1
|
Wu R, Nahm M, Yang J, Bush CA, Wu H. Identification and genetic engineering of pneumococcal capsule-like polysaccharides in commensal oral streptococci. Microbiol Spectr 2024; 12:e0188523. [PMID: 38488366 PMCID: PMC10986556 DOI: 10.1128/spectrum.01885-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/28/2023] [Indexed: 04/06/2024] Open
Abstract
Capsular polysaccharides (CPS) in Streptococcus pneumoniae are pivotal for bacterial virulence and present extensive diversity. While oral streptococci show pronounced antigenicity toward pneumococcal capsule-specific sera, insights into evolution of capsule diversity remain limited. This study reports a pneumococcal CPS-like genetic locus in Streptococcus parasanguinis, a predominant oral Streptococcus. The discovered locus comprises 15 genes, mirroring high similarity to those from the Wzy-dependent CPS locus of S. pneumoniae. Notably, S. parasanguinis elicited a reaction with pneumococcal 19B antiserum. Through nuclear magnetic resonance analysis, we ascertained that its CPS structure matches the chemical composition of the pneumococcal 19B capsule. By introducing the glucosyltransferase gene cps19cS from a pneumococcal serotype 19C, we successfully transformed S. parasanguinis antigenicity from 19B to 19C. Furthermore, substituting serotype-specific genes, cpsI and cpsJ, with their counterparts from pneumococcal serotype 19A and 19F enabled S. parasanguinis to generate 19A- and 19F-specific CPS, respectively. These findings underscore that S. parasanguinis harbors a versatile 19B-like CPS adaptable to other serotypes. Remarkably, after deleting the locus's initial gene, cpsE, responsible for sugar transfer, we noted halted CPS production, elongated bacterial chains, and diminished biofilm formation. A similar phenotype emerged with the removal of the distinct gene cpsZ, which encodes a putative autolysin. These data highlight the importance of S. parasanguinis CPS for biofilm formation and propose a potential shared ancestry of its CPS locus with S. pneumoniae. IMPORTANCE Diverse capsules from Streptococcus pneumoniae are vital for bacterial virulence and pathogenesis. Oral streptococci show strong responses to a wide range of pneumococcal capsule-specific sera. Yet, the evolution of this capsule diversity in relation to microbe-host interactions remains underexplored. Our research delves into the connection between commensal oral streptococcal and pneumococcal capsules, highlighting the potential for gene transfer and evolution of various capsule types. Understanding the genetic and evolutionary factors that drive capsule diversity in S. pneumoniae and its related oral species is essential for the development of effective pneumococcal vaccines. The present findings provide fresh perspectives on the cross-reactivity between commensal streptococci and S. pneumoniae, its influence on bacteria-host interactions, and the development of new strategies to manage and prevent pneumococcal illnesses by targeting and modulating commensal streptococci.
Collapse
Affiliation(s)
- Ren Wu
- Department of Pediatric Dentistry, University of Alabama at Birmingham, School of Dentistry, Birmingham, Alabama, USA
| | - Moon Nahm
- Department of Medicine, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
| | - Jinghua Yang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - C. Allen Bush
- Department of Chemistry and Biochemistry, University of Maryland at Baltimore, Baltimore, Maryland, USA
| | - Hui Wu
- Department of Pediatric Dentistry, University of Alabama at Birmingham, School of Dentistry, Birmingham, Alabama, USA
- Division of Biomaterial and Biomedical Sciences, Oregon Health & Science University School of Dentistry, Portland, Oregon, USA
| |
Collapse
|
2
|
Cinar MS, Niyas A, Avci FY. Serine-rich repeat proteins: well-known yet little-understood bacterial adhesins. J Bacteriol 2024; 206:e0024123. [PMID: 37975670 PMCID: PMC10810200 DOI: 10.1128/jb.00241-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Serine-rich-repeat proteins (SRRPs) are large mucin-like glycoprotein adhesins expressed by a plethora of pathogenic and symbiotic Gram-positive bacteria. SRRPs play major functional roles in bacterial-host interactions, like adhesion, aggregation, biofilm formation, virulence, and pathogenesis. Through their functional roles, SRRPs aid in the development of host microbiomes but also diseases like infective endocarditis, otitis media, meningitis, and pneumonia. SRRPs comprise shared domains across different species, including two or more heavily O-glycosylated long stretches of serine-rich repeat regions. With loci that can be as large as ~40 kb and can encode up to 10 distinct glycosyltransferases that specifically facilitate SRRP glycosylation, the SRRP loci makes up a significant portion of the bacterial genome. The significance of SRRPs and their glycans in host-microbe communications is becoming increasingly evident. Studies are beginning to reveal the glycosylation pathways and mature O-glycans presented by SRRPs. Here we review the glycosylation machinery of SRRPs across species and discuss the functional roles and clinical manifestations of SRRP glycosylation.
Collapse
Affiliation(s)
- Mukaddes S. Cinar
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Afaq Niyas
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Fikri Y. Avci
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
3
|
SssP1, a Fimbria-like component of Streptococcus suis, binds to the vimentin of host cells and contributes to bacterial meningitis. PLoS Pathog 2022; 18:e1010710. [PMID: 35853077 PMCID: PMC9337661 DOI: 10.1371/journal.ppat.1010710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/29/2022] [Accepted: 06/27/2022] [Indexed: 11/19/2022] Open
Abstract
Streptococcus suis (S. suis) is one of the important pathogens that cause bacterial meningitis in pigs and humans. Evading host immune defences and penetrating the blood-brain barrier (BBB) are the preconditions for S. suis to cause meningitis, while the underlying mechanisms during these pathogenic processes are not fully understood. By detecting the red blood and white blood cells counts, IL-8 expression, and the pathological injury of brain in a mouse infection model, a serine-rich repeat (SRR) glycoprotein, designated as SssP1, was identified as a critical facilitator in the process of causing meningitis in this study. SssP1 was exported to assemble a fimbria-like component, thus contributed to the bacterial adhesion to and invasion into human brain microvascular endothelial cells (HBMECs), and activates the host inflammatory response during meningitis but is not involved in the actin cytoskeleton rearrangement and the disruption of tight junctions. Furthermore, the deletion of sssP1 significantly attenuates the ability of S. suis to traverse the BBB in vivo and in vitro. A pull-down analysis identified vimentin as the potential receptors of SssP1 during meningitis and following Far-Western blot results confirmed this ligand-receptor binding mediated by the NR2 (the second nonrepeat region) region of SssP1. The co-localisation of vimentin and S. suis observed by laser scanning confocal microscopy with multiplex fluorescence indicated that vimentin significantly enhances the interaction between SssP1 and BBB. Further study identified that the NR216-781 and NR1711-2214 fragments of SssP1 play critical roles to bind to the BBB depending on the sialylation of vimentin, and this binding is significantly attenuated when the antiserum of NR216-781 or NR1711-2214 blocked the bacterial cells, or the vimentin antibody blocked the BBB. Similar binding attenuations are observed when the bacterial cells were preincubated with the vimentin, or the BBB was preincubated with the recombinant protein NR216-781, NR1711-2214 or sialidase. In conclusion, these results reveal a novel receptor-ligand interaction that enhances adhesion to and penetration of the BBB to cause bacterial meningitis in the S. suis infection and highlight the importance of vimentin in host-pathogen interactions. Streptococcus suis (S. suis) is considered an important zoonotic pathogen capable of causing meningitis in humans. Penetrating the blood-brain barrier (BBB) is one of the preconditions for S. suis to cause meningitis, while its underlying mechanism is incompletely understood. Here we identified a previously uncharacterised pathogenic mechanism associated with S. suis meningitis mediated by the interaction between bacterial SRR glycoproteins and a host cytoskeletal component. During the bacterial infection, SRR protein SssP1 is exported to assemble a fimbria-like component, which drives a strong binding effect with the BBB depending on the sialylation of vimentin. This interaction contributes to the bacterial adhesion to and penetration of the BBB and induces a robust inflammatory response during meningitis. This overall observation underscores the significance of host cell surface vimentin interactions in microbial pathogenesis and markedly improves our understanding of host barrier penetration during meningitis.
Collapse
|
4
|
Abstract
Post-translational modification with O-linked β-N-acetylglucosamine (O-GlcNAc), a process referred to as O-GlcNAcylation, occurs on a vast variety of proteins. Mounting evidence in the past several decades has clearly demonstrated that O-GlcNAcylation is a unique and ubiquitous modification. Reminiscent of a code, protein O-GlcNAcylation functions as a crucial regulator of nearly all cellular processes studied. The primary aim of this review is to summarize the developments in our understanding of myriad protein substrates modified by O-GlcNAcylation from a systems perspective. Specifically, we provide a comprehensive survey of O-GlcNAcylation in multiple species studied, including eukaryotes (e.g., protists, fungi, plants, Caenorhabditis elegans, Drosophila melanogaster, murine, and human), prokaryotes, and some viruses. We evaluate features (e.g., structural properties and sequence motifs) of O-GlcNAc modification on proteins across species. Given that O-GlcNAcylation functions in a species-, tissue-/cell-, protein-, and site-specific manner, we discuss the functional roles of O-GlcNAcylation on human proteins. We focus particularly on several classes of relatively well-characterized human proteins (including transcription factors, protein kinases, protein phosphatases, and E3 ubiquitin-ligases), with representative O-GlcNAc site-specific functions presented. We hope the systems view of the great endeavor in the past 35 years will help demystify the O-GlcNAc code and lead to more fascinating studies in the years to come.
Collapse
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| | - Chunyan Hou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| |
Collapse
|
5
|
Gao M, Fan Y, Cheng J. Effect of Gln469 on the Activity and Substrate Specificity of the N-glycosyltransferase from Actinobacillus pleuropneumoniae. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821060041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Yakovlieva L, Fülleborn JA, Walvoort MTC. Opportunities and Challenges of Bacterial Glycosylation for the Development of Novel Antibacterial Strategies. Front Microbiol 2021; 12:745702. [PMID: 34630370 PMCID: PMC8498110 DOI: 10.3389/fmicb.2021.745702] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/27/2021] [Indexed: 12/29/2022] Open
Abstract
Glycosylation is a ubiquitous process that is universally conserved in nature. The various products of glycosylation, such as polysaccharides, glycoproteins, and glycolipids, perform a myriad of intra- and extracellular functions. The multitude of roles performed by these molecules is reflected in the significant diversity of glycan structures and linkages found in eukaryotes and prokaryotes. Importantly, glycosylation is highly relevant for the virulence of many bacterial pathogens. Various surface-associated glycoconjugates have been identified in bacteria that promote infectious behavior and survival in the host through motility, adhesion, molecular mimicry, and immune system manipulation. Interestingly, bacterial glycosylation systems that produce these virulence factors frequently feature rare monosaccharides and unusual glycosylation mechanisms. Owing to their marked difference from human glycosylation, bacterial glycosylation systems constitute promising antibacterial targets. With the rise of antibiotic resistance and depletion of the antibiotic pipeline, novel drug targets are urgently needed. Bacteria-specific glycosylation systems are especially promising for antivirulence therapies that do not eliminate a bacterial population, but rather alleviate its pathogenesis. In this review, we describe a selection of unique glycosylation systems in bacterial pathogens and their role in bacterial homeostasis and infection, with a focus on virulence factors. In addition, recent advances to inhibit the enzymes involved in these glycosylation systems and target the bacterial glycan structures directly will be highlighted. Together, this review provides an overview of the current status and promise for the future of using bacterial glycosylation to develop novel antibacterial strategies.
