1
|
Suchana S, Araujo SP, Lomheim L, Mack EE, Spain JC, Edwards E, Passeport E. Compound-Specific Carbon, Nitrogen, and Hydrogen Isotope Analysis to Characterize Aerobic Biodegradation of 2,3-Dichloroaniline by a Mixed Enrichment Culture. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12042-12050. [PMID: 38934904 DOI: 10.1021/acs.est.4c02173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Compound-specific isotope analysis (CSIA) is an established tool to track the in situ transformation of organic chemicals at contaminated sites. In this work, we evaluated the potential of multi-element CSIA to assess biodegradation of 2,3-dichloroaniline (2,3-DCA), which is a major industrial feedstock. Using controlled laboratory experiments, we determined, for the first time, negligible carbon (<0.5‰) and hydrogen (<10‰) isotope fractionation and a significant inverse nitrogen isotope fractionation (>10‰) during aerobic 2,3-DCA biodegradation by a mixed enrichment culture. The tentative identification of a glutamate conjugate of 2,3-DCA as a reaction intermediate indicates that the initial multistep enzymatic reaction may be rate-limiting. The formation of the glutamate adduct would increase the bond energy at the N atom, thus likely explaining the observed inverse N isotope fractionation. The corresponding nitrogen enrichment factor was +6.8 ± 0.6‰. This value was applied to investigate the in situ 2,3-DCA biodegradation at a contaminated site where the carbon and nitrogen isotope signatures from field samples suggested similar aerobic processes by native microorganisms. Under the assumption of the applicability of the Rayleigh model in a pilot wetland treating contaminated groundwater, the extent of biodegradation was estimated to be up to 80-90%. This study proposes multi-element CSIA as a novel application to study 2,3-DCA fate in groundwater and surface water and provides insights into biodegradation pathways.
Collapse
Affiliation(s)
- Shamsunnahar Suchana
- Department of Civil & Mineral Engineering, University of Toronto, 35 Saint George Street, Toronto, Ontario M5S 1A4, Canada
| | - Sofia Pimentel Araujo
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Line Lomheim
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - E Erin Mack
- Corteva Remediation Group, Wilmington, Delaware 19805, United States
| | - Jim C Spain
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, Florida 32514-5751, United States
| | - Elizabeth Edwards
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Elodie Passeport
- Department of Civil & Mineral Engineering, University of Toronto, 35 Saint George Street, Toronto, Ontario M5S 1A4, Canada
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
2
|
Karakurt-Fischer S, Johnson DR, Fenner K, Hafner J. Making waves: Enhancing pollutant biodegradation via rational engineering of microbial consortia. WATER RESEARCH 2023; 247:120756. [PMID: 37898004 DOI: 10.1016/j.watres.2023.120756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
Biodegradation holds promise as an effective and sustainable process for the removal of synthetic chemical pollutants. Nevertheless, rational engineering of biodegradation for pollutant remediation remains an unfulfilled goal, while chemical pollution of waters and soils continues to advance. Efforts to (i) identify functional bacteria from aquatic and soil microbiomes, (ii) assemble them into biodegrading consortia, and (iii) identify maintenance and performance determinants, are challenged by large number of pollutants and the complexity in the enzymology and ecology of pollutant biodegradation. To overcome these challenges, approaches that leverage knowledge from environmental bio-chem-informatics and metabolic engineering are crucial. Here, we propose a novel high-throughput bio-chem-informatics pipeline, to link chemicals and their predicted biotransformation pathways with potential enzymes and bacterial strains. Our framework systematically selects the most promising candidates for the degradation of chemicals with unknown biotransformation pathways and associated enzymes from the vast array of aquatic and soil bacteria. We substantiated our perspective by validating the pipeline for two chemicals with known or predicted pathways and show that our predicted strains are consistent with strains known to biotransform those chemicals. Such pipelines can be integrated with metabolic network analysis built upon genome-scale models and ecological principles to rationally design fit-for-purpose bacterial communities for augmenting deficient biotransformation functions and study operational and design parameters that influence their structure and function. We believe that research in this direction can pave the way for achieving our long-term goal of enhancing pollutant biodegradation.
Collapse
Affiliation(s)
- Sema Karakurt-Fischer
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland.
| | - David R Johnson
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; Department of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Kathrin Fenner
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| | - Jasmin Hafner
- Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
3
|
Papazlatani CV, Kolovou M, Gkounou EE, Azis K, Mavriou Z, Testembasis S, Karaoglanidis GS, Ntougias S, Karpouzas DG. Isolation, characterization and industrial application of a Cladosporium herbarum fungal strain able to degrade the fungicide imazalil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:119030. [PMID: 35189300 DOI: 10.1016/j.envpol.2022.119030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Imazalil (IMZ) is an imidazole fungicide commonly used by fruit-packaging plants (FPPs) to control fungal infections during storage. Its application leads to the production of pesticide-contaminated wastewaters, which, according to the European Commission, need to be treated on site. Considering the lack of efficient treatment methods, biodepuration systems inoculated with tailored-made inocula specialized on the removal of such persistent fungicides appear as an appropriate solution. However, nothing is known about the biodegradation of IMZ. We aimed to isolate and characterize microorganisms able to degrade the recalcitrant fungicide IMZ and eventually to test their removal efficiency under near practical bioengineering conditions. Enrichment cultures from a soil receiving regular discharges of effluents from a FPP, led to the isolation of a Cladosporium herbarum strain, which showed no pathogenicity on fruits, a trait essential for its biotechnological exploitation in FPPs. The fungus was able to degrade up to 100 mg L-1 of IMZ. However, its degrading capacity and growth was reduced at increasing IMZ concentrations in a dose-dependent manner, suggesting the involvement of a detoxification rather than an energy-gain mechanism in the dissipation of IMZ. The isolate could tolerate and gradually degrade the fungicides fludioxonil (FLD) and thiabendazole (TBZ), also used in FPPs and expected to coincide alongside IMZ in FPP effluents. The capacity of the isolate to remove IMZ in a practical context was evaluated in a benchtop immobilized-cell bioreactor fed with artificial IMZ-contaminated wastewater (200 mg L-1). The fungal strain established in the reactor, completely dominated the fungal community and effectively removed >96% of IMZ. The bioreactor also supported a diverse bacterial community composed of Sphingomonadales, Burkholderiales and Pseudomonadales. Our study reports the isolation of the first IMZ-degrading microorganism with high efficiency to remove IMZ from agro-industrial effluents under bioengineering conditions.
