1
|
Zhang D, Li J, Zhang B, Shao Y, Wang Z. Two Doses of Zn Induced Different Microbiota Profiles and Dietary Zinc Supplementation Affects the Intestinal Microbial Profile, Intestinal Microarchitecture and Immune Response in Pigeons. Animals (Basel) 2024; 14:2087. [PMID: 39061548 PMCID: PMC11273959 DOI: 10.3390/ani14142087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
We aimed to explore the effects of two different doses of Zn on the fecal microbiota in pigeons and the correlation between these effects and intestinal immune status. Zn doses affected pigeon growth performance, and pigeons in the T60 (60 mg/kg Zn) and T90 (90 mg/kg Zn) groups exhibited higher villus height and crypt depth in duodenum and ileum compared to the control group, respectively. Supplementation with Zn increased the expression of the IL8, CD798, TJP and NKTR genes (p < 0.05), while enhancing serum immunoglobulin (Ig) G, IgM, and IgA concentrations compared to the control pigeons (p < 0.05). T60 treatment reduced relative Actinobacteriota abundance, while Lactobacillus spp. abundance was highest in the T90 group compared to the two other groups. The core functional genera significantly associated with immune indices in these pigeons were Rhodococcus erythropolis and Lactobacillus ponti. Our findings will help facilitate the application of dietary Zn intake in pig production.
Collapse
Affiliation(s)
| | | | | | - Yuxin Shao
- Institute of Animal Science and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (D.Z.); (J.L.); (B.Z.)
| | - Zheng Wang
- Institute of Animal Science and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (D.Z.); (J.L.); (B.Z.)
| |
Collapse
|
2
|
Zou X, Liu Y, Cui M, Wan Q, Chu X. The in vitro intestinal cell model: different co-cultured cells create different applications. J Drug Target 2024; 32:529-543. [PMID: 38537662 DOI: 10.1080/1061186x.2024.2333877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/16/2024] [Indexed: 06/20/2024]
Abstract
As a vitro absorption model, the Caco-2 cells originate from a human colon adenocarcinomas and can differentiate into a cell layer with enterocyte-like features. The Caco-2 cell model is popularly applied to explore drug transport mechanisms, to evaluate the permeability of drug and to predict the absorption of drugs or bioactive substances in the gut. However, there are limitations to the application of Caco-2 cell model due to lack of a mucus layer, the long culture period and the inability to accurately simulate the intestinal environment. The most frequent way to expand the Caco-2 cell model and address its limitations is by co-culturing it with other cells or substances. This article reviews the culture methods and applications of 3D and 2D co-culture cell models established around Caco-2 cells. It also concludes with a summary of model strengths and weaknesses.
Collapse
Affiliation(s)
- Xingyu Zou
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yue Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Mengyao Cui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Qing Wan
- Tongling Institutes for Food and Drug Control, Tongling, China
| | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei, China
| |
Collapse
|
3
|
McCoy R, Oldroyd S, Yang W, Wang K, Hoven D, Bulmer D, Zilbauer M, Owens RM. In Vitro Models for Investigating Intestinal Host-Pathogen Interactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306727. [PMID: 38155358 PMCID: PMC10885678 DOI: 10.1002/advs.202306727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/01/2023] [Indexed: 12/30/2023]
Abstract
Infectious diseases are increasingly recognized as a major threat worldwide due to the rise of antimicrobial resistance and the emergence of novel pathogens. In vitro models that can adequately mimic in vivo gastrointestinal physiology are in high demand to elucidate mechanisms behind pathogen infectivity, and to aid the design of effective preventive and therapeutic interventions. There exists a trade-off between simple and high throughput models and those that are more complex and physiologically relevant. The complexity of the model used shall be guided by the biological question to be addressed. This review provides an overview of the structure and function of the intestine and the models that are developed to emulate this. Conventional models are discussed in addition to emerging models which employ engineering principles to equip them with necessary advanced monitoring capabilities for intestinal host-pathogen interrogation. Limitations of current models and future perspectives on the field are presented.
Collapse
Affiliation(s)
- Reece McCoy
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Sophie Oldroyd
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Woojin Yang
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
- Wellcome‐MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeCB2 0AWUK
| | - Kaixin Wang
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Darius Hoven
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - David Bulmer
- Department of PharmacologyUniversity of CambridgeCambridgeCB2 1PDUK
| | - Matthias Zilbauer
- Wellcome‐MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeCB2 0AWUK
| | - Róisín M. Owens
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| |
Collapse
|
4
|
Kaur S, Sharma P, Mayer MJ, Neuert S, Narbad A, Kaur S. Beneficial effects of GABA-producing potential probiotic Limosilactobacillus fermentum L18 of human origin on intestinal permeability and human gut microbiota. Microb Cell Fact 2023; 22:256. [PMID: 38087304 PMCID: PMC10717626 DOI: 10.1186/s12934-023-02264-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Gamma-aminobutyric acid (GABA) is a non-protein amino acid with neuroinhibitory, antidiabetic, and antihypertensive properties and is used as a drug for treating anxiety and depression. Some strains of lactobacilli are known to produce GABA and strengthen the gut barrier function which play an important role in ameliorating the effects caused by the pathogen on the gut barrier. The probiotic bacteria are also known to modulate the human fecal microbiota, however, the role of GABA-producing strains on the gut epithelium permeability and gut microbiota is not known. RESULTS In this study, we report the production of high levels of GABA by potential probiotic bacterium Limosilactobacillus fermentum L18 for the first time. The kinetics of the production of GABA by L18 showed that the maximum production of GABA in the culture supernatant (CS) occurred at 24 h, whereas in fermented milk it took 48 h of fermentation. The effect of L18 on the restoration of lipopolysaccharide (LPS)-disrupted intestinal cell membrane permeability in Caco-2 monolayers showed that it significantly restored the transepithelial electrical resistance (TEER) values, by significantly increasing the levels of junction proteins, occludin and E-cadherin in L18 and LPS-treated Caco-2 cells as compared to only LPS-treated cells. The effect of GABA-secreting L18 on the metataxonome of human stool samples from healthy individuals was investigated by a batch fermentor that mimics the conditions of the human colon. Although, no differences were observed in the α and β diversities of the L18-treated and untreated samples at 24 h, the relative abundances of bacterial families Lactobacillaceae and Bifidobacteriaceae increased in the L18-treated group, but both decreased in the untreated groups. On the other hand, the relative abundance of Enterobacteriaceae decreased in the L18 samples but it increased in the untreated samples. CONCLUSION These results indicate that Li. fermentum L18 is a promising GABA-secreting strain that strengthens the gut epithelial barrier by increasing junction protein concentrations and positively modulating the gut microbiota. It has the potential to be used as a psychobiotic or for the production of functional foods for the management of anxiety-related illnesses.
Collapse
Affiliation(s)
- Sumanpreet Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, India
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Department of Medical Laboratory Sciences, Lovely Professional University, Jalandhar, India
| | - Preeti Sharma
- Department of Microbiology, Guru Nanak Dev University, Amritsar, India
| | - Melinda J Mayer
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Saskia Neuert
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- East Genomics Laboratory Hub, Cambridge University Hospitals Genomic Laboratory, Hills Road, Cambridge, UK
| | - Arjan Narbad
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Sukhraj Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, India.
| |
Collapse
|
5
|
Ramadan Q, Hazaymeh R, Zourob M. Immunity-on-a-Chip: Integration of Immune Components into the Scheme of Organ-on-a-Chip Systems. Adv Biol (Weinh) 2023; 7:e2200312. [PMID: 36866511 DOI: 10.1002/adbi.202200312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/16/2023] [Indexed: 03/04/2023]
Abstract
Studying the immune system in vitro aims to understand how, when, and where the immune cells migrate/differentiate and respond to the various triggering events and the decision points along the immune response journey. It becomes evident that organ-on-a-chip (OOC) technology has a superior capability to recapitulate the cell-cell and tissue-tissue interaction in the body, with a great potential to provide tools for tracking the paracrine signaling with high spatial-temporal precision and implementing in situ real-time, non-destructive detection assays, therefore, enabling extraction of mechanistic information rather than phenotypic information. However, despite the rapid development in this technology, integration of the immune system into OOC devices stays among the least navigated tasks, with immune cells still the major missing components in the developed models. This is mainly due to the complexity of the immune system and the reductionist methodology of the OOC modules. Dedicated research in this field is demanded to establish the understanding of mechanism-based disease endotypes rather than phenotypes. Herein, we systemically present a synthesis of the state-of-the-art of immune-cantered OOC technology. We comprehensively outlined what is achieved and identified the technology gaps emphasizing the missing components required to establish immune-competent OOCs and bridge these gaps.
Collapse
Affiliation(s)
- Qasem Ramadan
- Alfaisal University, Riyadh, 11533, Kingdom of Saudi Arabia
| | - Rana Hazaymeh
- Almaarefa University, Diriyah, 13713, Kingdom of Saudi Arabia
| | | |
Collapse
|
6
|
Wang L, Wang Z, Luo P, Bai S, Chen Y, Chen W. Dietary Zinc Glycine Supplementation Improves Tibia Quality of Meat Ducks by Modulating the Intestinal Barrier and Bone Resorption. Biol Trace Elem Res 2023; 201:888-903. [PMID: 35320516 DOI: 10.1007/s12011-022-03207-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/15/2022] [Indexed: 01/21/2023]
Abstract
Leg problems characterized by gait abnormity and bone structure destruction are associated with a high risk of fractures and continuous pain in poultry. Zinc (Zn) acts a pivotal part in normal bone homeostasis and has proven to be highly effective in alleviating leg problems. Therefore, the effects of graded concentration of Zn on bone quality were evaluated in this study. A total of 512 1-d-old male ducks were fed 4 basal diets added 30 mg/kg Zn, 60 mg/kg Zn, 90 mg/kg Zn, and 120 mg/kg Zn as Zn glycine for 35 d. Tibia Zn content, ash percentage, and breaking strength linearly increased with dietary elevated Zn level (P < 0.05). Broken-line analysis revealed that the recommended level of Zn from Zn glycine was 55.13 mg/kg and 64.48 mg/kg based on tibia ash and strength, respectively. To further confirm the role of dietary Zn glycine addition on bone characteristics, data from birds fed either 60 mg/kg Zn as Zn sulfate (ZnSO4), 30 mg/kg Zn, or 60 mg/kg Zn in the form of Zn glycine indicated that birds given 60 mg/kg Zn from Zn glycine diet exhibited higher tibia ash, strength, and trabecular volume compared to those fed the 30 mg/kg Zn diet (P < 0.05). Dietary 60 mg/kg Zn as Zn glycine addition decreased intestinal permeability, upregulated the mRNA expression of tight junction protein, and increased the abundance of Lactobacillus and Bifidobacterium, which was companied by declined the level of inflammatory cytokines in both the ileum and bone marrow. Regarding bone turnover, the diet with 60 mg/kg Zn from Zn glycine induced osteoprotegerin expression and thus decreased osteoclast number and serum bone resorption biomarker levels including serum tartrate-resistant acid phosphatase activity and C-terminal cross-linked telopeptide of type I collagen level when compared to 30 mg/kg Zn diet (P < 0.05). Except for the upregulation in runt-related transcription factor 2 transcription, the experimental treatments did not apparently change the bone formation biomarker contents in serum. Additionally, Zn glycine displayed a more efficient absorption rate, evidenced by higher serum Zn level, and thus had potentially greater a protective role in the intestine barrier and tibia mass as compared to ZnSO4. Collectively, the dietary supplementation of 60 mg/kg in the form of Zn glycine could suppress bone resorption mediated by osteoclast and consequently improve tibial quality of meat ducks, in which enhanced intestinal integrity and optimized gut microbiota might be involved.
