (chromosomes). Regarding the present L. infantum genome-draft, 495 new genes have been annotated, a hundred have been corrected and 75 previous annotated genes have been discontinued. These changes are not only the result of an increase in the genome size, but a significant contribution derives from the existence of a large number of incorrectly assembled regions in current chromosomal scaffolds. Furthermore, an improved assembly of tandemly repeated genes has been obtained. All these analyses support that the de novo assembled L. infantum genome represents a robust assembly and should replace the currently available in the databases.
Collapse
|
37
|
Tanifuji G, Cenci U, Moog D, Dean S, Nakayama T, David V, Fiala I, Curtis BA, Sibbald SJ, Onodera NT, Colp M, Flegontov P, Johnson-MacKinnon J, McPhee M, Inagaki Y, Hashimoto T, Kelly S, Gull K, Lukeš J, Archibald JM. Genome sequencing reveals metabolic and cellular interdependence in an amoeba-kinetoplastid symbiosis. Sci Rep 2017; 7:11688. [PMID: 28916813 PMCID: PMC5601477 DOI: 10.1038/s41598-017-11866-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/31/2017] [Indexed: 01/12/2023] Open
Abstract
Endosymbiotic relationships between eukaryotic and prokaryotic cells are common in nature. Endosymbioses between two eukaryotes are also known; cyanobacterium-derived plastids have spread horizontally when one eukaryote assimilated another. A unique instance of a non-photosynthetic, eukaryotic endosymbiont involves members of the genus Paramoeba, amoebozoans that infect marine animals such as farmed fish and sea urchins. Paramoeba species harbor endosymbionts belonging to the Kinetoplastea, a diverse group of flagellate protists including some that cause devastating diseases. To elucidate the nature of this eukaryote-eukaryote association, we sequenced the genomes and transcriptomes of Paramoeba pemaquidensis and its endosymbiont Perkinsela sp. The endosymbiont nuclear genome is ~9.5 Mbp in size, the smallest of a kinetoplastid thus far discovered. Genomic analyses show that Perkinsela sp. has lost the ability to make a flagellum but retains hallmark features of kinetoplastid biology, including polycistronic transcription, trans-splicing, and a glycosome-like organelle. Mosaic biochemical pathways suggest extensive ‘cross-talk’ between the two organisms, and electron microscopy shows that the endosymbiont ingests amoeba cytoplasm, a novel form of endosymbiont-host communication. Our data reveal the cell biological and biochemical basis of the obligate relationship between Perkinsela sp. and its amoeba host, and provide a foundation for understanding pathogenicity determinants in economically important Paramoeba.
Collapse
Affiliation(s)
- Goro Tanifuji
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Zoology, National Museum of Nature and Science, Tsukuba, Japan
| | - Ugo Cenci
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Daniel Moog
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada.,Laboratory for Cell Biology, Philipps University, Marburg, Germany
| | - Samuel Dean
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Takuro Nakayama
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan.,Graduate School of Life Sciences, Tohoku University, Tohoku, Japan
| | - Vojtěch David
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Ivan Fiala
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Bruce A Curtis
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Shannon J Sibbald
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Naoko T Onodera
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada.,National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Morgan Colp
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Pavel Flegontov
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Jessica Johnson-MacKinnon
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada.,Institute for Marine and Antarctic Sciences, University of Tasmania, Launceston, Australia
| | - Michael McPhee
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Yuji Inagaki
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tetsuo Hashimoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice, Czech Republic.,Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Toronto, Canada
| | - John M Archibald
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada. .,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada. .,Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Toronto, Canada.
| |
Collapse
|
38
|
|
39
|
The unconventional kinetoplastid kinetochore: from discovery toward functional understanding. Biochem Soc Trans 2017; 44:1201-1217. [PMID: 27911702 PMCID: PMC5095916 DOI: 10.1042/bst20160112] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/15/2016] [Accepted: 06/21/2016] [Indexed: 11/17/2022]
Abstract
The kinetochore is the macromolecular protein complex that drives chromosome segregation in eukaryotes. Its most fundamental function is to connect centromeric DNA to dynamic spindle microtubules. Studies in popular model eukaryotes have shown that centromere protein (CENP)-A is critical for DNA-binding, whereas the Ndc80 complex is essential for microtubule-binding. Given their conservation in diverse eukaryotes, it was widely believed that all eukaryotes would utilize these components to make up a core of the kinetochore. However, a recent study identified an unconventional type of kinetochore in evolutionarily distant kinetoplastid species, showing that chromosome segregation can be achieved using a distinct set of proteins. Here, I review the discovery of the two kinetochore systems and discuss how their studies contribute to a better understanding of the eukaryotic chromosome segregation machinery.