Collapse
Affiliation(s)
- Christina V Papazlatani
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500, Larissa, Greece
| | - Maria Kolovou
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500, Larissa, Greece
| | - Elisabeth E Gkounou
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500, Larissa, Greece
| | - Konstantinos Azis
- Democritus University of Thrace, Department of Environmental Engineering, Laboratory of Wastewater Management and Treatment Technologies, Vas. Sofias 12, 67132, Xanthi, Greece
| | - Zografina Mavriou
- Democritus University of Thrace, Department of Environmental Engineering, Laboratory of Wastewater Management and Treatment Technologies, Vas. Sofias 12, 67132, Xanthi, Greece
| | - Stefanos Testembasis
- Aristotle University of Thessaloniki, Department of Agriculture, Plant Pathology Laboratory, University Campus, 54124, Thessaloniki, Greece
| | - George S Karaoglanidis
- Aristotle University of Thessaloniki, Department of Agriculture, Plant Pathology Laboratory, University Campus, 54124, Thessaloniki, Greece
| | - Spyridon Ntougias
- Democritus University of Thrace, Department of Environmental Engineering, Laboratory of Wastewater Management and Treatment Technologies, Vas. Sofias 12, 67132, Xanthi, Greece
| | - Dimitrios G Karpouzas
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500, Larissa, Greece.
| |
Collapse
|
4
|
Zhang M, Jiang W, Gao S, Zhu Q, Ke Z, Jiang M, Qiu J, Hong Q. Degradation of dimethachlon by a newly isolated bacterium Paenarthrobacter sp. strain JH-1 relieves its toxicity against Chlorella ellipsoidea. ENVIRONMENTAL RESEARCH 2022; 208:112706. [PMID: 35031339 DOI: 10.1016/j.envres.2022.112706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/21/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Dimethachlon, a broad-spectrum dicarboximide fungicide, poses a hazard to the safety of human and ecosystem due to its residue in the environment. A high-efficient dimethachlon degrading bacteria JH-1 belonging to Paenarthrobacter sp. was isolated and characterized. Strain JH-1 can utilize high concentration of dimethachlon as sole carbon source for growth and degrade 98.53% of 300 mg·L-1 dimethachlon within 72 h. Crude enzyme of strain JH-1 could degrade 99.76% of 100 mg·L-1 dimethachlon within 2 h. The optimum degradation condition of dimethachlon by strain JH-1 was at 35 °C and pH 7.0. Dimethachlon was degraded in Paenarthrobacter sp. JH-1 as following: it was firstly converted to 4-(3,5-dichloroanilino)-4-oxobutanoic acid and then subjected to the hydrolysis to 3,5-dichloroaniline and succinic acid, the latter was further degraded. Dimethachlon inhibited the growth of Chlorella ellipsoidea, while Paenarthrobacter sp. JH-1 could degrade dimethachlon to relieve its toxicity. This work facilitates our knowledge of the degradation mechanism of dimethachlon and offers potential resource of microbial strains for the bioremediation of dimethachlon-contaminated environments in the future.
Collapse
Affiliation(s)
- Mingliang Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, 211800, Nanjing, PR China
| | - Siyuan Gao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Qian Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Zhijian Ke
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Mingli Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Jiguo Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Qing Hong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
5
|
Duc HD, Thuy NTD, Thanh LU, Tuong TD, Oanh NT. Degradation of Diuron by a Bacterial Mixture and Shifts in the Bacterial Community During Bioremediation of Contaminated Soil. Curr Microbiol 2021; 79:11. [PMID: 34905076 DOI: 10.1007/s00284-021-02685-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 10/12/2021] [Indexed: 10/19/2022]
Abstract
Diuron, a phenylurea herbicide, has been extensively applied in controlling a wide range of weeds in several crops. In the current study, a mixed culture of three bacterial strains, i.e., Bacillus subtilis DU1, Acinetobacter baumannii DU, and Pseudomonas sp. DUK, isolated from sugarcane soil, completely degraded diuron and 3,4-DCA in liquid media at 20 mg L-1 within 48 h. During diuron degradation, a few metabolites (DCPMU, DCPU, and 3,4-DCA) were produced. Further determination of ring-cleavage pathways demonstrated that Acinetobacter baumannii DU and Pseudomonas fluorescens DUK degraded diuron and 3,4-DCA via ortho-cleavage. In contrast, Bacillus subtilis DU transformed these compounds via meta-cleavage pathways. Moreover, diuron caused a significant shift in the bacterial community in soil without diuron history. The augmentation of mountain soil with the isolated bacteria resulted in nearly three times higher degradation rate of diuron than the degradation by indigenous microorganisms. This study provides important information on in situ diuron bioremediation from contaminated sites by bioaugmentation with a mixed bacterial culture.
Collapse
Affiliation(s)
- Ha Danh Duc
- Dong Thap University, 783 Pham Huu Lau Street, Cao Lanh City, Dong Thap Province, Vietnam.
| | - Nguyen Thi Dieu Thuy
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Le Uyen Thanh
- Dong Thap University, 783 Pham Huu Lau Street, Cao Lanh City, Dong Thap Province, Vietnam
| | - Tran Duc Tuong
- Dong Thap University, 783 Pham Huu Lau Street, Cao Lanh City, Dong Thap Province, Vietnam
| | - Nguyen Thi Oanh
- Dong Thap University, 783 Pham Huu Lau Street, Cao Lanh City, Dong Thap Province, Vietnam
| |
Collapse
|
6
|
Cesco S, Lucini L, Miras-Moreno B, Borruso L, Mimmo T, Pii Y, Puglisi E, Spini G, Taskin E, Tiziani R, Zangrillo MS, Trevisan M. The hidden effects of agrochemicals on plant metabolism and root-associated microorganisms. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 311:111012. [PMID: 34482915 DOI: 10.1016/j.plantsci.2021.111012] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/26/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Agrochemicals are commonly used in agriculture to protect crops and ensure yields. Several of them are mobile within the plant and, being perceived as xenobiotics regardless of their protective/curative roles, they induce a reprogramming of secondary metabolism linked to the detoxification processes even in the absence of phenotype symptoms. Moreover, it is well documented that plants are able to shape the microbial population at the rhizosphere and to significantly affect the processes occurring therein thanks to the root exudation of different metabolites. Here we show that plant metabolic response to foliarly-applied pesticides is much broader than what previously thought and includes diverse and compound-specific hidden processes. Among others, stress-related metabolism and phytohormones profile underwent a considerable reorganization. Moreover, a distinctive microbial rearrangement of the rhizosphere was recorded following foliar application of pesticides. Such effects have unavoidably energetic and metabolic costs for the plant paving the way to both positive and negative aspects. The understanding of these effects is crucial for an increasingly sustainable use of pesticides in agriculture.
