1
|
Artiaga BL, Madden D, Kwon T, McDowell C, Keating C, Balaraman V, de Carvahlo Madrid DM, Touchard L, Henningson J, Meade P, Krammer F, Morozov I, Richt JA, Driver JP. Adjuvant Use of the Invariant-Natural-Killer-T-Cell Agonist α-Galactosylceramide Leads to Vaccine-Associated Enhanced Respiratory Disease in Influenza-Vaccinated Pigs. Vaccines (Basel) 2024; 12:1068. [PMID: 39340098 PMCID: PMC11435877 DOI: 10.3390/vaccines12091068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Invariant natural killer T (iNKT) cells are glycolipid-reactive T cells with potent immunoregulatory properties. iNKT cells activated with the marine-sponge-derived glycolipid, α-galactosylceramide (αGC), provide a universal source of T-cell help that has shown considerable promise for a wide array of therapeutic applications. This includes harnessing iNKT-cell-mediated immune responses to adjuvant whole inactivated influenza virus (WIV) vaccines. An important concern with WIV vaccines is that under certain circumstances, they are capable of triggering vaccine-associated enhanced respiratory disease (VAERD). This immunopathological phenomenon can arise after immunization with an oil-in-water (OIW) adjuvanted WIV vaccine, followed by infection with a hemagglutinin and neuraminidase mismatched challenge virus. This elicits antibodies (Abs) that bind immunodominant epitopes in the HA2 region of the heterologous virus, which purportedly causes enhanced virus fusion activity to the host cell and increased infection. Here, we show that αGC can induce severe VAERD in pigs. However, instead of stimulating high concentrations of HA2 Abs, αGC elicits high concentrations of interferon (IFN)-γ-secreting cells both in the lungs and systemically. Additionally, we found that VAERD mediated by iNKT cells results in distinct cytokine profiles and altered adaptation of the challenge virus following infection compared to an OIW adjuvant. Overall, these results provide a cautionary note about considering the formulation of WIV vaccines with iNKT-cell agonists as a potential strategy to modulate antigen-specific immunity.
Collapse
Affiliation(s)
- Bianca L Artiaga
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Daniel Madden
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Taeyong Kwon
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Chester McDowell
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Cassidy Keating
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Velmurugan Balaraman
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Darling Melany de Carvahlo Madrid
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Laurie Touchard
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Jamie Henningson
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Philip Meade
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Florian Krammer
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Igor Morozov
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Juergen A Richt
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - John P Driver
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
2
|
Chang LA, Schotsaert M. Ally, adversary, or arbitrator? The context-dependent role of eosinophils in vaccination for respiratory viruses and subsequent breakthrough infections. J Leukoc Biol 2024; 116:224-243. [PMID: 38289826 PMCID: PMC11288382 DOI: 10.1093/jleuko/qiae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/12/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Eosinophils are a critical type of immune cell and central players in type 2 immunity. Existing literature suggests that eosinophils also can play a role in host antiviral responses, typically type 1 immune events, against multiple respiratory viruses, both directly through release of antiviral mediators and indirectly through activation of other effector cell types. One way to prime host immune responses toward effective antiviral responses is through vaccination, where typically a type 1-skewed immunity is desirable in the context of intracellular pathogens like respiratory viruses. In the realm of breakthrough respiratory viral infection in vaccinated hosts, an event in which virus can still establish productive infection despite preexisting immunity, eosinophils are most prominently known for their link to vaccine-associated enhanced respiratory disease upon natural respiratory syncytial virus infection. This was observed in a pediatric cohort during the 1960s following vaccination with formalin-inactivated respiratory syncytial virus. More recent research has unveiled additional roles of the eosinophil in respiratory viral infection and breakthrough infection. The specific contribution of eosinophils to the quality of vaccine responses, vaccine efficacy, and antiviral responses to infection in vaccinated hosts remains largely unexplored, especially regarding their potential roles in protection. On the basis of current findings, we will speculate upon the suggested function of eosinophils and consider the many potential ways by which eosinophils may exert protective and pathological effects in breakthrough infections. We will also discuss how to balance vaccine efficacy with eosinophil-related risks, as well as the use of eosinophils and their products as potential biomarkers of vaccine efficacy or adverse events.
Collapse
Affiliation(s)
- Lauren A Chang
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, United States
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, United States
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1630, New York, NY 10029, United States
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
| |
Collapse
|
3
|
Wymore Brand M, Souza CK, Gauger P, Arruda B, Vincent Baker AL. Biomarkers associated with vaccine-associated enhanced respiratory disease following influenza A virus infection in swine. Vet Immunol Immunopathol 2024; 273:110787. [PMID: 38815504 PMCID: PMC11201273 DOI: 10.1016/j.vetimm.2024.110787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/29/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024]
Abstract
Influenza A virus (IAV) is a major pathogen in the swine industry. Whole-inactivated virus (WIV) vaccines in swine are highly effective against homologous viruses but provide limited protection to antigenically divergent viruses and may lead to vaccine-associated enhanced respiratory disease (VAERD) after heterologous infection. Although VAERD is reproducible in laboratory studies, clinical diagnosis is challenging, as it would require both knowledge of prior vaccine history and evidence of severe disease by assessment of pathologic lesions at necropsy following infection with a heterologous virus. The objective of this study was to identify potential biomarkers for VAERD for antemortem clinical diagnosis. Naïve pigs were split into two groups, and one group was vaccinated with IAV WIV vaccine. All pigs were then challenged with a heterologous virus to induce VAERD in the vaccinated group and necropsied at 5 days post infection (dpi). Blood was collected on 0, 1, 3, and 5 dpi, and assessed by hematology, plasma chemistry, acute phase proteins, and citrullinated H3 histone (CitH3) assays. Additionally, cytokine and CitH3 levels were assessed in bronchoalveolar lavage fluid (BALF) collected at necropsy. Compared to nonvaccinated challenged pigs, blood collected from vaccinated and challenged (V/C) pigs with VAERD had elevated white blood cells and neutrophils, elevated C-reactive protein and haptoglobin acute phase proteins, and elevated CitH3. In BALF, the proinflammatory cytokine IL-8 and CitH3 were elevated in V/C pigs. In conclusion, a profile of elevated white blood cells and neutrophils, elevated C-reactive protein and haptoglobin, and elevated CitH3 may be relevant for a clinical antemortem IAV VAERD diagnosis.
Collapse
Affiliation(s)
- Meghan Wymore Brand
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA 50010, USA.
| | - Carine K Souza
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA 50010, USA; Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Phillip Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Bailey Arruda
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA 50010, USA
| | - Amy L Vincent Baker
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA 50010, USA
| |
Collapse
|
4
|
Reineking W, Hennig-Pauka I, Schröder L, Höner U, Schreiber E, Geiping L, Lassnig S, Bonilla MC, Hewicker-Trautwein M, de Buhr N. Spontaneous Lethal Outbreak of Influenza A Virus Infection in Vaccinated Sows on Two Farms Suggesting the Occurrence of Vaccine-Associated Enhanced Respiratory Disease with Eosinophilic Lung Pathology. Viruses 2024; 16:955. [PMID: 38932247 PMCID: PMC11209110 DOI: 10.3390/v16060955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Influenza A virus (IAV) infections in swine are usually subclinical, but they can reach high morbidity rates. The mortality rate is normally low. In this study, six vaccinated, spontaneously deceased sows revealed IAV infection and enhanced neutrophilic bronchopneumonia with unexpectedly large numbers of infiltrating eosinophils. The purpose of this study was to characterize these lung lesions with special emphasis on the phenotypes of inflammatory cells, the presence of eosinophilic peroxidase (EPO), and neutrophil extracellular traps (NETs). The number of Sirius red-stained eosinophils was significantly higher in the lungs of IAV-infected sows compared to healthy pigs, indicating a migration of eosinophils from blood vessels into the lung tissue stimulated by IAV infection. The detection of intra- and extracellular EPO in the lungs suggests its contribution to pulmonary damage. The presence of CD3+ T lymphocytes, CD20+ B lymphocytes, and Iba-1+ macrophages indicates the involvement of cell-mediated immune responses in disease progression. Furthermore, high numbers of myeloperoxidase-positive cells were detected. However, DNA-histone-1 complexes were reduced in IAV-infected sows, leading to the hypothesis that NETs are not formed in the IAV-infected sows. In conclusion, our findings in the lungs of IAV-infected vaccinated sows suggest the presence of so far unreported field cases of vaccine-associated enhanced respiratory disease.
Collapse
Affiliation(s)
- Wencke Reineking
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany (M.H.-T.)
| | - Isabel Hennig-Pauka
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, 49456 Bakum, Germany; (I.H.-P.); (E.S.)
| | | | - Ulf Höner
- Tierärztliche Praxis in Schöppingen, 48624 Schöppingen, Germany
| | - Elena Schreiber
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, 49456 Bakum, Germany; (I.H.-P.); (E.S.)
| | - Lukas Geiping
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, 49456 Bakum, Germany; (I.H.-P.); (E.S.)
| | - Simon Lassnig
- Institute of Biochemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (S.L.); (M.C.B.)
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Marta C. Bonilla
- Institute of Biochemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (S.L.); (M.C.B.)
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Marion Hewicker-Trautwein
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany (M.H.-T.)
| | - Nicole de Buhr
- Institute of Biochemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (S.L.); (M.C.B.)
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| |
Collapse
|
5
|
Opriessnig T, Gauger PC, Filippsen Favaro P, Rawal G, Magstadt DR, Digard P, Lee HM, Halbur PG. An experimental universal swine influenza a virus (IAV) vaccine candidate based on the M2 ectodomain (M2e) peptide does not provide protection against H1N1 IAV challenge in pigs. Vaccine 2024; 42:220-228. [PMID: 38087714 DOI: 10.1016/j.vaccine.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/13/2023] [Accepted: 12/02/2023] [Indexed: 01/01/2024]
Abstract
Swine flu is a common disease problem in North American pig populations and swine influenza A viruses (IAV) are extremely diverse and the lack of cross protection between heterologous strains is impacting vaccine efficacy in the field. The objective of this study was to design and test a novel swine flu vaccine targeting the M2 ectodomain (M2e) of IAV, a highly conserved region within the IAV proteome. In brief, an M2e peptide was designed to match the predominant swine IAV M2 sequence based on global analysis of sequences from pigs and humans. The resulting sequence was used to synthesize the M2e peptide coupled to a carrier protein. The final vaccine concentration was 200 µg per dose, and a commercial, microemulsion-based aqueous adjuvant was added. Nine 3-week-old IAV negative piglets were randomly assigned to three groups and rooms including non-vaccinated pigs (NEG-CONTROLs) and vaccinated pigs using the intramuscular (M2e-IM) or the intranasal route (M2e-IN). Vaccinations were done at weaning and again at 2 weeks later. An in-house enzyme-linked immunosorbent assay (ELISA) was developed and validated to study the M2e IgG antibody response and demonstrated M2e-IM pigs had a higher systemic antibody response compared to M2e-IN pigs. Subsequently, an IAV challenge study was conducted. The results indicated that M2e-IM vaccinated pigs were not protected from H1N1 (US pandemic clade, global clade 1A.3.3.2) challenge despite having a strong humoral anti-M2e immune response. In conclusion, while the experimental IAV vaccine was able to induce anti-M2e antibodies, when challenged with H1N1, the vaccinated pigs were not protected, perhaps indicating that reactivity to the M2e antigen alone is not sufficient to reduce clinical signs, lesions or shedding associated with experimental IAV challenge.
Collapse
Affiliation(s)
- Tanja Opriessnig
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA; Vaccines and Diagnostics Department, Moredun Research Institute, Penicuik, Edinburgh, UK.
| | - Phillip C Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| | | | - Gaurav Rawal
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| | - Drew R Magstadt
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| | - Paul Digard
- The Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK.
| | - Hui-Min Lee
- The Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK.
| | - Patrick G Halbur
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| |
Collapse
|
6
|
Van Reeth K, Parys A, Gracia JCM, Trus I, Chiers K, Meade P, Liu S, Palese P, Krammer F, Vandoorn E. Sequential vaccinations with divergent H1N1 influenza virus strains induce multi-H1 clade neutralizing antibodies in swine. Nat Commun 2023; 14:7745. [PMID: 38008801 PMCID: PMC10679120 DOI: 10.1038/s41467-023-43339-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 11/07/2023] [Indexed: 11/28/2023] Open
Abstract
Vaccines that protect against any H1N1 influenza A virus strain would be advantageous for use in pigs and humans. Here, we try to induce a pan-H1N1 antibody response in pigs by sequential vaccination with antigenically divergent H1N1 strains. Adjuvanted whole inactivated vaccines are given intramuscularly in various two- and three-dose regimens. Three doses of heterologous monovalent H1N1 vaccine result in seroprotective neutralizing antibodies against 71% of a diverse panel of human and swine H1 strains, detectable antibodies against 88% of strains, and sterile cross-clade immunity against two heterologous challenge strains. This strategy outperforms any two-dose regimen and is as good or better than giving three doses of matched trivalent vaccine. Neutralizing antibodies are H1-specific, and the second heterologous booster enhances reactivity with conserved epitopes in the HA head. We show that even the most traditional influenza vaccines can offer surprisingly broad protection if they are administered in an alternative way.