Collapse
Affiliation(s)
- Liubov Yakovlieva
- Faculty of Science and Engineering, Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
| | - Julius A Fülleborn
- Faculty of Science and Engineering, Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
| | - Marthe T C Walvoort
- Faculty of Science and Engineering, Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
| |
Collapse
|
7
|
Rauch J, Barton J, Kwiatkowski M, Wunderlich M, Steffen P, Moderzynski K, Papp S, Höhn K, Schwanke H, Witt S, Richardt U, Mehlhoop U, Schlüter H, Pianka V, Fleischer B, Tappe D, Osterloh A. GroEL is an immunodominant surface-exposed antigen of Rickettsia typhi. PLoS One 2021; 16:e0253084. [PMID: 34111210 PMCID: PMC8191997 DOI: 10.1371/journal.pone.0253084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/28/2021] [Indexed: 11/26/2022] Open
Abstract
Rickettsioses are neglected and emerging potentially fatal febrile diseases that are caused by obligate intracellular bacteria, rickettsiae. Rickettsia (R.) typhi and R. prowazekii constitute the typhus group (TG) of rickettsiae and are the causative agents of endemic and epidemic typhus, respectively. We recently generated a monoclonal antibody (BNI52) against R. typhi. Characterization of BNI52 revealed that it specifically recognizes TG rickettsiae but not the members of the spotted fever group (SFG) rickettsiae. We further show that BNI52 binds to protein fragments of ±30 kDa that are exposed on the bacterial surface and also present in the periplasmic space. These protein fragments apparently derive from the cytosolic GroEL protein of R. typhi and are also recognized by antibodies in the sera from patients and infected mice. Furthermore, BNI52 opsonizes the bacteria for the uptake by antigen presenting cells (APC), indicating a contribution of GroEL-specific antibodies to protective immunity. Finally, it is interesting that the GroEL protein belongs to 32 proteins that are differentially downregulated by R. typhi after passage through immunodeficient BALB/c CB17 SCID mice. This could be a hint that the rickettsia GroEL protein may have immunomodulatory properties as shown for the homologous protein from several other bacteria, too. Overall, the results of this study provide evidence that GroEL represents an immunodominant antigen of TG rickettsiae that is recognized by the humoral immune response against these pathogens and that may be interesting as a vaccine candidate. Apart from that, the BNI52 antibody represents a new tool for specific detection of TG rickettsiae in various diagnostic and experimental setups.
Collapse
Affiliation(s)
- Jessica Rauch
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jessica Barton
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Malte Wunderlich
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Pascal Steffen
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Stefanie Papp
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Katharina Höhn
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Hella Schwanke
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Susanne Witt
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ulricke Richardt
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ute Mehlhoop
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Verena Pianka
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Dennis Tappe
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Anke Osterloh
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
8
|
Gaytán MO, Singh AK, Woodiga SA, Patel SA, An SS, Vera-Ponce de León A, McGrath S, Miller AR, Bush JM, van der Linden M, Magrini V, Wilson RK, Kitten T, King SJ. A novel sialic acid-binding adhesin present in multiple species contributes to the pathogenesis of Infective endocarditis. PLoS Pathog 2021; 17:e1009222. [PMID: 33465168 PMCID: PMC7846122 DOI: 10.1371/journal.ppat.1009222] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/29/2021] [Accepted: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
Bacterial binding to platelets is a key step in the development of infective endocarditis (IE). Sialic acid, a common terminal carbohydrate on host glycans, is the major receptor for streptococci on platelets. So far, all defined interactions between streptococci and sialic acid on platelets are mediated by serine-rich repeat proteins (SRRPs). However, we identified Streptococcus oralis subsp. oralis IE-isolates that bind sialic acid but lack SRRPs. In addition to binding sialic acid, some SRRP- isolates also bind the cryptic receptor β-1,4-linked galactose through a yet unknown mechanism. Using comparative genomics, we identified a novel sialic acid-binding adhesin, here named AsaA (associated with sialic acid adhesion A), present in IE-isolates lacking SRRPs. We demonstrated that S. oralis subsp. oralis AsaA is required for binding to platelets in a sialic acid-dependent manner. AsaA comprises a non-repeat region (NRR), consisting of a FIVAR/CBM and two Siglec-like and Unique domains, followed by 31 DUF1542 domains. When recombinantly expressed, Siglec-like and Unique domains competitively inhibited binding of S. oralis subsp. oralis and directly interacted with sialic acid on platelets. We further demonstrated that AsaA impacts the pathogenesis of S. oralis subsp. oralis in a rabbit model of IE. Additionally, we found AsaA orthologues in other IE-causing species and demonstrated that the NRR of AsaA from Gemella haemolysans blocked binding of S. oralis subsp. oralis, suggesting that AsaA contributes to the pathogenesis of multiple IE-causing species. Finally, our findings provide evidence that sialic acid is a key factor for bacterial-platelets interactions in a broader range of species than previously appreciated, highlighting its potential as a therapeutic target. Infective endocarditis (IE) is typically a bacterial infection of the heart valves that causes high mortality. Infective endocarditis can affect people with preexisting lesions on their heart valves (Subacute IE). These lesions contain platelets and other host factors to which bacteria can bind. Growth of bacteria and accumulation of host factors results in heart failure. Therefore, the ability of bacteria to bind platelets is key to the development of IE. Here, we identified a novel bacterial protein, AsaA, which helps bacteria bind to platelets and contributes to the development of disease. Although this virulence factor was characterized in Streptococcus oralis, a leading cause of IE, we demonstrated that AsaA is also present in several other IE-causing bacterial species and is likely relevant to their ability to cause disease. We showed that AsaA binds to sialic acid, a terminal sugar present on platelets, thereby demonstrating that sialic acid serves as a receptor for a wider range of IE-causing bacteria than previously appreciated, highlighting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Meztlli O. Gaytán
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Anirudh K. Singh
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Shireen A. Woodiga
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Surina A. Patel
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Seon-Sook An
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Arturo Vera-Ponce de León
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Sean McGrath
- Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Anthony R. Miller
- Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Jocelyn M. Bush
- Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Mark van der Linden
- Institute of Medical Microbiology, German National Reference Center for Streptococci, University Hospital (RWTH), Aachen, Germany
| | - Vincent Magrini
- Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Richard K. Wilson
- Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Todd Kitten
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Samantha J. King
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
9
|
Pessione E. The Russian Doll Model: How Bacteria Shape Successful and Sustainable Inter-Kingdom Relationships. Front Microbiol 2020; 11:573759. [PMID: 33193180 PMCID: PMC7606975 DOI: 10.3389/fmicb.2020.573759] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022] Open
Abstract
Successful inter-kingdom relationships are based upon a dynamic balance between defense and cooperation. A certain degree of competition is necessary to guarantee life spread and development. On the other hand, cooperation is a powerful tool to ensure a long lasting adaptation to changing environmental conditions and to support evolution to a higher level of complexity. Bacteria can interact with their (true or potential) parasites (i.e., phages) and with their multicellular hosts. In these model interactions, bacteria learnt how to cope with their inner and outer host, transforming dangerous signals into opportunities and modulating responses in order to achieve an agreement that is beneficial for the overall participants, thus giving rise to a more complex "organism" or ecosystem. In this review, particular attention will be addressed to underline the minimal energy expenditure required for these successful interactions [e.g., moonlighting proteins, post-translational modifications (PTMs), and multitasking signals] and the systemic vision of these processes and ways of life in which the system proves to be more than the sum of the single components. Using an inside-out perspective, I will examine the possibility of multilevel interactions, in which viruses help bacteria to cope with the animal host and bacteria support the human immune system to counteract viral infection in a circular vision. In this sophisticated network, bacteria represent the precious link that insures system stability with relative low energy expenditure.
Collapse
Affiliation(s)
- Enrica Pessione
- Department of Life Sciences and Systems Biology, School of Nature Sciences, Università degli Studi di Torino, Turin, Italy
| |
Collapse
|
10
|
Chan JM, Gori A, Nobbs AH, Heyderman RS. Streptococcal Serine-Rich Repeat Proteins in Colonization and Disease. Front Microbiol 2020; 11:593356. [PMID: 33193266 PMCID: PMC7661464 DOI: 10.3389/fmicb.2020.593356] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/12/2020] [Indexed: 01/10/2023] Open
Abstract
Glycosylation of proteins, previously thought to be absent in prokaryotes, is increasingly recognized as important for both bacterial colonization and pathogenesis. For mucosal pathobionts, glycoproteins that function as cell wall-associated adhesins facilitate interactions with mucosal surfaces, permitting persistent adherence, invasion of deeper tissues and transition to disease. This is exemplified by Streptococcus pneumoniae and Streptococcus agalactiae, which can switch from being relatively harmless members of the mucosal tract microbiota to bona fide pathogens that cause life-threatening diseases. As part of their armamentarium of virulence factors, streptococci encode a family of large, glycosylated serine-rich repeat proteins (SRRPs) that facilitate binding to various tissue types and extracellular matrix proteins. This minireview focuses on the roles of S. pneumoniae and S. agalactiae SRRPs in persistent colonization and the transition to disease. The potential of utilizing SRRPs as vaccine targets will also be discussed.
Collapse
Affiliation(s)
- Jia Mun Chan
- NIHR Mucosal Pathogens Research Unit, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Andrea Gori
- NIHR Mucosal Pathogens Research Unit, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Angela H. Nobbs
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Robert S. Heyderman
- NIHR Mucosal Pathogens Research Unit, Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
11
|
Zhou B, Albarracin L, Indo Y, Arce L, Masumizu Y, Tomokiyo M, Islam MA, Garcia-Castillo V, Ikeda-Ohtsubo W, Nochi T, Morita H, Takahashi H, Kurata S, Villena J, Kitazawa H. Selection of Immunobiotic Ligilactobacillus salivarius Strains from the Intestinal Tract of Wakame-Fed Pigs: Functional and Genomic Studies. Microorganisms 2020; 8:microorganisms8111659. [PMID: 33114778 PMCID: PMC7716343 DOI: 10.3390/microorganisms8111659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/11/2022] Open
Abstract
In this article, Ligilactobacillus salivarius FFIG strains, isolated from the intestinal tract of wakame-fed pigs, are characterized according to their potential probiotic properties. Strains were evaluated by studying their interaction with porcine intestinal epithelial (PIE) cells in terms of their ability to regulate toll-like receptor (TLR)-3- or TLR4-mediated innate immune responses, as well as by assessing their adhesion capabilities to porcine epithelial cells and mucins. These functional studies were complemented with comparative genomic evaluations using the complete genome sequences of porcine L. salivarius strains selected from subgroups that demonstrated different “immune” and “adhesion” phenotypes. We found that their immunomodulatory and adhesion capabilities are a strain-dependent characteristic. Our analysis indicated that the differential immunomodulatory and adhesive activities of FFIG strains would be dependent on the combination of several surface structures acting simultaneously, which include peptidoglycan, exopolysaccharides, lipoteichoic acid, and adhesins. Of note, our results indicate that there is no correlation between the immunomodulatory capacity of the strains with their adhesion ability to mucins and epithelial cells. Therefore, in the selection of strains destined to colonize the intestinal mucosa and modulate the immunity of the host, both properties must be adequately evaluated. Interestingly, we showed that L. salivarius FFIG58 functionally modulated the innate immune responses triggered by TLR3 and TLR4 activation in PIE cells and efficiently adhered to these cells. Moreover, the FFIG58 strain was capable of reducing rotavirus replication in PIE cells. Therefore, L. salivarius FFIG58 is a good candidate for further in vivo studying the protective effect of lactobacilli against intestinal infections in the porcine host. We also reported and analyzed, for the first time, the complete genome of several L. salivarius strains that were isolated from the intestine of pigs after the selective pressure of feeding the animals with wakame. Further genomic analysis could be of value to reveal the metabolic characteristics and potential of the FFIG strains in general and of the FFIG58 strain, in particular, relating to wakame by-products assimilation.
Collapse
Affiliation(s)
- Binghui Zhou
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (B.Z.); (L.A.); (Y.I.); (L.A.); (Y.M.); (M.T.); (M.A.I.); (V.G.-C.); (W.I.-O.)
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
| | - Leonardo Albarracin
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (B.Z.); (L.A.); (Y.I.); (L.A.); (Y.M.); (M.T.); (M.A.I.); (V.G.-C.); (W.I.-O.)
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina
- Scientific Computing Laboratory, Computer Science Department, Faculty of Exact Sciences and Technology, National University of Tucuman, Tucuman 4000, Argentina
| | - Yuhki Indo
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (B.Z.); (L.A.); (Y.I.); (L.A.); (Y.M.); (M.T.); (M.A.I.); (V.G.-C.); (W.I.-O.)
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
| | - Lorena Arce
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (B.Z.); (L.A.); (Y.I.); (L.A.); (Y.M.); (M.T.); (M.A.I.); (V.G.-C.); (W.I.-O.)
- Infection Biology Laboratory, INSIBIO-CONICET, Faculty of Medicine, University of Tucuman, Tucuman 4000, Argentina
| | - Yuki Masumizu
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (B.Z.); (L.A.); (Y.I.); (L.A.); (Y.M.); (M.T.); (M.A.I.); (V.G.-C.); (W.I.-O.)
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
| | - Mikado Tomokiyo
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (B.Z.); (L.A.); (Y.I.); (L.A.); (Y.M.); (M.T.); (M.A.I.); (V.G.-C.); (W.I.-O.)