Collapse
Affiliation(s)
- Stefano Cesco
- Faculty of Science and Technology, Free University of Bolzano-Bozen, I-39110, Bolzano, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, I-29122, Piacenza, Italy.
| | - Begona Miras-Moreno
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, I-29122, Piacenza, Italy
| | - Luigimaria Borruso
- Faculty of Science and Technology, Free University of Bolzano-Bozen, I-39110, Bolzano, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bolzano-Bozen, I-39110, Bolzano, Italy
| | - Youry Pii
- Faculty of Science and Technology, Free University of Bolzano-Bozen, I-39110, Bolzano, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, I-29122, Piacenza, Italy.
| | - Giulia Spini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, I-29122, Piacenza, Italy
| | - Eren Taskin
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, I-29122, Piacenza, Italy
| | - Raphael Tiziani
- Faculty of Science and Technology, Free University of Bolzano-Bozen, I-39110, Bolzano, Italy
| | - Maria Simona Zangrillo
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, I-29122, Piacenza, Italy
| | - Marco Trevisan
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, I-29122, Piacenza, Italy
| |
Collapse
|
7
|
Comparative Investigation of Fifteen Xenobiotic Metabolizing N-Acetyltransferase (NAT) Homologs from Bacteria. Appl Environ Microbiol 2021; 87:e0081921. [PMID: 34288706 DOI: 10.1128/aem.00819-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Arylamines constitute a large group of industrial chemicals detoxified by certain bacteria through conjugation reactions catalyzed by N-acetyltransferase (NAT) enzymes. NAT homologs, mostly from pathogenic bacteria, have been the subject of individual studies that do not facilitate direct comparisons. By implementing a practicable pipeline, we present comparative investigation of fifteen NAT homologs from ten bacteria, mainly bacilli, streptomycetes, and one alphaproteobacterium. The new homologs were characterized for their sequence, phylogeny, predicted structural features, substrate specificity, thermal stability, and interaction with components of the enzymatic reaction. Bacillus NATs demonstrated the characteristics of xenobiotic metabolizing N-acetyltransferases, with the majority of homologs generating high activities. Non-pathogenic bacilli are thus proposed as suitable mediators of arylamine bioremediation. Of the Streptomyces homologs, the NAT2 isoenzyme of S. venezuelae efficiently transformed highly toxic arylamines, while the remaining homologs were inactive or generated low activities suggesting that xenobiotic metabolism may not be their primary role. The functional divergence of Streptomyces NATs was consistent with their observed sequence, phylogenetic, and structural variability. These and previous findings support classification of microbial NATs into three groups. The first includes xenobiotic metabolizing enzymes with dual acetyl-/propionyl-CoA selectivity. Homologs of the second group are more rarely encountered, acting as malonyltransferases mediating specialized ecological interactions. Homologs of the third group effectively lack acyltransferase activity and their study may represent an interesting research area. Comparative NAT enzyme screens from a broad microbial spectrum may guide rational selection of homologs likely to share similar biological functions, allowing their combined investigation and use in biotechnological applications. IMPORTANCE Arylamines are encountered as industrial chemicals or byproducts of agrochemicals that may constitute highly toxic contaminants of soils and groundwaters. Although such chemicals may be recalcitrant to biotransformation, they can be enzymatically converted into less toxic forms by some bacteria. Therefore, exploitation of the arylamine detoxification capabilities of microorganisms is investigated as an effective approach for bioremediation. Among microbial biotransformations of arylamines, enzymatic conjugation reactions have been reported, including NAT-mediated N-acetylation. Comparative investigations of NAT enzymes across a range of microorganisms can be laborious and expensive, so here we present a streamlined methodology for implementing such work. We compare fifteen NAT homologs from non-pathogenic, free-living bacteria of potential biotechnological utility, mainly Terrabacteria known for their rich secondary and xenobiotic metabolism. The analysis allowed insights into the evolutionary and functional divergence of bacterial NAT homologs, combined with assessment of their fundamental structural and enzymatic differences and similarities.
Collapse
|
8
|
Bhuiyan MNH, Kang H, Choi J, Lim S, Kho Y, Choi K. Effects of 3,4-dichloroaniline (3,4-DCA) and 4,4'-methylenedianiline (4,4'-MDA) on sex hormone regulation and reproduction of adult zebrafish (Danio rerio). CHEMOSPHERE 2021; 269:128768. [PMID: 33153842 DOI: 10.1016/j.chemosphere.2020.128768] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
3,4-dichloroaniline (3,4-DCA) and 4,4'-methylenedianiline (4,4'-MDA) have been widely used in manufacture of many industrial and consumer products, and hence often detected in aquatic environment. Reproductive toxicity of aniline and its derivatives in aquatic organisms has been suggested, however, knowledge on the endocrine disruption potentials and toxicological consequences of both anilines are not well understood, especially in fish. In this study, we aimed to understand the effects of 3,4-DCA and 4,4'-MDA on sex hormone regulation and reproduction of adult zebrafish (Danio rerio). Following 21 d exposure, significant decreases of the reproduction were observed at 0.38 mg/L 3,4-DCA, and 4.6 mg/L 4,4'-MDA. Moreover, plasma concentrations of testosterone (T) and 17β-estradiol (E2) level were significantly decreased in both male and female fish following the exposure. The sex hormone changes could be explained by the regulatory changes of the genes along the hypothalamic-pituitary-gonadal (HPG) axis, including significant down-regulation of steroidogenic acute regulatory protein (star) and cytochrome P450 family 19 subfamily A (cyp19a) genes in the gonad. Moreover, inhibition of gonadotropin hormone signaling and prostaglandin-endoperoxide synthase 2 (ptgs2) gene expression were observed, suggesting potential disruption of oocyte maturation and ovulation by the exposure. Our observations indicate that 3,4-DCA and 4,4'-MDA can impair reproduction of zebrafish potentially through disruption of steroid hormone synthesis and ovulation.
Collapse
Affiliation(s)
- Md Nurul Huda Bhuiyan
- Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea; Bangladesh Council of Scientific and Industrial Research, Dhaka, 1205, Bangladesh
| | - Habyeong Kang
- Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jiwon Choi
- Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soyoung Lim
- Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Younglim Kho
- Department of Health, Environment and Safety, Eulji University, Seongnam, 34824, Republic of Korea
| | - Kyungho Choi
- Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
9
|
Katsoula A, Vasileiadis S, Sapountzi M, Karpouzas DG. The response of soil and phyllosphere microbial communities to repeated application of the fungicide iprodione: accelerated biodegradation or toxicity? FEMS Microbiol Ecol 2020; 96:5813261. [PMID: 32221586 DOI: 10.1093/femsec/fiaa056] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/23/2020] [Indexed: 12/30/2022] Open
Abstract
Pesticides interact with microorganisms in various ways with the outcome being negative or positive for the soil microbiota. Pesticides' effects on soil microorganisms have been studied extensively in soil but not in other pesticides-exposed microbial habitats like the phyllosphere. We tested the hypothesis that soil and phyllosphere support distinct microbial communities, but exhibit a similar response (accelerated biodegradation or toxicity) to repeated exposure to the fungicide iprodione. Pepper plants received four repeated foliage or soil applications of iprodione, which accelerated its degradation in soil (DT50_1st = 1.23 and DT50_4th = 0.48 days) and on plant leaves (DT50_1st > 365 and DT50_4th = 5.95 days). The composition of the epiphytic and soil bacterial and fungal communities, determined by amplicon sequencing, was significantly altered by iprodione. The archaeal epiphytic and soil communities responded differently; the former showed no response to iprodione. Three iprodione-degrading Paenarthrobacter strains were isolated from soil and phyllosphere. They hydrolyzed iprodione to 3,5-dichloraniline via the formation of 3,5-dichlorophenyl-carboxiamide and 3,5-dichlorophenylurea-acetate, a pathway shared by other soil-derived arthrobacters implying a phylogenetic specialization in iprodione biotransformation. Our results suggest that iprodione-repeated application could affect soil and epiphytic microbial communities with implications for the homeostasis of the plant-soil system and agricultural production.