Collapse
Affiliation(s)
- Kristien Van Reeth
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Gent, Belgium.
| | - Anna Parys
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Gent, Belgium
| | | | - Ivan Trus
- Dioscuri Centre for RNA-Protein Interactions in Human Health and Disease, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Koen Chiers
- Laboratory of Pathology, Faculty of Veterinary Medicine, Ghent University, Gent, Belgium
| | - Philip Meade
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sean Liu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elien Vandoorn
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Gent, Belgium
| |
Collapse
|
7
|
Hernandez-Franco JF, Yadagiri G, Patil V, Bugybayeva D, Dolatyabi S, Dumkliang E, Singh M, Suresh R, Akter F, Schrock J, Renukaradhya GJ, HogenEsch H. Intradermal Vaccination against Influenza with a STING-Targeted Nanoparticle Combination Adjuvant Induces Superior Cross-Protective Humoral Immunity in Swine Compared with Intranasal and Intramuscular Immunization. Vaccines (Basel) 2023; 11:1699. [PMID: 38006031 PMCID: PMC10675188 DOI: 10.3390/vaccines11111699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The development of cross-protective vaccines against the zoonotic swine influenza A virus (swIAV), a potential pandemic-causing agent, continues to be an urgent global health concern. Commercially available vaccines provide suboptimal cross-protection against circulating subtypes of swIAV, which can lead to worldwide economic losses and poor zoonosis deterrence. The limited efficacy of current swIAV vaccines demands innovative strategies for the development of next-generation vaccines. Considering that intramuscular injection is the standard route of vaccine administration in both human and veterinary medicine, the exploration of alternative strategies, such as intradermal vaccination, presents a promising avenue for vaccinology. This investigation demonstrates the first evaluation of a direct comparison between a commercially available multivalent swIAV vaccine and monovalent whole inactivated H1N2 swine influenza vaccine, delivered by intradermal, intranasal, and intramuscular routes. The monovalent vaccines were adjuvanted with NanoST, a cationic phytoglycogen-based nanoparticle that is combined with the STING agonist ADU-S100. Upon heterologous challenge, intradermal vaccination generated a stronger cross-reactive nasal and serum antibody response in pigs compared with intranasal and intramuscular vaccination. Antibodies induced by intradermal immunization also had higher avidity compared with the other routes of vaccination. Bone marrow from intradermally and intramuscularly immunized pigs had both IgG and IgA virus-specific antibody-secreting cells. These studies reveal that NanoST is a promising adjuvant system for the intradermal administration of STING-targeted influenza vaccines.
Collapse
Affiliation(s)
- Juan F. Hernandez-Franco
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA;
| | - Ganesh Yadagiri
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (G.Y.); (V.P.); (D.B.); (S.D.); (M.S.); (R.S.); (F.A.); (J.S.)
| | - Veerupaxagouda Patil
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (G.Y.); (V.P.); (D.B.); (S.D.); (M.S.); (R.S.); (F.A.); (J.S.)
| | - Dina Bugybayeva
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (G.Y.); (V.P.); (D.B.); (S.D.); (M.S.); (R.S.); (F.A.); (J.S.)
| | - Sara Dolatyabi
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (G.Y.); (V.P.); (D.B.); (S.D.); (M.S.); (R.S.); (F.A.); (J.S.)
| | - Ekachai Dumkliang
- Drug Delivery System Excellence Center (DDSEC), Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Mithilesh Singh
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (G.Y.); (V.P.); (D.B.); (S.D.); (M.S.); (R.S.); (F.A.); (J.S.)
| | - Raksha Suresh
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (G.Y.); (V.P.); (D.B.); (S.D.); (M.S.); (R.S.); (F.A.); (J.S.)
| | - Fatema Akter
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (G.Y.); (V.P.); (D.B.); (S.D.); (M.S.); (R.S.); (F.A.); (J.S.)
| | - Jennifer Schrock
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (G.Y.); (V.P.); (D.B.); (S.D.); (M.S.); (R.S.); (F.A.); (J.S.)
| | - Gourapura J. Renukaradhya
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (G.Y.); (V.P.); (D.B.); (S.D.); (M.S.); (R.S.); (F.A.); (J.S.)
| | - Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA;
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
8
|
Pliasas VC, Neasham PJ, Naskou MC, Neto R, Strate PG, North JF, Pedroza S, Chastain SD, Padykula I, Tompkins SM, Kyriakis CS. Heterologous prime-boost H1N1 vaccination exacerbates disease following challenge with a mismatched H1N2 influenza virus in the swine model. Front Immunol 2023; 14:1253626. [PMID: 37928521 PMCID: PMC10623127 DOI: 10.3389/fimmu.2023.1253626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/04/2023] [Indexed: 11/07/2023] Open
Abstract
Influenza A viruses (IAVs) pose a significant threat to both human and animal health. Developing IAV vaccine strategies able to elicit broad heterologous protection against antigenically diverse IAV strains is pivotal in effectively controlling the disease. The goal of this study was to examine the immunogenicity and protective efficacy of diverse H1N1 influenza vaccine strategies including monovalent, bivalent, and heterologous prime-boost vaccination regimens, against a mismatched H1N2 swine influenza virus. Five groups were homologous prime-boost vaccinated with either an oil-adjuvanted whole-inactivated virus (WIV) monovalent A/swine/Georgia/27480/2019 (GA19) H1N2 vaccine, a WIV monovalent A/sw/Minnesota/A02636116/2021 (MN21) H1N1 vaccine, a WIV monovalent A/California/07/2009 (CA09) H1N1, a WIV bivalent vaccine composed of CA09 and MN21, or adjuvant only (mock-vaccinated group). A sixth group was prime-vaccinated with CA09 WIV and boosted with MN21 WIV (heterologous prime-boost group). Four weeks post-boost pigs were intranasally and intratracheally challenged with A/swine/Georgia/27480/2019, an H1N2 swine IAV field isolate. Vaccine-induced protection was evaluated based on five critical parameters: (i) hemagglutination inhibiting (HAI) antibody responses, (ii) clinical scores, (iii) virus titers in nasal swabs and respiratory tissue homogenates, (iv) BALf cytology, and (v) pulmonary pathology. While all vaccination regimens induced seroprotective titers against homologous viruses, heterologous prime-boost vaccination failed to enhance HAI responses against the homologous vaccine strains compared to monovalent vaccine regimens and did not expand the scope of cross-reactive antibody responses against antigenically distinct swine and human IAVs. Mismatched vaccination regimens not only failed to confer clinical and virological protection post-challenge but also exacerbated disease and pathology. In particular, heterologous-boosted pigs showed prolonged clinical disease and increased pulmonary pathology compared to mock-vaccinated pigs. Our results demonstrated that H1-specific heterologous prime-boost vaccination, rather than enhancing cross-protection, worsened the clinical outcome and pathology after challenge with the antigenically distant A/swine/Georgia/27480/2019 strain.
Collapse
Affiliation(s)
- Vasilis C. Pliasas
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-University of Georgia (UGA) Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
| | - Peter J. Neasham
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-University of Georgia (UGA) Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
| | - Maria C. Naskou
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Rachel Neto
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Philip G. Strate
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - J. Fletcher North
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-University of Georgia (UGA) Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
| | - Stephen Pedroza
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Strickland D. Chastain
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Ian Padykula
- Emory-University of Georgia (UGA) Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
- Center for Vaccines and Immunology, University of Georgia, Athens GA, United States
| | - S. Mark Tompkins
- Emory-University of Georgia (UGA) Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
- Center for Vaccines and Immunology, University of Georgia, Athens GA, United States
| | - Constantinos S. Kyriakis
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-University of Georgia (UGA) Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
- Center for Vaccines and Immunology, University of Georgia, Athens GA, United States
| |
Collapse
|
9
|
Chang LA, Choi A, Rathnasinghe R, Warang P, Noureddine M, Jangra S, Chen Y, De Geest BG, Schotsaert M. Influenza breakthrough infection in vaccinated mice is characterized by non-pathological lung eosinophilia. Front Immunol 2023; 14:1217181. [PMID: 37600776 PMCID: PMC10437116 DOI: 10.3389/fimmu.2023.1217181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Eosinophils are important mediators of mucosal tissue homeostasis, anti-helminth responses, and allergy. Lung eosinophilia has previously been linked to aberrant Type 2-skewed T cell responses to respiratory viral infection and may also be a consequence of vaccine-associated enhanced respiratory disease (VAERD), particularly in the case of respiratory syncytial virus (RSV) and the formalin-inactivated RSV vaccine. We previously reported a dose-dependent recruitment of eosinophils to the lungs of mice vaccinated with alum-adjuvanted trivalent inactivated influenza vaccine (TIV) following a sublethal, vaccine-matched H1N1 (A/New Caledonia/20/1999; NC99) influenza challenge. Given the differential role of eosinophil subset on immune function, we conducted the investigations herein to phenotype the lung eosinophils observed in our model of influenza breakthrough infection. Here, we demonstrate that eosinophil influx into the lungs of vaccinated mice is adjuvant- and sex-independent, and only present after vaccine-matched sublethal influenza challenge but not in mock-challenged mice. Furthermore, vaccinated and challenged mice had a compositional shift towards more inflammatory eosinophils (iEos) compared to resident eosinophils (rEos), resembling the shift observed in ovalbumin (OVA)-sensitized allergic control mice, however without any evidence of enhanced morbidity or aberrant inflammation in lung cytokine/chemokine signatures. Furthermore, we saw a lung eosinophil influx in the context of a vaccine-mismatched challenge. Additional layers of heterogeneity in the eosinophil compartment were observed via unsupervised clustering analysis of flow cytometry data. Our collective findings are a starting point for more in-depth phenotypic and functional characterization of lung eosinophil subsets in the context of vaccine- and infection-induced immunity.
Collapse
Affiliation(s)
- Lauren A. Chang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Angela Choi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Raveen Rathnasinghe
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Moataz Noureddine
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sonia Jangra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yong Chen
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | | | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
10
|
Hufnagel DE, Young KM, Arendsee ZW, Gay LC, Caceres CJ, Rajão DS, Perez DR, Vincent Baker AL, Anderson TK. Characterizing a century of genetic diversity and contemporary antigenic diversity of N1 neuraminidase in influenza A virus from North American swine. Virus Evol 2023; 9:vead015. [PMID: 36993794 PMCID: PMC10041950 DOI: 10.1093/ve/vead015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/08/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Influenza A viruses (IAVs) of the H1N1 classical swine lineage became endemic in North American swine following the 1918 pandemic. Additional human-to-swine transmission events after 1918, and a spillover of H1 viruses from wild birds in Europe, potentiated a rapid increase in genomic diversity via reassortment between introductions and the endemic classical swine lineage. To determine mechanisms affecting reassortment and evolution, we conducted a phylogenetic analysis of N1 and paired HA swine IAV genes in North America between 1930 and 2020. We described fourteen N1 clades within the N1 Eurasian avian lineage (including the N1 pandemic clade), the N1 classical swine lineage, and the N1 human seasonal lineage. Seven N1 genetic clades had evidence for contemporary circulation. To assess antigenic drift associated with N1 genetic diversity, we generated a panel of representative swine N1 antisera and quantified the antigenic distance between wild-type viruses using enzyme-linked lectin assays and antigenic cartography. Within the N1 genes, the antigenic similarity was variable and reflected shared evolutionary history. Sustained circulation and evolution of N1 genes in swine had resulted in a significant antigenic distance between the N1 pandemic clade and the classical swine lineage. Between 2010 and 2020, N1 clades and N1-HA pairings fluctuated in detection frequency across North America, with hotspots of diversity generally appearing and disappearing within 2 years. We also identified frequent N1-HA reassortment events (n = 36), which were rarely sustained (n = 6) and sometimes also concomitant with the emergence of new N1 genetic clades (n = 3). These data form a baseline from which we can identify N1 clades that expand in range or genetic diversity that may impact viral phenotypes or vaccine immunity and subsequently the health of North American swine.