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
| | - Md. Aminul Islam
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (B.Z.); (L.A.); (Y.I.); (L.A.); (Y.M.); (M.T.); (M.A.I.); (V.G.-C.); (W.I.-O.)
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
- Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Valeria Garcia-Castillo
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (B.Z.); (L.A.); (Y.I.); (L.A.); (Y.M.); (M.T.); (M.A.I.); (V.G.-C.); (W.I.-O.)
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina
| | - Wakako Ikeda-Ohtsubo
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (B.Z.); (L.A.); (Y.I.); (L.A.); (Y.M.); (M.T.); (M.A.I.); (V.G.-C.); (W.I.-O.)
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
| | - Tomonori Nochi
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
- Laboratory of Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Hidetoshi Morita
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan;
| | - Hideki Takahashi
- Laboratory of Plant Pathology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
- Plant Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Shoichiro Kurata
- Laboratory of Molecular Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8572, Japan;
| | - Julio Villena
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (B.Z.); (L.A.); (Y.I.); (L.A.); (Y.M.); (M.T.); (M.A.I.); (V.G.-C.); (W.I.-O.)
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina
- Correspondence: (J.V.); (H.K.)
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (B.Z.); (L.A.); (Y.I.); (L.A.); (Y.M.); (M.T.); (M.A.I.); (V.G.-C.); (W.I.-O.)
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
- Correspondence: (J.V.); (H.K.)
| |
Collapse
|
12
|
Jaroentomeechai T, Taw MN, Li M, Aquino A, Agashe N, Chung S, Jewett MC, DeLisa MP. Cell-Free Synthetic Glycobiology: Designing and Engineering Glycomolecules Outside of Living Cells. Front Chem 2020; 8:645. [PMID: 32850660 PMCID: PMC7403607 DOI: 10.3389/fchem.2020.00645] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Glycans and glycosylated biomolecules are directly involved in almost every biological process as well as the etiology of most major diseases. Hence, glycoscience knowledge is essential to efforts aimed at addressing fundamental challenges in understanding and improving human health, protecting the environment and enhancing energy security, and developing renewable and sustainable resources that can serve as the source of next-generation materials. While much progress has been made, there remains an urgent need for new tools that can overexpress structurally uniform glycans and glycoconjugates in the quantities needed for characterization and that can be used to mechanistically dissect the enzymatic reactions and multi-enzyme assembly lines that promote their construction. To address this technology gap, cell-free synthetic glycobiology has emerged as a simplified and highly modular framework to investigate, prototype, and engineer pathways for glycan biosynthesis and biomolecule glycosylation outside the confines of living cells. From nucleotide sugars to complex glycoproteins, we summarize here recent efforts that harness the power of cell-free approaches to design, build, test, and utilize glyco-enzyme reaction networks that produce desired glycomolecules in a predictable and controllable manner. We also highlight novel cell-free methods for shedding light on poorly understood aspects of diverse glycosylation processes and engineering these processes toward desired outcomes. Taken together, cell-free synthetic glycobiology represents a promising set of tools and techniques for accelerating basic glycoscience research (e.g., deciphering the "glycan code") and its application (e.g., biomanufacturing high-value glycomolecules on demand).
Collapse
Affiliation(s)
- Thapakorn Jaroentomeechai
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - May N. Taw
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Mingji Li
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Alicia Aquino
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Ninad Agashe
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Sean Chung
- Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY, United States
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
- Center for Synthetic Biology, Northwestern University, Evanston, IL, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, United States
| | - Matthew P. DeLisa
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
- Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
13
|
Guo C, Feng Z, Zuo G, Jiang YL, Zhou CZ, Chen Y, Hou WT. Structural and functional insights into the Asp1/2/3 complex mediated secretion of pneumococcal serine-rich repeat protein PsrP. Biochem Biophys Res Commun 2020; 524:784-790. [PMID: 32037091 DOI: 10.1016/j.bbrc.2020.01.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 11/29/2022]
Abstract
The accessory sec system consisting of seven conserved components is commonly distributed among pathogenic Gram-positive bacteria for the secretion of serine-rich-repeat proteins (SRRPs). Asp1/2/3 protein complex in the system is responsible for both the O-acetylation of GlcNAc and delivering SRRPs to SecA2. However, the molecular mechanism of how Asp1/2/3 transport SRRPs remains unknown. Here, we report the complex structure of Asp1/2/3 from Streptococcus pneumoniae at 2.9 Å. Further functional assays indicated that Asp1/2/3 can stimulate the ATPase activity of SecA2. In addition, the deletion of asp1/2/3 gene resulted in the accumulation of a secreted version of PsrP with an altered glycoform in protoplast fraction of the mutant cell, which suggested the modification/transport coupling of the substrate. Altogether, these findings not only provide structural basis for further investigations on the transport process of SRRPs, but also uncover the indispensable role of Asp1/2/3 in the accessory sec system.
Collapse
Affiliation(s)
- Cong Guo
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhang Feng
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Gang Zuo
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yong-Liang Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Cong-Zhao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yuxing Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Wen-Tao Hou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
14
|
Pimenta AI, Mil‐Homens D, Fialho AM. Burkholderia cenocepacia-host cell contact controls the transcription activity of the trimeric autotransporter adhesin BCAM2418 gene. Microbiologyopen 2020; 9:e998. [PMID: 32097539 PMCID: PMC7142374 DOI: 10.1002/mbo3.998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 12/11/2022] Open
Abstract
Cell-to-cell early contact between pathogens and their host cells is required for the establishment of many infections. Among various surface factors produced by bacteria that allow an organism to become established in a host, the class of adhesins is a primary determinant. Burkholderia cenocepacia adheres to the respiratory epithelium of cystic fibrosis patients and causes chronic inflammation and disease. Cell-to-cell contacts are promoted by various kinds of adhesins, including trimeric autotransporter adhesins (TAAs). We observed that among the 7 TAA genes found in the B. cenocepacia K56-2 genome, two of them (BCAM2418 and BCAS0236) express higher levels of mRNA following physical contact with host cells. Further analysis revealed that the B. cenocepacia K56-2 BCAM2418 gene shows an on-off switch after an initial colonization period, exhibits a strong expression dependent on the host cell type, and enhances its function on cell adhesion. Furthermore, our analysis revealed that adhesion to mucin-coated surfaces dramatically increases the expression levels of BCAM2418. Abrogation of mucin O-glycans turns BCAM2418 gene expression off and impairs bacterial adherence. Overall, our findings suggest that glycosylated extracellular components of host membrane might be a binding site for B. cenocepacia and a signal for the differential expression of the TAA gene BCAM2418.
Collapse
Affiliation(s)
- Andreia I. Pimenta
- iBB‐Institute for Bioengineering and BiosciencesInstituto Superior Técnico, University of LisbonLisbonPortugal
| | - Dalila Mil‐Homens
- iBB‐Institute for Bioengineering and BiosciencesInstituto Superior Técnico, University of LisbonLisbonPortugal
| | - Arsenio M. Fialho
- iBB‐Institute for Bioengineering and BiosciencesInstituto Superior Técnico, University of LisbonLisbonPortugal
- Department of BioengineeringInstituto Superior TécnicoUniversity of LisbonLisbonPortugal
| |
Collapse
|
15
|
Abstract
Cytoplasmic protein O-glycosylation in bacteria is often required for protein maturation, but the dependence of protein export on carbohydrate modifications is less understood. In the current issue of JBC, Chen et al. describe the mechanism for posttranslational modification of a Streptococcus gordonii adhesin and its delivery to the membrane, leading to the first comprehensive model featuring the interplay of glycosyltransferases and the translocation system.
Collapse
Affiliation(s)
- Christina Schäffer
- From the Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, A-1190 Vienna, Austria
| | - Paul Messner
- From the Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, A-1190 Vienna, Austria
| |
Collapse
|
16
|
Type III Secretion Effectors with Arginine N-Glycosyltransferase Activity. Microorganisms 2020; 8:microorganisms8030357. [PMID: 32131463 PMCID: PMC7142665 DOI: 10.3390/microorganisms8030357] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 01/31/2023] Open
Abstract
Type III secretion systems are used by many Gram-negative bacterial pathogens to inject proteins, known as effectors, into the cytosol of host cells. These virulence factors interfere with a diverse array of host signal transduction pathways and cellular processes. Many effectors have catalytic activities to promote post-translational modifications of host proteins. This review focuses on a family of effectors with glycosyltransferase activity that catalyze addition of N-acetyl-d-glucosamine to specific arginine residues in target proteins, leading to reduced NF-κB pathway activation and impaired host cell death. This family includes NleB from Citrobacter rodentium, NleB1 and NleB2 from enteropathogenic and enterohemorrhagic Escherichia coli, and SseK1, SseK2, and SseK3 from Salmonella enterica. First, we place these effectors in the general framework of the glycosyltransferase superfamily and in the particular context of the role of glycosylation in bacterial pathogenesis. Then, we provide detailed information about currently known members of this family, their role in virulence, and their targets.
Collapse
|
17
|
Abstract
In addition to SecA of the general Sec system, many Gram-positive bacteria, including mycobacteria, express SecA2, a second, transport-associated ATPase. SecA2s can be subdivided into two mechanistically distinct types: (i) SecA2s that are part of the accessory Sec (aSec) system, a specialized transporter mediating the export of a family of serine-rich repeat (SRR) glycoproteins that function as adhesins, and (ii) SecA2s that are part of multisubstrate systems, in which SecA2 interacts with components of the general Sec system, specifically the SecYEG channel, to export multiple types of substrates. Found mainly in streptococci and staphylococci, the aSec system also contains SecY2 and novel accessory Sec proteins (Asps) that are required for optimal export. Asp2 also acetylates glucosamine residues on the SRR domains of the substrate during transport. Targeting of the SRR substrate to SecA2 and the aSec translocon is mediated by a specialized signal peptide. Multisubstrate SecA2 systems are present in mycobacteria, corynebacteria, listeriae, clostridia, and some bacillus species. Although most substrates for this SecA2 have canonical signal peptides that are required for export, targeting to SecA2 appears to depend on structural features of the mature protein. The feature of the mature domains of these proteins that renders them dependent on SecA2 for export may be their potential to fold in the cytoplasm. The discovery of aSec and multisubstrate SecA2 systems expands our appreciation of the diversity of bacterial export pathways. Here we present our current understanding of the mechanisms of each of these SecA2 systems.
Collapse
|
18
|
Bokhari H, Maryam A, Shahid R, Siddiqi AR. Oligosaccharyltransferase PglB of Campylobacter jejuni is a glycoprotein. World J Microbiol Biotechnol 2019; 36:9. [PMID: 31858269 DOI: 10.1007/s11274-019-2784-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/10/2019] [Indexed: 11/29/2022]
Abstract
Campylobacter jejuni is the one of the leading cause of bacterial food borne gastroenteritis. PglB, a glycosyltransferase, plays a crucial role of mediating glycosylation of numerous periplasmic proteins. It catalyzes N-glycosylation at the sequon D/E-X1-N-X2-S/T in its substrate proteins. Here we report that the PglB itself is a glycoprotein which self-glycosylates at N534 site in its DYNQS sequon by its own catalytic WWDYG motif. Site-directed mutagenesis, lectin Immunoblot, and mobility shift assays confirmed that the DYNQS is an N-glycosylation motif. PglB's N-glycosylation motif is structurally and functionally similar to its widely studied glycosylation substrate, the OMPH1. Its DYNQS motif forms a solvent-exposed crest. This motif is close to a cluster of polar and hydrophilic residues, which form a loop flanked by two α helices. This arrangement extremely apposite for auto-glycosylation at N534. This self-glycosylation ability of PglB could mediate C. jejuni's ability to colonize the intestinal epithelium. Further this capability may also bear significance for the development of novel conjugated vaccines and diagnostic tests.