Collapse
Affiliation(s)
- A Katsoula
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis 41500, Larissa, Greece
| | - S Vasileiadis
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis 41500, Larissa, Greece
| | - M Sapountzi
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis 41500, Larissa, Greece
| | - Dimitrios G Karpouzas
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis 41500, Larissa, Greece
| |
Collapse
|
10
|
Zhang M, Ren Y, Jiang W, Wu C, Zhou Y, Wang H, Ke Z, Gao Q, Liu X, Qiu J, Hong Q. Comparative genomic analysis of iprodione-degrading Paenarthrobacter strains reveals the iprodione catabolic molecular mechanism in Paenarthrobacter sp. strain YJN-5. Environ Microbiol 2020; 23:1079-1095. [PMID: 33169936 DOI: 10.1111/1462-2920.15308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/16/2022]
Abstract
Degradation of the fungicide iprodione by the Paenarthrobacter sp. strain YJN-5 is initiated via hydrolysis of its N1 amide bond to form N-(3,5-dichlorophenyl)-2,4-dioxoimidazolidine. In this study, another iprodione-degrading strain, Paenarthrobacter sp. YJN-D, which harbours the same metabolic pathway as strain YJN-5 was isolated and characterized. The genes that encode the conserved iprodione catabolic pathway were identified based on comparative analysis of the genomes of the two iprodione-degrading Paenarthrobacter sp. and subsequent experimental validation. These genes include an amidase gene, ipaH (previously reported in AEM e01150-18); a deacetylase gene, ddaH, which is responsible for hydantoin ring cleavage of N-(3,5-dichlorophenyl)-2,4-dioxoimidazolidine, and a hydrolase gene, duaH, which is responsible for cleavage of the urea side chain of (3,5-dichlorophenylurea)acetic acid, thus yielding 3,5-dichloroaniline as the end product. These iprodione-catabolic genes are distributed on three plasmids in strain YJN-5 and are highly conserved between the two iprodione-degrading Paenarthrobacter strains. However, only the ipaH gene is flanked by a mobile genetic element. Two iprodione degradation cassettes bearing ipaH-ddaH-duaH were constructed and expressed in strains Pseudomonas putida KT2440 and Bacillus subtilis SCK6 respectively. Our findings enhance the current understanding of the microbial degradation mechanism of iprodione.
Collapse
Affiliation(s)
- Mingliang Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yijun Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Wankui Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Chenglong Wu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yidong Zhou
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Hui Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhijian Ke
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Qinqin Gao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiaoan Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jiguo Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Qing Hong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
11
|
Embryonic toxicity of 3,4-dichloroaniline (3,4-DCA) on Javanese medaka ( Oryzias javanicus Bleeker, 1854). Toxicol Rep 2020; 7:1039-1045. [PMID: 32913717 PMCID: PMC7472802 DOI: 10.1016/j.toxrep.2020.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 02/01/2023] Open
Abstract
The 96 h LC50 of 3,4-dichloroaniline in Javanese medaka embryo is 32.87 mg.L−1. 3,4-DCA lowers heart rate of developing Javanese medaka embryos. The sublethal concentration of 3,4-DCA delays hatching in Javanese medaka embryo. The LOEC for deformities in embryos of Javanese medaka was 0.5 mg.L−1.
Early-life exposure to toxic chemicals causes irreversible morphological and physiological abnormalities that may last for a lifetime. The present study aimed to determine the toxicity effect of 3,4-Dichloroaniline (3,4-DCA) on Javanese medaka (Oryzias javanicus) embryos. Healthy embryos were exposed to various 3,4-DCA concentrations for acute toxicity (5, 10, 25, 50, and 100 mg.L−1) and sublethal toxicity (0.10, 0.50, 1.25, 2.50, and 5.00 mg.L−1) for 96 h and 20 days respectively. Acute toxicity test revealed that the median lethal concentration (96h-LC50) was 32.87 mg.L−1 (95 % CI = 27.90–38.74, R2 = 0.95). Sublethal exposure revealed that 1.25 mg.L-1 at 3 days post-exposure (3 dpe) has a significant lower heartrate (120 ± 12.3 beats/min., p < 0.01), while at 7 dpe those exposed to 5 mg.L−1 (141.8 ± 8.3 beats/min) had significantly (p < 0.01) lower heart rate compared to other treatments. Likewise, at 13 dpe, 5.00 mg.L−1 (110.4 ± 17.3 beats/min) and 2.5 mg.L-1 (130.4 ± 8.3 beats/min) were significantly lower (p < 0.001) compared to control. None of the embryos in 5.00 mg.L−1 and 2.50 mg.L-1 treatment groups survived at the end of the experiment. The results indicated a concentration-dependent response. The lowest observed effect concentration (LOEC) that exerted developmental deformities was 0.5 mg.L−1. Javanese medaka embryo have low sensitivity to acute toxicity of 3,4-DCA, but developmental abnormalities at sublethal concentrations were observed.