Collapse
Affiliation(s)
- Leilei Wang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ziyang Wang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Pengna Luo
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shiping Bai
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yu Chen
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Wen Chen
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
7
|
Ghasemi M, Bakhshi B, Khashei R, Soudi S. Mesoporous silica nano-adjuvant triggers pro-inflammatory responses in Caco-2/peripheral blood mononuclear cell (PBMC) co-cultures. Nanobiomedicine (Rij) 2022; 9:18495435221088374. [PMID: 35677573 PMCID: PMC9168868 DOI: 10.1177/18495435221088374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 02/06/2022] [Indexed: 11/28/2022] Open
Abstract
The aim of this study was to evaluate the cytotoxicity and immune-stimulatory
effect of Mesoporous silica nanoparticle (MSN) Nano-adjuvant on pro-inflammatory
cytokines and pattern recognition receptors (PRR) genes expression in
Caco-2/PBMC co-culture model. MSNs were synthesized and characterized by
scanning electron microscope (SEM), Brunauer Emmett Teller (BET) and Barrett
Joyner Halenda (BJH) techniques. The BET specific surface area of MSNs was
around 947 m2/g and the total pore volume and average pore diameter
were 1.5 cm3/g and 8.01 nm, respectively. At the concentration of
10 µg/mL, MSN showed a low and time-dependent cytotoxicity on Caco-2 cells,
while no cytotoxic effect was observed for 0.1 and 1 µg/mL concentrations after
24, 48 and 72 h. The expression of pro-inflammatory cytokines genes (IL-1, IL-8
and TNF-α) in co-cultures treated with different concentrations of MSN showed a
dose-dependent significant increase up to 17.44, 2.722 and 4.34 folds,
respectively, while the expression augmentation of IL-1 gene was significantly
higher than the others. This indicates slight stimulation of intestinal
inflammation. Different concentrations of MSN significantly increased TLR4 and
NOD2 expression to 4.14 and 2.14 folds, respectively. NOD1 was not affected
significantly. It can be concluded that MSN might increase protective immune
responses against antigens as a vaccine adjuvant candidate. It seems that
stimulation of TNF-α, IL-1, and IL-8 expression in enterocytes probably
transpires through the agonistic activity of MSN for TLRs including TLR4, while
NOD2-associated signaling pathways are also involved. This study provides an
overall picture of MSN as a novel and potent oral adjuvant for mucosal
immunity.
Collapse
Affiliation(s)
- Maryam Ghasemi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza Khashei
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
8
|
Jeon MS, Choi YY, Mo SJ, Ha JH, Lee YS, Lee HU, Park SD, Shim JJ, Lee JL, Chung BG. Contributions of the microbiome to intestinal inflammation in a gut-on-a-chip. NANO CONVERGENCE 2022; 9:8. [PMID: 35133522 PMCID: PMC8825925 DOI: 10.1186/s40580-022-00299-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 05/07/2023]
Abstract
The intestinal microbiome affects a number of biological functions of the organism. Although the animal model is a powerful tool to study the relationship between the host and microbe, a physiologically relevant in vitro human intestinal system has still unmet needs. Thus, the establishment of an in vitro living cell-based system of the intestine that can mimic the mechanical, structural, absorptive, transport and pathophysiological properties of the human intestinal environment along with its commensal bacterial strains can promote pharmaceutical development and potentially replace animal testing. In this paper, we present a microfluidic-based gut model which allows co-culture of human and microbial cells to mimic the gastrointestinal structure. The gut microenvironment is recreated by flowing fluid at a low rate (21 μL/h) over the microchannels. Under these conditions, we demonstrated the capability of gut-on-a-chip to recapitulate in vivo relevance epithelial cell differentiation including highly polarized epithelium, mucus secretion, and tight membrane integrity. Additionally, we observed that the co-culture of damaged epithelial layer with the probiotics resulted in a substantial responded recovery of barrier function without bacterial overgrowth in a gut-on-a-chip. Therefore, this gut-on-a-chip could promote explorations interaction with host between microbe and provide the insights into questions of fundamental research linking the intestinal microbiome to human health and disease.
Collapse
Affiliation(s)
- Min Seo Jeon
- Department of Biomedical Engineering, Sogang University, Seoul, Korea
| | - Yoon Young Choi
- Institute of Integrated Biotechnology, Sogang University, Seoul, Korea
| | | | - Jang Ho Ha
- Department of Mechanical Engineering, Sogang University, Seoul, Korea
| | - Young Seo Lee
- Department of Mechanical Engineering, Sogang University, Seoul, Korea
| | - Hee Uk Lee
- Department of Mechanical Engineering, Sogang University, Seoul, Korea
| | | | | | | | - Bong Geun Chung
- Department of Mechanical Engineering, Sogang University, Seoul, Korea.
| |
Collapse
|
9
|
Orr B, Sutton K, Christian S, Nash T, Niemann H, Hansen LL, McGrew MJ, Jensen SR, Vervelde L. Novel chicken two-dimensional intestinal model comprising all key epithelial cell types and a mesenchymal sub-layer. Vet Res 2021; 52:142. [PMID: 34819162 PMCID: PMC8611946 DOI: 10.1186/s13567-021-01010-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelium plays a variety of roles including providing an effective physical barrier and innate immune protection against infection. Two-dimensional models of the intestinal epithelium, 2D enteroids, are a valuable resource to investigate intestinal cell biology and innate immune functions and are suitable for high throughput studies of paracellular transport and epithelial integrity. We have developed a chicken 2D enteroid model that recapitulates all major differentiated cell lineages, including enterocytes, Paneth cells, Goblet cells, enteroendocrine cells and leukocytes, and self-organises into an epithelial and mesenchymal sub-layer. Functional studies demonstrated the 2D enteroids formed a tight cell layer with minimal paracellular flux and a robust epithelial integrity, which was maintained or rescued following damage. The 2D enteroids were also able to demonstrate appropriate innate immune responses following exposure to bacterial endotoxins, from Salmonella enterica serotype Typhimurium and Bacillus subtilis. Frozen 2D enteroids cells when thawed were comparable to freshly isolated cells. The chicken 2D enteroids provide a useful ex vivo model to study intestinal cell biology and innate immune function, and have potential uses in screening of nutritional supplements, pharmaceuticals, and bioactive compounds.
Collapse
Affiliation(s)
- Brigid Orr
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian, UK
| | - Kate Sutton
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian, UK
| | - Sonja Christian
- Novozymes A/S, Animal Health and Nutrition, 2800, Lyngby, Denmark
| | - Tessa Nash
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian, UK
| | - Helle Niemann
- Novozymes A/S, Animal Health and Nutrition, 2800, Lyngby, Denmark
| | - Lone Lind Hansen
- Novozymes A/S, Animal Health and Nutrition, 2800, Lyngby, Denmark
| | - Mike J McGrew
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian, UK
| | | | - Lonneke Vervelde
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian, UK.
| |
Collapse
|
10
|
Buddhasiri S, Sukjoi C, Kaewsakhorn T, Nambunmee K, Nakphaichit M, Nitisinprasert S, Thiennimitr P. Anti-inflammatory Effect of Probiotic Limosilactobacillus reuteri KUB-AC5 Against Salmonella Infection in a Mouse Colitis Model. Front Microbiol 2021; 12:716761. [PMID: 34497597 PMCID: PMC8419263 DOI: 10.3389/fmicb.2021.716761] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/04/2021] [Indexed: 01/31/2023] Open
Abstract
Acute non-typhoidal salmonellosis (NTS) caused by Salmonella enterica Typhimurium (STM) is among the most prevalent of foodborne diseases. A global rising of antibiotic resistance strains of STM raises an urgent need for alternative methods to control this important pathogen. Major human food animals which harbor STM in their gut are cattle, swine, and poultry. Previous studies showed that the probiotic Limosilactobacillus (Lactobacillus) reuteri KUB-AC5 (AC5) exhibited anti-Salmonella activities in chicken by modulating gut microbiota and the immune response. However, the immunobiotic effect of AC5 in a mammalian host is still not known. Here, we investigated the anti-Salmonella and anti-inflammatory effects of AC5 on STM infection using a mouse colitis model. Three groups of C57BL/6 mice (prophylactic, therapeutic, and combined) were fed with 109 colony-forming units (cfu) AC5 daily for 7, 4, and 11 days, respectively. Then, the mice were challenged with STM compared to the untreated group. By using a specific primer pair, we found that AC5 can transiently colonize mouse gut (colon, cecum, and ileum). Interestingly, AC5 reduced STM gut proliferation and invasion together with attenuated gut inflammation and systemic dissemination in mice. The decreased STM numbers in mouse gut lumen, gut tissues, and spleen possibly came from longer AC5 feeding duration and/or the combinatorial (direct and indirect inhibitory) effect of AC5 on STM. However, AC5 attenuated inflammation (both in the gut and in the spleen) with no difference between these three approaches. This study demonstrated that AC5 confers both direct and indirect inhibitory effects on STM in the inflamed gut.
Collapse
Affiliation(s)
- Songphon Buddhasiri
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chutikarn Sukjoi
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Thattawan Kaewsakhorn
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kowit Nambunmee
- Major of Occupational Health and Safety, School of Health Science, Mae Fah Luang University, Chiang Rai, Thailand.,Urban Safety Innovation Research Group, Mae Fah Luang University, Chiang Rai, Thailand
| | - Massalin Nakphaichit
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Sunee Nitisinprasert
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Parameth Thiennimitr
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand.,Faculty of Medicine, Center of Multidisciplinary Technology for Advanced Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
11
|
Ghasemi M, Bakhshi B, Khashei R, Soudi S, Boustanshenas M. Vibrio cholerae toxin coregulated pilus provokes inflammatory responses in Coculture model of Caco-2 and peripheral blood mononuclear cells (PBMC) leading to increased colonization. Microbiol Immunol 2021; 65:238-244. [PMID: 33913531 DOI: 10.1111/1348-0421.12889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/09/2021] [Accepted: 04/26/2021] [Indexed: 11/30/2022]
Abstract
The aim of this study was to assess the modulatory effect of TcpA in the expression of CEACAM1 adhesin molecule and IL-1, IL-8, and TNF-α pro-inflammatory cytokines in the Coculture model of Caco-2/PBMC (peripheral blood mononuclear cell) that can mimic the intestinal milieu. The TcpA gene from Vibrio cholerae ATCC14035 was cloned in pET-28a and transformed into Escherichia coli Bl-21. The recombinant TcpA-His6 protein was expressed and purified using Ni-column chromatography. The sequencing of transformed plasmid and Western blot analysis of purified protein confirmed the identity of rTcp. The cytotoxicity of different concentrations of recombinant protein for human colon carcinoma cell line (human colorectal adenocarcinoma cell [Caco-2 cell]) was assessed by MTT assay and showed viability of 92%, 82%, and 70%, for 10 µg/mL of TcpA after 24, 48, and 72 h, respectively. Co-cultures of Caco-2 and PBMCs were used to mimic the intestinal milieu and treated with different concentrations of rTcpA (1, 5, 10, and 50 µg/mL). Our data showed about 2.04-, 3.37-, 3.68-, and 42.7-fold increase in CEACAM1 gene expression, respectively, compared with the nontreated Caco-2/PBMC Coculture. Moreover, the expression of IL-1, IL-8, and TNF-α genes was significantly increased up to 15.75-, 7.04-, and 80.95-folds, respectively. In conclusion, V. cholerae TcpA induces statistically significant dose-dependent stimulatory effect on TNF-α, IL-,1, and IL-8 pro-inflammatory cytokines expression. Of these, TNF-α was much more affected which, consequently, elevated the CEACAM1 expression level in IECs. This suggests that TcpA protein is a critical effector as an inducer of increased adhesion potential of V. cholera as well as inflammatory responses of host intestinal tissue.