Collapse
Affiliation(s)
- Habib Bokhari
- Department of Biosciences, COMSATS University, Islamabad, Chak Shazad Campus, Islamabad, Pakistan.
| | - Arooma Maryam
- Department of Biosciences, COMSATS University, Islamabad, Chak Shazad Campus, Islamabad, Pakistan
| | - Ramla Shahid
- Department of Biosciences, COMSATS University, Islamabad, Chak Shazad Campus, Islamabad, Pakistan
| | - Abdul Rauf Siddiqi
- Department of Biosciences, COMSATS University, Islamabad, Chak Shazad Campus, Islamabad, Pakistan
| |
Collapse
|
19
|
D'Gama JD, Ma Z, Zhang H, Liu X, Fan H, Morris ERA, Cohen ND, Cywes-Bentley C, Pier GB, Waldor MK. A Conserved Streptococcal Virulence Regulator Controls the Expression of a Distinct Class of M-Like Proteins. mBio 2019; 10:e02500-19. [PMID: 31641092 PMCID: PMC6805998 DOI: 10.1128/mbio.02500-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 12/16/2022] Open
Abstract
Streptococcus equi subspecies zooepidemicus (SEZ) are group C streptococci that are important pathogens of economically valuable animals such as horses and pigs. Here, we found that many SEZ isolates bind to a monoclonal antibody that recognizes poly-N-acetylglucosamine (PNAG), a polymer that is found as a surface capsule-like structure on diverse microbes. A fluorescence-activated cell sorting-based transposon insertion sequencing (Tn-seq) screen, coupled with whole-genome sequencing, was used to search for genes for PNAG biosynthesis. Surprisingly, mutations in a gene encoding an M-like protein, szM, and the adjacent transcription factor, designated sezV, rendered strains PNAG negative. SezV was required for szM expression and transcriptome analysis showed that SezV has a small regulon. SEZ strains with inactivating mutations in either sezV or szM were highly attenuated in a mouse model of infection. Comparative genomic analyses revealed that linked sezV and szM homologues are present in all SEZ, S. equi subspecies equi (SEE), and M18 group A streptococcal (GAS) genomes in the database, but not in other streptococci. The antibody to PNAG bound to a wide range of SEZ, SEE, and M18 GAS strains. Immunochemical studies suggest that the SzM protein may be decorated with a PNAG-like oligosaccharide although an intact oligosaccharide substituent could not be isolated. Collectively, our findings suggest that the szM and sezV loci define a subtype of virulent streptococci and that an antibody to PNAG may have therapeutic applications in animal and human diseases caused by streptococci bearing SzM-like proteins.IMPORTANCE M proteins are surface-anchored virulence factors in group A streptococci, human pathogens. Here, we identified an M-like protein, SzM, and its positive regulator, SezV, in Streptococcus equi subspecies zooepidemicus (SEZ), an important group of pathogens for domesticated animals, including horses and pigs. SzM and SezV homologues were found in the genomes of all SEZ and S. equi subspecies equi and M18 group A streptococcal strains analyzed but not in other streptococci. Mutant SEZ strains lacking either sezV or szM were highly attenuated in a mouse model of infection. Collectively, our findings suggest that SezV-related regulators and the linked SzM family of M-like proteins define a new subset of virulent streptococci.
Collapse
Affiliation(s)
- Jonathan D D'Gama
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Zhe Ma
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Hailong Zhang
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Xu Liu
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Ellen Ruth A Morris
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, College Station, Texas, USA
| | - Noah D Cohen
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, College Station, Texas, USA
| | - Colette Cywes-Bentley
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Gerald B Pier
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Matthew K Waldor
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Streptococcus oralis subsp. dentisani Produces Monolateral Serine-Rich Repeat Protein Fibrils, One of Which Contributes to Saliva Binding via Sialic Acid. Infect Immun 2019; 87:IAI.00406-19. [PMID: 31308084 DOI: 10.1128/iai.00406-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 07/08/2019] [Indexed: 12/27/2022] Open
Abstract
Our studies reveal that the oral colonizer and cause of infective endocarditis Streptococcus oralis subsp. dentisani displays a striking monolateral distribution of surface fibrils. Furthermore, our data suggest that these fibrils impact the structure of adherent bacterial chains. Mutagenesis studies indicate that these fibrils are dependent on three serine-rich repeat proteins (SRRPs), here named fibril-associated protein A (FapA), FapB, and FapC, and that each SRRP forms a different fibril with a distinct distribution. SRRPs are a family of bacterial adhesins that have diverse roles in adhesion and that can bind to different receptors through modular nonrepeat region domains. Amino acid sequence and predicted structural similarity searches using the nonrepeat regions suggested that FapA may contribute to interspecies interactions, that FapA and FapB may contribute to intraspecies interactions, and that FapC may contribute to sialic acid binding. We demonstrate that a fapC mutant was significantly reduced in binding to saliva. We confirmed a role for FapC in sialic acid binding by demonstrating that the parental strain was significantly reduced in adhesion upon addition of a recombinantly expressed, sialic acid-specific, carbohydrate binding module, while the fapC mutant was not reduced. However, mutation of a residue previously shown to be essential for sialic acid binding did not decrease bacterial adhesion, leaving the precise mechanism of FapC-mediated adhesion to sialic acid to be defined. We also demonstrate that the presence of any one of the SRRPs is sufficient for efficient biofilm formation. Similar structures were observed on all infective endocarditis isolates examined, suggesting that this distribution is a conserved feature of this S. oralis subspecies.
Collapse
|
21
|
Koomey M. O-linked protein glycosylation in bacteria: snapshots and current perspectives. Curr Opin Struct Biol 2019; 56:198-203. [DOI: 10.1016/j.sbi.2019.03.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/22/2019] [Accepted: 03/13/2019] [Indexed: 12/27/2022]
|
22
|
Latousakis D, MacKenzie DA, Telatin A, Juge N. Serine-rich repeat proteins from gut microbes. Gut Microbes 2019; 11:102-117. [PMID: 31035824 PMCID: PMC6973325 DOI: 10.1080/19490976.2019.1602428] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/08/2019] [Accepted: 03/27/2019] [Indexed: 02/03/2023] Open
Abstract
Serine-rich repeat proteins (SRRPs) have emerged as an important group of cell surface adhesins found in a growing number of Gram-positive bacteria. Studies focused on SRRPs from streptococci and staphylococci demonstrated that these proteins are O-glycosylated on serine or threonine residues and exported via an accessory secretion (aSec) system. In pathogens, these adhesins contribute to disease pathogenesis and represent therapeutic targets. Recently, the non-canonical aSec system has been identified in the genomes of gut microbes and characterization of their associated SRRPs is beginning to unfold, showing their role in mediating attachment and biofilm formation. Here we provide an update of the occurrence, structure, and function of SRRPs across bacteria, with emphasis on the molecular and biochemical properties of SRRPs from gut symbionts, particularly Lactobacilli. These emerging studies underscore the range of ligands recognized by these adhesins and the importance of SRRP glycosylation in the interaction of gut microbes with the host.
Collapse
Affiliation(s)
- Dimitrios Latousakis
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Donald A. MacKenzie
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Andrea Telatin
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Nathalie Juge
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| |
Collapse
|
23
|
Latousakis D, Nepravishta R, Rejzek M, Wegmann U, Le Gall G, Kavanaugh D, Colquhoun IJ, Frese S, MacKenzie DA, Walter J, Angulo J, Field RA, Juge N. Serine-rich repeat protein adhesins from Lactobacillus reuteri display strain specific glycosylation profiles. Glycobiology 2019; 29:45-58. [PMID: 30371779 PMCID: PMC6291802 DOI: 10.1093/glycob/cwy100] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/19/2018] [Accepted: 10/25/2018] [Indexed: 01/24/2023] Open
Abstract
Lactobacillus reuteri is a gut symbiont inhabiting the gastrointestinal tract of numerous vertebrates. The surface-exposed serine-rich repeat protein (SRRP) is a major adhesin in Gram-positive bacteria. Using lectin and sugar nucleotide profiling of wild-type or L. reuteri isogenic mutants, MALDI-ToF-MS, LC-MS and GC-MS analyses of SRRPs, we showed that L. reuteri strains 100-23C (from rodent) and ATCC 53608 (from pig) can perform protein O-glycosylation and modify SRRP100-23 and SRRP53608 with Hex-Glc-GlcNAc and di-GlcNAc moieties, respectively. Furthermore, in vivo glycoengineering in E. coli led to glycosylation of SRRP53608 variants with α-GlcNAc and GlcNAcβ(1→6)GlcNAcα moieties. The glycosyltransferases involved in the modification of these adhesins were identified within the SecA2/Y2 accessory secretion system and their sugar nucleotide preference determined by saturation transfer difference NMR spectroscopy and differential scanning fluorimetry. Together, these findings provide novel insights into the cellular O-protein glycosylation pathways of gut commensal bacteria and potential routes for glycoengineering applications.
Collapse
Affiliation(s)
- Dimitrios Latousakis
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Ridvan Nepravishta
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Martin Rejzek
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Udo Wegmann
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Gwenaelle Le Gall
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Devon Kavanaugh
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Ian J Colquhoun
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | | | - Donald A MacKenzie
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Jens Walter
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Jesus Angulo
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Nathalie Juge
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| |
Collapse
|
24
|
Abranches J, Zeng L, Kajfasz JK, Palmer SR, Chakraborty B, Wen ZT, Richards VP, Brady LJ, Lemos JA. Biology of Oral Streptococci. Microbiol Spectr 2018; 6:10.1128/microbiolspec.GPP3-0042-2018. [PMID: 30338752 PMCID: PMC6287261 DOI: 10.1128/microbiolspec.gpp3-0042-2018] [Citation(s) in RCA: 272] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Indexed: 02/06/2023] Open
Abstract
Bacteria belonging to the genus Streptococcus are the first inhabitants of the oral cavity, which can be acquired right after birth and thus play an important role in the assembly of the oral microbiota. In this article, we discuss the different oral environments inhabited by streptococci and the species that occupy each niche. Special attention is given to the taxonomy of Streptococcus, because this genus is now divided into eight distinct groups, and oral species are found in six of them. Oral streptococci produce an arsenal of adhesive molecules that allow them to efficiently colonize different tissues in the mouth. Also, they have a remarkable ability to metabolize carbohydrates via fermentation, thereby generating acids as byproducts. Excessive acidification of the oral environment by aciduric species such as Streptococcus mutans is directly associated with the development of dental caries. However, less acid-tolerant species such as Streptococcus salivarius and Streptococcus gordonii produce large amounts of alkali, displaying an important role in the acid-base physiology of the oral cavity. Another important characteristic of certain oral streptococci is their ability to generate hydrogen peroxide that can inhibit the growth of S. mutans. Thus, oral streptococci can also be beneficial to the host by producing molecules that are inhibitory to pathogenic species. Lastly, commensal and pathogenic streptococci residing in the oral cavity can eventually gain access to the bloodstream and cause systemic infections such as infective endocarditis.
Collapse
Affiliation(s)
- J Abranches
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL
| | - L Zeng
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL
| | - J K Kajfasz
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL
| | - S R Palmer
- Division of Biosciences, College of Dentistry, Ohio State University, Columbus, OH
| | - B Chakraborty
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL
| | - Z T Wen
- Department of Comprehensive Dentistry and Biomaterials and Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA
| | - V P Richards
- Department of Biological Sciences, Clemson University, Clemson, SC
| | - L J Brady
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL
| | - J A Lemos
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL
| |
Collapse
|
25
|
SssP1, a Streptococcus suis Fimbria-Like Protein Transported by the SecY2/A2 System, Contributes to Bacterial Virulence. Appl Environ Microbiol 2018; 84:AEM.01385-18. [PMID: 30030221 DOI: 10.1128/aem.01385-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/10/2018] [Indexed: 12/20/2022] Open
Abstract
Streptococcus suis is an important Gram-positive pathogen in the swine industry and is an emerging zoonotic pathogen for humans. In our previous work, we found a virulent S. suis strain, CZ130302, belonging to a novel serotype, Chz, to be associated with acute meningitis in piglets. However, its underlying mechanisms of pathogenesis remain poorly understood. In this study, we sequenced and analyzed the complete genomes of three Chz serotype strains, including strain CZ130302 and two avirulent strains, HN136 and AH681. By genome comparison, we found two putative genomic islands (GIs) uniquely encoded in strain CZ130302 and designated them 50K GI and 58K GI. In mouse infection model, the deletion of 50K and 58K GIs caused 270-fold and 3-fold attenuation of virulence, respectively. Notably, we identified a complete SecY2/A2 system, coupled with its secretory protein SssP1 encoded in the 50K GI, which contributed to the pathogenicity of strain CZ130302. Immunogold electron microscopy and immunofluorescence analyses indicated that SssP1 could form fimbria-like structures that extend outward from the bacterial cell surface. The sssP1 mutation also attenuated bacterial adherence in human laryngeal epithelial (HEp-2) cells and human brain microvessel endothelial cells (HBMECs) compared with the wild type. Furthermore, we showed that two analogous Ig-like subdomains of SssP1 have sialic acid binding capacities. In conclusion, our results revealed that the 50K GI and the inside SecY2/A2 system gene cluster are related to the virulence of strain CZ130302, and we clarified a new S. suis pathogenesis mechanism mediated by the secretion protein SssP1.IMPORTANCE Streptococcus suis is an important zoonotic pathogen. Here, we managed to identify key factors to clarify the virulence of S. suis strain CZ130302 from a novel serotype, Chz. Notably, it was shown that a fimbria-like structure was significantly connected to the pathogenicity of the CZ130302 strain by comparative genomics analysis and animal infection assays. The mechanisms of how the CZ130302 strain constructs these fimbria-like structures in the cell surface by genes encoding and production transport were subsequently elucidated. Biosynthesis of the fimbria-like structure was achieved by the production of SssP1 glycoproteins, and its construction was dependent on the SecA2/Y2 secretion system. This study identified a visible fimbria-like protein, SssP1, participating in adhesion to host cells and contributing to the virulence in S. suis These findings will promote a better understanding of the pathogenesis of S. suis.