Collapse
|
12
|
Booster Biocides Levels in the Major Blood Cockle (Tegillarca granosa L., 1758) Cultivation Areas along the Coastal Area of Peninsular Malaysia. WATER 2020. [DOI: 10.3390/w12061616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Booster biocides have been rapidly growing in use, mainly in the shipping industry and in agricultural activities. The use of booster biocides is known to cause adverse effects on marine ecosystems, such as by inhibiting the photosynthesis process in marine plants, and they have the potential to accumulate in marine organisms. In the present study, booster biocides of Irgarol 1051, diuron, 3,4-dichloroaniline (3,4-DCA) and chlorothalonil were measured in the major blood cockle (Tegillarca granosa) cultivation areas along the west coast of Peninsular Malaysia. The highest Irgarol 1051 mean was found in the blood cockle with a value of 98.92 ± 13.65 µg/kg in Kapar, Selangor, while the means of diuron and its metabolites and 3,4-DCA showed the highest values of 40.31 ± 7.61 and 41.42 ± 21.58 µg/kg in Kapar, Selangor and Sungai Ayam, Johor, respectively. Sungai Ayam, Johor also exhibited the highest amount of chlorothalonil of 29.76 ± 8.80 µg/kg. By referring to sediment quality guidelines, about 72% and more than 90% of sediment samples exceeded the environmental risk limits (ERLs) and maximum permissible concentration (MPC) for Irgarol 1051 and diuron, respectively. However, referring to the risk characterization ratio (RCR), none of the blood cockle samples exceeded 1, which means that there is no potential for adverse effects to occur. Thus, the contaminants in the marine ecosystem caused by booster biocides are highlighted as a serious issue, mainly in sediment.
Collapse
|
13
|
Pimviriyakul P, Wongnate T, Tinikul R, Chaiyen P. Microbial degradation of halogenated aromatics: molecular mechanisms and enzymatic reactions. Microb Biotechnol 2020; 13:67-86. [PMID: 31565852 PMCID: PMC6922536 DOI: 10.1111/1751-7915.13488] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022] Open
Abstract
Halogenated aromatics are used widely in various industrial, agricultural and household applications. However, due to their stability, most of these compounds persist for a long time, leading to accumulation in the environment. Biological degradation of halogenated aromatics provides sustainable, low-cost and environmentally friendly technologies for removing these toxicants from the environment. This minireview discusses the molecular mechanisms of the enzymatic reactions for degrading halogenated aromatics which naturally occur in various microorganisms. In general, the biodegradation process (especially for aerobic degradation) can be divided into three main steps: upper, middle and lower metabolic pathways which successively convert the toxic halogenated aromatics to common metabolites in cells. The most difficult step in the degradation of halogenated aromatics is the dehalogenation step in the middle pathway. Although a variety of enzymes are involved in the degradation of halogenated aromatics, these various pathways all share the common feature of eventually generating metabolites for utilizing in the energy-producing metabolic pathways in cells. An in-depth understanding of how microbes employ various enzymes in biodegradation can lead to the development of new biotechnologies via enzyme/cell/metabolic engineering or synthetic biology for sustainable biodegradation processes.
Collapse
Affiliation(s)
- Panu Pimviriyakul
- Department of BiotechnologyFaculty of Engineering and Industrial TechnologySilpakorn UniversityNakhon Pathom73000Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC)Wangchan ValleyRayong21210Thailand
| | - Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme TechnologyFaculty of ScienceMahidol UniversityBangkok10400Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC)Wangchan ValleyRayong21210Thailand
| |
Collapse
|
14
|
The actinobacterium Tsukamurella paurometabola has a functionally divergent arylamine N-acetyltransferase (NAT) homolog. World J Microbiol Biotechnol 2019; 35:174. [PMID: 31673919 DOI: 10.1007/s11274-019-2755-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/24/2019] [Indexed: 12/23/2022]
Abstract
Actinobacteria in the Tsukamurella genus are aerobic, high-GC, Gram-positive mycolata, considered as opportunistic pathogens and isolated from various environmental sources, including sites contaminated with oil, urban or industrial waste and pesticides. Although studies look into xenobiotic biotransformation by Tsukamurella isolates, the relevant enzymes remain uncharacterized. We investigated the arylamine N-acetyltransferase (NAT) enzyme family, known for its role in the xenobiotic metabolism of prokaryotes and eukaryotes. Xenobiotic sensitivity of Tsukamurella paurometabola type strain DSM 20162T was assessed, followed by cloning, recombinant expression and functional characterization of its single NAT homolog (TSUPD)NAT1. The bacterium appeared quite robust against chloroanilines, but more sensitive to 4-anisidine and 2-aminophenol. However, metabolic activity was not evident towards those compounds, presumably due to mechanisms protecting cells from xenobiotic entry. Of the pharmaceutical arylhydrazines tested, hydralazine was toxic, but the bacterium was less sensitive to isoniazid, a drug targeting mycolic acid biosynthesis in mycobacteria. Although (TSUPD)NAT1 protein has an atypical Cys-His-Glu (instead of the expected Cys-His-Asp) catalytic triad, it is enzymatically active, suggesting that this deviation is likely due to evolutionary adaptation potentially serving a different function. The protein was indeed found to use malonyl-CoA, instead of the archetypal acetyl-CoA, as its preferred donor substrate. Malonyl-CoA is important for microbial biosynthesis of fatty acids (including mycolic acids) and polyketide chains, and the corresponding enzymatic systems have common evolutionary histories, also linked to xenobiotic metabolism. This study adds to accummulating evidence suggesting broad phylogenetic and functional divergence of microbial NAT enzymes that goes beyond xenobiotic metabolism and merits investigation.
Collapse
|
15
|
Singh AK, Singla P. Biodegradation of diuron by endophytic Bacillus licheniformis strain SDS12 and its application in reducing diuron toxicity for green algae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:26972-26981. [PMID: 31309425 DOI: 10.1007/s11356-019-05922-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
The endophytic bacteria live in close nuptial relationship with the host plant. The stress experienced by the plant is expected to be transferred to the endophytes. Thus, plants thriving at polluted sites are likely to harbor pollutant-degrading endophytes. The present study reports the isolation of phenylurea herbicides assimilating Bacillus sps. from Parthenium weed growing at diuron-contaminated site. The isolated endophytes exhibited plant growth-promoting (PGP) activities. Among five isolated diuron-degrading endophytes, the most efficient isolate Bacillus licheniformis strain SDS12 degraded 85.60 ± 1.36% of 50 ppm diuron to benign form via formation of degradation intermediate 3, 4-dichloroaniline (3,4-DCA). Cell-free supernatant (CFS) obtained after diuron degradation by strain SDS12 supported algal growth comparable with the pond water. The chlorophyll content and photosynthetic efficiency of green algae decreased significantly in the presence of diuron-contaminated water; however, no such change was observed in CFS of strain SDS12, thus, suggesting that strain SDS12 can be applied in aquatic bodies for degrading diuron and reducing diuron toxicity for primary producers. Further, the use of PGP and diuron-degrading bacteria in agriculture fields will not only help in remediating the soil but also support plant growth.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Department of Botany, Sant Baba Bhag Singh University, Khiala, Punjab, 144030, India.