Collapse
Affiliation(s)
- Maryam Ghasemi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza Khashei
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mina Boustanshenas
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Zinc hydroxychloride supplementation improves tibia bone development and intestinal health of broiler chickens. Poult Sci 2021; 100:101254. [PMID: 34174567 PMCID: PMC8242038 DOI: 10.1016/j.psj.2021.101254] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 04/15/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
This study was conducted to investigate the effects of zinc (Zn), as a combination of oxide (ZnO) and sulfate (ZnSO4), compared with incremental levels of zinc hydroxychloride (ZH) on tibia traits, intestinal integrity, expression of selected jejunal genes, cecal short chain fatty acids and microbial composition in broilers. Day-old male Ross 308 chicks (n = 784) were randomly allocated to seven dietary treatments, each replicated seven times with 16 chicks per replication. The dietary treatments included a negative control diet (NC) with no supplemental Zn, a positive control (PC) with 100 mg/kg supplemental Zn from an ionic bound source combination (50 mg/kg ZnO + 50 mg/kg ZnSO4), and the NC diet supplemented with one of 20, 40, 60, 80, or 100 mg/kg Zn as ZH. The diets were fed over starter (1–14 d) and grower (14–35 d) phases, with tissue and digesta samples collected from 3 birds per replicate on days 14 and 35. The results showed that dietary Zn level had a significant effect on tibia breaking strength on d 35 (P < 0.05), and tibia Zn concentration both on d 14 and d 35 (P < 0.01). Dietary Zn levels linearly (P < 0.01) increased cecal lactic acid production, increased Lactobacillus, and decreased Bacillus and total bacteria counts (P < 0.05). Inclusion of 80 and 100 mg/kg Zn as ZH tended to upregulate the expression of claudin-1 (P = 0.088) and tight junction protein-1 (P = 0.086). The results obtained in this study suggest that a non-Zn supplemented diet can negatively influence tibia development and gut microbiota composition in broiler chickens. Higher supplemental Zn in the diet alters cecal microbiota population in favor of Lactobacillus and can decrease the total bacterial load. Supplemental Zn level in the feed have the potential to manipulate the jejunal gut integrity at a molecular level.
Collapse
|
13
|
Inflammatory Responses of Porcine MoDC and Intestinal Epithelial Cells in a Direct-Contact Co-culture System Following a Bacterial Challenge. Inflammation 2021; 43:552-567. [PMID: 31811548 DOI: 10.1007/s10753-019-01137-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intestinal epithelial cells (IEC) and immune cells, such as dendritic cells (DC), jointly control the immune response towards luminal pathogens in the intestinal mucosa. Crosstalk between IEC and DC is crucial for coordinating immune responses and occurs via soluble factors and direct cell-cell contacts. The present study aimed at establishing a direct-contact co-culture model of porcine IEC and DC to mimic these interactions. The effects of (1) co-cultivation of the two cell types and (2) bacterial infection on the inflammatory response patterns of each of the cell types were determined with a special focus on the canonical and non-canonical inflammasome signaling pathways. In infection experiments, in vitro cultures were exposed to either the probiotic Enterococcus (E.) faecium NCIMB 10415 or enterotoxigenic Escherichia coli (ETEC). In porcine IEC (IPEC-J2), co-cultivation with porcine monocyte-derived DC (MoDC) resulted in reduced basal NLRP3 (nucleotide oligomerization domain [NOD]-like receptor [NLR] family, pyrin domain containing 3) inflammasome mRNA levels in unstimulated conditions. In porcine MoDC, the presence of IPEC-J2 cells evoked a noticeable decrease of interleukin (IL)-8 and transforming growth factor-β (TGF-β) mRNA and protein expression. ETEC, in contrast to E. faecium, modulated the inflammasome pathway in IPEC-J2 cells and porcine MoDC. Co-cultured IPEC-J2 cells showed an augmented inflammasome response to ETEC infection. By contrast, MoDC revealed a weakened ETEC response under such co-culture conditions as indicated by a reduction of inflammasome-related IL-1β protein release. Our data indicate that the close contact between IEC and resident immune cells has a major effect on their immunological behavior.
Collapse
|
14
|
Ghasemi M, Bakhshi B, Khashei R, Soudi S. Modulatory effect of Vibrio cholerae toxin co-regulated pilus on mucins, toll-like receptors and NOD genes expression in co-culture model of Caco-2 and peripheral blood mononuclear cells (PBMC). Microb Pathog 2020; 149:104566. [DOI: 10.1016/j.micpath.2020.104566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 10/23/2022]
|
15
|
Yeung CY, Chiang Chiau JS, Cheng ML, Chan WT, Chang SW, Chang YH, Jiang CB, Lee HC. Modulations of probiotics on gut microbiota in a 5-fluorouracil-induced mouse model of mucositis. J Gastroenterol Hepatol 2020; 35:806-814. [PMID: 31674687 DOI: 10.1111/jgh.14890] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/29/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Intestinal mucositis remained one of the most deleterious complications in cancer patients undergoing chemotherapy. 5-FU treatment was reported to affect the abundance of gut microbiota and cause mucositis, which might be ameliorated by probiotics. We investigate the potential changes of 5-FU treatment and the modulations of probiotics on gut microbiota in a mouse model. METHODS Male BALB/c mice received either 5-FU or saline (S). They were separated and fed saline, Lactobacillus casei variety rhamnosus (Lcr) and Lactobacillus reuteri DSM 17938 (BG). Lcr and BG were simultaneously administered with 5-FU for 5 days. Stool specimens were collected for DNA extraction and pyrosequenced for bioinformatic analysis. RESULTS Fecal microbial communities were obviously diverse. Bacteroides and Bacteroidaceae were the most abundant microbiota in FU.BG group while S24_7 was the most in S.S group. At phylum and class levels, abundances of Betaproteobacteria, Erysipelotrichi, Gammaproteobacteria, and Verrucomicrobia were significantly increased in the FU groups. Probiotics supplementation did increase the abundances of Enterobacteriales and Turicibacterales. We demonstrated that probiotics did modulate the abundance and diversity of gut microbiota. Bacterial motility proteins were found enriched and upregulated in the S.BG group. No mortality was noted. No bacterial translocation was found in spleen and blood among the six groups. CONCLUSION Gut microbiota of mice undergoing chemotherapy exhibited a distinct disruption in bacterial composition. Probiotic did modulate the abundance and diversity of gut microbiota. This is the first study to analyze the effects and safety of Lactobacillus strains on 5-FU-induced mucositis systematically and assess changes in the intestinal microbiota after probiotic intervention.
Collapse
Affiliation(s)
- Chun-Yan Yeung
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital, Taipei, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | | | - Mei-Lein Cheng
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wai-Tao Chan
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital, Taipei, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Szu-Wen Chang
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital, Taipei, Taiwan
| | - Yuan-Hao Chang
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital, Taipei, Taiwan
| | - Chuen-Bin Jiang
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital, Taipei, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Hung-Chang Lee
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital, Taipei, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| |
Collapse
|
16
|
Ho SW, El-Nezami H, Shah NP. The protective effects of enriched citrulline fermented milk with Lactobacillus helveticus on the intestinal epithelium integrity against Escherichia coli infection. Sci Rep 2020; 10:499. [PMID: 31949265 PMCID: PMC6965087 DOI: 10.1038/s41598-020-57478-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 11/29/2019] [Indexed: 12/24/2022] Open
Abstract
This study examined the protective effects of citrulline enriched-fermented milk with live Lactobacillus helveticus ASCC 511 (LH511) on intestinal epithelial barrier function and inflammatory response in IPEC-J2 cells caused by pathogenic Escherichia coli. Five percent (v/v) of fermented milk with live LH511 and 4 mM citrulline (5%LHFM_Cit-4mM) significantly stimulated the population of IPEC-J2 cells by 36% as determined by MTT assay. Adhesion level of LH511 was significantly increased by 9.2% when incubated with 5%LHFM_Cit-4mM and 5%LHFM_Cit-4mM reduced the adhesion of enterohemorrhagic (EHEC) and entero-invasive (EIEC) E. coli in IPEC-J2 cells by 35.79% and 42.74%, respectively. Treatment with 5%LHFM_Cit-4mM ameliorated lipopolysaccharide (LPS) from E. coli O55:B5 induced activated inflammatory cytokines expression (TNF-α, IL-6 and IL-8) and concentration (IL-6 and IL-8) and early apoptosis. It restored the transepithelial electrical resistance (TEER) and regulated the expression and distribution of tight junction (TJ) proteins (zonula occluden-1 (ZO-1), occludin and claudin-1), toll-like receptors (TLRs) (TLR2 and TLR4) and negative regulators of TLRs signalling pathway (A20 and IRAK-M). In conclusion, our findings suggested that 5%LHFM_Cit-4mM might have the positive effects on improving and maintaining the intestinal epithelial cell integrity and inflammatory response under both normal and pathogenic LPS-stimulated conditions.
Collapse
Affiliation(s)
- Sze Wing Ho
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong
| | - Hani El-Nezami
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong
| | - Nagendra P Shah
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong.
| |
Collapse
|
17
|
Jang HR, Park HJ, Kang D, Chung H, Nam MH, Lee Y, Park JH, Lee HY. A protective mechanism of probiotic Lactobacillus against hepatic steatosis via reducing host intestinal fatty acid absorption. Exp Mol Med 2019; 51:1-14. [PMID: 31409765 PMCID: PMC6802638 DOI: 10.1038/s12276-019-0293-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/29/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome has been known to contribute up to ~30% of the energy absorption of the host. Although various beneficial mechanisms of probiotics have been suggested for non-alcoholic fatty liver disease (NAFLD), whether and which probiotics impact the host's intestinal energy absorption have not yet been quantitatively studied. Here, we suggest a novel mechanism of probiotics against NAFLD, in which Lactobacillus rhamnosus GG, the most common probiotic, shares intestinal fatty acids and prevents the development of diet-induced hepatic steatosis. By using quantitative methods (radioactive tracers and LC-MS) under both in vitro and in vivo conditions, we found that bacteria and hosts competed for fatty acid absorption in the intestine, resulting in decreased weight gain, body fat mass, and hepatic lipid accumulation without differences in calorie intake and excretion in mice fed the probiotic bacteria.
Collapse
Affiliation(s)
- Hye Rim Jang
- Laboratory of Mitochondrial and Metabolic Diseases, Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Korea
| | - Hyun-Jun Park
- Laboratory of Mitochondrial and Metabolic Diseases, Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Korea
- Department of Medicine, Gachon University School of Medicine, Incheon, Korea
| | - Dongwon Kang
- Laboratory of Mitochondrial and Metabolic Diseases, Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Korea
| | - Hayung Chung
- Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | - Myung Hee Nam
- Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | - Yeonhee Lee
- Culture Collection of Antimicrobial Resistant Microbes, Department of Horticulture, Biotechnology and Landscape Architecture, Seoul Women's University, Seoul, Korea
| | - Jae-Hak Park
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea.
| | - Hui-Young Lee
- Laboratory of Mitochondrial and Metabolic Diseases, Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Korea.
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Korea.
| |
Collapse
|
18
|
Huang L, Chiang Chiau JS, Cheng ML, Chan WT, Jiang CB, Chang SW, Yeung CY, Lee HC. SCID/NOD mice model for 5-FU induced intestinal mucositis: Safety and effects of probiotics as therapy. Pediatr Neonatol 2019; 60:252-260. [PMID: 30150027 DOI: 10.1016/j.pedneo.2018.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 04/20/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND For chemotherapy patients, intestinal mucositis is a frequent complication. Previously, we evaluated the beneficial effect of oral probiotics in 5-Fluorouracil (5-FU) induced mucositis in BALB/c mice. Here, we used SCID/NOD mice instead to simulate the immunodeficiency of chemotherapy patients: first, to evaluate the safety of probiotic supplementation and second, to determine the probiotic effect in response to 5-FU intestinal mucositis. METHODS Thirty-six SCID/NOD mice were injected with saline (three control groups) or 5-FU (three experimental groups) intraperitoneally daily for five days. Mice were given either oral saline daily, probiotic suspension of Lactobacillus casei variety rhamnosus (Lcr35, Antibiophilus™, France) or Lactobacillus acidophilus and Bifidobacterium bifidum (LaBi, Infloran™, Italy). Blood, liver, spleen, and lymph node tissue samples were evaluated for probiotic translocation via culture and Q-PCR. Weight change, diarrhea score, jejunal villus height (VH) and crypt depth (CD), and serum cytokine levels of TNF-α, IFNγ, IL-1β, IL-6, IL-4, IL-10, IL-13, and IL-17 were also assessed. RESULTS No weight loss was found in the SCID control group. Mean weight loss of 10.63 ± 0.87% was noted by day five in 5-FU group without probiotics but it was only 6.2 ± 0.43% if mice were given Lcr35 (p < 0.01) and 7.1 ± 1.80% (p < 0.01) if they were given LaBi. Diarrhea score of 5-FU group without probiotics was 2.0 ± 0.0 by day five, which dropped to 1.33 ± 0.17 (p < 0.05) and 1.42 ± 0.24 (p < 0.05) with Lcr35 and LaBi, respectively. Average VH significantly decreased and CD significantly increased in SCID mice given 5-FU. With probiotics, average CD improved (p < 0.05) while VH lengthened as well. Besides IL-13, all cytokine levels increased in 5-FU SCID mice. Both Lcr35 and LaBi significantly inhibited serum cytokines (p < 0.05). No probiotic strains were detected in blood cultures of any mice. CONCLUSION Using SCID/NOD mice as a novel model for 5-FU induced intestinal mucositis, we find that probiotics Lcr35 and LaBi do not lead to bacteremia, can improve diarrhea and body weight, can restore jejunal crypt depth, and significantly inhibit cytokines TNF-α, IL-1β, IFNγ, IL-6, IL-4, IL-10, and IL-17.