Collapse
|
40
|
Ultrastructural and immunocytochemical investigation of paramylon combined with new 18S rDNA-based secondary structure analysis clarifies phylogenetic affiliation of Entosiphon sulcatum (Euglenida: Euglenozoa). ORG DIVERS EVOL 2017. [DOI: 10.1007/s13127-017-0330-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Yazaki E, Ishikawa SA, Kume K, Kumagai A, Kamaishi T, Tanifuji G, Hashimoto T, Inagaki Y. Global Kinetoplastea phylogeny inferred from a large-scale multigene alignment including parasitic species for better understanding transitions from a free-living to a parasitic lifestyle. Genes Genet Syst 2017; 92:35-42. [DOI: 10.1266/ggs.16-00056] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Euki Yazaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba
| | - Sohta A. Ishikawa
- Department of Biological Sciences, Graduate School of Sciences, University of Tokyo
| | - Keitaro Kume
- Graduate School of Life and Environmental Sciences, University of Tsukuba
- Graduate School of Systems and Information Engineering, University of Tsukuba
| | | | - Takashi Kamaishi
- National Research Institute of Aquaculture, Fisheries Research Agency
| | - Goro Tanifuji
- Department of Zoology, National Museum of Nature and Science
| | - Tetsuo Hashimoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba
- Center for Computational Sciences, University of Tsukuba
| | - Yuji Inagaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba
- Center for Computational Sciences, University of Tsukuba
| |
Collapse
|
42
|
Requena JM, Rastrojo A, Garde E, López MC, Thomas MC, Aguado B. Genomic cartography and proposal of nomenclature for the repeated, interspersed elements of the Leishmania major SIDER2 family and identification of SIDER2-containing transcripts. Mol Biochem Parasitol 2016; 212:9-15. [PMID: 28034676 DOI: 10.1016/j.molbiopara.2016.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 12/14/2016] [Accepted: 12/21/2016] [Indexed: 01/09/2023]
Abstract
The genomes of most eukaryotic organisms contain a large number of transposable elements that are able to move from one genomic site to another either by transferring of DNA mobile elements (transposons) or transpose via reverse transcription of an RNA intermediate (retroposons). An exception to this rule is found in protists of the subgenus Leishmania, in which active retroposons degenerated after a flourishing era, leaving only retroposon remains; these have been classified into two families: SIDER1 and SIDER2. In this work, we have re-examined the elements belonging to the family SIDER2 present in the genome of Leishmania major with the aim of providing a nomenclature that will facilitate a future reference to particular elements. According to sequence conservation, the 1100 SIDER2 elements have been grouped into subfamilies, and the inferred taxonomic relationships have also been incorporated into the nomenclature. Additionally, we are providing detailed data regarding the genomic distribution of these elements and their association with specific transcripts, based on the recently established transcriptome for L. major. Thus, the presented data can help to study and better understand the roles played by these degenerated retroposons in both regulation of gene expression and genome plasticity.
Collapse
Affiliation(s)
- Jose M Requena
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Alberto Rastrojo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Esther Garde
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Manuel C López
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN-CSIC), 18016 Granada, Spain
| | - M Carmen Thomas
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN-CSIC), 18016 Granada, Spain
| | - Begoña Aguado
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
43
|
Higher classification and phylogeny of Euglenozoa. Eur J Protistol 2016; 56:250-276. [DOI: 10.1016/j.ejop.2016.09.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 09/05/2016] [Accepted: 09/08/2016] [Indexed: 11/19/2022]
|
44
|
Cenci U, Moog D, Curtis BA, Tanifuji G, Eme L, Lukeš J, Archibald JM. Heme pathway evolution in kinetoplastid protists. BMC Evol Biol 2016; 16:109. [PMID: 27193376 PMCID: PMC4870792 DOI: 10.1186/s12862-016-0664-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 04/21/2016] [Indexed: 01/09/2023] Open
Abstract
Background Kinetoplastea is a diverse protist lineage composed of several of the most successful parasites on Earth, organisms whose metabolisms have coevolved with those of the organisms they infect. Parasitic kinetoplastids have emerged from free-living, non-pathogenic ancestors on multiple occasions during the evolutionary history of the group. Interestingly, in both parasitic and free-living kinetoplastids, the heme pathway—a core metabolic pathway in a wide range of organisms—is incomplete or entirely absent. Indeed, Kinetoplastea investigated thus far seem to bypass the need for heme biosynthesis by acquiring heme or intermediate metabolites directly from their environment. Results Here we report the existence of a near-complete heme biosynthetic pathway in Perkinsela spp., kinetoplastids that live as obligate endosymbionts inside amoebozoans belonging to the genus Paramoeba/Neoparamoeba. We also use phylogenetic analysis to infer the evolution of the heme pathway in Kinetoplastea. Conclusion We show that Perkinsela spp. is a deep-branching kinetoplastid lineage, and that lateral gene transfer has played a role in the evolution of heme biosynthesis in Perkinsela spp. and other Kinetoplastea. We also discuss the significance of the presence of seven of eight heme pathway genes in the Perkinsela genome as it relates to its endosymbiotic relationship with Paramoeba. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0664-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ugo Cenci
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Halifax, Nova Scotia, Canada
| | - Daniel Moog
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Halifax, Nova Scotia, Canada
| | - Bruce A Curtis
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Halifax, Nova Scotia, Canada
| | - Goro Tanifuji
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Laura Eme
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Halifax, Nova Scotia, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, České Budӗjovice, Czech Republic.,Canadian Institute for Advanced Research, Toronto, Canada
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada. .,Centre for Comparative Genomics and Evolutionary Bioinformatics, Halifax, Nova Scotia, Canada. .,Canadian Institute for Advanced Research, Toronto, Canada.