| | - Poonam Singla
- Department of Chemistry and Centre for Advance Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
16
|
Ji J, Zhang J, Liu Y, Zhang Y, Liu Y, Yan X. The substrate specificity of aniline dioxygenase is mainly determined by two of its components: glutamine synthetase-like enzyme and oxygenase. Appl Microbiol Biotechnol 2019; 103:6333-6344. [DOI: 10.1007/s00253-019-09871-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 11/29/2022]
|
17
|
Ha Danh D, Nguyen Thi O. Anaerobic Degradation of Chloroanilines by Geobacter sp. KT5. Curr Microbiol 2019; 76:248-257. [DOI: 10.1007/s00284-018-1617-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 12/17/2018] [Indexed: 11/28/2022]
|
18
|
Vasileiadis S, Puglisi E, Papadopoulou ES, Pertile G, Suciu N, Pappolla RA, Tourna M, Karas PA, Papadimitriou F, Kasiotakis A, Ipsilanti N, Ferrarini A, Sułowicz S, Fornasier F, Menkissoglu-Spiroudi U, Nicol GW, Trevisan M, Karpouzas DG. Blame It on the Metabolite: 3,5-Dichloroaniline Rather than the Parent Compound Is Responsible for the Decreasing Diversity and Function of Soil Microorganisms. Appl Environ Microbiol 2018; 84:e01536-18. [PMID: 30194100 PMCID: PMC6210116 DOI: 10.1128/aem.01536-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/29/2018] [Indexed: 12/12/2022] Open
Abstract
Pesticides are key stressors of soil microorganisms with reciprocal effects on ecosystem functioning. These effects have been mainly attributed to the parent compounds, while the impact of their transformation products (TPs) has been largely overlooked. We assessed in a meadow soil (soil A) the transformation of iprodione and its toxicity in relation to (i) the abundance of functional microbial groups, (ii) the activity of key microbial enzymes, and (iii) the diversity of bacteria, fungi, and ammonia-oxidizing microorganisms (AOM) using amplicon sequencing. 3,5-Dichloroaniline (3,5-DCA), the main iprodione TP, was identified as a key explanatory factor for the persistent reduction in enzymatic activities and potential nitrification (PN) and for the observed structural changes in the bacterial and fungal communities. The abundances of certain bacterial (Actinobacteria, Hyphomicrobiaceae, Ilumatobacter, and Solirubrobacter) and fungal (Pichiaceae) groups were negatively correlated with 3,5-DCA. A subsequent study in a fallow agricultural soil (soil B) showed limited formation of 3,5-DCA, which concurred with the lack of effects on nitrification. Direct 3,5-DCA application in soil B induced a dose-dependent reduction of PN and NO3--N, which recovered with time. In vitro assays with terrestrial AOM verified the greater toxicity of 3,5-DCA over iprodione. "Candidatus Nitrosotalea sinensis" Nd2 was the most sensitive AOM to both compounds. Our findings build on previous evidence on the sensitivity of AOM to pesticides, reinforcing their potential utilization as indicators of the soil microbial toxicity of pesticides in pesticide environmental risk analysis and stressing the need to consider the contribution of TPs in the toxicity of pesticides on the soil microbial community.IMPORTANCE Pesticide toxicity on soil microorganisms is an emerging issue in pesticide risk assessment, dictated by the pivotal role of soil microorganisms in ecosystem services. However, the focus has traditionally been on parent compounds, while transformation products (TPs) are largely overlooked. We tested the hypothesis that TPs can be major contributors to the soil microbial toxicity of pesticides using iprodione and its main TP, 3,5-dichloroaniline, as model compounds. We demonstrated, by measuring functional and structural endpoints, that 3,5-dichloroaniline and not iprodione was associated with adverse effects on soil microorganisms, with nitrification being mostly affected. Pioneering in vitro assays with relevant ammonia-oxidizing bacteria and archaea verified the greater toxicity of 3,5-dichloroaniline. Our findings are expected to advance environmental risk assessment, highlighting the potential of ammonia-oxidizing microorganisms as indicators of the soil microbial toxicity of pesticides and stressing the need to consider the contribution of TPs to pesticide soil microbial toxicity.
Collapse
Affiliation(s)
- S Vasileiadis
- Universita Cattolica del Sacro Cuore, Department for Sustainable Food Process, Piacenza, Italy
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Larissa, Greece
| | - E Puglisi
- Universita Cattolica del Sacro Cuore, Department for Sustainable Food Process, Piacenza, Italy
| | - E S Papadopoulou
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Larissa, Greece
- Aristotle University of Thessaloniki, Faculty of Agriculture Forestry and Natural Environment, School of Agriculture, Pesticide Science Laboratory, Thessaloniki, Greece
| | - G Pertile
- Universita Cattolica del Sacro Cuore, Department for Sustainable Food Process, Piacenza, Italy
| | - N Suciu
- Universita Cattolica del Sacro Cuore, Department for Sustainable Food Process, Piacenza, Italy
| | - R A Pappolla
- Universita Cattolica del Sacro Cuore, Department for Sustainable Food Process, Piacenza, Italy
| | - M Tourna
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Larissa, Greece
| | - P A Karas
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Larissa, Greece
| | - F Papadimitriou
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Larissa, Greece
| | - A Kasiotakis
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Larissa, Greece
| | - N Ipsilanti
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Larissa, Greece
| | - A Ferrarini
- Universita Cattolica del Sacro Cuore, Department of Sustainable Crop Production, Piacenza, Italy
| | - S Sułowicz
- University of Silesia, Department of Microbiology, Katowice, Poland
| | - F Fornasier
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per lo Studio delle Relazioni tra Pianti e Suolo, Gorizia, Italy
| | - U Menkissoglu-Spiroudi
- Aristotle University of Thessaloniki, Faculty of Agriculture Forestry and Natural Environment, School of Agriculture, Pesticide Science Laboratory, Thessaloniki, Greece
| | - G W Nicol
- Ecole Centrale de Lyon, Group of Environmental Microbial Genomics, Lyon, France
| | - M Trevisan
- Universita Cattolica del Sacro Cuore, Department for Sustainable Food Process, Piacenza, Italy
| | - D G Karpouzas
- Universita Cattolica del Sacro Cuore, Department for Sustainable Food Process, Piacenza, Italy
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Larissa, Greece
| |
Collapse
|
19
|
Hanapiah M, Zulkifli SZ, Mustafa M, Mohamat-Yusuff F, Ismail A. Isolation, characterization, and identification of potential Diuron-degrading bacteria from surface sediments of Port Klang, Malaysia. MARINE POLLUTION BULLETIN 2018; 127:453-457. [PMID: 29475685 DOI: 10.1016/j.marpolbul.2017.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 11/29/2017] [Accepted: 12/05/2017] [Indexed: 06/08/2023]
Abstract
Diuron is an alternative biocide suggested to replace organotin in formulating antifouling paints to be applied on water-going vessels hull. However, it is potentially harmful to various non-targeted marine organisms due to its toxic properties. Present study aimed to isolate, screen and identify the potential of Diuron-degrading bacteria collected from the marine sediments of Port Klang, Malaysia. Preliminary screening was conducted by exposing isolated bacteria to 430ng/L (background level), followed by 600ng/L and 1000ng/L of Diuron concentrations. Nine bacteria colonies survived the exposure of the above concentrations. However, only two strains can tolerate to survive up to 1000μg/L, which were then characterised and identified using phenotypic tests and the standard 16S rRNA molecular identification. The strains were identified as Comamonas jiangduensis SZZ 10 and Bacillus aerius SZZ 19 (GenBank accession numbers: KU942479 and KU942480, respectively). Both strains have the potential of Diuron biodegradation for future use.