Collapse
Affiliation(s)
- Lawrence Huang
- Division of Gastroenterology and Nutrition, Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan; Yonghe Cardinal Tien Hospital, New Taipei City, Taiwan
| | | | - Mei-Lien Cheng
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wai-Tao Chan
- Division of Gastroenterology and Nutrition, Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan
| | - Chuen-Bin Jiang
- Division of Gastroenterology and Nutrition, Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan; MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Szu-Wen Chang
- Division of Gastroenterology and Nutrition, Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan
| | - Chun-Yan Yeung
- Division of Gastroenterology and Nutrition, Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.
| | - Hung-Chang Lee
- Division of Gastroenterology and Nutrition, Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan; Department of Pediatrics, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
19
|
Kanmani P, Kim H. Functional capabilities of probiotic strains on attenuation of intestinal epithelial cell inflammatory response induced by TLR4 stimuli. Biofactors 2019; 45:223-235. [PMID: 30537409 DOI: 10.1002/biof.1475] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/10/2018] [Accepted: 10/12/2018] [Indexed: 12/28/2022]
Abstract
Intestinal epithelial cells (IECs) respond to intruders and their cellular molecules by displaying inflammatory state that can be abrogated by probiotics. However, the molecular mechanisms underlying the beneficial activity of probiotic strains have yet to be elucidated. This study was conducted to investigate whether probiotic strains have immunoregulatory effects in IECs, and how they respond to bacterial lipopolysaccharide (LPS) in vitro. Caco2 cells were stimulated with LABs and followed by LPS. The expression of different cytokines that involved in toll-like receptor (TLR) signaling was analyzed. Caco2 cells that were exposed to LPS showed upregulated expression of IL-6, CXCL8, CCL2, and BPI that were counteracted by LAB strains through the modulation of TLR negative regulators (A20, Tollip, SIGIRR, and IRAKM), p38 MAPK and p65 NF-κB signaling. Lactobacillus plantarum, L. farciminis, and L. pentosus unveiled better activity as compared to other strains. Moreover, LAB strains were the potent inducers of immunoregulatory cytokines in coculture system. The expression of IL-10 and TGF-β were found to be higher as compared with LPS. Conversely, TNF-α at the protein level was dampened by LAB strains in both the apical and basolateral compartments. Collectively, our results demonstrated that the selected LAB strains exert profound immunoregulatory effects in response to LPS on IECs; however, further studies in vivo and in clinical settings are important to corroborate these effects. © 2018 BioFactors, 45(2):223-235, 2019.
Collapse
Affiliation(s)
- Paulraj Kanmani
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University Ilsan Hospital, Goyang, Gyeonggi, Republic of Korea
| | - Hojun Kim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University Ilsan Hospital, Goyang, Gyeonggi, Republic of Korea
| |
Collapse
|
20
|
Zhai Z, Torres-Fuentes C, Heeney DD, Marco ML. Synergy between Probiotic Lactobacillus casei and Milk to Maintain Barrier Integrity of Intestinal Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1955-1962. [PMID: 30629420 DOI: 10.1021/acs.jafc.8b06657] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We hypothesized that Lactobacillus casei BL23 and milk work synergistically to prevent damage to epithelial barrier integrity induced by pro-inflammatory cytokines. To test this, barrier disruption was induced in polarized Caco-2 monolayers by sequential, basolateral treatment with IFN-γ and TNF-α. Apical application of either 25% v/v reconstituted skim milk (RSM) or ultra high temperature (UHT) milk (2% fat) prior to cytokine exposure reduced losses to transepithelial electrical resistance (TER). Permeability to fluorescein isothiocyanate-dextran (FD-4; 4 kDa) was also significantly reduced in the presence of 25% v/v UHT milk ( P < 0.05) but not RSM. Protection against increases in paracellular permeability was even greater when cell-free preparations of L. casei BL23 fermented UHT milk or fermented RSM were applied. The permeability coefficients of cells incubated with BL23 fermented UHT milk were equivalent to the untreated controls ( P = 0.12) and those cells also produced 247.6 ± 35.5 pg/mL IL-8, quantities significantly lower than found for cytokine-treated controls (353.9 ± 40.0 pg/mL). The benefits of the fermented milk were also confirmed by the reduced expression of TNF receptor 2 (TNFR2), myosin light-chain kinase (MLCK), and claudin-encoding genes relative to the controls. By comparison, apical application of viable L. casei onto the Caco-2 cells did not result in protection from the barrier-disruptive actions of IFN-γ and TNF-α. These results indicate that milk can maintain intestinal barrier integrity during pro-inflammatory cytokine exposure and that this is enhanced by modifications to milk matrix caused by prior incubation with L. casei BL23.
Collapse
Affiliation(s)
- Zhengyuan Zhai
- Department of Food Science & Technology , University of California , Davis , California 95616 , United States of America
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality , China Agricultural University , Beijing , 100083 China
| | - Cristina Torres-Fuentes
- Department of Food Science & Technology , University of California , Davis , California 95616 , United States of America
| | - Dustin D Heeney
- Department of Food Science & Technology , University of California , Davis , California 95616 , United States of America
| | - Maria L Marco
- Department of Food Science & Technology , University of California , Davis , California 95616 , United States of America
| |
Collapse
|
21
|
In vitro and ex vivo systems at the forefront of infection modeling and drug discovery. Biomaterials 2018; 198:228-249. [PMID: 30384974 PMCID: PMC7172914 DOI: 10.1016/j.biomaterials.2018.10.030] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 10/05/2018] [Accepted: 10/23/2018] [Indexed: 12/11/2022]
Abstract
Bacterial infections and antibiotic resistant bacteria have become a growing problem over the past decade. As a result, the Centers for Disease Control predict more deaths resulting from microorganisms than all cancers combined by 2050. Currently, many traditional models used to study bacterial infections fail to precisely replicate the in vivo bacterial environment. These models often fail to incorporate fluid flow, bio-mechanical cues, intercellular interactions, host-bacteria interactions, and even the simple inclusion of relevant physiological proteins in culture media. As a result of these inadequate models, there is often a poor correlation between in vitro and in vivo assays, limiting therapeutic potential. Thus, the urgency to establish in vitro and ex vivo systems to investigate the mechanisms underlying bacterial infections and to discover new-age therapeutics against bacterial infections is dire. In this review, we present an update of current in vitro and ex vivo models that are comprehensively changing the landscape of traditional microbiology assays. Further, we provide a comparative analysis of previous research on various established organ-disease models. Lastly, we provide insight on future techniques that may more accurately test new formulations to meet the growing demand of antibiotic resistant bacterial infections.
Collapse
|
22
|
Ponce de León-Rodríguez MDC, Guyot JP, Laurent-Babot C. Intestinal in vitro cell culture models and their potential to study the effect of food components on intestinal inflammation. Crit Rev Food Sci Nutr 2018; 59:3648-3666. [DOI: 10.1080/10408398.2018.1506734] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Jean-Pierre Guyot
- NUTRIPASS—University of Montpellier, IRD, Montpellier SupAgro, Montpellier, France
| | | |
Collapse
|
23
|
Yesil-Celiktas O, Hassan S, Miri AK, Maharjan S, Al-kharboosh R, Quiñones-Hinojosa A, Zhang YS. Mimicking Human Pathophysiology in Organ-on-Chip Devices. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800109] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ozlem Yesil-Celiktas
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
- Department of Bioengineering; Faculty of Engineering; Ege University; Bornova-Izmir 35100 Turkey
| | - Shabir Hassan
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
| | - Amir K. Miri
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
- Department of Mechanical Engineering Rowan University; 401 North Campus Drive Glassboro NJ 08028 USA
| | - Sushila Maharjan
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
- Research Institute for Bioscience and Biotechnology; Nakkhu-4 Lalitpur 44600 Nepal
| | - Rawan Al-kharboosh
- Mayo Clinic College of Medicine; Mayo Clinic Graduate School; Neuroscience, NBD Track Rochester MN 55905 USA
- Department of Neurosurgery, Oncology, Neuroscience; Mayo Clinic; Jacksonville FL 32224 USA
| | | | - Yu Shrike Zhang
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
| |
Collapse
|
24
|
Protection from chemotherapy- and antibiotic-mediated dysbiosis of the gut microbiota by a probiotic with digestive enzymes supplement. Oncotarget 2018; 9:30919-30935. [PMID: 30112118 PMCID: PMC6089397 DOI: 10.18632/oncotarget.25778] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/05/2018] [Indexed: 01/20/2023] Open
Abstract
There are numerous downstream consequences of marketed drugs like antineoplastic agents on the gut microbiome, an effect that is suggested to contribute to adverse event profiles and may also influence drug responses. In cancer, progress is needed toward modulation of the host microbiome to prevent off-target side effects of drugs such as gastrointestinal mucositis that result from gut dysbiosis. The objective of this study was evaluation of the bioactivity of a supplement consisting of capsules with a blend of 9 probiotic organisms of the genera Lactobacillus and Bifidobacterium plus 10 digestive enzymes, in protecting the human gastrointestinal tract from chemotherapy and an antibiotic. We used the Simulator of Human Intestinal Microbial Ecosystem (SHIME) model, an in vitro model of a stable colon microbiota, and introduced 5-fluorouracil (5-FU) and vancomycin as microbiome-disrupting drugs. The probiotic with digestive enzymes supplement, added in capsules at in vivo doses, improved fermentation activity in the colon reactors and accelerated the recovery of microbial populations following 5-FU/vancomycin treatment. The supplement restored the Bacteroidetes to Firmicutes ratios in the colon reactors, increased the diversity of microbiota, and induced the production of microbial metabolites that elicited anti-inflammatory cytokines in an in vitro model of intestinal inflammation. In the proximal colon, preventative administration of the supplement resulted in full recovery of the gut microbial community after cessation of 5-FU and vancomycin treatment. These results identify a probiotic with digestive enzymes formulation that protects against drug-induced gut dysbiosis, highlighting its potential utility as a component of routine cancer care.
Collapse
|
25
|
Chang CW, Liu CY, Lee HC, Huang YH, Li LH, Chiau JSC, Wang TE, Chu CH, Shih SC, Tsai TH, Chen YJ. Lactobacillus casei Variety rhamnosus Probiotic Preventively Attenuates 5-Fluorouracil/Oxaliplatin-Induced Intestinal Injury in a Syngeneic Colorectal Cancer Model. Front Microbiol 2018; 9:983. [PMID: 29867884 PMCID: PMC5962742 DOI: 10.3389/fmicb.2018.00983] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/26/2018] [Indexed: 12/12/2022] Open
Abstract
Adjuvant 5-fluorouracil (5-FU)-based chemotherapy, including FOLFOX (5-FU, leucovorin, and oxaliplatin), is recommended for colorectal cancer. However, intestinal mucositis remains a common adverse effect for which no effective preventive strategies are available. To develop a convenient and novel way to alleviate mucositis, we investigated the effect of Lactobacillus casei variety rhamnosus (Lcr35) on FOLFOX-induced mucosal injury. BALB/c mice subcutaneously injected with syngeneic CT26 colorectal adenocarcinoma cells were orally administered Lcr35 daily before, during, and after 5-day injection of FOLFOX regimen, for 14 days. The following methods were used: diarrhea score for toxicity, ELISA for cytokine production, histopathology for intestinal injury, immunohistochemistry for apoptosis/proliferation and regulatory proteins, RT-PCR for cytokine mRNA expression, and DNA sequencing for fecal gut microbiota. FOLFOX administration to colorectal cancer-bearing mice significantly inhibited tumor growth and the accompanying marked diarrhea and intestinal injury histologically characterized by the shortening of villi and destruction of intestinal crypts. Preventive administration of Lcr35 dose-dependently reduced the severity of diarrhea and intestinal mucositis without affecting the anti-tumor effect of FOLFOX. The numbers of apoptotic, NF-κB-, and BAX-activated cells increased after FOLFOX, and these responses were mitigated by Lcr35. TNF-α and IL-6 upregulation by FOLFOX treatment was attenuated by Lcr35. The fecal gut microbiota composition of Firmicutes and Bacteroidetes disturbed by FOLFOX was significantly reversed by Lcr35 toward a preferential profile. In conclusion, the oral probiotic Lcr35 prevented FOLFOX-induced intestinal mucositis in colorectal cancer-bearing mice. The putative mechanism might involve modulation of gut microbiota and proinflammatory responses with suppression of intrinsic apoptosis in intestinal injury.