Collapse
Affiliation(s)
- David E Hufnagel
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Ave, Ames, IA 50010, USA
| | - Katharine M Young
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Ave, Ames, IA 50010, USA
| | - Zebulun W Arendsee
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Ave, Ames, IA 50010, USA
| | - L Claire Gay
- Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Rd, Athens, GA 30602, USA
| | - C Joaquin Caceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Rd, Athens, GA 30602, USA
| | - Daniela S Rajão
- Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Rd, Athens, GA 30602, USA
| | - Daniel R Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Rd, Athens, GA 30602, USA
| | - Amy L Vincent Baker
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Ave, Ames, IA 50010, USA
| | - Tavis K Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Ave, Ames, IA 50010, USA
| |
Collapse
|
11
|
Li C, Culhane MR, Schroeder DC, Cheeran MCJ, Galina Pantoja L, Jansen ML, Torremorell M. Vaccination decreases the risk of influenza A virus reassortment but not genetic variation in pigs. eLife 2022; 11:78618. [PMID: 36052992 PMCID: PMC9439680 DOI: 10.7554/elife.78618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Although vaccination is broadly used in North American swine breeding herds, managing swine influenza is challenging primarily due to the continuous evolution of influenza A virus (IAV) and the ability of the virus to transmit among vaccinated pigs. Studies that have simultaneously assessed the impact of vaccination on the emergence of IAV reassortment and genetic variation in pigs are limited. Here, we directly sequenced 28 bronchoalveolar lavage fluid (BALF) samples collected from vaccinated and unvaccinated pigs co-infected with H1N1 and H3N2 IAV strains, and characterized 202 individual viral plaques recovered from 13 BALF samples. We identified 54 reassortant viruses that were grouped in 17 single and 16 mixed genotypes. Notably, we found that prime-boost vaccinated pigs had less reassortant viruses than nonvaccinated pigs, likely due to a reduction in the number of days pigs were co-infected with both challenge viruses. However, direct sequencing from BALF samples revealed limited impact of vaccination on viral variant frequency, evolutionary rates, and nucleotide diversity in any IAV coding regions. Overall, our results highlight the value of IAV vaccination not only at limiting virus replication in pigs but also at protecting public health by restricting the generation of novel reassortants with zoonotic and/or pandemic potential. Swine influenza A viruses cause severe illness among pigs and financial losses on pig farms worldwide. These viruses can also infect humans and have caused deadly human pandemics in the past. Influenza A viruses are dangerous because viruses can be transferred between humans, birds and pigs. These co-infections can allow the viruses to swap genetic material. Viral genetic exchanges can result in new virus strains that are more dangerous or that can infect other types of animals more easily. Farmers vaccinate their pigs to control the swine influenza A virus. The vaccines are regularly updated to match circulating virus strains. But the virus evolves rapidly to escape vaccine-induced immunity, and infections are common even in vaccinated pigs. Learning about how vaccination affects the evolution of influenza A viruses in pigs could help scientists prevent outbreaks on pig farms and avoid spillover pandemics in humans. Li et al. show that influenza A viruses are less likely to swap genetic material in vaccinated and boosted pigs than in unvaccinated animals. In the experiments, Li et al. collected swine influenza A samples from the lungs of pigs that had received different vaccination protocols. Next, Li et al. used next-generation sequencing to identify new mutations in the virus or genetic swaps among different strains. In pigs infected with both the H1N1 and H3N2 strains of influenza, the two viruses began trading genes within a week. But less genetic mixing occurred in vaccinated and boosted pigs because they spent less time infected with both viruses than in unvaccinated pigs. The vaccination status of the pig did not have much effect on how many new mutations occurred in the viruses. The experiments show that vaccinating and boosting pigs against influenza A viruses may protect against genetic swapping among influenza viruses. If future studies on pig farms confirm the results, the information gleaned from the study could help scientists improve farm vaccine protocols to further reduce influenza risks to animals and people.
Collapse
Affiliation(s)
- Chong Li
- College of Veterinary Medicine, University of Minnesota, Saint Paul, United States
| | - Marie R Culhane
- College of Veterinary Medicine, University of Minnesota, Saint Paul, United States
| | - Declan C Schroeder
- College of Veterinary Medicine, University of Minnesota, Saint Paul, United States
| | - Maxim C-J Cheeran
- College of Veterinary Medicine, University of Minnesota, Saint Paul, United States
| | | | | | | |
Collapse
|
12
|
Nan FY, Wu CJ, Su JH, Ma LQ. Potential mouse models of coronavirus-related immune injury. Front Immunol 2022; 13:943783. [PMID: 36119040 PMCID: PMC9478437 DOI: 10.3389/fimmu.2022.943783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Basic research for prevention and treatment of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), continues worldwide. In particular, multiple newly reported cases of autoimmune-related diseases after COVID-19 require further research on coronavirus-related immune injury. However, owing to the strong infectivity of SARS-CoV-2 and the high mortality rate, it is difficult to perform relevant research in humans. Here, we reviewed animal models, specifically mice with coronavirus-related immune disorders and immune damage, considering aspects of coronavirus replacement, viral modification, spike protein, and gene fragments. The evaluation of mouse models of coronavirus-related immune injury may help establish a standardised animal model that could be employed in various areas of research, such as disease occurrence and development processes, vaccine effectiveness assessment, and treatments for coronavirus-related immune disorders. COVID-19 is a complex disease and animal models cannot comprehensively summarise the disease process. The application of genetic technology may change this status.
Collapse
Affiliation(s)
- Fu-Yao Nan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Cai-Jun Wu
- Department of Emergency Medicine, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute of Sepsis, Beijing University of Chinese Medicine, Beijing, China
| | - Jia-Hui Su
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lin-Qin Ma
- Department of Emergency Medicine, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute of Sepsis, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Bivalent hemagglutinin and neuraminidase influenza replicon particle vaccines protect pigs against influenza a virus without causing vaccine associated enhanced respiratory disease. Vaccine 2022; 40:5569-5578. [PMID: 35987871 DOI: 10.1016/j.vaccine.2022.07.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/06/2022] [Accepted: 07/26/2022] [Indexed: 11/19/2022]
Abstract
Alphavirus-derived RNA replicon particle (RP) vaccines represent the next generation of swine influenza A virus (IAV) vaccines, as they were shown to be safe, effective, and offer advantages over traditional vaccine platforms. IAV is a significant respiratory pathogen of swine and there is a critical need to improve current commercial swine IAV vaccine platforms. Adjuvanted whole inactivated virus (WIV) IAV swine vaccines provide limited heterologous protection and may lead to vaccine-associated enhanced respiratory disease (VAERD). This study investigated the ability of RP IAV hemagglutinin (HA) vaccines to avoid VAERD and evaluated experimental multivalent HA and neuraminidase (NA) RP vaccines. RP vaccines were formulated with HA or NA heterologous or homologous to the challenge virus in monovalent HA or HA and NA bivalent combinations (HA/NA bivalent). Pigs were vaccinated with an HA RP, HA/NA bivalent RP, or heterologous HA WIV, followed by IAV challenge and necropsy 5 days post infection. RP vaccines provided homologous protection from challenge and induced robust peripheral and local antibody responses. The RP vaccine did not induce VAERD after challenge with a virus containing the heterologous HA, in contrast to the traditional WIV vaccine. The HA monovalent and HA/NA bivalent RP vaccines showed superior protection compared to traditional WIV. Additionally, the RP platform allows greater flexibility to adjust HA and NA content to reflect circulating IAV in swine antigenic diversity.
Collapse
|
14
|
Slifka DK, Raué HP, Weber WC, Andoh TF, Kreklywich CN, DeFilippis VR, Streblow DN, Slifka MK, Amanna IJ. Development of a next-generation chikungunya virus vaccine based on the HydroVax platform. PLoS Pathog 2022; 18:e1010695. [PMID: 35788221 PMCID: PMC9286250 DOI: 10.1371/journal.ppat.1010695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 07/15/2022] [Accepted: 06/22/2022] [Indexed: 12/02/2022] Open
Abstract
Chikungunya virus (CHIKV) is an emerging/re-emerging mosquito-borne pathogen responsible for explosive epidemics of febrile illness characterized by debilitating polyarthralgia and the risk of lethal infection among the most severe cases. Despite the public health risk posed by CHIKV, no vaccine is currently available. Using a site-directed hydrogen peroxide-based inactivation approach, we developed a new CHIKV vaccine, HydroVax-CHIKV. This vaccine technology was compared to other common virus inactivation approaches including β-propiolactone (BPL), formaldehyde, heat, and ultraviolet (UV) irradiation. Heat, UV, and BPL were efficient at inactivating CHIKV-181/25 but caused substantial damage to neutralizing epitopes and failed to induce high-titer neutralizing antibodies in vaccinated mice. HydroVax-CHIKV and formaldehyde-inactivated CHIKV retained intact neutralizing epitopes similar to live virus controls but the HydroVax-CHIKV approach demonstrated a more rapid rate of virus inactivation. HydroVax-CHIKV vaccination induced high neutralizing responses to homologous and heterologous CHIKV clades as well as to other alphaviruses including Mayaro virus, O’nyong’nyong virus, and Una virus. Following heterologous infection with CHIKV-SL15649, HydroVax-CHIKV-immunized mice were protected against viremia, CHIKV-associated arthritic disease, and lethal CHIKV infection by an antibody-dependent mechanism. In contrast, animals vaccinated with Heat- or UV-inactivated virus showed no protection against viremia in addition to demonstrating significantly exacerbated CD4+ T cell-mediated footpad swelling after CHIKV infection. Together, these results demonstrate the risks associated with using suboptimal inactivation methods that fail to elicit protective neutralizing antibody responses and show that HydroVax-CHIKV represents a promising new vaccine candidate for prevention of CHIKV-associated disease. Chikungunya virus (CHIKV) is a mosquito-borne virus that has gained significant attention due to its ability to cause large epidemics and to spread beyond endemic countries through international travelers. Despite substantial efforts over the course of many years, a licensed CHIKV vaccine remains unavailable for protecting at-risk populations. Our research group has established an advanced site-directed oxidation system, termed HydroVax, for the development of new vaccines. Here, we describe a novel CHIKV vaccine that utilizes this peroxide-based vaccine platform and demonstrates greatly improved antiviral immunity compared to other traditional virus inactivation approaches as well as complete protection against viremia, CHIKV-associated arthritic disease and lethal CHIKV infection in robust preclinical mouse models. The HydroVax-CHIKV vaccine not only induced neutralizing antibodies to geographically diverse strains of CHIKV, but also elicited neutralizing antibody responses to other clinically important alphaviruses including, Mayaro, O’nyong’nyong, and Una virus. Together, this indicates that this vaccine not only protects against CHIKV infection but may potentially provide immunity across a broader range of virulent alphaviruses as well.