| |
Collapse
|
45
|
Opperdoes FR, Butenko A, Flegontov P, Yurchenko V, Lukeš J. Comparative Metabolism of Free-living Bodo saltans
and Parasitic Trypanosomatids. J Eukaryot Microbiol 2016; 63:657-78. [DOI: 10.1111/jeu.12315] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/10/2016] [Accepted: 03/20/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Fred R. Opperdoes
- de Duve Institute; Université Catholique de Louvain; Brussels B-1200 Belgium
| | - Anzhelika Butenko
- Life Science Research Centre; Faculty of Science; University of Ostrava; Ostrava 710 00 Czech Republic
| | - Pavel Flegontov
- Life Science Research Centre; Faculty of Science; University of Ostrava; Ostrava 710 00 Czech Republic
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) 370 05 Czech Republic
- A.A. Kharkevich Institute for Information Transmission Problems; Russian Academy of Sciences; Moscow 127 051 Russia
| | - Vyacheslav Yurchenko
- Life Science Research Centre; Faculty of Science; University of Ostrava; Ostrava 710 00 Czech Republic
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) 370 05 Czech Republic
- Faculty of Science; Institute of Environmental Technologies; University of Ostrava; Ostrava 710 00 Czech Republic
| | - Julius Lukeš
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) 370 05 Czech Republic
- Faculty of Science; University of South Bohemia; České Budějovice (Budweis) 370 05 Czech Republic
- Canadian Institute for Advanced Research; Toronto ON M5G 1Z8 Canada
| |
Collapse
|
46
|
Subrahmanian N, Remacle C, Hamel PP. Plant mitochondrial Complex I composition and assembly: A review. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1001-14. [PMID: 26801215 DOI: 10.1016/j.bbabio.2016.01.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/18/2016] [Accepted: 01/18/2016] [Indexed: 12/31/2022]
Abstract
In the mitochondrial inner membrane, oxidative phosphorylation generates ATP via the operation of several multimeric enzymes. The proton-pumping Complex I (NADH:ubiquinone oxidoreductase) is the first and most complicated enzyme required in this process. Complex I is an L-shaped enzyme consisting of more than 40 subunits, one FMN molecule and eight Fe-S clusters. In recent years, genetic and proteomic analyses of Complex I mutants in various model systems, including plants, have provided valuable insights into the assembly of this multimeric enzyme. Assisted by a number of key players, referred to as "assembly factors", the assembly of Complex I takes place in a sequential and modular manner. Although a number of factors have been identified, their precise function in mediating Complex I assembly still remains to be elucidated. This review summarizes our current knowledge of plant Complex I composition and assembly derived from studies in plant model systems such as Arabidopsis thaliana and Chlamydomonas reinhardtii. Plant Complex I is highly conserved and comprises a significant number of subunits also present in mammalian and fungal Complexes I. Plant Complex I also contains additional subunits absent from the mammalian and fungal counterpart, whose function in enzyme activity and assembly is not clearly understood. While 14 assembly factors have been identified for human Complex I, only two proteins, namely GLDH and INDH, have been established as bona fide assembly factors for plant Complex I. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.