Collapse
Affiliation(s)
- Ching-Wei Chang
- Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Gastroenterology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Chia-Yuan Liu
- Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Gastroenterology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Hung-Chang Lee
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.,Mackay Junior College of Medicine, Nursing, and Management, New Taipei City, Taiwan.,MacKay Children's Hospital, Taipei, Taiwan
| | - Yen-Hua Huang
- Institute of Biomedical Informatics, Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei, Taiwan
| | - Li-Hui Li
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan
| | | | - Tsang-En Wang
- Division of Gastroenterology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.,Mackay Junior College of Medicine, Nursing, and Management, New Taipei City, Taiwan
| | - Cheng-Hsin Chu
- Division of Gastroenterology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.,Mackay Junior College of Medicine, Nursing, and Management, New Taipei City, Taiwan
| | - Shou-Chuan Shih
- Division of Gastroenterology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.,Mackay Junior College of Medicine, Nursing, and Management, New Taipei City, Taiwan
| | - Tung-Hu Tsai
- Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Chemical Engineering, National United University, Miaoli, Taiwan
| | - Yu-Jen Chen
- Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.,Department of Radiation Oncology, MacKay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
26
|
Archer AC, Kurrey NK, Halami PM. In vitro adhesion and anti-inflammatory properties of native Lactobacillus fermentum and Lactobacillus delbrueckii spp. J Appl Microbiol 2018. [PMID: 29537703 DOI: 10.1111/jam.13757] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS This study aimed at characterizing the adhesion and immune-stimulatory properties of native probiotic Lactobacillus fermentum (MCC 2759 and MCC 2760) and Lactobacillus delbrueckii MCC 2775. METHODS AND RESULTS Adhesion of the strains was assessed in Caco-2 and HT-29 cell lines. Expression of adhesion and immune markers were evaluated in Caco-2 cells by real-time qPCR. The cultures displayed >80% of adhesion to both cell lines and also induced the expression of mucin-binding protein (mub) gene in the presence of mucin, bile and pancreatin. Adhesion was mediated by carbohydrate and proteinaceous factors. The cultures stimulated the expression of inflammatory cytokines in Caco-2 cells. However, pro-inflammatory genes were down-regulated upon challenge with lipopolysaccharide and IL-10 was up-regulated by the cultures. Cell wall extract of L. fermentum MCC 2760 induced the expression of IL-6 by 5·47-fold, whereas crude culture filtrate enhanced the expression of IL-10 by 14·87-fold compared to LPS control. CONCLUSIONS The bacterial cultures exhibited strong adhesion and anti-inflammatory properties. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report to reveal the role of adhesion markers of L. fermentum and L. delbrueckii by qPCR. The strain-specific anti-inflammatory property of native cultures may be useful to alleviate inflammatory conditions and develop a target-based probiotic.
Collapse
Affiliation(s)
- A C Archer
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
| | - N K Kurrey
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
| | - P M Halami
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
| |
Collapse
|
27
|
Sichetti M, De Marco S, Pagiotti R, Traina G, Pietrella D. Anti-inflammatory effect of multistrain probiotic formulation (L. rhamnosus, B. lactis, and B. longum). Nutrition 2018; 53:95-102. [PMID: 29674267 DOI: 10.1016/j.nut.2018.02.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 01/22/2023]
Abstract
OBJECTIVE In recent years, a great number of studies have been directed toward the evaluation of gastrointestinal microbiota modulation through the introduction of beneficial microorganisms, also known as probiotics. Many studies have highlighted how this category of bacteria is very important for the good development, functioning, and maintenance of our immune system. There is a delicate balance between the immune system, located under the gut epithelial barrier, and the microbiota, but many factors can induce a disequilibrium that leads to an inflammatory state and dysbiosis. The aim of this work is to verify the anti-inflammatory effects of a probiotic formulation of Lactobacillus rhamnosus, Bifidobacterium lactis, and Bifidobacterium longum (Serobioma). METHODS To mimic the natural host compartmentalization between probiotics and immune cells through the intestinal epithelial barrier in vitro, the transwell model was used. We focused on a particular subset of immune cells that play a key role in the mucosal immune system. The immunomodulatory effects of probiotic formulation were investigated in the human macrophage cell line THP1 and macrophages derived from ex vivo human peripheral blood mononuclear cells. RESULTS Probiotic formulation induced a significant increase in anti-inflammatory cytokine interleukin-10 (IL-10) production and was able to decrease the secretion of the major proinflammatory cytokines IL-1β and IL-6 by 70% and 80%, respectively. Finally, for the first time, the ability of probiotic formulation to favor the macrophage M2 phenotype has been identified. CONCLUSION The transwell model is an intriguing toll approach to studying the human epithelial barrier.
Collapse
Affiliation(s)
- Marzia Sichetti
- Unit of Biochemical Sciences and Health, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy; Unit of Food and Nutritional Sciences, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Stefania De Marco
- Unit of Biochemical Sciences and Health, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Rita Pagiotti
- Unit of Biochemical Sciences and Health, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Giovanna Traina
- Unit of Food and Nutritional Sciences, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Donatella Pietrella
- Unit of Biochemical Sciences and Health, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy.
| |
Collapse
|
28
|
Effects of Synbiotic2000™ Forte on the Intestinal Motility and Interstitial Cells of Cajal in TBI Mouse Model. Probiotics Antimicrob Proteins 2017; 9:172-181. [PMID: 28303478 DOI: 10.1007/s12602-017-9266-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The main objective of this study was to investigate the effects of Synbiotic2000™ Forte on the intestinal motility and interstitial cells of Cajal (ICC) in traumatic brain injury (TBI) mouse model. Kunming mice were randomly divided into sham operation group (S group), enteral nutrition group with TBI (E group), and Synbiotic2000™ Forte group with TBI (P group). The contractile activity of the intestinal smooth muscle, densities and ultrastructure of the ICC, kit protein concentration, weight, and defecation of mice were monitored and analyzed. TBI markedly suppressed contractile activity of the intestinal smooth muscle (P < 0.01), which led to a reduction of defecation (P < 0.01) and weight (P < 0.01). However, application of Synbiotic2000™ Forte significantly improved contractile activity of the small intestine (P < 0.01), which may be related to protective effects to the interstitial cells of Cajal, smooth muscle cells, and enteric neurons. TBI impaired ICC networks and densities (P < 0.01), events that were protected by the application of Synbiotic2000™ Forte. Synbiotic2000™ Forte may attenuate TBI-mediated inhibition of the kit protein pathway. Synbiotic2000™ Forte may improve intestinal motility and protect the ICC in the TBI mouse. These findings provide a novel support for the application of Synbiotic2000™ Forte in intestinal motility disturbance after TBI.
Collapse
|
29
|
Rolny IS, Tiscornia I, Racedo SM, Pérez PF, Bollati-Fogolín M. Lactobacillus delbrueckii subsp lactis CIDCA 133 modulates response of human epithelial and dendritic cells infected with Bacillus cereus. Benef Microbes 2016; 7:749-760. [PMID: 27459335 DOI: 10.3920/bm2015.0191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
It is known that probiotic microorganisms are able to modulate pathogen virulence. This ability is strain dependent and involves multiple interactions between microorganisms and relevant host's cell populations. In the present work we focus on the effect of a potentially probiotic lactobacillus strain (Lactobacillus delbrueckii subsp. lactis CIDCA 133) in an in vitro model of Bacillus cereus infection. Our results showed that infection of intestinal epithelial HT-29 cells by B. cereus induces nuclear factor kappa B (NF-κB) pathway. Noteworthy, the presence of strain L. delbrueckii subsp.lactis CIDCA 133 increases stimulation. However, B. cereus-induced interleukin (IL)-8 production by epithelial cells is partially abrogated by L. delbrueckii subsp. lactis CIDCA 133. These findings suggest that signalling pathways other than that of NF-κB are involved. In a co-culture system (HT-29 and monocyte-derived dendritic cells), B. cereus was able to translocate from the epithelial (upper) to the dendritic cell compartment (lower). This translocation was partially abrogated by the presence of lactobacilli in the upper compartment. In addition, infection of epithelial cells in the co-culture model, led to an increase in the expression of CD86 by dendritic cells. This effect could not be modified in the presence of lactobacilli. Interestingly, infection of enterocytes with B. cereus triggers production of proinflammatory cytokines by dendritic cells (IL-8, IL-6 and tumour necrosis factor alpha (TNF-α)). The production of TNF-α (a protective cytokine in B. cereus infections) by dendritic cells was increased in the presence of lactobacilli. The present work demonstrates for the first time the effect of L. delbrueckii subsp. lactis CIDCA 133, a potentially probiotic strain, in an in vitro model of B. cereus infection. The presence of the probiotic strain modulates cell response both in infected epithelial and dendritic cells thus suggesting a possible beneficial effect of selected lactobacilli strains on the course of B. cereus infection.
Collapse
Affiliation(s)
- I S Rolny
- 1 Cátedra de Microbiología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, B1900AJI La Plata, Argentina
| | - I Tiscornia
- 2 Cell Biology Unit, Institut Pasteur de Montevideo, Calle Mataojo 2020, 11400 Montevideo, Uruguay.,3 Laboratorio de Biotecnología, Facultad de Ingeniería-Universidad ORT Uruguay, Cuareim 1451, 11100 Montevideo, Uruguay
| | - S M Racedo
- 4 Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria
| | - P F Pérez
- 1 Cátedra de Microbiología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, B1900AJI La Plata, Argentina.,5 Centro de Investigación y Desarrollo en Criotecnología de Alimentos, Calle 47 y 116, B1900AJI La Plata, Argentina
| | - M Bollati-Fogolín
- 2 Cell Biology Unit, Institut Pasteur de Montevideo, Calle Mataojo 2020, 11400 Montevideo, Uruguay
| |
Collapse
|
30
|
Fábrega MJ, Aguilera L, Giménez R, Varela E, Alexandra Cañas M, Antolín M, Badía J, Baldomà L. Activation of Immune and Defense Responses in the Intestinal Mucosa by Outer Membrane Vesicles of Commensal and Probiotic Escherichia coli Strains. Front Microbiol 2016; 7:705. [PMID: 27242727 PMCID: PMC4863414 DOI: 10.3389/fmicb.2016.00705] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/28/2016] [Indexed: 12/23/2022] Open
Abstract
The influence of microbiota in human health is well-known. Imbalances in microbiome structure have been linked to several diseases. Modulation of microbiota composition through probiotic therapy is an attempt to harness the beneficial effects of commensal microbiota. Although, there is wide knowledge of the responses induced by gut microbiota, the microbial factors that mediate these effects are not well-known. Gram-negative bacteria release outer membrane vesicles (OMVs) as a secretion mechanism of microbial factors, which have an important role in intercellular communication. Here, we investigated whether OMVs from the probiotic Escherichia coli strain Nissle 1917 (EcN) or the commensal E. coli strain ECOR12 trigger immune responses in various cellular models: (i) peripheral blood mononuclear cells (PBMCs) as a model of intestinal barrier disruption, (ii) apical stimulation of Caco-2/PMBCs co-culture as a model of intact intestinal mucosa, and (iii) colonic mucosa explants as an ex vivo model. Stimulations with bacterial lysates were also performed. Whereas, both OMVs and lysates activated expression and secretion of several cytokines and chemokines in PBMCs, only OMVs induced basolateral secretion and mRNA upregulation of these mediators in the co-culture model. We provide evidence that OMVs are internalized in polarized Caco-2 cells. The activated epithelial cells elicit a response in the underlying immunocompetent cells. The OMVs effects were corroborated in the ex vivo model. This experimental study shows that OMVs are an effective strategy used by beneficial gut bacteria to communicate with and modulate host responses, activating signaling events through the intestinal epithelial barrier.