Collapse
Affiliation(s)
- Dawn K. Slifka
- Najít Technologies, Incorporated, Beaverton, Oregon, United States of America
| | - Hans-Peter Raué
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Whitney C. Weber
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Takeshi F. Andoh
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Craig N. Kreklywich
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Victor R. DeFilippis
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Daniel N. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Mark K. Slifka
- Najít Technologies, Incorporated, Beaverton, Oregon, United States of America
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Ian J. Amanna
- Najít Technologies, Incorporated, Beaverton, Oregon, United States of America
- * E-mail:
| |
Collapse
|
15
|
Parys A, Vandoorn E, Chiers K, Van Reeth K. Alternating 3 different influenza vaccines for swine in Europe for a broader antibody response and protection. Vet Res 2022; 53:44. [PMID: 35705993 PMCID: PMC9202218 DOI: 10.1186/s13567-022-01060-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/16/2022] [Indexed: 11/10/2022] Open
Abstract
Heterologous prime-boost vaccination with experimental or commercial influenza vaccines has been successful in various animal species. In this study, we have examined the efficacy of alternating 3 different European commercial swine influenza A virus (swIAV) vaccines: the trivalent Respiporc® FLU3 (TIV), the bivalent GRIPORK® (BIV) and the monovalent Respiporc® FLUpan H1N1 (MOV). Five groups of 6 pigs each received 3 vaccinations at 4-6 week intervals in a homologous or heterologous prime-boost regimen. A sixth group served as a mock-vaccinated challenge control. Four weeks after the last vaccination, pigs were challenged intranasally with a European avian-like H1N1 (1C.2.1) swIAV, which was antigenically distinct from the vaccine strains. One heterologous prime-boost group (TIV-BIV-MOV) had higher hemagglutination inhibition (HI) and neuraminidase inhibition antibody responses against a panel of antigenically distinct H1N1, H1N2 and H3N2 IAVs than the other heterologous prime-boost group (BIV-TIV-MOV) and the homologous prime-boost groups (3xTIV; 3xBIV; 3xMOV). Group TIV-BIV-MOV had seroprotective HI titers (≥ 40) against 56% of the tested viruses compared to 33% in group BIV-TIV-MOV and 22-39% in the homologous prime-boost groups. Post-challenge, group TIV-BIV-MOV was the single group with significantly reduced virus titers in all respiratory samples compared to the challenge control group. Our results suggest that the use of different commercial swIAV vaccines for successive vaccinations may result in broader antibody responses and protection than the traditional, homologous prime-boost vaccination regimens. In addition, the order in which the different vaccines are administered seems to affect the breadth of the antibody response and protection.
Collapse
Affiliation(s)
- Anna Parys
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Elien Vandoorn
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Koen Chiers
- Laboratory of Veterinary Pathology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Kristien Van Reeth
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| |
Collapse
|
16
|
Vaccine-Associated Enhanced Respiratory Disease following Influenza Virus Infection in Ferrets Recapitulates the Model in Pigs. J Virol 2022; 96:e0172521. [PMID: 34985999 DOI: 10.1128/jvi.01725-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Influenza A virus (IAV) causes respiratory disease in swine and humans. Vaccines are used to prevent influenza illness in both populations but must be frequently updated due to rapidly evolving strains. Mismatch between the circulating strains and the strains contained in vaccines may cause loss of efficacy. Whole inactivated virus (WIV) vaccines with adjuvant, utilized by the swine industry, are effective against antigenically similar viruses; however, vaccine-associated enhanced respiratory disease (VAERD) may happen when the WIV is antigenically mismatched with the infecting virus. VAERD is a repeatable model in pigs, but had yet to be experimentally demonstrated in other mammalian species. We recapitulated VAERD in ferrets, a standard benchmark animal model for studying human influenza infection, in a direct comparison to VAERD in pigs. Both species were vaccinated with WIV with oil-in-water adjuvant containing a δ-1 H1N2 (1B.2.2) derived from the pre-2009 human seasonal lineage, then challenged with a 2009 pandemic H1N1 (H1N1pdm09, 1A.3.3.2) 5 weeks after vaccination. Nonvaccinated and challenged groups showed typical signs of influenza disease, but the mismatched vaccinated and challenged pigs and ferrets showed elevated clinical signs, despite similar viral loads. VAERD-affected pigs exhibited a 2-fold increase in lung lesions, while VAERD-affected ferrets showed a 4-fold increase. Similar to pigs, antibodies from VAERD-affected ferrets preferentially bound to the HA2 domain of the H1N1pdm09 challenge strain. These results indicate that VAERD is not limited to pigs, as demonstrated here in ferrets, and the need to consider VAERD when evaluating new vaccine platforms and strategies. IMPORTANCE We demonstrated the susceptibility of ferrets, a laboratory model species for human influenza A virus research, to vaccine-associated enhanced respiratory disease (VAERD) using an experimental model previously demonstrated in pigs. Ferrets developed clinical characteristics of VAERD very similar to that in pigs. The hemagglutinin (HA) stalk is a potential vaccine target to develop more efficacious, broadly reactive influenza vaccine platforms and strategies. However, non-neutralizing antibodies directed toward a conserved epitope on the HA stalk induced by an oil-in-water, adjuvanted, whole influenza virus vaccine were previously shown in VAERD-affected pigs and were also identified here in VAERD-affected ferrets. The induction of VAERD in ferrets highlights the potential risk of mismatched influenza vaccines for humans and the need to consider VAERD when designing and evaluating vaccine strategies.
Collapse
|
17
|
Kaplan BS, Anderson TK, Chang J, Santos J, Perez D, Lewis N, Vincent AL. Evolution and Antigenic Advancement of N2 Neuraminidase of Swine Influenza A Viruses Circulating in the United States following Two Separate Introductions from Human Seasonal Viruses. J Virol 2021; 95:e0063221. [PMID: 34379513 PMCID: PMC8475526 DOI: 10.1128/jvi.00632-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/15/2021] [Indexed: 12/15/2022] Open
Abstract
Two separate introductions of human seasonal N2 neuraminidase genes were sustained in U.S. swine since 1998 (N2-98) and 2002 (N2-02). Herein, we characterized the antigenic evolution of the N2 of swine influenza A virus (IAV) across 2 decades following each introduction. The N2-98 and N2-02 expanded in genetic diversity, with two statistically supported monophyletic clades within each lineage. To assess antigenic drift in swine N2 following the human-to-swine spillover events, we generated a panel of swine N2 antisera against representative N2 and quantified the antigenic distance between wild-type viruses using enzyme-linked lectin assay and antigenic cartography. The antigenic distance between swine and human N2 was smallest between human N2 circulating at the time of each introduction and the archetypal swine N2. However, sustained circulation and evolution in swine of the two N2 lineages resulted in significant antigenic drift, and the N2-98 and N2-02 swine N2 lineages were antigenically distinct. Although intralineage antigenic diversity was observed, the magnitude of antigenic drift did not consistently correlate with the observed genetic differences. These data represent the first quantification of the antigenic diversity of neuraminidase of IAV in swine and demonstrated significant antigenic drift from contemporary human seasonal strains as well as antigenic variation among N2 detected in swine. These data suggest that antigenic mismatch may occur between circulating swine IAV and vaccine strains. Consequently, consideration of the diversity of N2 in swine IAV for vaccine selection may likely result in more effective control and aid public health initiatives for pandemic preparedness. IMPORTANCE Antibodies inhibiting the neuraminidase (NA) of IAV reduce clinical disease, virus shedding, and transmission, particularly in the absence of neutralizing immunity against hemagglutinin. To understand antibody recognition of the genetically diverse NA in U.S. swine IAV, we characterized the antigenic diversity of N2 from swine and humans. N2 detected in swine IAV were derived from two distinct human-to-swine spillovers that persisted, are antigenically distinct, and underwent antigenic drift. These findings highlight the need for continued surveillance and vaccine development in swine with increased focus on the NA. Additionally, human seasonal N2 isolated after 2005 were poorly inhibited by representative swine N2 antisera, suggesting a lack of cross-reactive NA antibody-mediated immunity between contemporary swine and human N2. Bidirectional transmission between humans and swine represents a One Health challenge, and determining the correlates of immunity to emerging IAV strains is critical to mitigating zoonotic and reverse-zoonotic transmission.
Collapse
Affiliation(s)
- Bryan S. Kaplan
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa, USA
| | - Tavis K. Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa, USA
| | - Jennifer Chang
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa, USA
| | - Jefferson Santos
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Daniel Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Nicola Lewis
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, University of London, London, Hertfordshire, UK
| | - Amy L. Vincent
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa, USA
| |
Collapse
|
18
|
Animal Models Utilized for the Development of Influenza Virus Vaccines. Vaccines (Basel) 2021; 9:vaccines9070787. [PMID: 34358203 PMCID: PMC8310120 DOI: 10.3390/vaccines9070787] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 12/25/2022] Open
Abstract
Animal models have been an important tool for the development of influenza virus vaccines since the 1940s. Over the past 80 years, influenza virus vaccines have evolved into more complex formulations, including trivalent and quadrivalent inactivated vaccines, live-attenuated vaccines, and subunit vaccines. However, annual effectiveness data shows that current vaccines have varying levels of protection that range between 40–60% and must be reformulated every few years to combat antigenic drift. To address these issues, novel influenza virus vaccines are currently in development. These vaccines rely heavily on animal models to determine efficacy and immunogenicity. In this review, we describe seasonal and novel influenza virus vaccines and highlight important animal models used to develop them.
Collapse
|
19
|
Shi Y, Guo M, Yang W, Liu S, Zhu B, Yang L, Yang C, Liu C. Is SARS-CoV-2 vaccination safe and effective for elderly individuals with neurodegenerative diseases? Expert Rev Vaccines 2021; 20:375-383. [PMID: 33787439 PMCID: PMC8054494 DOI: 10.1080/14760584.2021.1911653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction Coronavirus Disease 2019 (COVID-19) poses a substantial threat to the lives of the elderly, especially those with neurodegenerative diseases, and vaccination against viral infections is recognized as an effective measure to reduce mortality. However, elderly patients with neurodegenerative diseases often suffer from abnormal immune function and take multiple medications, which may complicate the role of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines. Currently, there is no expert consensus on whether SARS-CoV-2 vaccines are suitable for patients with neurodegenerative diseases. Areas covered We searched Pubmed to conduct a systematic review of published studies, case reports, reviews, meta-analyses, and expert guidelines on the impact of SARS-CoV-2 on neurodegenerative diseases and the latest developments in COVID-19 vaccines. We also summarized the interaction between vaccines and age-related neurodegenerative diseases. The compatibility of future SARS-CoV-2 vaccines with neurodegenerative diseases is discussed. Expert opinion Vaccines enable the body to produce immunity by activating the body’s immune response. The pathogenesis and treatment of neurodegenerative diseases is complex, and these diseases often involve abnormal immune function, which can substantially affect the safety and effectiveness of vaccines. In short, this article provides recommendations for the use of vaccine candidates in patients with neurodegenerative diseases.
Collapse
Affiliation(s)
- Yan Shi
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing China
| | - Minna Guo
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing China
| | - Wenjing Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing China
| | - Shijiang Liu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing China
| | - Bin Zhu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou China
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou China
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing China
| | - Cunming Liu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing China
| |
Collapse
|
20
|
Bat influenza vectored NS1-truncated live vaccine protects pigs against heterologous virus challenge. Vaccine 2021; 39:1943-1950. [PMID: 33715905 DOI: 10.1016/j.vaccine.2021.02.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/20/2021] [Accepted: 02/27/2021] [Indexed: 12/31/2022]
Abstract
Swine influenza is an important disease for the swine industry. Currently used whole inactivated virus (WIV) vaccines can induce vaccine-associated enhanced respiratory disease (VAERD) in pigs when the vaccine strains mismatch with the infected viruses. Live attenuated influenza virus vaccine (LAIV) is effective to protect pigs against homologous and heterologous swine influenza virus infections without inducing VAERD but has safety concerns due to potential reassortment with circulating viruses. Herein, we used a chimeric bat influenza Bat09:mH3mN2 virus, which contains both surface HA and NA gene open reading frames of the A/swine/Texas/4199-2/1998 (H3N2) and six internal genes from the novel bat H17N10 virus, to develop modified live-attenuated viruses (MLVs) as vaccine candidates which cannot reassort with canonical influenza A viruses by co-infection. Two attenuated MLV vaccine candidates including the virus that expresses a truncated NS1 (Bat09:mH3mN2-NS1-128, MLV1) or expresses both a truncated NS1 and the swine IL-18 (Bat09:mH3mN2-NS1-128-IL-18, MLV2) were generated and evaluated in pigs against a heterologous H3N2 virus using the WIV vaccine as a control. Compared to the WIV vaccine, both MLV vaccines were able to reduce lesions and virus replication in lungs and limit nasal virus shedding without VAERD, also induced significantly higher levels of mucosal IgA response in lungs and significantly increased numbers of antigen-specific IFN-γ secreting cells against the challenge virus. However, no significant difference was observed in efficacy between the MLV1 and MLV2. These results indicate that bat influenza vectored MLV vaccines can be used as a safe live vaccine to prevent swine influenza.