Collapse
|
26
|
Metabolic engineering of glycoprotein biosynthesis in bacteria. Emerg Top Life Sci 2018; 2:419-432. [PMID: 33525794 DOI: 10.1042/etls20180004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 07/12/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023]
Abstract
The demonstration more than a decade ago that glycoproteins could be produced in Escherichia coli cells equipped with the N-linked protein glycosylation machinery from Campylobacter jejuni opened the door to using simple bacteria for the expression and engineering of complex glycoproteins. Since that time, metabolic engineering has played an increasingly important role in developing and optimizing microbial cell glyco-factories for the production of diverse glycoproteins and other glycoconjugates. It is becoming clear that future progress in creating efficient glycoprotein expression platforms in bacteria will depend on the adoption of advanced strain engineering strategies such as rational design and assembly of orthogonal glycosylation pathways, genome-wide identification of metabolic engineering targets, and evolutionary engineering of pathway performance. Here, we highlight recent advances in the deployment of metabolic engineering tools and strategies to develop microbial cell glyco-factories for the production of high-value glycoprotein targets with applications in research and medicine.
Collapse
|
27
|
Cross BW, Ruhl S. Glycan recognition at the saliva - oral microbiome interface. Cell Immunol 2018; 333:19-33. [PMID: 30274839 DOI: 10.1016/j.cellimm.2018.08.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 01/25/2023]
Abstract
The mouth is a first critical interface where most potentially harmful substances or pathogens contact the host environment. Adaptive and innate immune defense mechanisms are established there to inactivate or eliminate pathogenic microbes that traverse the oral environment on the way to their target organs and tissues. Protein and glycoprotein components of saliva play a particularly important role in modulating the oral microbiota and helping with the clearance of pathogens. It has long been acknowledged that glycobiological and glycoimmunological aspects play a pivotal role in oral host-microbe, microbe-host, and microbe-microbe interactions in the mouth. In this review, we aim to delineate how glycan-mediated host defense mechanisms in the oral cavity support human health. We will describe the role of glycans attached to large molecular size salivary glycoproteins which act as a first line of primordial host defense in the human mouth. We will further discuss how glycan recognition contributes to both colonization and clearance of oral microbes.
Collapse
Affiliation(s)
- Benjamin W Cross
- Department of Oral Biology, University at Buffalo, Buffalo, NY, United States
| | - Stefan Ruhl
- Department of Oral Biology, University at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
28
|
Structural basis for the role of serine-rich repeat proteins from Lactobacillus reuteri in gut microbe-host interactions. Proc Natl Acad Sci U S A 2018; 115:E2706-E2715. [PMID: 29507249 PMCID: PMC5866549 DOI: 10.1073/pnas.1715016115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Gut bacteria play a key role in health and disease, but the molecular mechanisms underpinning their interaction with the host remain elusive. The serine-rich repeat proteins (SRRPs) are a family of adhesins identified in many Gram-positive pathogenic bacteria. We previously showed that beneficial bacterial species found in the gut also express SRRPs and that SRRP was required for the ability of Lactobacillus reuteri strain to colonize mice. Here, our structural and biochemical data reveal that L. reuteri SRRP adopts a β-solenoid fold not observed in other structurally characterized SRRPs and functions as an adhesin via a pH-dependent mechanism, providing structural insights into the role of these adhesins in biofilm formation of gut symbionts. Lactobacillus reuteri, a Gram-positive bacterial species inhabiting the gastrointestinal tract of vertebrates, displays remarkable host adaptation. Previous mutational analyses of rodent strain L. reuteri 100-23C identified a gene encoding a predicted surface-exposed serine-rich repeat protein (SRRP100-23) that was vital for L. reuteri biofilm formation in mice. SRRPs have emerged as an important group of surface proteins on many pathogens, but no structural information is available in commensal bacteria. Here we report the 2.00-Å and 1.92-Å crystal structures of the binding regions (BRs) of SRRP100-23 and SRRP53608 from L. reuteri ATCC 53608, revealing a unique β-solenoid fold in this important adhesin family. SRRP53608-BR bound to host epithelial cells and DNA at neutral pH and recognized polygalacturonic acid (PGA), rhamnogalacturonan I, or chondroitin sulfate A at acidic pH. Mutagenesis confirmed the role of the BR putative binding site in the interaction of SRRP53608-BR with PGA. Long molecular dynamics simulations showed that SRRP53608-BR undergoes a pH-dependent conformational change. Together, these findings provide mechanistic insights into the role of SRRPs in host–microbe interactions and open avenues of research into the use of biofilm-forming probiotics against clinically important pathogens.
Collapse
|
29
|
Chen Y, Bensing BA, Seepersaud R, Mi W, Liao M, Jeffrey PD, Shajahan A, Sonon RN, Azadi P, Sullam PM, Rapoport TA. Unraveling the sequence of cytosolic reactions in the export of GspB adhesin from Streptococcus gordonii. J Biol Chem 2018; 293:5360-5373. [PMID: 29462788 DOI: 10.1074/jbc.ra117.000963] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/05/2018] [Indexed: 12/24/2022] Open
Abstract
Many pathogenic bacteria, including Streptococcus gordonii, possess a pathway for the cellular export of a single serine-rich-repeat protein that mediates the adhesion of bacteria to host cells and the extracellular matrix. This adhesin protein is O-glycosylated by several cytosolic glycosyltransferases and requires three accessory Sec proteins (Asp1-3) for export, but how the adhesin protein is processed for export is not well understood. Here, we report that the S. gordonii adhesin GspB is sequentially O-glycosylated by three enzymes (GtfA/B, Nss, and Gly) that attach N-acetylglucosamine and glucose to Ser/Thr residues. We also found that modified GspB is transferred from the last glycosyltransferase to the Asp1/2/3 complex. Crystal structures revealed that both Asp1 and Asp3 are related to carbohydrate-binding proteins, suggesting that they interact with carbohydrates and bind glycosylated adhesin, a notion that was supported by further analyses. We further observed that Asp1 also has an affinity for phospholipids, which is attenuated by Asp2. In summary, our findings support a model in which the GspB adhesin is sequentially glycosylated by GtfA/B, Nss, and Gly and then transferred to the Asp1/2/3 complex in which Asp1 mediates the interaction of the Asp1/2/3 complex with the lipid bilayer for targeting of matured GspB to the export machinery.
Collapse
Affiliation(s)
- Yu Chen
- From the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Barbara A Bensing
- the Department of Medicine, San Francisco Veteran Affairs Medical Center, University of California at San Francisco, San Francisco, California 94121
| | - Ravin Seepersaud
- the Department of Medicine, San Francisco Veteran Affairs Medical Center, University of California at San Francisco, San Francisco, California 94121
| | - Wei Mi
- From the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Maofu Liao
- From the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Philip D Jeffrey
- the Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Asif Shajahan
- the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, and
| | - Roberto N Sonon
- the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, and
| | - Parastoo Azadi
- the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, and
| | - Paul M Sullam
- the Department of Medicine, San Francisco Veteran Affairs Medical Center, University of California at San Francisco, San Francisco, California 94121
| | - Tom A Rapoport
- From the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, .,the Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
30
|
Kristensen MF, Zeng G, Neu TR, Meyer RL, Baelum V, Schlafer S. Osteopontin adsorption to Gram-positive cells reduces adhesion forces and attachment to surfaces under flow. J Oral Microbiol 2017; 9:1379826. [PMID: 29081915 PMCID: PMC5646589 DOI: 10.1080/20002297.2017.1379826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/07/2017] [Indexed: 01/27/2023] Open
Abstract
The bovine milk protein osteopontin (OPN) may be an efficient means to prevent bacterial adhesion to dental tissues and control biofilm formation. This study sought to determine to what extent OPN impacts adhesion forces and surface attachment of different bacterial strains involved in dental caries or medical device–related infections. It further investigated if OPN’s effect on adhesion is caused by blocking the accessibility of glycoconjugates on bacterial surfaces. Bacterial adhesion was determined in a shear-controlled flow cell system in the presence of different concentrations of OPN, and interaction forces of single bacteria were quantified using single-cell force spectroscopy before and after OPN exposure. Moreover, the study investigated OPN’s effect on the accessibility of cell surface glycoconjugates through fluorescence lectin-binding analysis. OPN strongly affected bacterial adhesion in a dose-dependent manner for all investigated species (Actinomyces naeslundii, Actinomyces viscosus, Lactobacillus paracasei subsp. paracasei, Staphylococcus epidermidis, Streptococcus mitis, and Streptococcus oralis). Likewise, adhesion forces decreased after OPN treatment. No effect of OPN on the lectin-accessibility to glycoconjugates was found. OPN reduces the adhesion and adhesion force/energy of a variety of bacteria and has a potential therapeutic use for biofilm control. OPN acts upon bacterial adhesion without blocking cell surface glycoconjugates.
Collapse
Affiliation(s)
- M F Kristensen
- Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| | - G Zeng
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - T R Neu
- Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, Magdeburg, Germany
| | - R L Meyer
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark.,Section of Microbiology, Department of Bioscience;Aarhus University, Aarhus, Denmark
| | - V Baelum
- Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| | - S Schlafer
- Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark.,Section of Microbiology, Department of Bioscience;Aarhus University, Aarhus, Denmark
| |
Collapse
|
31
|
|
32
|
Seepersaud R, Sychantha D, Bensing BA, Clarke AJ, Sullam PM. O-acetylation of the serine-rich repeat glycoprotein GspB is coordinated with accessory Sec transport. PLoS Pathog 2017; 13:e1006558. [PMID: 28827841 PMCID: PMC5578698 DOI: 10.1371/journal.ppat.1006558] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/31/2017] [Accepted: 07/28/2017] [Indexed: 11/17/2022] Open
Abstract
The serine-rich repeat (SRR) glycoproteins are a family of adhesins found in many Gram-positive bacteria. Expression of the SRR adhesins has been linked to virulence for a variety of infections, including streptococcal endocarditis. The SRR preproteins undergo intracellular glycosylation, followed by export via the accessory Sec (aSec) system. This specialized transporter is comprised of SecA2, SecY2 and three to five accessory Sec proteins (Asps) that are required for export. Although the post-translational modification and transport of the SRR adhesins have been viewed as distinct processes, we found that Asp2 of Streptococcus gordonii also has an important role in modifying the SRR adhesin GspB. Biochemical analysis and mass spectrometry indicate that Asp2 is an acetyltransferase that modifies N-acetylglucosamine (GlcNAc) moieties on the SRR domains of GspB. Targeted mutations of the predicted Asp2 catalytic domain had no effect on transport, but abolished acetylation. Acetylated forms of GspB were only detected when the protein was exported via the aSec system, but not when transport was abolished by secA2 deletion. In addition, GspB variants rerouted to export via the canonical Sec pathway also lacked O-acetylation, demonstrating that this modification is specific to export via the aSec system. Streptococci expressing GspB lacking O-acetylated GlcNAc were significantly reduced in their ability bind to human platelets in vitro, an interaction that has been strongly linked to virulence in the setting of endocarditis. These results demonstrate that Asp2 is a bifunctional protein involved in both the post-translational modification and transport of SRR glycoproteins. In addition, these findings indicate that these processes are coordinated during the biogenesis of SRR glycoproteins, such that the adhesin is optimally modified for binding. This requirement for the coupling of modification and export may explain the co-evolution of the SRR glycoproteins with their specialized glycan modifying and export systems.