Collapse
Affiliation(s)
- María José Fábrega
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona Barcelona, Spain
| | - Laura Aguilera
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona Barcelona, Spain
| | - Rosa Giménez
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona Barcelona, Spain
| | - Encarna Varela
- Department of Gastroenterology, Digestive System Research Unit, Institut de Recerca Vall d'Hebron, CIBER EHD, Instituto de Salud Carlos III, University Hospital Vall d'Hebron, Universitat Autònoma de Barcelona Barcelona, Spain
| | - María Alexandra Cañas
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona Barcelona, Spain
| | - María Antolín
- Department of Gastroenterology, Digestive System Research Unit, Institut de Recerca Vall d'Hebron, CIBER EHD, Instituto de Salud Carlos III, University Hospital Vall d'Hebron, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Josefa Badía
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona Barcelona, Spain
| | - Laura Baldomà
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona Barcelona, Spain
| |
Collapse
|
31
|
Karthikeyan T, Pravin M, Muthusamy VS, Bharathi Raja R, Lakshmi BS. In Vitro Investigation of the Immunomodulatory Potential of Probiotic Lactobacillus casei. Probiotics Antimicrob Proteins 2016; 5:51-8. [PMID: 26782605 DOI: 10.1007/s12602-012-9122-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The current study investigated the immunomodulatory potential of ethyl acetate soluble supernatant of Lactobacillus casei (LC-EAS) in vitro. The effect of LC-EAS on nitric oxide release was analyzed in RAW 264.7 cells, wherein, an inhibition in nitric oxide production through suppression of inducible nitric oxide synthase mRNA expression was observed. Evaluation of LC-EAS on LPS-induced peripheral blood mononuclear cells showed a down-regulation in TNF-α and IL-6 genes and an upregulation of IL-10. An inhibition in the protein expression of NF-κB, ERK1/2 and STAT3 phosphorylation confirms the immunomodulatory potential of LC-EAS. The effect of LC-EAS on in vitro intestinal epithelial cells was investigated using HT-29 human colon adenocarcinoma cancer cells. LC-EAS exhibited an inhibition of NF-κB and ERK1/2 phosphorylation, whereas STAT3 phosphorylation was unregulated. To evaluate the downstream target of STAT3 upregulation, expression of the intestinal trefoil factor TFF3 which is a NF-κB regulator and STAT3 downstream target was studied. LC-EAS was observed to elevate TFF3 mRNA expression. Overall the study shows that the anti-inflammatory potential of LC-EAS is through inhibition of NF-κB in different cell types.
Collapse
Affiliation(s)
- Thirugnanam Karthikeyan
- Tissue Culture and Drug Discovery Lab, Centre for Biotechnology, Anna University, Chennai, 600 025, Tamilnadu, India
| | - Mariappan Pravin
- Tissue Culture and Drug Discovery Lab, Centre for Biotechnology, Anna University, Chennai, 600 025, Tamilnadu, India
| | | | - Rajaganapathy Bharathi Raja
- Tissue Culture and Drug Discovery Lab, Centre for Biotechnology, Anna University, Chennai, 600 025, Tamilnadu, India
| | - Baddireddi Subhadra Lakshmi
- Tissue Culture and Drug Discovery Lab, Centre for Biotechnology, Anna University, Chennai, 600 025, Tamilnadu, India.
| |
Collapse
|
32
|
Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc Natl Acad Sci U S A 2015; 113:E7-15. [PMID: 26668389 DOI: 10.1073/pnas.1522193112] [Citation(s) in RCA: 576] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A human gut-on-a-chip microdevice was used to coculture multiple commensal microbes in contact with living human intestinal epithelial cells for more than a week in vitro and to analyze how gut microbiome, inflammatory cells, and peristalsis-associated mechanical deformations independently contribute to intestinal bacterial overgrowth and inflammation. This in vitro model replicated results from past animal and human studies, including demonstration that probiotic and antibiotic therapies can suppress villus injury induced by pathogenic bacteria. By ceasing peristalsis-like motions while maintaining luminal flow, lack of epithelial deformation was shown to trigger bacterial overgrowth similar to that observed in patients with ileus and inflammatory bowel disease. Analysis of intestinal inflammation on-chip revealed that immune cells and lipopolysaccharide endotoxin together stimulate epithelial cells to produce four proinflammatory cytokines (IL-8, IL-6, IL-1β, and TNF-α) that are necessary and sufficient to induce villus injury and compromise intestinal barrier function. Thus, this human gut-on-a-chip can be used to analyze contributions of microbiome to intestinal pathophysiology and dissect disease mechanisms in a controlled manner that is not possible using existing in vitro systems or animal models.
Collapse
|
33
|
Sidira M, Kourkoutas Y, Kanellaki M, Charalampopoulos D. In vitro study on the cell adhesion ability of immobilized lactobacilli on natural supports. Food Res Int 2015; 76:532-539. [DOI: 10.1016/j.foodres.2015.07.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/18/2015] [Accepted: 07/24/2015] [Indexed: 12/24/2022]
|
34
|
Yeung CY, Chan WT, Jiang CB, Cheng ML, Liu CY, Chang SW, Chiang Chiau JS, Lee HC. Amelioration of Chemotherapy-Induced Intestinal Mucositis by Orally Administered Probiotics in a Mouse Model. PLoS One 2015; 10:e0138746. [PMID: 26406888 PMCID: PMC4583404 DOI: 10.1371/journal.pone.0138746] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/03/2015] [Indexed: 12/20/2022] Open
Abstract
Background and Aims Intestinal mucositis is a frequently encountered side effect in oncology patients undergoing chemotherapy. No well-established or up to date therapeutic strategies are available. To study a novel way to alleviate mucositis, we investigate the effects and safety of probiotic supplementation in ameliorating 5-FU-induced intestinal mucositis in a mouse model. Methods Seventy-two mice were injected saline or 5-Fluorouracil (5-FU) intraperitoneally daily. Mice were either orally administrated daily saline, probiotic suspension of Lactobacillus casei variety rhamnosus (Lcr35) or Lactobacillus acidophilus and Bifidobacterium bifidum (LaBi). Diarrhea score, pro-inflammatory cytokines serum levels, intestinal villus height and crypt depth and total RNA from tissue were assessed. Samples of blood, liver and spleen tissues were assessed for translocation. Results Marked diarrhea developed in the 5-FU groups but was attenuated after oral Lcr35 and LaBi administrations. Diarrhea scores decreased significantly from 2.64 to 1.45 and 0.80, respectively (P<0.001). Those mice in 5-FU groups had significantly higher proinflammatory cytokine levels (TNF-α: 234.80 vs. 29.10, P<0.001, IL-6: 25.13 vs. 7.43, P<0.001, IFN-γ: 22.07 vs. 17.06, P = 0.137). A repairing of damage in jejunal villi was observed following probiotics administration. We also found TNF-α, IL-1β and IL-6 mRNA expressions were up-regulated in intestinal mucositis tissues following 5-FU treatment (TNF-α: 4.35 vs. 1.18, IL-1β: 2.29 vs. 1.07, IL-6: 1.49 vs. 1.02) and that probiotics treatment suppressed this up-regulation (P<0.05). No bacterial translocation was found in this study. Conclusions In conclusion, our results show that oral administration of probiotics Lcr35 and LaBi can ameliorate chemotherapy-induced intestinal mucositis in a mouse model. This suggests probiotics may serve as an alternative therapeutic strategy for the prevention or management of chemotherapy-induced mucositis in the future.
Collapse
Affiliation(s)
- Chun-Yan Yeung
- Division of Gastroenterology and Nutrition, Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wai-Tao Chan
- Division of Gastroenterology and Nutrition, Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chun-Bin Jiang
- Division of Gastroenterology and Nutrition, Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
| | - Mei-Lien Cheng
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chia-Yuan Liu
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Hepatology and Gastroenterology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Szu-Wen Chang
- Division of Gastroenterology and Nutrition, Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
| | | | - Hung-Chang Lee
- Division of Gastroenterology and Nutrition, Department of Pediatrics, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
- Department of Pediatrics, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
35
|
Smith IM, Baker A, Arneborg N, Jespersen L. Non-Saccharomyces yeasts protect against epithelial cell barrier disruption induced by Salmonella enterica subsp. enterica serovar Typhimurium. Lett Appl Microbiol 2015; 61:491-7. [PMID: 26280244 DOI: 10.1111/lam.12481] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 08/07/2015] [Accepted: 08/08/2015] [Indexed: 12/26/2022]
Abstract
UNLABELLED The human gastrointestinal epithelium makes up the largest barrier separating the body from the external environment. Whereas invasive pathogens cause epithelial barrier disruption, probiotic micro-organisms modulate tight junction regulation and improve epithelial barrier function. In addition, probiotic strains may be able to reduce epithelial barrier disruption caused by pathogenic species. The aim of this study was to explore non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Benchmarking against established probiotic strains, we evaluated the ability of four nonpathogenic yeast species to modulate transepithelial electrical resistance (TER) across a monolayer of differentiated human colonocytes (Caco-2 cells). Further, we assessed yeast modulation of a Salmonella Typhimurium-induced epithelial cell barrier function insult. Our findings demonstrate distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function. While the established probiotic yeast Saccharomyces boulardii increased TER across a Caco-2 monolayer by 30%, Kluyveromyces marxianus exhibited significantly stronger properties of TER enhancement (50% TER increase). In addition, our data demonstrate significant yeast-mediated modulation of Salmonella-induced epithelial cell barrier disruption and identify K. marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrates distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Further, our data demonstrate significant yeast-mediated modulation of Salmonella Typhimurium-induced epithelial cell barrier disruption and identify Kluyveromyces marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study is the first to demonstrate significant non-Saccharomyces yeast-mediated epithelial cell barrier protection from Salmonella invasion, thus encouraging future efforts aimed at confirming the observed effects in vivo and driving further strain development towards novel yeast probiotics.
Collapse
Affiliation(s)
- I M Smith
- Health & Nutrition Discovery, Chr. Hansen, Hørsholm, Denmark.,Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - A Baker
- Health & Nutrition Discovery, Chr. Hansen, Hørsholm, Denmark
| | - N Arneborg
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - L Jespersen
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
36
|
Benam KH, Dauth S, Hassell B, Herland A, Jain A, Jang KJ, Karalis K, Kim HJ, MacQueen L, Mahmoodian R, Musah S, Torisawa YS, van der Meer AD, Villenave R, Yadid M, Parker KK, Ingber DE. Engineered in vitro disease models. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2015; 10:195-262. [PMID: 25621660 DOI: 10.1146/annurev-pathol-012414-040418] [Citation(s) in RCA: 366] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ultimate goal of most biomedical research is to gain greater insight into mechanisms of human disease or to develop new and improved therapies or diagnostics. Although great advances have been made in terms of developing disease models in animals, such as transgenic mice, many of these models fail to faithfully recapitulate the human condition. In addition, it is difficult to identify critical cellular and molecular contributors to disease or to vary them independently in whole-animal models. This challenge has attracted the interest of engineers, who have begun to collaborate with biologists to leverage recent advances in tissue engineering and microfabrication to develop novel in vitro models of disease. As these models are synthetic systems, specific molecular factors and individual cell types, including parenchymal cells, vascular cells, and immune cells, can be varied independently while simultaneously measuring system-level responses in real time. In this article, we provide some examples of these efforts, including engineered models of diseases of the heart, lung, intestine, liver, kidney, cartilage, skin and vascular, endocrine, musculoskeletal, and nervous systems, as well as models of infectious diseases and cancer. We also describe how engineered in vitro models can be combined with human inducible pluripotent stem cells to enable new insights into a broad variety of disease mechanisms, as well as provide a test bed for screening new therapies.