Collapse
|
21
|
Bullard BL, Corder BN, DeBeauchamp J, Rubrum A, Korber B, Webby RJ, Weaver EA. Epigraph hemagglutinin vaccine induces broad cross-reactive immunity against swine H3 influenza virus. Nat Commun 2021; 12:1203. [PMID: 33619277 PMCID: PMC7900167 DOI: 10.1038/s41467-021-21508-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 01/27/2021] [Indexed: 01/09/2023] Open
Abstract
Influenza A virus infection in swine impacts the agricultural industry in addition to its zoonotic potential. Here, we utilize epigraph, a computational algorithm, to design a universal swine H3 influenza vaccine. The epigraph hemagglutinin proteins are delivered using an Adenovirus type 5 vector and are compared to a wild type hemagglutinin and the commercial inactivated vaccine, FluSure. In mice, epigraph vaccination leads to significant cross-reactive antibody and T-cell responses against a diverse panel of swH3 isolates. Epigraph vaccination also reduces weight loss and lung viral titers in mice after challenge with three divergent swH3 viruses. Vaccination studies in swine, the target species for this vaccine, show stronger levels of cross-reactive antibodies and T-cell responses after immunization with the epigraph vaccine compared to the wild type and FluSure vaccines. In both murine and swine models, epigraph vaccination shows superior cross-reactive immunity that should be further investigated as a universal swH3 vaccine.
Collapse
Affiliation(s)
- Brianna L Bullard
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE, USA
| | - Brigette N Corder
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE, USA
| | | | - Adam Rubrum
- St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Bette Korber
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | - Eric A Weaver
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE, USA.
| |
Collapse
|
22
|
Lopez Moreno G, Nirmala J, Goodell C, Culhane M, Torremorell M. Shedding and transmission of a live attenuated influenza A virus vaccine in pre-weaned pigs under field conditions. PLoS One 2021; 16:e0246690. [PMID: 33571263 PMCID: PMC7877771 DOI: 10.1371/journal.pone.0246690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 01/22/2021] [Indexed: 11/25/2022] Open
Abstract
Influenza A virus (IAV) is one of the most important respiratory viruses affecting pig health and vaccination is the most common strategy to control influenza infections. In this field study we assessed the onset and duration of shedding of a live attenuated influenza virus (LAIV) vaccine, its ability to transmit to non-vaccinated pigs and whether the LAIV could be aerosolized and detected in the environment. Thirty-three litters (n = 33) of a farm using the LAIV vaccine were selected for the study, a subset of them (n = 12) were left unvaccinated and a subset of piglets (n = 3) in vaccinated litters were also left unvaccinated to serve as sentinels. Selected piglets from the litters were sampled multiple days post vaccination (DPV) by collecting nasal swabs and blood, and were tested using a LAIV vaccine specific RT-PCR assay and hemagglutination inhibition assay against the LAIV strains respectively. Environmental specimens consisting of air and surface wipes were also collected. One hundred percent (21/21) of the vaccinated litters tested LAIV positive 1 DPV and until 6 DPV. In contrast, only five (5/33) of the thirty-three non-vaccinated pigs tested positive during the course of the study. Viable LAIV was confirmed in vaccinated pigs by cell culture and whole genome sequencing. In addition, low levels of LAIV RNA (RT-PCR Ct values ranging between 33 and 38) were detected in all air specimens collected on the day of vaccination and until 6 DPV (3/10). Pigs had maternally derived antibodies reactive against the LAIV strains which may have influenced the degree of shedding observed. Under the conditions of this study, shedding of the LAIV from vaccinated pigs was limited in time, resulted in minimal transmission to non-vaccinated pigs and was detected in low levels in aerosols collected in the vaccinated rooms likely influenced by the presence of maternally derived antibodies against the LAIV strains.
Collapse
Affiliation(s)
- Gustavo Lopez Moreno
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Jayaveeramuthu Nirmala
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Christa Goodell
- Boehringer Ingelheim Animal Health USA Inc., Duluth, Georgia, United States of America
| | - Marie Culhane
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Montserrat Torremorell
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| |
Collapse
|
23
|
Raja AT, Alshamsan A, Al-jedai A. Current COVID-19 vaccine candidates: Implications in the Saudi population. Saudi Pharm J 2020; 28:1743-1748. [PMID: 33199968 PMCID: PMC7654289 DOI: 10.1016/j.jsps.2020.10.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/31/2020] [Indexed: 12/21/2022] Open
Abstract
AIM The purpose of this review is to discuss the current status of local and international efforts undergoing clinical trials aiming at developing a Coronavirus Disease-2019 (COVID-19) vaccine, and to highlight the anticipated challenges of this vaccine globally and in Saudi Arabia. PRESENT FINDINGS COVID-19 vaccine development efforts started in early January 2020 when Chinese scientists shared the Coronavirus genomic sequence in public domain. Approximately 321 research groups initiated the search for a vaccine, out of which 41 have reached phase I/II trails and 11 reached phase-III clinical trials, including approved vaccines for early to limited use. Out of these projects are two labs in the Kingdom of Saudi Arabia still in early stages of development of a COVID-19 vaccine. Several vaccine attempts are being tested from traditional, attenuated virus methods, to new nucleic acid-based designs. However, no vaccine has yet completed clinical trials and reached public domain.In spite of the challenges faced during previous vaccine trials, researchers have found that Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), the causative agent of COVID-19 is structurally similar to the (SARS-CoV-1) and the Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV), which caused epidemics in 2003 and 2012 respectively. Both SARS strains show identical affinity towards the type-II alveolar pneumocytes angiotensin converting enzyme-2 (ACE-2) receptor binding domains and therefore, similar pathogenicity. The race to develop the vaccine is predominantly for individuals at high risk of developing the infection, i.e. population groups who are most susceptible to experiencing fatal symptoms of the coronavirus. These include patients with comorbidities, above the age of 60 years and people at risk of contracting large viral loads, such as healthcare providers caring for critical admissions in in-patient wards, Intensive Care Units and Emergency Room settings. SUMMARY Many different vaccine strategies are under development throughout different stages of the research timeline; however, it is estimated that none will show favorable results before end of 2020. For any immunization or interventional prevention/therapy system to reach the public and patients at high risk, it needs to undergo multiple phase trials to ensure safety and effectiveness. In this scoping review we aim to map the literature on COVID-19 vaccines and provide recommendations related to gaps in research, applicability and expected challenges for implementation of nationwide vaccination in Saudi Arabia.
Collapse
Affiliation(s)
| | - Aws Alshamsan
- Nanobiotechnology Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Al-jedai
- College of Pharmacy, Alfaisal University, Riyadh, Saudi Arabia
- Therapeutic Affairs, Ministry of Health, Saudi Arabia
| |
Collapse
|
24
|
Mancera Gracia JC, Pearce DS, Masic A, Balasch M. Influenza A Virus in Swine: Epidemiology, Challenges and Vaccination Strategies. Front Vet Sci 2020; 7:647. [PMID: 33195504 PMCID: PMC7536279 DOI: 10.3389/fvets.2020.00647] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/11/2020] [Indexed: 01/01/2023] Open
Abstract
Influenza A viruses cause acute respiratory infections in swine that result in significant economic losses for global pig production. Currently, three different subtypes of influenza A viruses of swine (IAV-S) co-circulate worldwide: H1N1, H3N2, and H1N2. However, the origin, genetic background and antigenic properties of those IAV-S vary considerably from region to region. Pigs could also have a role in the adaptation of avian influenza A viruses to humans and other mammalian hosts, either as intermediate hosts in which avian influenza viruses may adapt to humans, or as a “mixing vessel” in which influenza viruses from various origins may reassort, generating novel progeny viruses capable of replicating and spreading among humans. These potential roles highlight the importance of controlling influenza A viruses in pigs. Vaccination is currently the main tool to control IAV-S. Vaccines containing whole inactivated virus (WIV) with adjuvant have been traditionally used to generate highly specific antibodies against hemagglutinin (HA), the main antigenic protein. WIV vaccines are safe and protect against antigenically identical or very similar strains in the absence of maternally derived antibodies (MDAs). Yet, their efficacy is reduced against heterologous strains, or in presence of MDAs. Moreover, vaccine-associated enhanced respiratory disease (VAERD) has been described in pigs vaccinated with WIV vaccines and challenged with heterologous strains in the US. This, together with the increasingly complex epidemiology of SIVs, illustrates the need to explore new vaccination technologies and strategies. Currently, there are two different non-inactivated vaccines commercialized for swine in the US: an RNA vector vaccine expressing the HA of a H3N2 cluster IV, and a bivalent modified live vaccine (MLV) containing H1N2 γ-clade and H3N2 cluster IV. In addition, recombinant-protein vaccines, DNA vector vaccines and alternative attenuation technologies are being explored, but none of these new technologies has yet reached the market. The aim of this article is to provide a thorough review of the current epidemiological scenario of IAV-S, the challenges faced in the control of IAV-S infection and the tools being explored to overcome those challenges.
Collapse
Affiliation(s)
| | - Douglas S Pearce
- Zoetis Inc., Veterinary Medicine Research and Development, Kalamazoo, MI, United States
| | - Aleksandar Masic
- Zoetis Inc., Veterinary Medicine Research and Development, Kalamazoo, MI, United States
| | - Monica Balasch
- Zoetis Manufacturing & Research Spain S.L. Ctra., Girona, Spain
| |
Collapse
|
25
|
Jang YH, Seong BL. Call for a paradigm shift in the design of universal influenza vaccines by harnessing multiple correlates of protection. Expert Opin Drug Discov 2020; 15:1441-1455. [PMID: 32783765 DOI: 10.1080/17460441.2020.1801629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The genetic variability and diversity of influenza viruses, and the expansion of their hosts, present a significant threat to human health. The development of a universal influenza vaccine is urgently needed to tackle seasonal epidemics, pandemics, vaccine mismatch, and zoonotic transmissions to humans. AREAS COVERED Despite the identification of broadly neutralizing antibodies against influenza viruses, designing a universal influenza vaccine that induces such broadly neutralizing antibodies at protective levels in humans has remained challenging. Besides neutralizing antibodies, multiple correlates of protection have recently emerged as crucially important for eliciting broad protection against diverse influenza viruses. This review discusses the immune responses required for broad protection against influenza viruses, and suggests a paradigm shift from an HA stalk-based approach to other approaches that can induce multiple immunological correlates of protection for the development of a universal influenza vaccine. EXPERT OPINION To develop a truly universal influenza vaccine, multiple correlates of protection should be considered, including antibody responses and T cell immunity. Balanced induction of neutralizing antibodies, antibody effector functions, and T cell immunity will contribute to the most effective vaccination strategy. Live-attenuated influenza vaccines provide an attractive platform to improve the breadth and potency of vaccines for broader protection.
Collapse
Affiliation(s)
- Yo Han Jang
- Department of Biological Sciences and Biotechnology Major in Bio-Vaccine Engineering, Andong National University , Andong, South Korea
| | - Baik L Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University , Seoul, South Korea.,Vaccine Innovation Technology Alliance (VITAL)-Korea, Yonsei University , Seoul, South Korea
| |
Collapse
|
26
|
Desheva Y, Mamontov A, Petkova N, Karev V, Nazarov P. Mast cell degranulation and histamine release during A/H5N1 influenza infection in influenza-sensitized mice. Life Sci 2020; 258:118230. [PMID: 32777303 PMCID: PMC7413848 DOI: 10.1016/j.lfs.2020.118230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022]
Abstract
Here we evaluate the role of mast cells in infection with influenza A/H5N1 virus in immunized mice. CBA mice were immunized intramuscularly with formalin-inactivated A/Vietnam/1194/2004 (H5N1)NIBRG-14 (H5N1). Serum samples were obtained on days 7, 12, 14, 21 after immunization. At day 14, the mice were infected intranasally with the A/Indonesia/5/2005 (H5N1)IDCDC-RG2 (H5N1) influenza virus with half of the animals receiving a mixture of the antihistamines. 67% of the vaccinated mice were protected from the lethality compared to 43% in the PBS-immunized group. Administration of antihistamines increased survival up to 85%–95%. Immunohistochemical examination using CD117 staining of the lungs demonstrated a larger quantity of activated mast cells after infection of immunized mice compared to mock-immunized mice. This was correlated to increased histamine level in the lungs and blood. Our experimental results suggest the involvement of mast cells and the histamine they produce in the pathogenesis of influenza infection in case of incomplete formation of the immune response to vaccination and mismatch of the vaccine and infection influenza viruses.