Collapse
Affiliation(s)
- Munirah Hanapiah
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Syaizwan Zahmir Zulkifli
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Muskhazli Mustafa
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ferdaus Mohamat-Yusuff
- Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ahmad Ismail
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
20
|
You LX, Liu LD, Xiao Y, Dai YF, Chen BL, Jiang YX, Zhao F. Flavins mediate extracellular electron transfer in Gram-positive Bacillus megaterium strain LLD-1. Bioelectrochemistry 2018; 119:196-202. [DOI: 10.1016/j.bioelechem.2017.10.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 10/06/2017] [Accepted: 10/13/2017] [Indexed: 01/28/2023]
|
21
|
Egea TC, da Silva R, Boscolo M, Rigonato J, Monteiro DA, Grünig D, da Silva H, van der Wielen F, Helmus R, Parsons JR, Gomes E. Diuron degradation by bacteria from soil of sugarcane crops. Heliyon 2017; 3:e00471. [PMID: 29322098 PMCID: PMC5753625 DOI: 10.1016/j.heliyon.2017.e00471] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/24/2017] [Accepted: 11/24/2017] [Indexed: 12/03/2022] Open
Abstract
The isolation of microorganisms from soil impacted by xenobiotic chemicals and exposing them in the laboratory to the contaminant can provide important information about their response to the contaminants. The purpose of this study was to isolate bacteria from soil with historical application of herbicides and to evaluate their potential to degrade diuron. The isolation media contained either glucose or diuron as carbon source. A total of 400 bacteria were isolated, with 68% being Gram-positive and 32% Gram-negative. Most isolates showed potential to degrade between 10 and 30% diuron after five days of cultivation; however Stenotrophomonas acidophila TD4.7 and Bacillus cereus TD4.31 were able to degrade 87% and 68%, respectively. The degradation of diuron resulted in the formation of the metabolites DCPMU, DCPU, DCA, 3,4-CAC, 4-CA, 4-CAC and aniline. Based on these results it was proposed that Pseudomonas aeruginosa TD2.3, Stenotrophomonas acidaminiphila TD4.7, B. cereus TD4.31 and Alcaligenes faecalis TG 4.48, act on 3,4-DCA and 4-CA by alkylation and dealkylation while Micrococcus luteus and Achromobacter sp follow dehalogenation directly to aniline. Growth on aniline as sole carbon source demonstrates the capacity of strains to open the aromatic ring. In conclusion, the results show that the role of microorganisms in the degradation of xenobiotics in the environment depends on their own metabolism and also on their synergistic interactions.
Collapse
Affiliation(s)
- Tassia C. Egea
- Ibilce-Universidade Estadual Paulista-UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Roberto da Silva
- Ibilce-Universidade Estadual Paulista-UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Maurício Boscolo
- Ibilce-Universidade Estadual Paulista-UNESP, São José do Rio Preto, São Paulo, Brazil
| | | | - Diego A. Monteiro
- Ibilce-Universidade Estadual Paulista-UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Danilo Grünig
- Faculty of Science Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Netherlands
| | - Humberto da Silva
- Ibilce-Universidade Estadual Paulista-UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Frans van der Wielen
- Faculty of Science Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Netherlands
| | - Rick Helmus
- Faculty of Science Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Netherlands
| | - John R. Parsons
- Faculty of Science Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Netherlands
| | - Eleni Gomes
- Ibilce-Universidade Estadual Paulista-UNESP, São José do Rio Preto, São Paulo, Brazil
- Corresponding author.
| |
Collapse
|
22
|
Bradley PM, Journey CA, Romanok KM, Barber LB, Buxton HT, Foreman WT, Furlong ET, Glassmeyer ST, Hladik ML, Iwanowicz LR, Jones DK, Kolpin DW, Kuivila KM, Loftin KA, Mills MA, Meyer MT, Orlando JL, Reilly TJ, Smalling KL, Villeneuve DL. Expanded Target-Chemical Analysis Reveals Extensive Mixed-Organic-Contaminant Exposure in U.S. Streams. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4792-4802. [PMID: 28401767 PMCID: PMC5695041 DOI: 10.1021/acs.est.7b00012] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Surface water from 38 streams nationwide was assessed using 14 target-organic methods (719 compounds). Designed-bioactive anthropogenic contaminants (biocides, pharmaceuticals) comprised 57% of 406 organics detected at least once. The 10 most-frequently detected anthropogenic-organics included eight pesticides (desulfinylfipronil, AMPA, chlorpyrifos, dieldrin, metolachlor, atrazine, CIAT, glyphosate) and two pharmaceuticals (caffeine, metformin) with detection frequencies ranging 66-84% of all sites. Detected contaminant concentrations varied from less than 1 ng L-1 to greater than 10 μg L-1, with 77 and 278 having median detected concentrations greater than 100 ng L-1 and 10 ng L-1, respectively. Cumulative detections and concentrations ranged 4-161 compounds (median 70) and 8.5-102 847 ng L-1, respectively, and correlated significantly with wastewater discharge, watershed development, and toxic release inventory metrics. Log10 concentrations of widely monitored HHCB, triclosan, and carbamazepine explained 71-82% of the variability in the total number of compounds detected (linear regression; p-values: < 0.001-0.012), providing a statistical inference tool for unmonitored contaminants. Due to multiple modes of action, high bioactivity, biorecalcitrance, and direct environment application (pesticides), designed-bioactive organics (median 41 per site at μg L-1 cumulative concentrations) in developed watersheds present aquatic health concerns, given their acknowledged potential for sublethal effects to sensitive species and lifecycle stages at low ng L-1.