Collapse
Affiliation(s)
- Kambez H Benam
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115;
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Susewind J, de Souza Carvalho-Wodarz C, Repnik U, Collnot EM, Schneider-Daum N, Griffiths GW, Lehr CM. A 3D co-culture of three human cell lines to model the inflamed intestinal mucosa for safety testing of nanomaterials. Nanotoxicology 2015; 10:53-62. [PMID: 25738417 DOI: 10.3109/17435390.2015.1008065] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Oral exposure to nanomaterials is a current concern, asking for innovative biological test systems to assess their safety, especially also in conditions of inflammatory disorders. Aim of this study was to develop a 3D intestinal model, consisting of Caco-2 cells and two human immune cell lines, suitable to assess nanomaterial toxicity, in either healthy or diseased conditions. Human macrophages (THP-1) and human dendritic cells (MUTZ-3) were embedded in a collagen scaffold and seeded on the apical side of transwell inserts. Caco-2 cells were seeded on top of this layer, forming a 3D model of the intestinal mucosa. Toxicity of engineered nanoparticles (NM101 TiO2, NM300 Ag, Au) was evaluated in non-inflamed and inflamed co-cultures, and also compared to non-inflamed Caco-2 monocultures. Inflammation was elicited by IL-1β, and interactions with engineered NPs were addressed by different endpoints. The 3D co-culture showed well preserved ultrastructure and significant barrier properties. Ag NPs were found to be more toxic than TiO2 or Au NPs. But once inflamed with IL-1β, the co-cultures released higher amounts of IL-8 compared to Caco-2 monocultures. However, the cytotoxicity of Ag NPs was higher in Caco-2 monocultures than in 3D co-cultures. The naturally higher IL-8 production in the co-cultures was enhanced even further by the Ag NPs. This study shows that it is possible to mimic inflamed conditions in a 3D co-culture model of the intestinal mucosa. The fact that it is based on three easily available human cell lines makes this model valuable to study the safety of nanomaterials in the context of inflammation.
Collapse
Affiliation(s)
- Julia Susewind
- a Department of Drug Delivery , Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) , Saarbrücken , Germany
| | - Cristiane de Souza Carvalho-Wodarz
- a Department of Drug Delivery , Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) , Saarbrücken , Germany
| | - Urska Repnik
- c Department of Biosciences , University of Oslo , Blindernveien , Oslo , Norway
| | - Eva-Maria Collnot
- a Department of Drug Delivery , Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) , Saarbrücken , Germany .,b Department of Pharmacy , Biopharmacy and Pharmaceutical Technology, Saarland University , Saarbrücken , Germany , and
| | - Nicole Schneider-Daum
- a Department of Drug Delivery , Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) , Saarbrücken , Germany
| | - Gareth Wyn Griffiths
- c Department of Biosciences , University of Oslo , Blindernveien , Oslo , Norway
| | - Claus-Michael Lehr
- a Department of Drug Delivery , Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) , Saarbrücken , Germany .,b Department of Pharmacy , Biopharmacy and Pharmaceutical Technology, Saarland University , Saarbrücken , Germany , and
| |
Collapse
|
38
|
Effect of zinc on growth performance, gut morphometry, and cecal microbial community in broilers challenged with Salmonella enterica serovar typhimurium. J Microbiol 2014; 52:1002-11. [DOI: 10.1007/s12275-014-4347-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/24/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
|
39
|
Proinflammatory effect of trivalent arsenical species in a co-culture of Caco-2 cells and peripheral blood mononuclear cells. Arch Toxicol 2014; 89:555-64. [PMID: 24862236 DOI: 10.1007/s00204-014-1271-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/13/2014] [Indexed: 12/21/2022]
Abstract
Chronic exposure to inorganic arsenic (As) is associated with type 2 diabetes, cardiovascular diseases and cancer. Ingested inorganic As is transformed within the gastrointestinal tract and can give rise to more toxic species such as monomethylarsonous acid [MMA(III)] and dimethylarsinous acid [DMA(III)]. Thus, the intestinal epithelium comes into contact with toxic arsenical species, and the effects of such exposure upon epithelial function are not clear. The present study has evaluated the effect of 1 µM arsenite [As(III)], 0.1 µM MMA(III) and 1 µM DMA(III) upon the release of cytokines [interleukin-6 (IL6), IL8, tumor necrosis factor alpha (TNFα)], using a compartmentalized co-culture model with differentiated Caco-2 cells in the apical compartment and peripheral blood mononuclear cells in the basolateral compartment. In addition, the combined effect of arsenical species and lipopolysaccharide (LPS), both added into the apical compartment, has been analyzed. The results indicate that exposure to the arsenical forms induces a proinflammatory response. An increase in cytokine secretion into the basolateral compartment was observed, particularly as regards TNFα (up to 1,600 %). The cytokine levels on the apical side also increased, though to a lesser extent. As/LPS co-exposure significantly affected the proinflammatory response as compared to treatment with As alone. Treatment with DMA(III) and As/LPS co-exposure increased the permeability of the intestinal monolayer. In addition, As/LPS treatments enhanced As(III) and MMA(III) transport through the intestinal monolayer.
Collapse
|
40
|
Dostal A, Gagnon M, Chassard C, Zimmermann MB, O'Mahony L, Lacroix C. Salmonella adhesion, invasion and cellular immune responses are differentially affected by iron concentrations in a combined in vitro gut fermentation-cell model. PLoS One 2014; 9:e93549. [PMID: 24676135 PMCID: PMC3968171 DOI: 10.1371/journal.pone.0093549] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 03/06/2014] [Indexed: 12/20/2022] Open
Abstract
In regions with a high infectious disease burden, concerns have been raised about the safety of iron supplementation because higher iron concentrations in the gut lumen may increase risk of enteropathogen infection. The aim of this study was to investigate interactions of the enteropathogen Salmonella enterica ssp. enterica Typhimurium with intestinal cells under different iron concentrations encountered in the gut lumen during iron deficiency and supplementation using an in vitro colonic fermentation system inoculated with immobilized child gut microbiota combined with Caco-2/HT29-MTX co-culture monolayers. Colonic fermentation effluents obtained during normal, low (chelation by 2,2'-dipyridyl) and high iron (26.5 mg iron/L) fermentation conditions containing Salmonella or pure Salmonella cultures with similar iron conditions were applied to cellular monolayers. Salmonella adhesion and invasion capacity, cellular integrity and immune response were assessed. Under high iron conditions in pure culture, Salmonella adhesion was 8-fold increased compared to normal iron conditions while invasion was not affected leading to decreased invasion efficiency (-86%). Moreover, cellular cytokines IL-1β, IL-6, IL-8 and TNF-α secretion as well as NF-κB activation in THP-1 cells were attenuated under high iron conditions. Low iron conditions in pure culture increased Salmonella invasion correlating with an increase in IL-8 release. In fermentation effluents, Salmonella adhesion was 12-fold and invasion was 428-fold reduced compared to pure culture. Salmonella in high iron fermentation effluents had decreased invasion efficiency (-77.1%) and cellular TNF-α release compared to normal iron effluent. The presence of commensal microbiota and bacterial metabolites in fermentation effluents reduced adhesion and invasion of Salmonella compared to pure culture highlighting the importance of the gut microbiota as a barrier during pathogen invasion. High iron concentrations as encountered in the gut lumen during iron supplementation attenuated Salmonella invasion efficiency and cellular immune response suggesting that high iron concentrations alone may not lead to an increased Salmonella invasion.
Collapse
Affiliation(s)
- Alexandra Dostal
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Mélanie Gagnon
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Christophe Chassard
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Michael Bruce Zimmermann
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Liam O'Mahony
- Swiss Institute of Allergy and Asthma Research, University of Zurich, Davos, Switzerland
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
41
|
Live and heat-killed Lactobacillus rhamnosus GG upregulate gene expression of pro-inflammatory cytokines in 5-fluorouracil-pretreated Caco-2 cells. Support Care Cancer 2014; 22:1647-54. [PMID: 24500789 DOI: 10.1007/s00520-014-2137-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 01/13/2014] [Indexed: 01/16/2023]
Abstract
PURPOSE This study investigates whether post-chemotherapeutic use of live and heat-killed Lactobacillus rhamnosus GG can modulate the expression of three pro-inflammatory cytokines in 5-fluorouracil (5-FU)-induced intestinal mucositis in vitro. METHODS Live L. rhamnosus GG and heat-killed L. rhamnosus GG were observed using scanning electron microscopy. To establish the duration required for optimal expression of tumor necrosis factor-α (TNF-α), monocyte chemotactic protein-1 (MCP-1), and interleukin-12 (IL-12), 5 μM of 5-FU was selected to treat 10-day-old Caco-2 cells for 4, 6, 8, and 24 h. Caco-2 cells were treated with 5-FU (5 μM) for 4 h, followed by the administration of live L. rhamnosus GG (multiplicity of infection = 25), and heat-killed L. rhamnosus GG for 2 and 4 h. Finally, total cellular RNA was isolated to quantify mRNA expression of TNF-α, MCP-1, and IL-12 using real-time PCR. RESULTS The results demonstrated that heat-killed L. rhamnosus GG remained structurally intact with elongation. A biphasic upregulated expression of TNF-α, MCP-1, and IL-12 was observed in 5-FU-treated Caco-2 cells at 4 and 24 h. Compared to non-L. rhamnosus GG controls in 5-FU-pretreated Caco-2 cells, a 2-h treatment of heat-killed L. rhamnosus GG significantly upregulated the MCP-1 expression (p < 0.05), and both live and heat-killed L. rhamnosus GG treatments lasting 4 h upregulated the TNF-α and MCP-1 expression (p < 0.05). Only live L. rhamnosus GG upregulated the IL-12 expression (p < 0.05). CONCLUSIONS Post-chemotherapeutic use of live or heat-killed L. rhamnosus GG can upregulate the gene expression of 5-FU-induced pro-inflammatory cytokines in Caco-2 cells. Human intestinal epithelium may be vulnerable to the post-chemotherapeutic use of L. rhamnosus GG in 5-FU-induced mucositis that requires further in vivo studies for clarification.
Collapse
|
42
|
Yu Y, Liu ZQ, Liu XY, Yang L, Geng XR, Yang G, Liu ZG, Zheng PY, Yang PC. Stress-Derived Corticotropin Releasing Factor Breaches Epithelial Endotoxin Tolerance. PLoS One 2013; 8:e65760. [PMID: 23840363 PMCID: PMC3686760 DOI: 10.1371/journal.pone.0065760] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 04/29/2013] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND AND AIMS Loss of the endotoxin tolerance of intestinal epithelium contributes to a number of intestinal diseases. The etiology is not clear. Psychological stress is proposed to compromise the intestinal barrier function. The present study aims to elucidate the role of the stress-derived corticotropin releasing factor (CRF) in breaching the established intestinal epithelial endotoxin tolerance. METHODS Epithelial cells of HT-29, T84 and MDCK were exposed to lipopolysaccharide to induce the endotoxin tolerance; the cells were then stimulated with CRF. The epithelial barrier function was determined using as indicators of the endotoxin tolerant status. A water-avoid stress mouse model was employed to test the role of CRF in breaching the established endotoxin tolerance in the intestine. RESULTS The established endotoxin tolerance in the epithelial cell monolayers was broken down by a sequent exposure to CRF and LPS manifesting a marked drop of the transepithelial resistance (TER) and an increase in the permeability to a macromolecular tracer, horseradish peroxidase (HRP). The exposure to CRF also increased the expression of Cldn2 in the epithelial cells, which could be mimicked by over expression of TLR4 in epithelial cells. Over expression of Cldn2 resulted in low TER in epithelial monolayers and high permeability to HRP. After treating mice with the 10-day chronic stress, the intestinal epithelial barrier function was markedly compromised, which could be prevented by blocking either CRF, or TLR4, or Cldn2. CONCLUSIONS Psychological stress-derived CRF can breach the established endotoxin tolerance in the intestinal mucosa.