Collapse
Affiliation(s)
- Yulia Desheva
- Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Acad. Pavlov's str., 12, 197376 Saint Petersburg, Russian Federation.
| | - Andrey Mamontov
- Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Acad. Pavlov's str., 12, 197376 Saint Petersburg, Russian Federation
| | - Nadezhda Petkova
- Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Acad. Pavlov's str., 12, 197376 Saint Petersburg, Russian Federation
| | - Vadim Karev
- Federal State Budgetary Institution "Research institute of children's diseases", 9 Professor Popov's Str., 197022 Saint Petersburg, Russian Federation
| | - Peter Nazarov
- Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Acad. Pavlov's str., 12, 197376 Saint Petersburg, Russian Federation
| |
Collapse
|
27
|
Kaplan BS, Vincent AL. Detection and Titration of Influenza A Virus Neuraminidase Inhibiting (NAI) Antibodies Using an Enzyme-Linked Lectin Assay (ELLA). Methods Mol Biol 2020; 2123:335-344. [PMID: 32170699 DOI: 10.1007/978-1-0716-0346-8_24] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The neuraminidase (NA) of influenza A viruses (IAV) is a structurally and antigenically important envelope glycoprotein. There are eleven known subtypes of NA of which two, N1 and N2, circulate in swine. The sialidase activity of NA is required for the release of nascent virus particles from infected cell membranes and inhibition of NA enzymatic activity can significantly reduce virus titers and duration of infection. Efforts to improve IAV vaccine technology in humans have focused on the generation of neuraminidase inhibiting (NAI) antibodies and should be considered in swine as well. The enzyme-linked lectin assay (ELLA) conducted in 96-well plates has enabled high-throughput analysis of serum samples for NAI antibody titers. Through the use of reverse genetics, custom antigen panels and antisera can be generated to encompass the antigenically diverse population of NA that circulate in swine. The ELLA is a robust method to assess NAI antibody titers and characterize the antigenic difference between NA antigens.
Collapse
Affiliation(s)
- Bryan S Kaplan
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agriculture Research Service, Ames, IA, USA.
| | - Amy L Vincent
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agriculture Research Service, Ames, IA, USA.
| |
Collapse
|
28
|
Skowronski DM, Sabaiduc S, Leir S, Rose C, Zou M, Murti M, Dickinson JA, Olsha R, Gubbay JB, Croxen MA, Charest H, Bastien N, Li Y, Jassem A, Krajden M, De Serres G. Paradoxical clade- and age-specific vaccine effectiveness during the 2018/19 influenza A(H3N2) epidemic in Canada: potential imprint-regulated effect of vaccine (I-REV). Euro Surveill 2019; 24:1900585. [PMID: 31771709 PMCID: PMC6864978 DOI: 10.2807/1560-7917.es.2019.24.46.1900585] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/04/2019] [Indexed: 11/20/2022] Open
Abstract
IntroductionThe Canadian Sentinel Practitioner Surveillance Network reports vaccine effectiveness (VE) for the 2018/19 influenza A(H3N2) epidemic.AimTo explain a paradoxical signal of increased clade 3C.3a risk among 35-54-year-old vaccinees, we hypothesise childhood immunological imprinting and a cohort effect following the 1968 influenza A(H3N2) pandemic.MethodsWe assessed VE by test-negative design for influenza A(H3N2) overall and for co-circulating clades 3C.2a1b and 3C.3a. VE variation by age in 2018/19 was compared with amino acid variation in the haemagglutinin glycoprotein by year since 1968.ResultsInfluenza A(H3N2) VE was 17% (95% CI: -13 to 39) overall: 27% (95% CI: -7 to 50) for 3C.2a1b and -32% (95% CI: -119 to 21) for 3C.3a. Among 20-64-year-olds, VE was -7% (95% CI: -56 to 26): 6% (95% CI: -49 to 41) for 3C.2a1b and -96% (95% CI: -277 to -2) for 3C.3a. Clade 3C.3a VE showed a pronounced negative dip among 35-54-year-olds in whom the odds of medically attended illness were > 4-fold increased for vaccinated vs unvaccinated participants (p < 0.005). This age group was primed in childhood to influenza A(H3N2) viruses that for two decades following the 1968 pandemic bore a serine at haemagglutinin position 159, in common with contemporary 3C.3a viruses but mismatched to 3C.2a vaccine strains instead bearing tyrosine.DiscussionImprinting by the first childhood influenza infection is known to confer long-lasting immunity focused toward priming epitopes. Our findings suggest vaccine mismatch may negatively interact with imprinted immunity. The immunological mechanisms for imprint-regulated effect of vaccine (I-REV) warrant investigation.
Collapse
Affiliation(s)
- Danuta M Skowronski
- British Columbia Centre for Disease Control, Vancouver, Canada
- University of British Columbia, Vancouver, Canada
| | - Suzana Sabaiduc
- British Columbia Centre for Disease Control, Vancouver, Canada
| | - Siobhan Leir
- British Columbia Centre for Disease Control, Vancouver, Canada
| | - Caren Rose
- British Columbia Centre for Disease Control, Vancouver, Canada
- University of British Columbia, Vancouver, Canada
| | - Macy Zou
- British Columbia Centre for Disease Control, Vancouver, Canada
| | - Michelle Murti
- Public Health Ontario, Toronto, Canada
- University of Toronto, Toronto, Canada
| | | | | | - Jonathan B Gubbay
- Public Health Ontario, Toronto, Canada
- University of Toronto, Toronto, Canada
| | - Matthew A Croxen
- Alberta Precision Laboratories, Edmonton, Alberta
- University of Alberta, Edmonton, Canada
| | - Hugues Charest
- Institut National de Santé Publique du Québec, Québec, Canada
| | - Nathalie Bastien
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Yan Li
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Agatha Jassem
- British Columbia Centre for Disease Control, Vancouver, Canada
- University of British Columbia, Vancouver, Canada
| | - Mel Krajden
- British Columbia Centre for Disease Control, Vancouver, Canada
- University of British Columbia, Vancouver, Canada
| | - Gaston De Serres
- Laval University, Quebec, Canada
- Centre Hospitalier Universitaire de Québec, Québec, Canada
- Institut National de Santé Publique du Québec, Québec, Canada
| |
Collapse
|
29
|
Jang YH, Seong BL. The Quest for a Truly Universal Influenza Vaccine. Front Cell Infect Microbiol 2019; 9:344. [PMID: 31649895 PMCID: PMC6795694 DOI: 10.3389/fcimb.2019.00344] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/24/2019] [Indexed: 12/17/2022] Open
Abstract
There is an unmet public health need for a universal influenza vaccine (UIV) to provide broad and durable protection from influenza virus infections. The identification of broadly protective antibodies and cross-reactive T cells directed to influenza viral targets present a promising prospect for the development of a UIV. Multiple targets for cross-protection have been identified in the stalk and head of hemagglutinin (HA) to develop a UIV. Recently, neuraminidase (NA) has received significant attention as a critical component for increasing the breadth of protection. The HA stalk-based approaches have shown promising results of broader protection in animal studies, and their feasibility in humans are being evaluated in clinical trials. Mucosal immune responses and cross-reactive T cell immunity across influenza A and B viruses intrinsic to live attenuated influenza vaccine (LAIV) have emerged as essential features to be incorporated into a UIV. Complementing the weakness of the stand-alone approaches, prime-boost vaccination combining HA stalk, and LAIV is under clinical evaluation, with the aim to increase the efficacy and broaden the spectrum of protection. Preexisting immunity in humans established by prior exposure to influenza viruses may affect the hierarchy and magnitude of immune responses elicited by an influenza vaccine, limiting the interpretation of preclinical data based on naive animals, necessitating human challenge studies. A consensus is yet to be achieved on the spectrum of protection, efficacy, target population, and duration of protection to define a “universal” vaccine. This review discusses the recent advancements in the development of UIVs, rationales behind cross-protection and vaccine designs, and challenges faced in obtaining balanced protection potency, a wide spectrum of protection, and safety relevant to UIVs.
Collapse
Affiliation(s)
- Yo Han Jang
- Molecular Medicine Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Baik Lin Seong
- Molecular Medicine Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| |
Collapse
|
30
|
Walia RR, Anderson TK, Vincent AL. Regional patterns of genetic diversity in swine influenza A viruses in the United States from 2010 to 2016. Influenza Other Respir Viruses 2019; 13:262-273. [PMID: 29624873 PMCID: PMC6468071 DOI: 10.1111/irv.12559] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Regular spatial and temporal analyses of the genetic diversity and evolutionary patterns of influenza A virus (IAV) in swine inform control efforts and improve animal health. Initiated in 2009, the USDA passively surveils IAV in U.S. swine, with a focus on subtyping clinical respiratory submissions, sequencing the hemagglutinin (HA) and neuraminidase (NA) genes at a minimum, and sharing these data publicly. OBJECTIVES In this study, our goal was to quantify and describe regional and national patterns in the genetic diversity and evolution of IAV in U.S. swine from 2010 to 2016. METHODS A comprehensive phylogenetic and epidemiological analysis of publicly available HA and NA genes generated by the USDA surveillance system collected from January 2010 to December 2016 was conducted. RESULTS The dominant subtypes and genetic clades detected during the study period were H1N1 (H1-γ/1A.3.3.3, N1-classical, 29%), H1N2 (H1-δ1/1B.2.2, N2-2002, 27%), and H3N2 (H3-IV-A, N2-2002, 15%), but many other minor clades were also maintained. Year-round circulation was observed, with a primary epidemic peak in October-November and a secondary epidemic peak in March-April. Partitioning these data into 5 spatial zones revealed that genetic diversity varied regionally and was not correlated with aggregated national patterns of HA/NA diversity. CONCLUSIONS These data suggest that vaccine composition and control efforts should consider IAV diversity within swine production regions in addition to aggregated national patterns.
Collapse
Affiliation(s)
- Rasna R. Walia
- Virus and Prion Research UnitNational Animal Disease CenterUSDA‐ARSAmesIAUSA
| | - Tavis K. Anderson
- Virus and Prion Research UnitNational Animal Disease CenterUSDA‐ARSAmesIAUSA
| | - Amy L. Vincent
- Virus and Prion Research UnitNational Animal Disease CenterUSDA‐ARSAmesIAUSA
| |
Collapse
|
31
|
Koopman G, Mortier D, Michels S, Hofman S, Fagrouch Z, Remarque EJ, Verschoor EJ, Mooij P, Bogers WM. Influenza virus infection as well as immunization with DNA encoding haemagglutinin protein induces potent antibody-dependent phagocytosis (ADP) and monocyte infection-enhancing responses in macaques. J Gen Virol 2019; 100:738-751. [DOI: 10.1099/jgv.0.001251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Gerrit Koopman
- 1Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Daniella Mortier
- 1Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Samira Michels
- 1Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Sam Hofman
- 2Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Zahra Fagrouch
- 1Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Edmond J. Remarque
- 1Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Ernst J. Verschoor
- 1Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Petra Mooij
- 1Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Willy M.J.M. Bogers
- 1Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| |
Collapse
|
32
|
Holzer B, Martini V, Edmans M, Tchilian E. T and B Cell Immune Responses to Influenza Viruses in Pigs. Front Immunol 2019; 10:98. [PMID: 30804933 PMCID: PMC6371849 DOI: 10.3389/fimmu.2019.00098] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/14/2019] [Indexed: 01/31/2023] Open
Abstract
Influenza viruses are an ongoing threat to humans and are endemic in pigs, causing considerable economic losses to farmers. Pigs are also a source of new viruses potentially capable of initiating human pandemics. Many tools including monoclonal antibodies, recombinant cytokines and chemokines, gene probes, tetramers, and inbred pigs allow refined analysis of immune responses against influenza. Recent advances in understanding of the pig innate system indicate that it shares many features with that of humans, although there is a larger gamma delta component. The fine specificity and mechanisms of cross-protective T cell immunity have yet to be fully defined, although it is clear that the local immune response is important. The repertoire of pig antibody response to influenza has not been thoroughly explored. Here we review current understanding of adaptive immune responses against influenza in pigs and the use of the pig as a model to study human disease.