Collapse
Affiliation(s)
- Nitya Subrahmanian
- The Ohio State University, Department of Molecular Genetics, 500 Aronoff Laboratory, 318 W. 12th Avenue, Columbus, OH 43210, USA
| | - Claire Remacle
- Institute of Botany, Department of Life Sciences, University of Liège, 4000 Liège, Belgium
| | - Patrice Paul Hamel
- The Ohio State University, Department of Molecular Genetics, 500 Aronoff Laboratory, 318 W. 12th Avenue, Columbus, OH 43210, USA; The Ohio State University, Department of Biological Chemistry and Pharmacology, 500 Aronoff Laboratory, 318 W. 12th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
47
|
Grossmann L, Bock C, Schweikert M, Boenigk J. Small but Manifold - Hidden Diversity in "Spumella-like Flagellates". J Eukaryot Microbiol 2016; 63:419-39. [PMID: 26662881 PMCID: PMC5066751 DOI: 10.1111/jeu.12287] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 10/16/2015] [Accepted: 11/09/2015] [Indexed: 11/27/2022]
Abstract
Colourless, nonscaled chrysophytes comprise morphologically similar or even indistinguishable flagellates which are important bacterivors in water and soil crucial for ecosystem functioning. However, phylogenetic analyses indicate a multiple origin of such colourless, nonscaled flagellate lineages. These flagellates are often referred to as “Spumella‐like flagellates” in ecological and biogeographic studies. Although this denomination reflects an assumed polyphyly, it obscures the phylogenetic and taxonomic diversity of this important flagellate group and, thus, hinders progress in lineage‐ and taxon‐specific ecological surveys. The smallest representatives of colourless chrysophytes have been addressed in very few taxonomic studies although they are among the dominant flagellates in field communities. To overcome the blurred picture and set the field for further investigation in biogeography and ecology of the organisms in question, we studied a set of strains of specifically small, colourless, nonscaled chrysomonad flagellates by means of electron microscopy and molecular analyses. They were isolated by a filtration‐acclimatisation approach focusing on flagellates of around 5 μm. We present the phylogenetic position of eight different lineages on both the ordinal and the generic level. Accordingly, we describe the new genera Apoikiospumella, Chromulinospumella, Segregatospumella, Cornospumella and Acrispumella Boenigk et Grossmann n. g. and different species within them.
Collapse
Affiliation(s)
- Lars Grossmann
- Department of Biodiversity, University of Duisburg-Essen, Universitätsstrasse 5, 45141, Essen, Germany
| | - Christina Bock
- Department of Biodiversity, University of Duisburg-Essen, Universitätsstrasse 5, 45141, Essen, Germany
| | - Michael Schweikert
- Department of Zoology, University of Stuttgart, Pfaffenwaldring 57, 70550, Stuttgart, Germany
| | - Jens Boenigk
- Department of Biodiversity, University of Duisburg-Essen, Universitätsstrasse 5, 45141, Essen, Germany
| |
Collapse
|
48
|
d’Avila-Levy CM, Boucinha C, Kostygov A, Santos HLC, Morelli KA, Grybchuk-Ieremenko A, Duval L, Votýpka J, Yurchenko V, Grellier P, Lukeš J. Exploring the environmental diversity of kinetoplastid flagellates in the high-throughput DNA sequencing era. Mem Inst Oswaldo Cruz 2015; 110:956-65. [PMID: 26602872 PMCID: PMC4708014 DOI: 10.1590/0074-02760150253] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/01/2015] [Indexed: 12/12/2022] Open
Abstract
The class Kinetoplastea encompasses both free-living and parasitic species from a wide range of hosts. Several representatives of this group are responsible for severe human diseases and for economic losses in agriculture and livestock. While this group encompasses over 30 genera, most of the available information has been derived from the vertebrate pathogenic genera Leishmaniaand Trypanosoma. Recent studies of the previously neglected groups of Kinetoplastea indicated that the actual diversity is much higher than previously thought. This article discusses the known segment of kinetoplastid diversity and how gene-directed Sanger sequencing and next-generation sequencing methods can help to deepen our knowledge of these interesting protists.