Collapse
Affiliation(s)
- Ravin Seepersaud
- San Francisco Veteran Affairs Medical Center, and the University of California, San Francisco, San Francisco, CA, United States of America
| | - David Sychantha
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Barbara A Bensing
- San Francisco Veteran Affairs Medical Center, and the University of California, San Francisco, San Francisco, CA, United States of America
| | - Anthony J Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Paul M Sullam
- San Francisco Veteran Affairs Medical Center, and the University of California, San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
33
|
Couvigny B, Lapaque N, Rigottier-Gois L, Guillot A, Chat S, Meylheuc T, Kulakauskas S, Rohde M, Mistou MY, Renault P, Doré J, Briandet R, Serror P, Guédon E. Three glycosylated serine-rich repeat proteins play a pivotal role in adhesion and colonization of the pioneer commensal bacterium,Streptococcus salivarius. Environ Microbiol 2017; 19:3579-3594. [DOI: 10.1111/1462-2920.13853] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 01/25/2023]
Affiliation(s)
- Benoit Couvigny
- MICALIS Institute, INRA, AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
| | - Nicolas Lapaque
- MICALIS Institute, INRA, AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
| | - Lionel Rigottier-Gois
- MICALIS Institute, INRA, AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
| | - Alain Guillot
- MICALIS Institute, INRA, AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
| | - Sophie Chat
- INRA, Plateforme MIMA2; Jouy-en-josas France
| | - Thierry Meylheuc
- MICALIS Institute, INRA, AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
- INRA, Plateforme MIMA2; Jouy-en-josas France
| | - Saulius Kulakauskas
- MICALIS Institute, INRA, AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
| | - Manfred Rohde
- HZI, Helmholtz Centre for Infection Research; Braunschweig Germany
| | - Michel-Yves Mistou
- Laboratory for Food Safety; Université Paris-Est, ANSES; Maisons-Alfort France
| | - Pierre Renault
- MICALIS Institute, INRA, AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
| | - Joel Doré
- MICALIS Institute, INRA, AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
| | - Romain Briandet
- MICALIS Institute, INRA, AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
| | - Pascale Serror
- MICALIS Institute, INRA, AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
| | - Eric Guédon
- STLO, UMR1253, INRA, Agrocampus Ouest; Rennes France
| |
Collapse
|
34
|
Zhu F, Zhang H, Yang T, Haslam SM, Dell A, Wu H. Engineering and Dissecting the Glycosylation Pathway of a Streptococcal Serine-rich Repeat Adhesin. J Biol Chem 2017; 291:27354-27363. [PMID: 28039332 PMCID: PMC5207161 DOI: 10.1074/jbc.m116.752998] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/11/2016] [Indexed: 11/24/2022] Open
Abstract
Serine-rich repeat glycoproteins (SRRPs) are conserved in Gram-positive bacteria. They are crucial for modulating biofilm formation and bacterial-host interactions. Glycosylation of SRRPs plays a pivotal role in the process; thus understanding the glycosyltransferases involved is key to identifying new therapeutic drug targets. The glycosylation of Fap1, an SRRP of Streptococcus parasanguinis, is mediated by a gene cluster consisting of six genes: gtf1, gtf2, gly, gtf3, dGT1, and galT2. Mature Fap1 glycan possesses the sequence of Rha1–3Glc1-(Glc1–3GlcNAc1)-2,6-Glc1–6GlcNAc. Gtf12, Gtf3, and dGT1 are responsible for the first four steps of the Fap1 glycosylation, catalyzing the transfer of GlcNAc, Glc, Glc, and GlcNAc residues to the protein backbone sequentially. The role of GalT2 and Gly in the Fap1 glycosylation is unknown. In the present study, we synthesized the fully modified Fap1 glycan in Escherichia coli by incorporating all six genes from the cluster. This study represents the first reconstitution of an exogenous stepwise O-glycosylation synthetic pathway in E. coli. In addition, we have determined that GalT2 mediates the fifth step of the Fap1 glycosylation by adding a rhamnose residue, and Gly mediates the final glycosylation step by transferring glucosyl residues. Furthermore, inactivation of each glycosyltransferase gene resulted in differentially impaired biofilms of S. parasanguinis, demonstrating the importance of Fap1 glycosylation in the biofilm formation. The Fap1 glycosylation system offers an excellent model to engineer glycans using different permutations of glycosyltransferases and to investigate biosynthetic pathways of SRRPs because SRRP genetic loci are highly conserved.
Collapse
Affiliation(s)
- Fan Zhu
- From the Departments of Pediatric Dentistry and.,Microbiology, University of Alabama at Birmingham, Schools of Dentistry and Medicine, Birmingham, Alabama 35244 and
| | - Hua Zhang
- From the Departments of Pediatric Dentistry and
| | - Tiandi Yang
- the Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Stuart M Haslam
- the Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Anne Dell
- the Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Hui Wu
- From the Departments of Pediatric Dentistry and .,Microbiology, University of Alabama at Birmingham, Schools of Dentistry and Medicine, Birmingham, Alabama 35244 and
| |
Collapse
|
35
|
Lizcano A, Akula Suresh Babu R, Shenoy AT, Saville AM, Kumar N, D'Mello A, Hinojosa CA, Gilley RP, Segovia J, Mitchell TJ, Tettelin H, Orihuela CJ. Transcriptional organization of pneumococcal psrP-secY2A2 and impact of GtfA and GtfB deletion on PsrP-associated virulence properties. Microbes Infect 2017; 19:323-333. [PMID: 28408270 PMCID: PMC5581956 DOI: 10.1016/j.micinf.2017.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/10/2017] [Accepted: 04/03/2017] [Indexed: 01/08/2023]
Abstract
Pneumococcal serine-rich repeat protein (PsrP) is a glycoprotein that mediates Streptococcus pneumoniae attachment to lung cells and promotes biofilm formation. Herein, we investigated the transcriptional organization of psrP-secY2A2, the 37-kbp pathogenicity island encoding PsrP and its accessory genes. PCR amplification of cDNA and RNA-seq analysis found psrP-secY2A2 to be minimally composed of three operons: psrP-glyA, glyB, and glyC-asp5. Transcription of all three operons was greatest during biofilm growth and immunoblot analyses confirmed increased PsrP production by biofilm pneumococci. Using gas chromatography-mass spectrometry we identified monomeric N-acetylglucosamine as the primary glycoconjugate present on a recombinant intracellular version of PsrP, i.e. PsrP1-734. This finding was validated by immunoblot using lectins with known carbohydrate specificities. We subsequently deleted gtfA and gtfB, the GTFs thought to be responsible for addition of O-linked N-acetylglucosamine, and tested for PsrP and its associated virulence properties. These deletions negatively affected our ability to detect PsrP1-734 in bacterial whole cell lysates. Moreover, S. pneumoniae mutants lacking these genes pheno-copied the psrP mutant and were attenuated for: biofilm formation, adhesion to lung epithelial cells, and pneumonia in mice. Our studies identify the transcriptional organization of psrP-secY2A2 and show the indispensable role of GtfA and GtfB on PsrP-mediated pneumococcal virulence.
Collapse
Affiliation(s)
- Anel Lizcano
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ramya Akula Suresh Babu
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Anukul T Shenoy
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alison Maren Saville
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Nikhil Kumar
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Adonis D'Mello
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Cecilia A Hinojosa
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ryan P Gilley
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jesus Segovia
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Timothy J Mitchell
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8QQ, Scotland, UK; Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Carlos J Orihuela
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
36
|
Jiang YL, Jin H, Yang HB, Zhao RL, Wang S, Chen Y, Zhou CZ. Defining the enzymatic pathway for polymorphic O-glycosylation of the pneumococcal serine-rich repeat protein PsrP. J Biol Chem 2017; 292:6213-6224. [PMID: 28246170 DOI: 10.1074/jbc.m116.770446] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/17/2017] [Indexed: 12/30/2022] Open
Abstract
Protein O-glycosylation is an important post-translational modification in all organisms, but deciphering the specific functions of these glycans is difficult due to their structural complexity. Understanding the glycosylation of mucin-like proteins presents a particular challenge as they are modified numerous times with both the enzymes involved and the glycosylation patterns being poorly understood. Here we systematically explored the O-glycosylation pathway of a mucin-like serine-rich repeat protein PsrP from the human pathogen Streptococcus pneumoniae TIGR4. Previous works have assigned the function of 3 of the 10 glycosyltransferases thought to modify PsrP, GtfA/B, and Gtf3 as catalyzing the first two reactions to form a unified disaccharide core structure. We now use in vivo and in vitro glycosylation assays combined with hydrolytic activity assays to identify the glycosyltransferases capable of decorating this core structure in the third and fourth steps of glycosylation. Specifically, the full-length GlyE and GlyG proteins and the GlyD DUF1792 domain participate in both steps, whereas full-length GlyA and the GlyD GT8 domain catalyze only the fourth step. Incorporation of different sugars to the disaccharide core structure at multiple sites along the serine-rich repeats results in a highly polymorphic product. Furthermore, crystal structures of apo- and UDP-complexed GlyE combined with structural analyses reveal a novel Rossmann-fold "add-on" domain that we speculate to function as a universal module shared by GlyD, GlyE, and GlyA to forward the peptide acceptor from one enzyme to another. These findings define the complete glycosylation pathway of a bacterial glycoprotein and offer a testable hypothesis of how glycosyltransferase coordination facilitates glycan assembly.
Collapse
Affiliation(s)
- Yong-Liang Jiang
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China and.,Key Laboratory of Structural Biology, Chinese Academy of Science, Hefei, Anhui 230027, China
| | - Hua Jin
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China and.,Key Laboratory of Structural Biology, Chinese Academy of Science, Hefei, Anhui 230027, China
| | - Hong-Bo Yang
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China and.,Key Laboratory of Structural Biology, Chinese Academy of Science, Hefei, Anhui 230027, China
| | - Rong-Li Zhao
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China and.,Key Laboratory of Structural Biology, Chinese Academy of Science, Hefei, Anhui 230027, China
| | - Shiliang Wang
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China and
| | - Yuxing Chen
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China and .,Key Laboratory of Structural Biology, Chinese Academy of Science, Hefei, Anhui 230027, China
| | - Cong-Zhao Zhou
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China and .,Key Laboratory of Structural Biology, Chinese Academy of Science, Hefei, Anhui 230027, China
| |
Collapse
|
37
|
Streptococcus oralis Neuraminidase Modulates Adherence to Multiple Carbohydrates on Platelets. Infect Immun 2017; 85:IAI.00774-16. [PMID: 27993975 DOI: 10.1128/iai.00774-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/15/2016] [Indexed: 11/20/2022] Open
Abstract
Adherence to host surfaces is often mediated by bacterial binding to surface carbohydrates. Although it is widely appreciated that some bacterial species express glycosidases, previous studies have not considered whether bacteria bind to multiple carbohydrates within host glycans as they are modified by bacterial glycosidases. Streptococcus oralis is a leading cause of subacute infective endocarditis. Binding to platelets is a critical step in disease; however, the mechanisms utilized by S. oralis remain largely undefined. Studies revealed that S. oralis, like Streptococcus gordonii and Streptococcus sanguinis, binds platelets via terminal sialic acid. However, unlike those organisms, S. oralis produces a neuraminidase, NanA, which cleaves terminal sialic acid. Further studies revealed that following NanA-dependent removal of terminal sialic acid, S. oralis bound exposed β-1,4-linked galactose. Adherence to both these carbohydrates required Fap1, the S. oralis member of the serine-rich repeat protein (SRRP) family of adhesins. Mutation of a conserved residue required for sialic acid binding by other SRRPs significantly reduced platelet binding, supporting the hypothesis that Fap1 binds this carbohydrate. The mechanism by which Fap1 contributes to β-1,4-linked galactose binding remains to be defined; however, binding may occur via additional domains of unknown function within the nonrepeat region, one of which shares some similarity with a carbohydrate binding module. This study is the first demonstration that an SRRP is required to bind β-1,4-linked galactose and the first time that one of these adhesins has been shown to be required for binding of multiple glycan receptors.