Collapse
Affiliation(s)
- Barbara Holzer
- Department of Mucosal Immunology, The Pirbright Institute (BBSRC), Pirbright, United Kingdom
| | - Veronica Martini
- Department of Mucosal Immunology, The Pirbright Institute (BBSRC), Pirbright, United Kingdom
| | - Matthew Edmans
- Department of Mucosal Immunology, The Pirbright Institute (BBSRC), Pirbright, United Kingdom
| | - Elma Tchilian
- Department of Mucosal Immunology, The Pirbright Institute (BBSRC), Pirbright, United Kingdom
| |
Collapse
|
33
|
Dhakal S, Lu F, Ghimire S, Renu S, Lakshmanappa YS, Hogshead BT, Ragland D, HogenEsch H, Renukaradhya GJ. Corn-derived alpha-D-glucan nanoparticles as adjuvant for intramuscular and intranasal immunization in pigs. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 16:226-235. [PMID: 30611772 DOI: 10.1016/j.nano.2018.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 12/05/2018] [Accepted: 12/16/2018] [Indexed: 12/12/2022]
Abstract
Adjuvant potential of positively charged corn-derived nanoparticles (Nano-11) was earlier revealed in mice. We evaluated its adjuvant role to electrostatically adsorbed inactivated/killed swine influenza virus antigen (KAg) (Nano-11 + KAg) in pigs. Nano-11 facilitated the uptake of KAg by antigen presenting cells and induced secretion of proinflammatory cytokines. In pigs vaccinated by an intranasal mist containing Nano-11 + KAg, expression of T-helper 1 and T-helper 2 transcription factors and secretion of cross-reactive influenza antigen-specific mucosal IgA in the nasal cavity were observed. The enhanced frequencies of IFN-γ positive T-helper and cytotoxic T-cells in Nano-11 + KAg-vaccinates after heterologous virus challenge were also observed. Clinically, slightly reduced influenza signs and pneumonic lesions, with mild reduction in virus load in the respiratory tract of vaccinates were observed. In pigs immunized with Nano-11 adsorbed ovalbumin administered by intramuscular (IM) route, enhanced IgG1 and IgG2 antibodies were detected in serum. Thus, Nano-11 vaccine delivery system confers adjuvant effect in pigs.
Collapse
Affiliation(s)
- Santosh Dhakal
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center and Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, United States
| | - Fangjia Lu
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Shristi Ghimire
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center and Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, United States
| | - Sankar Renu
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center and Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, United States
| | - Yashavanth Shaan Lakshmanappa
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center and Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, United States
| | - Bradley T Hogshead
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center and Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, United States
| | - Darryl Ragland
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center and Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, United States.
| |
Collapse
|
34
|
Zeller MA, Anderson TK, Walia RW, Vincent AL, Gauger PC. ISU FLUture: a veterinary diagnostic laboratory web-based platform to monitor the temporal genetic patterns of Influenza A virus in swine. BMC Bioinformatics 2018; 19:397. [PMID: 30382842 PMCID: PMC6211438 DOI: 10.1186/s12859-018-2408-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 10/03/2018] [Indexed: 01/25/2023] Open
Abstract
Background Influenza A Virus (IAV) causes respiratory disease in swine and is a zoonotic pathogen. Uncontrolled IAV in swine herds not only affects animal health, it also impacts production through increased costs associated with treatment and prevention efforts. The Iowa State University Veterinary Diagnostic Laboratory (ISU VDL) diagnoses influenza respiratory disease in swine and provides epidemiological analyses on samples submitted by veterinarians. Description To assess the incidence of IAV in swine and inform stakeholders, the ISU FLUture website was developed as an interactive visualization tool that allows the exploration of the ISU VDL swine IAV aggregate data in the clinical diagnostic database. The information associated with diagnostic cases has varying levels of completeness and is anonymous, but minimally contains: sample collection date, specimen type, and IAV subtype. Many IAV positive samples are sequenced, and in these cases, the hemagglutinin (HA) sequence and genetic classification are completed. These data are collected and presented on ISU FLUture in near real-time, and more than 6,000 IAV positive diagnostic cases and their epidemiological and evolutionary information since 2003 are presented to date. The database and web interface provides rapid and unique insight into the trends of IAV derived from both large- and small-scale swine farms across the United States of America. Conclusion ISU FLUture provides a suite of web-based tools to allow stakeholders to search for trends and correlations in IAV case metadata in swine from the ISU VDL. Since the database infrastructure is updated in near real-time and is integrated within a high-volume veterinary diagnostic laboratory, earlier detection is now possible for emerging IAV in swine that subsequently cause vaccination and control challenges. The access to real-time swine IAV data provides a link with the national USDA swine IAV surveillance system and allows veterinarians to make objective decisions regarding the management and control of IAV in swine. The website is publicly accessible at http://influenza.cvm.iastate.edu. Electronic supplementary material The online version of this article (10.1186/s12859-018-2408-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael A Zeller
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA, USA.,Department of Veterinary Microbiology & Preventive Medicine, Iowa State University, Ames, IA, USA
| | - Tavis K Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | - Rasna W Walia
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | - Amy L Vincent
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | - Phillip C Gauger
- Department of Veterinary Diagnostic & Production Animal Medicine, Iowa State University, 1575 Vet Med, 1850 Christensen Dr, Ames, IA, 50011-1134, USA.
| |
Collapse
|
35
|
D'Alessio F, Koopman G, Houard S, Remarque EJ, Stockhofe N, Engelhardt OG. Workshop report: Experimental animal models for universal influenza vaccines. Vaccine 2018; 36:6895-6901. [PMID: 30340885 DOI: 10.1016/j.vaccine.2018.10.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 12/29/2022]
Abstract
A major challenge in influenza research is the selection of an appropriate animal model that accurately reflects the disease and the protective immune response observed in humans. A workshop organised by the EDUFLUVAC consortium, a European Union funded project coordinated by the European Vaccine Initiative, brought together experts from the influenza vaccine community with the aim to discuss the current knowledge and future perspectives for testing broadly reactive influenza vaccines in animal models. The programme included a diversity of models from well-established and publicly accepted models to cutting edge, newly developed animal models as well as ex-vivo approaches and human models. The audience concluded that different vaccine approaches may require evaluation in different animal models, depending on the type of immune response induced by the vaccine. Safety is the main concern for transition to clinical development and influenza vaccine associated enhanced disease was specifically emphasised. An efficient animal model to evaluate this aspect of safety still needs to be identified. Working with animal models requires ethical compliance and consideration of the 3R principles. Development of alternative approaches such as ex-vivo techniques is progressing but is still at an early stage and these methods are not yet suitable for broader application for vaccine evaluation. The human challenge is the ultimate model to assess influenza vaccines. However this model is expensive and not largely applicable. The currently used pre-clinical models are not yet specifically focused on studying unique aspects of a universal influenza vaccine. Further collaboration, communication and effective networking are needed for success in establishment of harmonised and standardised pre-clinical models for evaluation of new influenza vaccines. This report does not provide a complete review of the field but discusses the data presented by the speakers and discussion points raised during the meeting.
Collapse
Affiliation(s)
- Flavia D'Alessio
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Voßstraße 2, Geb. 4040, 69115 Heidelberg, Germany
| | - Gerrit Koopman
- Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, the Netherlands.
| | - Sophie Houard
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Voßstraße 2, Geb. 4040, 69115 Heidelberg, Germany
| | - Edmond J Remarque
- Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, the Netherlands
| | - Norbert Stockhofe
- Wageningen Bioveterinary Research Wageningen University & Re-search, Houtribweg 39, 8221 RA Lelystad, the Netherlands
| | - Othmar G Engelhardt
- National Institute for Biological Standards and Control, Medicines and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| |
Collapse
|
36
|
Kaplan BS, Souza CK, Gauger PC, Stauft CB, Robert Coleman J, Mueller S, Vincent AL. Vaccination of pigs with a codon-pair bias de-optimized live attenuated influenza vaccine protects from homologous challenge. Vaccine 2018; 36:1101-1107. [PMID: 29366707 DOI: 10.1016/j.vaccine.2018.01.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/05/2018] [Accepted: 01/06/2018] [Indexed: 11/16/2022]
Abstract
Influenza A virus (IAV) in swine constitutes a major economic burden for producers as well as a potential threat to public health. Whole inactivated virus vaccines (WIV) are the predominant countermeasure employed to control IAV in swine herds in the United States despite the superior protection, and diminished adverse effects, induced by live attenuated influenza vaccines (LAIV). A major hurdle for the development of LAIV exists in achieving the proper level of attenuation while maintaining immunogenicity. Using Synthetic Attenuated Virus Engineering (SAVE) to introduce codon-pair bias de-optimization (CPBD) into the hemagglutinin (HA) and neuraminidase (NA) gene segments of pandemic H1N1 IAV, a novel LAIV was produced and evaluated for attenuation, immunogenicity, and efficacy in pigs. The CPBD LAIV induced inappreciable pathology following intranasal administration yet induced robust serum and mucosal antibody titers. CPBD LAIV vaccinated pigs challenged with wild-type virus showed protection from disease and virus detection, highlighted by the absence of detectable virus titers in the nasal passages and lungs. These results demonstrate the efficacy of a LAIV designed by SAVE codon de-optimization in pigs, providing support for the continued development of CPBD LAIV for use in swine.
Collapse
Affiliation(s)
- Bryan S Kaplan
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | - Carine K Souza
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | - Phillip C Gauger
- Dept. of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | | | | | | | - Amy L Vincent
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Ave, Ames, IA 50010, USA.
| |
Collapse
|
37
|
Sunwoo SY, Schotsaert M, Morozov I, Davis AS, Li Y, Lee J, McDowell C, Meade P, Nachbagauer R, García-Sastre A, Ma W, Krammer F, Richt JA. A Universal Influenza Virus Vaccine Candidate Tested in a Pig Vaccination-Infection Model in the Presence of Maternal Antibodies. Vaccines (Basel) 2018; 6:vaccines6030064. [PMID: 30223475 PMCID: PMC6161263 DOI: 10.3390/vaccines6030064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 12/11/2022] Open
Abstract
The antigenically conserved hemagglutinin stalk region is a target for universal influenza virus vaccines since antibodies against it can provide broad protection against influenza viruses of different subtypes. We tested a universal influenza virus vaccination regimen based on sequential immunization with chimeric hemagglutinin (HA) containing viruses in a swine influenza virus pig model with maternal antibodies against pandemic H1N1. Vaccines were administered as live attenuated virus or inactivated influenza virus split vaccine (+/− Emulsigen adjuvant). As controls, we included groups that received trivalent inactivated influenza vaccine that contained pandemic H1N1 antigens, inactivated adjuvanted H1N2 vaccine (control group for vaccine associated enhanced respiratory disease in the pig model) or mock-vaccination. No induction of H1 head or stalk-specific antibody responses was observed upon vaccination, while responses against H3 and influenza B HA were elicited in the group vaccinated with the trivalent vaccine. Four weeks post vaccination, pigs were intratracheally challenged with pandemic H1N1 virus and euthanized 5 days after challenge. Despite the lack of detectable anti-stalk immunity, the chimeric hemagglutinin vaccine resulted in better clinical outcomes compared to control groups.
Collapse
Affiliation(s)
- Sun-Young Sunwoo
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Igor Morozov
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Anne Sally Davis
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Yuhao Li
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Jinhwa Lee
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Chester McDowell
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Philip Meade
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Wenjun Ma
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Juergen A Richt
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
38
|
Souza CK, Rajão DS, Sandbulte MR, Lopes S, Lewis NS, Loving CL, Gauger PC, Vincent AL. The type of adjuvant in whole inactivated influenza a virus vaccines impacts vaccine-associated enhanced respiratory disease. Vaccine 2018; 36:6103-6110. [PMID: 30181048 DOI: 10.1016/j.vaccine.2018.08.072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/23/2018] [Accepted: 08/29/2018] [Indexed: 12/20/2022]
Abstract
Influenza A virus (IAV) causes a disease burden in the swine industry in the US and is a challenge to prevent due to substantial genetic and antigenic diversity of IAV that circulate in pig populations. Whole inactivated virus (WIV) vaccines formulated with oil-in-water (OW) adjuvant are commonly used in swine. However, WIV-OW are associated with vaccine-associated enhanced respiratory disease (VAERD) when the hemagglutinin and neuraminidase of the vaccine strain are mismatched with the challenge virus. Here, we assessed if different types of adjuvant in WIV vaccine formulations impacted VAERD outcome. WIV vaccines with a swine δ1-H1N2 were formulated with different commercial adjuvants: OW1, OW2, nano-emulsion squalene-based (NE) and gel polymer (GP). Pigs were vaccinated twice by the intramuscular route, 3 weeks apart, then challenged with an H1N1pdm09 three weeks post-boost and necropsied at 5 days post infection. All WIV vaccines elicited antibodies detected using the hemagglutination inhibition (HI) assay against the homologous vaccine virus, but not against the heterologous challenge virus; in contrast, all vaccinated groups had cross-reactive IgG antibody and IFN-γ responses against H1N1pdm09, with a higher magnitude observed in OW groups. Both OW groups demonstrated robust homologous HI titers and cross-reactivity against heterologous H1 viruses in the same genetic lineage. However, both OW groups had severe immunopathology consistent with VAERD after challenge when compared to NE, GP, and non-vaccinated challenge controls. None of the WIV formulations protected pigs from heterologous virus replication in the lungs or nasal cavity. Thus, although the type of adjuvant in the WIV formulation played a significant role in the magnitude of immune response to homologous and antigenically similar H1, none tested here increased the breadth of protection against the antigenically-distinct challenge virus, and some impacted immunopathology after challenge.