Collapse
Affiliation(s)
- Claudia Masini d’Avila-Levy
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Estudos
Integrados em Protozoologia, Coleção de Protozoários, Rio de Janeiro, RJ, Brasil
| | - Carolina Boucinha
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Estudos
Integrados em Protozoologia, Coleção de Protozoários, Rio de Janeiro, RJ, Brasil
| | - Alexei Kostygov
- University of Ostrava, Life Science Research Centre, Ostrava, Czech
Republic
- Russian Academy of Sciences, Zoological Institute, Laboratory of
Molecular Systematics, St Petersburg, Russia
| | - Helena Lúcia Carneiro Santos
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Estudos
Integrados em Protozoologia, Coleção de Protozoários, Rio de Janeiro, RJ, Brasil
| | - Karina Alessandra Morelli
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Estudos
Integrados em Protozoologia, Coleção de Protozoários, Rio de Janeiro, RJ, Brasil
- Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto
Alcântara Gomes, Departamento de Ecologia, Rio de Janeiro, RJ, Brasil
| | | | - Linda Duval
- Sorbonne Universités, Muséum National d’Histoire Naturelle, Centre
National de la Recherche Scientifique, Unité Molécules de Communication et Adaptation
des Microorganisme, Unités Mixte de Recherche 7245, Paris, France
| | - Jan Votýpka
- Czech Academy of Sciences, Institute of Parasitology, Biology Centre,
České Budejovice, Czech Republic
- Charles University, Faculty of Science, Department of Parasitology,
Prague, Czech Republic
| | - Vyacheslav Yurchenko
- University of Ostrava, Life Science Research Centre, Ostrava, Czech
Republic
- Czech Academy of Sciences, Institute of Parasitology, Biology Centre,
České Budejovice, Czech Republic
| | - Philippe Grellier
- Sorbonne Universités, Muséum National d’Histoire Naturelle, Centre
National de la Recherche Scientifique, Unité Molécules de Communication et Adaptation
des Microorganisme, Unités Mixte de Recherche 7245, Paris, France
| | - Julius Lukeš
- Czech Academy of Sciences, Institute of Parasitology, Biology Centre,
České Budejovice, Czech Republic
- University of South Bohemia, Faculty of Sciences, České Budejovice,
Czech Republic
- Canadian Institute for Advanced Research, Toronto, Canada
| |
Collapse
|
49
|
Gene Loss and Error-Prone RNA Editing in the Mitochondrion of Perkinsela, an Endosymbiotic Kinetoplastid. mBio 2015; 6:e01498-15. [PMID: 26628723 PMCID: PMC4669381 DOI: 10.1128/mbio.01498-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Perkinsela is an enigmatic early-branching kinetoplastid protist that lives as an obligate endosymbiont inside Paramoeba (Amoebozoa). We have sequenced the highly reduced mitochondrial genome of Perkinsela, which possesses only six protein-coding genes (cox1, cox2, cox3, cob, atp6, and rps12), despite the fact that the organelle itself contains more DNA than is present in either the host or endosymbiont nuclear genomes. An in silico analysis of two Perkinsela strains showed that mitochondrial RNA editing and processing machineries typical of kinetoplastid flagellates are generally conserved, and all mitochondrial transcripts undergo U-insertion/deletion editing. Canonical kinetoplastid mitochondrial ribosomes are also present. We have developed software tools for accurate and exhaustive mapping of transcriptome sequencing (RNA-seq) reads with extensive U-insertions/deletions, which allows detailed investigation of RNA editing via deep sequencing. With these methods, we show that up to 50% of reads for a given edited region contain errors of the editing system or, less likely, correspond to alternatively edited transcripts. Uridine insertion/deletion-type RNA editing, which occurs in the mitochondrion of kinetoplastid protists, has been well-studied in the model parasite genera Trypanosoma, Leishmania, and Crithidia. Perkinsela provides a unique opportunity to broaden our knowledge of RNA editing machinery from an evolutionary perspective, as it represents the earliest kinetoplastid branch and is an obligatory endosymbiont with extensive reductive trends. Interestingly, up to 50% of mitochondrial transcripts in Perkinsela contain errors. Our study was complemented by use of newly developed software designed for accurate mapping of extensively edited RNA-seq reads obtained by deep sequencing.
Collapse
|
50
|
Abstract
Protozoan parasites Leishmania donovani (family: Trypanosomatidae) cause fatal visceral leishmaniasis (VL) and the infection relapses in apparently cured population as post kala-azar dermal leishmaniasis (PKDL) in the Indian subcontinent. In recent years co-infection of another Trypanosomatid parasite Leptomonas with L. donovani during VL/PKDL in this region has become prominent. The observation of clinically lesser-known insect parasite, Leptomonas in leishmaniasis is intriguing to researchers. The presence of Leishmania look alike Leptomonas in the cultures of clinical isolates of Leishmania has been worrisome to those, who prefer to work with pure Leishmania cultures for drug and vaccine development or immune response studies. The exact implications of such a co-habitation, which might lead to a delay in the diagnostics of VL and elevate mortality, need a thorough investigation. Also whether Leptomonas is involved in leishmaniasis manifestation needs to be ascertained. Thus we are currently witnessing a new paradigm of a parasitic co-infection in VL/PKDL cases in India and this review outlines various opportunities for further research in understanding such emerging co-infection.
Collapse
|