Collapse
Affiliation(s)
- Yong Yu
- Department of Gastroenterology, the Second Hospital, Zhengzhou University, Zhengzhou, China
| | - Zhi-Qiang Liu
- Department of Gastroenterology, the Second Hospital, Zhengzhou University, Zhengzhou, China
| | - Xiao-Yu Liu
- Allergy & Immunology Institute, Shenzhen University School of Medicine, Shenzhen, China
| | - Li Yang
- Department of Gastroenterology, the Second Hospital, Zhengzhou University, Zhengzhou, China
| | - Xiao-Rui Geng
- Longgang Central Hospital, ENT Hospital and Shenzhen ENT Institute, Shenzhen, China
| | - Gui Yang
- Longgang Central Hospital, ENT Hospital and Shenzhen ENT Institute, Shenzhen, China
| | - Zhi-Gang Liu
- Allergy & Immunology Institute, Shenzhen University School of Medicine, Shenzhen, China
| | - Peng-Yuan Zheng
- Department of Gastroenterology, the Second Hospital, Zhengzhou University, Zhengzhou, China
- * E-mail: (PYZ); (PCY)
| | - Ping-Chang Yang
- Allergy & Immunology Institute, Shenzhen University School of Medicine, Shenzhen, China
- * E-mail: (PYZ); (PCY)
| |
Collapse
|
43
|
In vitro prevention of salmonella lipopolysaccharide-induced damages in epithelial barrier function by various lactobacillus strains. Gastroenterol Res Pract 2013; 2013:973209. [PMID: 23840201 PMCID: PMC3690232 DOI: 10.1155/2013/973209] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 05/07/2013] [Indexed: 01/01/2023] Open
Abstract
Background. Lactobacillus shows beneficial anti-inflammatory effects on Salmonella infection. The maintenance of the tight junction (TJ) integrity plays an importance role in avoiding bacterial invasion. Whether Lactobacillus could be used to regulate the TJ protein expression and distribution in inflamed intestinal epithelial cells was determined. Methods. Using the transwell coculture model, Salmonella lipopolysaccharide (LPS) was apically added to polarized Caco-2 cells cocultured with peripheral blood mononuclear cells in the basolateral compartment. LPS-stimulated Caco-2 cells were incubated with various Lactobacillus strains. TJ integrity was determined by measuring transepithelial electrical resistance across Caco-2 monolayer. Expression and localization of TJ proteins (zonula-occludens- (ZO-) 1) were determined by Western blot and immunofluorescence microscopy. Results. Various strains of Lactobacillus were responsible for the different modulations of cell layer integrity. LPS was specifically able to disrupt epithelial barrier and change the location of ZO-1. Our data demonstrate that Lactobacillus could attenuate the barrier disruption of intestinal epithelial cells caused by Salmonella LPS administration. We showed that Lactobacillus strains are associated with the maintenance of the tight junction integrity and appearance. Conclusion. In this study we provide insight that live probiotics could improve epithelial barrier properties and this may explain the potential mechanism behind their beneficial effect in vivo.
Collapse
|
44
|
Fang SB, Schüller S, Phillips AD. Human Intestinal In Vitro Organ Culture as a Model for Investigation of Bacteria–Host Interactions. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.jecm.2013.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Evaluation of In Vitro Anti-Inflammatory Activities and Protective Effect of Fermented Preparations of Rhizoma Atractylodis Macrocephalae on Intestinal Barrier Function against Lipopolysaccharide Insult. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:363076. [PMID: 23573125 PMCID: PMC3612467 DOI: 10.1155/2013/363076] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 02/19/2013] [Indexed: 01/02/2023]
Abstract
Lipopolysaccharide (LPS), a potent inducer of systemic inflammatory responses, is known to cause impairment of intestinal barrier function. Here, we evaluated the in vitro protective effect of an unfermented formulation of Rhizoma Atractylodis Macrocephalae (RAM), a traditional Chinese herbal medicine widely used in the treatment of many digestive and gastrointestinal disorders, and two fermented preparations of RAM, designated as FRAM-1 (prepared in Luria-Bertani broth) and FRAM-2 (prepared in glucose), on intestinal epithelial cells (IECs) against LPS insult. In general, fermented formulations, especially FRAM-2, but not unfermented RAM, exerted an appreciable protective effect on IECs against LPS-induced perturbation of membrane resistance and permeability. Both fermented formulations exhibited appreciable anti-inflammatory activities in terms of their ability to inhibit LPS-induced gene expression and induced production of a number of key inflammatory mediators and cytokines in RAW 264.7 macrophage cells. However, in most cases, FRAM-2 exhibited stronger anti-inflammatory effects than FRAM-1. Our findings also suggest that suppression of nuclear factor- κ β (NF- κ β ) activity might be one of the possible mechanisms by which the fermented RAM exerts its anti-inflammatory effects. Collectively, our results highlight the benefits of using fermented products of RAM to protect against LPS-induced inflammatory insult and impairment in intestinal barrier function.
Collapse
|
46
|
Cieza RJ, Cao AT, Cong Y, Torres AG. Immunomodulation for gastrointestinal infections. Expert Rev Anti Infect Ther 2012; 10:391-400. [PMID: 22397571 DOI: 10.1586/eri.11.176] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The intestinal epithelium provides a barrier between a variety of luminal antigens and provides the components of intestinal innate and adaptive immunity. It is crucial that at this interface, the epithelial cell layer and the components of the intestinal immunity interact with dietary and bacterial antigens in a regulated way to maintain homeostasis. Failure to tightly control immune reactions can be detrimental and result in inflammation. In the current review, we described the regulatory mechanisms controlling host-immune homeostasis and the role of regulatory CD4(+) T cells, with a special emphasis in the regulatory T-cell subsets (Tregs). Furthermore, the participation of innate cell cross-talk in the polarization of intestinal immune responses is also evaluated. Finally, the recent characterization of host responses to normal commensal flora, the role of bacteria and bacterial factors in the maintenance of immunomodulation, and the disruption of this balance by bacterial enteric pathogens is also summarized.
Collapse
Affiliation(s)
- Roberto J Cieza
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | |
Collapse
|
47
|
Kim HJ, Huh D, Hamilton G, Ingber DE. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. LAB ON A CHIP 2012; 12:2165-74. [PMID: 22434367 DOI: 10.1039/c2lc40074j] [Citation(s) in RCA: 1085] [Impact Index Per Article: 90.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Development of an in vitro living cell-based model of the intestine that mimics the mechanical, structural, absorptive, transport and pathophysiological properties of the human gut along with its crucial microbial symbionts could accelerate pharmaceutical development, and potentially replace animal testing. Here, we describe a biomimetic 'human gut-on-a-chip' microdevice composed of two microfluidic channels separated by a porous flexible membrane coated with extracellular matrix (ECM) and lined by human intestinal epithelial (Caco-2) cells that mimics the complex structure and physiology of living intestine. The gut microenvironment is recreated by flowing fluid at a low rate (30 μL h(-1)) producing low shear stress (0.02 dyne cm(-2)) over the microchannels, and by exerting cyclic strain (10%; 0.15 Hz) that mimics physiological peristaltic motions. Under these conditions, a columnar epithelium develops that polarizes rapidly, spontaneously grows into folds that recapitulate the structure of intestinal villi, and forms a high integrity barrier to small molecules that better mimics whole intestine than cells in cultured in static Transwell models. In addition, a normal intestinal microbe (Lactobacillus rhamnosus GG) can be successfully co-cultured for extended periods (>1 week) on the luminal surface of the cultured epithelium without compromising epithelial cell viability, and this actually improves barrier function as previously observed in humans. Thus, this gut-on-a-chip recapitulates multiple dynamic physical and functional features of human intestine that are critical for its function within a controlled microfluidic environment that is amenable for transport, absorption, and toxicity studies, and hence it should have great value for drug testing as well as development of novel intestinal disease models.
Collapse
Affiliation(s)
- Hyun Jung Kim
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
48
|
Yanagihara S, Fukuda S, Ohno H, Yamamoto N. Exposure to probiotic Lactobacillus acidophilus L-92 modulates gene expression profiles of epithelial Caco-2 cells. J Med Food 2012; 15:511-9. [PMID: 22510151 DOI: 10.1089/jmf.2012.0040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To understand host gastrointestinal response after exposure to probiotic Lactobacillus acidophilus L-92, microarray analysis of cultured epithelial Caco-2 cells was performed. Of the 187 genes down-regulated after 4 h treatment with L-92, 25 were involved in RNA splicing; 12, in cell cycle; 8 were transcriptional regulators; 2 were involved in ubiquitin proteolysis; 2, in adhesion; 2, in meiosis; 2, in splicing; and 2 encoding cytokines. In the RNA splicing group, genes encoding small nuclear RNAs, nuclear pore complex interacting proteins, RNA binding motif proteins, and SMG1 homologs (phosphatidylinositol 3-kinase-related kinase) were identified. Among the only 13 genes up-regulated by the treatment, 5 were involved in histone structure, and 2 were involved in metabolism. Genes belonging to cell adhesion, transmembrane proteins, mitogen-activated protein kinase, immune response, DNA binding, inflammation, and protein synthesis groups were mainly up-regulated after 20 h of treatment, whereas no significantly down-regulated genes were observed. In the present transcriptome analysis, during the early stage of treatment (four hours of treatment) with L-92, genes involved in cell growth and cell meiosis were mainly repressed. During the late phase of treatment (20 h of treatment), the expression of the genes linked to cell adhesion activity and metabolism for cell growth was enhanced. From the present transcriptome analysis, we suggest that Caco-2 cells slow down cell death and turnover of RNA synthesis as an early response to L-92 treatment; at the late stage of treatment, the genes involved in cell proliferation, transcriptional activity, and apoptosis are activated.
Collapse
Affiliation(s)
- Sae Yanagihara
- Microbiology and Fermentation Laboratory, Calpis Co., Ltd., Sagamihara, Kanagawa, Japan
| | | | | | | |
Collapse
|
49
|
Maternal microbe-specific modulation of inflammatory response in extremely low-gestational-age newborns. mBio 2011; 2:e00280-10. [PMID: 21264056 PMCID: PMC3025357 DOI: 10.1128/mbio.00280-10] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 12/14/2010] [Indexed: 01/11/2023] Open
Abstract
The fetal response to intrauterine inflammatory stimuli appears to contribute to the onset of preterm labor as well as fetal injury, especially affecting newborns of extremely low gestational age. To investigate the role of placental colonization by specific groups of microorganisms in the development of inflammatory responses present at birth, we analyzed 25 protein biomarkers in dry blood spots obtained from 527 newborns delivered by Caesarean section in the 23rd to 27th gestation weeks. Bacteria were detected in placentas and characterized by culture techniques. Odds ratios for having protein concentrations in the top quartile for gestation age for individual and groups of microorganisms were calculated. Mixed bacterial vaginosis (BV) organisms were associated with a proinflammatory pattern similar to those of infectious facultative anaerobes. Prevotella and Gardnerella species, anaerobic streptococci, peptostreptococci, and genital mycoplasmas each appeared to be associated with a different pattern of elevated blood levels of inflammation-related proteins. Lactobacillus was associated with low odds of an inflammatory response. This study provides evidence that microorganisms colonizing the placenta provoke distinctive newborn inflammatory responses and that Lactobacillus may suppress these responses. Despite improved intensive care, preterm and especially extremely low-gestation-age neonates continue to be at a considerably increased risk of morbidity, mortality, and developmental problems. The fetal inflammatory response appears to contribute to the onset of preterm labor, fetal injury, and complications, underlying lifetime health challenges facing these children. This study provides evidence that bacterial colonization of the very preterm placenta is associated with distinct microorganism-specific inflammatory protein profiles in the newborn blood specimens. We also provide evidence that Lactobacillus reduces inflammatory responses in newborns. Our data support the concept that targeting of placental colonization by specific drugs or probiotics during early pregnancy holds promise for preventing not only preterm birth but also subsequent and long-lasting, inflammation-provoked late sequelae.
Collapse
|