Collapse
|
38
|
Bleiziffer I, Eikmeier J, Pohlentz G, McAulay K, Xia G, Hussain M, Peschel A, Foster S, Peters G, Heilmann C. The Plasmin-Sensitive Protein Pls in Methicillin-Resistant Staphylococcus aureus (MRSA) Is a Glycoprotein. PLoS Pathog 2017; 13:e1006110. [PMID: 28081265 PMCID: PMC5230774 DOI: 10.1371/journal.ppat.1006110] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/02/2016] [Indexed: 01/16/2023] Open
Abstract
Most bacterial glycoproteins identified to date are virulence factors of pathogenic bacteria, i.e. adhesins and invasins. However, the impact of protein glycosylation on the major human pathogen Staphylococcus aureus remains incompletely understood. To study protein glycosylation in staphylococci, we analyzed lysostaphin lysates of methicillin-resistant Staphylococcus aureus (MRSA) strains by SDS-PAGE and subsequent periodic acid-Schiff’s staining. We detected four (>300, ∼250, ∼165, and ∼120 kDa) and two (>300 and ∼175 kDa) glycosylated surface proteins with strain COL and strain 1061, respectively. The ∼250, ∼165, and ∼175 kDa proteins were identified as plasmin-sensitive protein (Pls) by mass spectrometry. Previously, Pls has been demonstrated to be a virulence factor in a mouse septic arthritis model. The pls gene is encoded by the staphylococcal cassette chromosome (SCC)mec type I in MRSA that also encodes the methicillin resistance-conferring mecA and further genes. In a search for glycosyltransferases, we identified two open reading frames encoded downstream of pls on the SCCmec element, which we termed gtfC and gtfD. Expression and deletion analysis revealed that both gtfC and gtfD mediate glycosylation of Pls. Additionally, the recently reported glycosyltransferases SdgA and SdgB are involved in Pls glycosylation. Glycosylation occurs at serine residues in the Pls SD-repeat region and modifying carbohydrates are N-acetylhexosaminyl residues. Functional characterization revealed that Pls can confer increased biofilm formation, which seems to involve two distinct mechanisms. The first mechanism depends on glycosylation of the SD-repeat region by GtfC/GtfD and probably also involves eDNA, while the second seems to be independent of glycosylation as well as eDNA and may involve the centrally located G5 domains. Other previously known Pls properties are not related to the sugar modifications. In conclusion, Pls is a glycoprotein and Pls glycosyl residues can stimulate biofilm formation. Thus, sugar modifications may represent promising new targets for novel therapeutic or prophylactic measures against life-threatening S. aureus infections. Staphylococcus aureus is a serious pathogen that causes life-threatening infections due to its ability to attach to surfaces, form biofilms, and persist inside the host. One of previously identified virulence factors in S. aureus pathogenesis is the plasmin-sensitive surface protein Pls. We here identified Pls as a posttranslationally modified glycoprotein and characterized the domain within Pls that becomes glycosylated as well as the modifying sugars. Moreover, we found that the glycosyltransferases GtfC and GtfD carry out the glycosylation reactions. In a search for a role for the modifying sugars, we found that Pls can stimulate biofilm formation apparently via two distinct mechanisms, one being dependent on glycosylation by GtfC and GtfD the other being independent of glycosylation as well as eDNA. Moreover, we found that none of the already known Pls functions is mediated by the sugar moieties. Thus, we conclude that GtfC/GtfD-glycosylated Pls may contribute to MRSA pathogenicity via stimulation of biofilm formation and may serve as future target to combat or prevent infections with this serious pathogen.
Collapse
Affiliation(s)
- Isabelle Bleiziffer
- Institute of Medical Microbiology, University of Münster, Münster, Germany
- Interdisciplinary Center for Clinical Research (IZKF), University of Münster, Münster, Germany
| | - Julian Eikmeier
- Institute of Medical Microbiology, University of Münster, Münster, Germany
- Interdisciplinary Center for Clinical Research (IZKF), University of Münster, Münster, Germany
| | | | - Kathryn McAulay
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Guoqing Xia
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Muzaffar Hussain
- Institute of Medical Microbiology, University of Münster, Münster, Germany
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, University of Tübingen, Tübingen, Germany
| | - Simon Foster
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Georg Peters
- Institute of Medical Microbiology, University of Münster, Münster, Germany
- Interdisciplinary Center for Clinical Research (IZKF), University of Münster, Münster, Germany
- Cluster of Excellence EXC 1003, Cells in Motion, University of Münster, Münster, Germany
| | - Christine Heilmann
- Institute of Medical Microbiology, University of Münster, Münster, Germany
- Interdisciplinary Center for Clinical Research (IZKF), University of Münster, Münster, Germany
- * E-mail:
| |
Collapse
|
39
|
Haworth JA, Jenkinson HF, Petersen HJ, Back CR, Brittan JL, Kerrigan SW, Nobbs AH. Concerted functions of Streptococcus gordonii surface proteins PadA and Hsa mediate activation of human platelets and interactions with extracellular matrix. Cell Microbiol 2017; 19:e12667. [PMID: 27616700 PMCID: PMC5574023 DOI: 10.1111/cmi.12667] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/23/2016] [Accepted: 09/07/2016] [Indexed: 12/17/2022]
Abstract
A range of Streptococcus bacteria are able to interact with blood platelets to form a thrombus (clot). Streptococcus gordonii is ubiquitous within the human oral cavity and amongst the common pathogens isolated from subjects with infective endocarditis. Two cell surface proteins, Hsa and Platelet adherence protein A (PadA), in S. gordonii mediate adherence and activation of platelets. In this study, we demonstrate that PadA binds activated platelets and that an NGR (Asparagine-Glycine-Arginine) motif within a 657 amino acid residue N-terminal fragment of PadA is responsible for this, together with two other integrin-like recognition motifs RGT and AGD. PadA also acts in concert with Hsa to mediate binding of S. gordonii to cellular fibronectin and vitronectin, and to promote formation of biofilms. Evidence is presented that PadA and Hsa are each reliant on the other's active presentation on the bacterial cell surface, suggesting cooperativity in functions impacting both colonization and pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Jane L. Brittan
- School of Oral and Dental SciencesUniversity of BristolBristolUK
| | - Steve W. Kerrigan
- Cardiovascular Infection GroupRoyal College of Surgeons in IrelandDublin 2Ireland
| | - Angela H. Nobbs
- School of Oral and Dental SciencesUniversity of BristolBristolUK
| |
Collapse
|
40
|
Schäffer C, Messner P. Emerging facets of prokaryotic glycosylation. FEMS Microbiol Rev 2016; 41:49-91. [PMID: 27566466 DOI: 10.1093/femsre/fuw036] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/17/2016] [Accepted: 08/01/2016] [Indexed: 12/16/2022] Open
Abstract
Glycosylation of proteins is one of the most prevalent post-translational modifications occurring in nature, with a wide repertoire of biological implications. Pathways for the main types of this modification, the N- and O-glycosylation, can be found in all three domains of life-the Eukarya, Bacteria and Archaea-thereby following common principles, which are valid also for lipopolysaccharides, lipooligosaccharides and glycopolymers. Thus, studies on any glycoconjugate can unravel novel facets of the still incompletely understood fundamentals of protein N- and O-glycosylation. While it is estimated that more than two-thirds of all eukaryotic proteins would be glycosylated, no such estimate is available for prokaryotic glycoproteins, whose understanding is lagging behind, mainly due to the enormous variability of their glycan structures and variations in the underlying glycosylation processes. Combining glycan structural information with bioinformatic, genetic, biochemical and enzymatic data has opened up an avenue for in-depth analyses of glycosylation processes as a basis for glycoengineering endeavours. Here, the common themes of glycosylation are conceptualised for the major classes of prokaryotic (i.e. bacterial and archaeal) glycoconjugates, with a special focus on glycosylated cell-surface proteins. We describe the current knowledge of biosynthesis and importance of these glycoconjugates in selected pathogenic and beneficial microbes.
Collapse
Affiliation(s)
- Christina Schäffer
- Department of NanoBiotechnology, Institute of Biologically Inspired Materials, NanoGlycobiology unit, Universität für Bodenkultur Wien, A-1180 Vienna, Austria
| | - Paul Messner
- Department of NanoBiotechnology, Institute of Biologically Inspired Materials, NanoGlycobiology unit, Universität für Bodenkultur Wien, A-1180 Vienna, Austria
| |
Collapse
|
41
|
Sugar and Spice Make Bacteria Not Nice: Protein Glycosylation and Its Influence in Pathogenesis. J Mol Biol 2016; 428:3206-3220. [DOI: 10.1016/j.jmb.2016.04.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/04/2016] [Accepted: 04/08/2016] [Indexed: 01/08/2023]
|
42
|
The Staphylococcus aureus Global Regulator MgrA Modulates Clumping and Virulence by Controlling Surface Protein Expression. PLoS Pathog 2016; 12:e1005604. [PMID: 27144398 PMCID: PMC4856396 DOI: 10.1371/journal.ppat.1005604] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/07/2016] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus is a human commensal and opportunistic pathogen that causes devastating infections in a wide range of locations within the body. One of the defining characteristics of S. aureus is its ability to form clumps in the presence of soluble fibrinogen, which likely has a protective benefit and facilitates adhesion to host tissue. We have previously shown that the ArlRS two-component regulatory system controls clumping, in part by repressing production of the large surface protein Ebh. In this work we show that ArlRS does not directly regulate Ebh, but instead ArlRS activates expression of the global regulator MgrA. Strains lacking mgrA fail to clump in the presence of fibrinogen, and clumping can be restored to an arlRS mutant by overexpressing either arlRS or mgrA, indicating that ArlRS and MgrA constitute a regulatory pathway. We used RNA-seq to show that MgrA represses ebh, as well as seven cell wall-associated proteins (SraP, Spa, FnbB, SasG, SasC, FmtB, and SdrD). EMSA analysis showed that MgrA directly represses expression of ebh and sraP. Clumping can be restored to an mgrA mutant by deleting the genes for Ebh, SraP and SasG, suggesting that increased expression of these proteins blocks clumping by steric hindrance. We show that mgrA mutants are less virulent in a rabbit model of endocarditis, and virulence can be partially restored by deleting the genes for the surface proteins ebh, sraP, and sasG. While mgrA mutants are unable to clump, they are known to have enhanced biofilm capacity. We demonstrate that this increase in biofilm formation is partially due to up-regulation of SasG, a surface protein known to promote intercellular interactions. These results confirm that ArlRS and MgrA constitute a regulatory cascade, and that they control expression of a number of genes important for virulence, including those for eight large surface proteins. Staphylococcus causes a wide range of diseases, ranging from skin infections to deadly invasive condition like endocarditis, septicemia, osteomyelitis, and pneumonia. In this work we examine the ArlRS two-component regulatory system, which controls interactions with the host plasma protein fibrinogen. S. aureus normally forms large aggregates called clumps in the presence of fibrinogen, but the arlRS mutant is unable to clump. We demonstrate that ArlRS activates expression of the DNA-binding protein MgrA, and that mgrA is also required for clumping. Transcriptional analysis of an mgrA mutant shows that MgrA regulates expression of eight surface proteins. Expression of these surface proteins affects clumping, possibly by physically interfering with fibrinogen binding. Strains lacking mgrA are less virulent in an endocarditis model, and virulence can be partially restored by deleting genes for three of these surface proteins. An mgrA mutant is also known to have enhanced biofilm formation, and we show that this is partially due to increased production of one of these surface proteins. These results demonstrate that ArlRS and MgrA constitute a regulatory cascade in S. aureus that is crucial for pathogenesis and may be a good candidate to target for drug development.
Collapse
|
43
|
Bensing BA, Khedri Z, Deng L, Yu H, Prakobphol A, Fisher SJ, Chen X, Iverson TM, Varki A, Sullam PM. Novel aspects of sialoglycan recognition by the Siglec-like domains of streptococcal SRR glycoproteins. Glycobiology 2016; 26:1222-1234. [PMID: 27037304 DOI: 10.1093/glycob/cww042] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/23/2016] [Accepted: 03/25/2016] [Indexed: 12/15/2022] Open
Abstract
Serine-rich repeat glycoproteins are adhesins expressed by commensal and pathogenic Gram-positive bacteria. A subset of these adhesins, expressed by oral streptococci, binds sialylated glycans decorating human salivary mucin MG2/MUC7, and platelet glycoprotein GPIb. Specific sialoglycan targets were previously identified for the ligand-binding regions (BRs) of GspB and Hsa, two serine-rich repeat glycoproteins expressed by Streptococcus gordonii While GspB selectively binds sialyl-T antigen, Hsa displays broader specificity. Here we examine the binding properties of four additional BRs from Streptococcus sanguinis or Streptococcus mitis and characterize the molecular determinants of ligand selectivity and affinity. Each BR has two domains that are essential for sialoglycan binding by GspB. One domain is structurally similar to the glycan-binding module of mammalian Siglecs (sialic acid-binding immunoglobulin-like lectins), including an arginine residue that is critical for glycan recognition, and that resides within a novel, conserved YTRY motif. Despite low sequence similarity to GspB, one of the BRs selectively binds sialyl-T antigen. Although the other three BRs are highly similar to Hsa, each displayed a unique ligand repertoire, including differential recognition of sialyl Lewis antigens and sulfated glycans. These differences in glycan selectivity were closely associated with differential binding to salivary and platelet glycoproteins. Specificity of sialoglycan adherence is likely an evolving trait that may influence the propensity of streptococci expressing Siglec-like adhesins to cause infective endocarditis.