Collapse
Affiliation(s)
- Carine K Souza
- Virus and Prion Research Unit, USDA-ARS, 1920 Dayton Avenue, P.O. Box 70, Ames, IA 50010, USA; Laboratório de Virologia, Universidade Federal do Rio Grande do Sul-UFRGS, Av. Bento Gonçalves, 9090, CEP: 91540-000 Porto Alegre, Rio Grande do Sul, Brazil.
| | - Daniela S Rajão
- Virus and Prion Research Unit, USDA-ARS, 1920 Dayton Avenue, P.O. Box 70, Ames, IA 50010, USA.
| | - Matthew R Sandbulte
- Virus and Prion Research Unit, USDA-ARS, 1920 Dayton Avenue, P.O. Box 70, Ames, IA 50010, USA
| | - Sara Lopes
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Nicola S Lewis
- Department of Zoology, University of Cambridge, Cambridge, UK.
| | - Crystal L Loving
- Virus and Prion Research Unit, USDA-ARS, 1920 Dayton Avenue, P.O. Box 70, Ames, IA 50010, USA.
| | | | - Amy L Vincent
- Virus and Prion Research Unit, USDA-ARS, 1920 Dayton Avenue, P.O. Box 70, Ames, IA 50010, USA.
| |
Collapse
|
39
|
Zhou F, Trieu MC, Davies R, Cox RJ. Improving influenza vaccines: challenges to effective implementation. Curr Opin Immunol 2018; 53:88-95. [DOI: 10.1016/j.coi.2018.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/08/2018] [Accepted: 04/13/2018] [Indexed: 12/15/2022]
|
40
|
Rajão DS, Pérez DR. Universal Vaccines and Vaccine Platforms to Protect against Influenza Viruses in Humans and Agriculture. Front Microbiol 2018; 9:123. [PMID: 29467737 PMCID: PMC5808216 DOI: 10.3389/fmicb.2018.00123] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/18/2018] [Indexed: 01/22/2023] Open
Abstract
Influenza virus infections pose a significant threat to public health due to annual seasonal epidemics and occasional pandemics. Influenza is also associated with significant economic losses in animal production. The most effective way to prevent influenza infections is through vaccination. Current vaccine programs rely heavily on the vaccine's ability to stimulate neutralizing antibody responses to the hemagglutinin (HA) protein. One of the biggest challenges to an effective vaccination program lies on the fact that influenza viruses are ever-changing, leading to antigenic drift that results in escape from earlier immune responses. Efforts toward overcoming these challenges aim at improving the strength and/or breadth of the immune response. Novel vaccine technologies, the so-called universal vaccines, focus on stimulating better cross-protection against many or all influenza strains. However, vaccine platforms or manufacturing technologies being tested to improve vaccine efficacy are heterogeneous between different species and/or either tailored for epidemic or pandemic influenza. Here, we discuss current vaccines to protect humans and animals against influenza, highlighting challenges faced to effective and uniform novel vaccination strategies and approaches.
Collapse
Affiliation(s)
- Daniela S. Rajão
- Department of Population Health, University of Georgia, Athens, GA, United States
| | | |
Collapse
|
41
|
Nelson MI, Culhane MR, Trovão NS, Patnayak DP, Halpin RA, Lin X, Shilts MH, Das SR, Detmer SE. The emergence and evolution of influenza A (H1α) viruses in swine in Canada and the United States. J Gen Virol 2017; 98:2663-2675. [PMID: 29058649 DOI: 10.1099/jgv.0.000924] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Swine are a key reservoir host for influenza A viruses (IAVs), with the potential to cause global pandemics in humans. Gaps in surveillance in many of the world's largest swine populations impede our understanding of how novel viruses emerge and expand their spatial range in pigs. Although US swine are intensively sampled, little is known about IAV diversity in Canada's population of ~12 million pigs. By sequencing 168 viruses from multiple regions of Canada, our study reveals that IAV diversity has been underestimated in Canadian pigs for many years. Critically, a new H1 clade has emerged in Canada (H1α-3), with a two-amino acid deletion at H1 positions 146-147, that experienced rapid growth in Manitoba's swine herds during 2014-2015. H1α-3 viruses also exhibit a higher capacity to invade US swine herds, resulting in multiple recent introductions of the virus into the US Heartland following large-scale movements of pigs in this direction. From the Heartland, H1α-3 viruses have disseminated onward to both the east and west coasts of the United States, and may become established in Appalachia. These findings demonstrate how long-distance trading of live pigs facilitates the spread of IAVs, increasing viral genetic diversity and complicating pathogen control. The proliferation of novel H1α-3 viruses also highlights the need for expanded surveillance in a Canadian swine population that has long been overlooked, and may have implications for vaccine design.
Collapse
Affiliation(s)
- Martha I Nelson
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | | | - Nídia S Trovão
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA.,Icahn School of Medicine at Mount Sinai University, New York, USA
| | | | | | - Xudong Lin
- J. Craig Venter Institute, Rockville, MD, USA
| | - Meghan H Shilts
- J. Craig Venter Institute, Rockville, MD, USA.,Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Suman R Das
- J. Craig Venter Institute, Rockville, MD, USA.,Vanderbilt University School of Medicine, Nashville, TN, USA
| | | |
Collapse
|
42
|
Molecular epidemiology of swine influenza A viruses in the Southeastern United States, highlights regional differences in circulating strains. Vet Microbiol 2017; 211:174-179. [PMID: 29102115 DOI: 10.1016/j.vetmic.2017.10.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 01/13/2023]
Abstract
Swine influenza A virus (IAV) can cause widespread respiratory disease with high morbidity, low mortality, and have a substantial economic impact to the swine industry. Swine infection may contribute to pandemic IAV given their susceptibility to both avian and human IAVs. Currently, three IAV subtypes (H1N1, H3N2 and H1N2) circulate in swine in North America frequently combining gene segments from avian or human viruses. This study investigated the prevalence of IAV in commercial swine herds. A total of 1878 oral fluid samples were collected from pigs of all ages from 201 commercial farms located in North Carolina and South Carolina. Sixty-eight oral fluid samples from 35 farms were positive by MP gene PCR with an overall IAV-positivity of 3.6%. On the herd level, the percentage of IAV positivity was 17.4%. Fifty-six viruses were subtyped, while 12 were partly subtyped or not subtyped at all. Using de novo assembly, complete sequences were obtained for 59 HA genes. The majority of IAVs subtyped had an H1 HA demonstrating a considerable prevalence over H3 viruses. Furthermore, only six out of eleven HA types were detected which has implications for the selection of vaccines used by swine producers in the region.
Collapse
|
43
|
Corti D, Cameroni E, Guarino B, Kallewaard NL, Zhu Q, Lanzavecchia A. Tackling influenza with broadly neutralizing antibodies. Curr Opin Virol 2017; 24:60-69. [PMID: 28527859 PMCID: PMC7102826 DOI: 10.1016/j.coviro.2017.03.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/02/2017] [Accepted: 03/09/2017] [Indexed: 11/28/2022]
Abstract
Monoclonal antibodies have revolutionized the treatment of several human diseases, including cancer, autoimmunity and inflammatory conditions and represent a new frontier for the treatment of infectious diseases. In the last decade, new methods have allowed the efficient interrogation of the human antibody repertoire from influenza immune individuals and the isolation of several monoclonal antibodies capable of dealing with the high variability of influenza viruses. Here, we will provide a comprehensive overview of the specificity, antiviral and immunological mechanisms of action and development into the clinic of broadly reactive monoclonal antibodies against influenza A and B viruses.
Collapse
Affiliation(s)
| | | | | | | | - Qing Zhu
- Department of Infectious Disease, MedImmune, Gaithersburg, MD 20878, USA
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| |
Collapse
|
44
|
Tchilian E, Holzer B. Harnessing Local Immunity for an Effective Universal Swine Influenza Vaccine. Viruses 2017; 9:v9050098. [PMID: 28475122 PMCID: PMC5454411 DOI: 10.3390/v9050098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 02/06/2023] Open
Abstract
Influenza A virus infections are a global health threat to humans and are endemic in pigs, contributing to decreased weight gain and suboptimal reproductive performance. Pigs are also a source of new viruses of mixed swine, avian, and human origin, potentially capable of initiating human pandemics. Current inactivated vaccines induce neutralising antibody against the immunising strain but rapid escape occurs through antigenic drift of the surface glycoproteins. However, it is known that prior infection provides a degree of cross-protective immunity mediated by cellular immune mechanisms directed at the more conserved internal viral proteins. Here we review new data that emphasises the importance of local immunity in cross-protection and the role of the recently defined tissue-resident memory T cells, as well as locally-produced, and sometimes cross-reactive, antibody. Optimal induction of local immunity may require aerosol delivery of live vaccines, but it remains unclear how long protective local immunity persists. Nevertheless, a universal vaccine might be extremely useful for disease prevention in the face of a pandemic. As a natural host for influenza A viruses, pigs are both a target for a universal vaccine and an excellent model for developing human influenza vaccines.
Collapse
Affiliation(s)
- Elma Tchilian
- The Pirbright Institute, Woking, Surrey GU24 0NF, UK.
| | | |
Collapse
|
45
|
Ricklin ME, Vielle NJ, Python S, Brechbühl D, Zumkehr B, Posthaus H, Zimmer G, Summerfield A. Partial Protection against Porcine Influenza A Virus by a Hemagglutinin-Expressing Virus Replicon Particle Vaccine in the Absence of Neutralizing Antibodies. Front Immunol 2016; 7:253. [PMID: 27446083 PMCID: PMC4928594 DOI: 10.3389/fimmu.2016.00253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/13/2016] [Indexed: 11/13/2022] Open
Abstract
This work was initiated by previous reports demonstrating that mismatched influenza A virus (IAV) vaccines can induce enhanced disease, probably mediated by antibodies. Our aim was, therefore, to investigate if a vaccine inducing opsonizing but not neutralizing antibodies against the hemagglutinin (HA) of a selected heterologous challenge virus would enhance disease or induce protective immune responses in the pig model. To this end, we immunized pigs with either whole inactivated virus (WIV)-vaccine or HA-expressing virus replicon particles (VRP) vaccine based on recombinant vesicular stomatitis virus (VSV). Both types of vaccines induced virus neutralizing and opsonizing antibodies against homologous virus as shown by a highly sensitive plasmacytoid dendritic cell-based opsonization assay. Opsonizing antibodies showed a broader reactivity against heterologous IAV compared with neutralizing antibodies. Pigs immunized with HA-recombinant VRP vaccine were partially protected from infection with a mismatched IAV, which was not neutralized but opsonized by the immune sera. The VRP vaccine reduced lung lesions, lung inflammatory cytokine responses, serum IFN-α responses, and viral loads in the airways. Only the VRP vaccine was able to prime IAV-specific IFNγ/TNFα dual secreting CD4(+) T cells detectable in the peripheral blood. In summary, this work demonstrates that with the virus pair selected, a WIV vaccine inducing opsonizing antibodies against HA which lack neutralizing activity, is neither protective nor does it induce enhanced disease in pigs. In contrast, VRP-expressing HA is efficacious vaccines in swine as they induced both potent antibodies and T-cell immunity resulting in a broader protective value.
Collapse
Affiliation(s)
- Meret E Ricklin
- Institute of Virology and Immunology , Mittelhäusern , Switzerland
| | | | - Sylvie Python
- Institute of Virology and Immunology , Mittelhäusern , Switzerland
| | - Daniel Brechbühl
- Institute of Virology and Immunology , Mittelhäusern , Switzerland
| | - Beatrice Zumkehr
- Institute of Virology and Immunology , Mittelhäusern , Switzerland
| | - Horst Posthaus
- Vetsuisse Faculty, Institute for Animal Pathology, University of Bern , Bern , Switzerland
| | - Gert Zimmer
- Institute of Virology and Immunology , Mittelhäusern , Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology, Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|