Collapse
Affiliation(s)
- Barbara A Bensing
- Department of Medicine, The San Francisco Veterans Affairs Medical Center, and the University of California, San Francisco, San Francisco, CA 94121, USA
| | - Zahra Khedri
- The Glycobiology Research and Training Center, and the Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Lingquan Deng
- The Glycobiology Research and Training Center, and the Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Hai Yu
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Akraporn Prakobphol
- Department of Obstetrics, Gynecology and Reproductive Sciences, The University of California, San Francisco, San Francisco, CA 94143, USA
| | - Susan J Fisher
- Department of Obstetrics, Gynecology and Reproductive Sciences, The University of California, San Francisco, San Francisco, CA 94143, USA
| | - Xi Chen
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Tina M Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, TN 27232, USA
| | - Ajit Varki
- The Glycobiology Research and Training Center, and the Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Paul M Sullam
- Department of Medicine, The San Francisco Veterans Affairs Medical Center, and the University of California, San Francisco, San Francisco, CA 94121, USA
| |
Collapse
|
44
|
Thamadilok S, Roche-Håkansson H, Håkansson AP, Ruhl S. Absence of capsule reveals glycan-mediated binding and recognition of salivary mucin MUC7 by Streptococcus pneumoniae. Mol Oral Microbiol 2016; 31:175-88. [PMID: 26172471 PMCID: PMC4713356 DOI: 10.1111/omi.12113] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2015] [Indexed: 11/30/2022]
Abstract
Salivary proteins modulate bacterial colonization in the oral cavity and interact with systemic pathogens that pass through the oropharynx. An interesting example is the opportunistic respiratory pathogen Streptococcus pneumoniae that normally resides in the nasopharynx, but belongs to the greater Mitis group of streptococci, most of which colonize the oral cavity. Streptococcus pneumoniae also expresses a serine-rich repeat (SRR) adhesin, PsrP, which is a homologue to oral Mitis group SRR adhesins, such as Hsa of Streptococcus gordonii and SrpA of Streptococcus sanguinis. As the latter bind to salivary glycoproteins through recognition of terminal sialic acids, we wanted to determine whether S. pneumoniae also binds to salivary proteins through possibly the same mechanism. We found that only a capsule-free mutant of S. pneumoniae TIGR4 binds to salivary proteins, most prominently to mucin MUC7, but that this binding was not mediated through PsrP or recognition of sialic acid. We also found, however, that PsrP is involved in agglutination of human red blood cells (RBCs). After removal of PsrP, an additional previously masked lectin-like adhesin activity mediating agglutination of sialidase-treated RBCs becomes revealed. Using a custom-spotted glycoprotein and neoglycoprotein dot blot array, we identify candidate glycan motifs recognized by PsrP and by the putative S. pneumoniae adhesin that could perhaps be responsible for pneumococcal binding to salivary MUC7 and glycoproteins on RBCs.
Collapse
Affiliation(s)
- Supaporn Thamadilok
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214
| | - Hazeline Roche-Håkansson
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214
| | - Anders P. Håkansson
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214
| | - Stefan Ruhl
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214
| |
Collapse
|
45
|
Cavalcanti I, Del Bel Cury A, Jenkinson H, Nobbs A. Interactions betweenStreptococcus oralis,Actinomyces oris, andCandida albicansin the development of multispecies oral microbial biofilms on salivary pellicle. Mol Oral Microbiol 2016; 32:60-73. [DOI: 10.1111/omi.12154] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2016] [Indexed: 12/24/2022]
Affiliation(s)
- I.M.G. Cavalcanti
- Department of Prosthodontics and Periodontology; Piracicaba Dental School - University of Campinas; Piracicaba São Paulo Brazil
- School of Oral and Dental Sciences; University of Bristol; Bristol UK
| | - A.A. Del Bel Cury
- Department of Prosthodontics and Periodontology; Piracicaba Dental School - University of Campinas; Piracicaba São Paulo Brazil
| | - H.F. Jenkinson
- School of Oral and Dental Sciences; University of Bristol; Bristol UK
| | - A.H. Nobbs
- School of Oral and Dental Sciences; University of Bristol; Bristol UK
| |
Collapse
|
46
|
Mechanism of a cytosolic O-glycosyltransferase essential for the synthesis of a bacterial adhesion protein. Proc Natl Acad Sci U S A 2016; 113:E1190-9. [PMID: 26884191 DOI: 10.1073/pnas.1600494113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
O-glycosylation of Ser and Thr residues is an important process in all organisms, which is only poorly understood. Such modification is required for the export and function of adhesin proteins that mediate the attachment of pathogenic Gram-positive bacteria to host cells. Here, we have analyzed the mechanism by which the cytosolic O-glycosyltransferase GtfA/B of Streptococcus gordonii modifies the Ser/Thr-rich repeats of adhesin. The enzyme is a tetramer containing two molecules each of GtfA and GtfB. The two subunits have the same fold, but only GtfA contains an active site, whereas GtfB provides the primary binding site for adhesin. During a first phase of glycosylation, the conformation of GtfB is restrained by GtfA to bind substrate with unmodified Ser/Thr residues. In a slow second phase, GtfB recognizes residues that are already modified with N-acetylglucosamine, likely by converting into a relaxed conformation in which one interface with GtfA is broken. These results explain how the glycosyltransferase modifies a progressively changing substrate molecule.
Collapse
|
47
|
Arora S, Uhlemann AC, Lowy FD, Hook M. A Novel MSCRAMM Subfamily in Coagulase Negative Staphylococcal Species. Front Microbiol 2016; 7:540. [PMID: 27199900 PMCID: PMC4850167 DOI: 10.3389/fmicb.2016.00540] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/01/2016] [Indexed: 12/14/2022] Open
Abstract
Coagulase negative staphylococci (CoNS) are important opportunistic pathogens. Staphylococcus epidermidis, a coagulase negative staphylococcus, is the third leading cause of nosocomial infections in the US. Surface proteins like Microbial Surface Components Recognizing Adhesive Matrix Molecules (MSCRAMMs) are major virulence factors of pathogenic gram positive bacteria. Here, we identified a new chimeric protein in S. epidermidis, that we call SesJ. SesJ represents a prototype of a new subfamily of MSCRAMMs. Structural predictions show that SesJ has structural features characteristic of a MSCRAMM along with a N-terminal repeat region and an aspartic acid containing C-terminal repeat region, features that have not been previously observed in staphylococcal MSCRAMMs but have been found in other surface proteins from gram positive bacteria. We identified and analyzed structural homologs of SesJ in three other CoNS. These homologs of SesJ have an identical structural organization but varying sequence identities within the domains. Using flow cytometry, we also show that SesJ is expressed constitutively on the surface of a representative S. epidermidis strain, from early exponential to stationary growth phase. Thus, SesJ is positioned to interact with protein targets in the environment and plays a role in S. epidermidis virulence.
Collapse
Affiliation(s)
- Srishtee Arora
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, HoustonTX, USA
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University in the City of New York, New YorkNY, USA
| | - Franklin D. Lowy
- Division of Infectious Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University in the City of New York, New YorkNY, USA
| | - Magnus Hook
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, HoustonTX, USA
- *Correspondence: Magnus Hook,
| |
Collapse
|
48
|
Zhu F, Wu H. Insights into bacterial protein glycosylation in human microbiota. SCIENCE CHINA. LIFE SCIENCES 2016; 59:11-8. [PMID: 26712033 PMCID: PMC5298937 DOI: 10.1007/s11427-015-4980-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 11/05/2015] [Indexed: 01/14/2023]
Abstract
The study of human microbiota is an emerging research topic. The past efforts have mainly centered on studying the composition and genomic landscape of bacterial species within the targeted communities. The interaction between bacteria and hosts is the pivotal event in the initiation and progression of infectious diseases. There is a great need to identify and characterize the molecules that mediate the bacteria-host interaction. Bacterial surface exposed proteins play an important role in the bacteria- host interaction. Numerous surface proteins are glycosylated, and the glycosylation is crucial for their function in mediating the bacterial interaction with hosts. Here we present an overview of surface glycoproteins from bacteria that inhabit three major mucosal environments across human body: oral, gut and skin. We describe the important enzymes involved in the process of protein glycosylation, and discuss how the process impacts the bacteria-host interaction. Emerging molecular details underlying glycosylation of bacterial surface proteins may lead to new opportunities for designing anti-infective small molecules, and developing novel vaccines in order to treat or prevent bacterial infection.
Collapse
Affiliation(s)
- Fan Zhu
- Departments of Microbiology and Pediatric Dentistry, Schools of Dentistry and Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Hui Wu
- Departments of Microbiology and Pediatric Dentistry, Schools of Dentistry and Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
49
|
Prabudiansyah I, Driessen AJM. The Canonical and Accessory Sec System of Gram-positive Bacteria. Curr Top Microbiol Immunol 2016; 404:45-67. [DOI: 10.1007/82_2016_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
50
|
Abriouel H, Lerma LL, Casado Muñoz MDC, Montoro BP, Kabisch J, Pichner R, Cho GS, Neve H, Fusco V, Franz CMAP, Gálvez A, Benomar N. The controversial nature of the Weissella genus: technological and functional aspects versus whole genome analysis-based pathogenic potential for their application in food and health. Front Microbiol 2015; 6:1197. [PMID: 26579103 PMCID: PMC4621295 DOI: 10.3389/fmicb.2015.01197] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/15/2015] [Indexed: 11/21/2022] Open
Abstract
Despite the use of several Weissella (W.) strains for biotechnological and probiotic purposes, certain species of this genus were found to act as opportunistic pathogens, while strains of W. ceti were recognized to be pathogenic for farmed rainbow trout. Herein, we investigated the pathogenic potential of weissellas based on in silico analyses of the 13 whole genome sequences available to date in the NCBI database. Our screening allowed us to find several virulence determinants such as collagen adhesins, aggregation substances, mucus-binding proteins, and hemolysins in some species. Moreover, we detected several antibiotic resistance-encoding genes, whose presence could increase the potential pathogenicity of some strains, but should not be regarded as an excluding trait for beneficial weissellas, as long as these genes are not present on mobile genetic elements. Thus, selection of weissellas intended to be used as starters or for biotechnological or probiotic purposes should be investigated regarding their safety aspects on a strain to strain basis, preferably also by genome sequencing, since nucleotide sequence heterogeneity in virulence and antibiotic resistance genes makes PCR-based screening unreliable for safety assessments. In this sense, the application of W. confusa and W. cibaria strains as starter cultures or as probiotics should be approached with caution, by carefully selecting strains that lack pathogenic potential.
Collapse
Affiliation(s)
- Hikmate Abriouel
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén , Jaén, Spain
| | - Leyre Lavilla Lerma
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén , Jaén, Spain
| | - María Del Carmen Casado Muñoz
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén , Jaén, Spain
| | - Beatriz Pérez Montoro
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén , Jaén, Spain
| | - Jan Kabisch
- Department of Microbiology and Biotechnology, Federal Research Institute of Nutrition and Food, Max Rubner-Institut , Kiel, Germany
| | - Rohtraud Pichner
- Department of Microbiology and Biotechnology, Federal Research Institute of Nutrition and Food, Max Rubner-Institut , Kiel, Germany
| | - Gyu-Sung Cho
- Department of Microbiology and Biotechnology, Federal Research Institute of Nutrition and Food, Max Rubner-Institut , Kiel, Germany
| | - Horst Neve
- Department of Microbiology and Biotechnology, Federal Research Institute of Nutrition and Food, Max Rubner-Institut , Kiel, Germany
| | - Vincenzina Fusco
- Institute of Sciences of Food Production, National Research Council of Italy , Bari, Italy
| | - Charles M A P Franz
- Department of Microbiology and Biotechnology, Federal Research Institute of Nutrition and Food, Max Rubner-Institut , Kiel, Germany
| | - Antonio Gálvez
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén , Jaén, Spain
| | - Nabil Benomar
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén , Jaén, Spain
| |
Collapse
|