Collapse
Affiliation(s)
- Paul M. Bradley
- U.S. Geological Survey, Columbia, South Carolina, 29210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Marc A. Mills
- U.S. Environmental Protection Agency, Cincinnati, Ohio, 45220, USA
| | | | | | | | | | | |
Collapse
|
23
|
Yuan Y, Zhang P, Schäffer A, Schmidt B. 3,4-Dichloroaniline revisited: A study on the fate of the priority pollutant in a sediment-water system derived from a rice growing region in Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 574:1012-1020. [PMID: 27668853 DOI: 10.1016/j.scitotenv.2016.09.099] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/05/2016] [Accepted: 09/13/2016] [Indexed: 06/06/2023]
Abstract
As ultimate sink for xenobiotics released into the environment, sediments play an important role concerning the evaluation of the fate of foreign compounds. 3,4-Dichloroaniline (3,4-DCA) is a degradation product of herbicide propanil and some urea herbicides. Propanil was extensively used worldwide in rice cultivation. The aim of the study was to examine the fate of 14C-labeled 3,4-DCA in a sediment-water system; the sediment was derived from a rice field in Northern Italy. After application of 14C-3,4-DCA, a time-course study was performed using incubation periods from 4h to 56days. Fractions obtained from assays were water phase, sediment phase including methanol and Soxhlet extract as well as non-extractable residues (NER), and mineralized portion (14CO2). Soluble fractions were examined by TLC, HPLC and GC-MS. NER found in sediment phases were further fractionated in non-humics, humic acids, fulvic acids and humin. Stability of systems was checked by microbial activity, dissolved oxygen and pH. After 56days of incubation, 23.1% of applied 14C was mineralized, only 1.30% remained in the water phase, whereas 60.8% was found in the sediment phase, 53.3% of which were NER. Minor metabolites identified were 3,4-dichloroacetanilide (3,4-DCAA) and 3,3',4,4'-tetrachloroazobenzene (TCAB; 2.63% after 56days). According to pH, dissolved oxygen and microbial activity, systems appeared to be stable and not influenced by applied 3,4-DCA. Most striking result was the high mineralization rate as compared to previously published data. This finding suggested an adaptation of the microbial community in the sediment possibly due to decade-long treatment of rice fields with propanil.
Collapse
Affiliation(s)
- Ye Yuan
- Institute of Biology V, RWTH Aachen University, D-52056 Aachen, Germany
| | - Peng Zhang
- Institute of Biology V, RWTH Aachen University, D-52056 Aachen, Germany
| | - Andreas Schäffer
- Institute of Biology V, RWTH Aachen University, D-52056 Aachen, Germany
| | - Burkhard Schmidt
- Institute of Biology V, RWTH Aachen University, D-52056 Aachen, Germany.
| |
Collapse
|
24
|
Mulla SI, Hu A, Wang Y, Sun Q, Huang SL, Wang H, Yu CP. Degradation of triclocarban by a triclosan-degrading Sphingomonas sp. strain YL-JM2C. CHEMOSPHERE 2016; 144:292-296. [PMID: 26364219 DOI: 10.1016/j.chemosphere.2015.08.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 08/06/2015] [Accepted: 08/09/2015] [Indexed: 06/05/2023]
Abstract
Bacterial degradation plays a vital role in determining the environmental fate of micropollutants like triclocarban. The mechanism of triclocarban degradation by pure bacterium is not yet explored. The purpose of this study was to identify metabolic pathway that might be involved in bacterial degradation of triclocarban. Triclosan-degrading Sphingomonas sp. strain YL-JM2C was first found to degrade up to 35% of triclocarban (4 mg L(-1)) within 5 d. Gas chromatography-mass spectrometry detected 3,4-dichloroaniline, 4-chloroaniline and 4-chlorocatechol as the major metabolites of the triclocarban degradation. Furthermore, total organic carbon results confirmed that the intermediates, 3,4-dichloroaniline (4 mg L(-1)) and 4-chloroaniline (4 mg L(-1)) could be degraded up to 77% and 80% by strain YL-JM2C within 5 d.
Collapse
Affiliation(s)
- Sikandar I Mulla
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo 315800, China
| | - Anyi Hu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo 315800, China
| | - Yuwen Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo 315800, China
| | - Qian Sun
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo 315800, China
| | - Shir-Ly Huang
- Department of Life Sciences, National Central University, No. 300 Chung-da Rd., Chung-li 32001, Taiwan, ROC.
| | - Han Wang
- College of Ecology and Resource Engineering, Wuyi University, Wuyishan City 354300, China
| | - Chang-Ping Yu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo 315800, China.
| |
Collapse
|
25
|
Biodegradation of the herbicide Diuron in a packed bed channel and a double biobarrier with distribution of oxygenated liquid by airlift devices: influence of oxygen limitation. N Biotechnol 2016; 33:7-15. [DOI: 10.1016/j.nbt.2015.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 07/06/2015] [Accepted: 07/27/2015] [Indexed: 11/18/2022]
|
26
|
Arora PK. Bacterial degradation of monocyclic aromatic amines. Front Microbiol 2015; 6:820. [PMID: 26347719 PMCID: PMC4539516 DOI: 10.3389/fmicb.2015.00820] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/27/2015] [Indexed: 01/13/2023] Open
Abstract
Aromatic amines are an important group of industrial chemicals, which are widely used for manufacturing of dyes, pesticides, drugs, pigments, and other industrial products. These compounds have been considered highly toxic to human beings due to their carcinogenic nature. Three groups of aromatic amines have been recognized: monocyclic, polycyclic, and heterocyclic aromatic amines. Bacterial degradation of several monocyclic aromatic amines has been studied in a variety of bacteria, which utilizes monocyclic aromatic amines as their sole source of carbon and energy. Several degradation pathways have been proposed and the related enzymes and genes have also been characterized. Many reviews have been reviewed toxicity of monocyclic aromatic amines; however, there is lack of review on biodegradation of monocyclic aromatic amines. The aim of this review is to summarize bacterial degradation of monocyclic aromatic amines. This review will increase our current understanding of biochemical and molecular basis of bacterial degradation of monocyclic aromatic amines.
Collapse
Affiliation(s)
- Pankaj K. Arora
- School of Biotechnology, Yeungnam UniversityGyeongsan, South Korea
| |
Collapse
|
27
|
Seralathan MV, Sivanesan S, Nargunanathan S, Bafana A, Kannan K, Chakrabarti T. Chemotaxis-based endosulfan biotransformation: enrichment and isolation of endosulfan-degrading bacteria. ENVIRONMENTAL TECHNOLOGY 2015; 36:60-67. [PMID: 25409584 DOI: 10.1080/09593330.2014.937464] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The study was conducted to isolate endosulfan biotransforming or biodegrading microbes based on chemotaxis. Pseudomonas aeruginosa strain KKc3, Ochrobactrum sp. strain KKc4, Achromobacter xylosoxidans strain KKc6 and Bacillus megaterium KKc7 were isolated based on their migration towards endosulfan in a soil column. Out of the four bacteria, B. megaterium converted endosulfan into toxic metabolite endosulfan sulphate, while the other three bacteria followed the non-toxic endosulfan diol pathway. The mixed culture system consisting of P. aeruginosa, Ochrobactrum sp and A. xylosoxidans could remove 94% of total endosulfan by using endosulfan as the sole source of sulphur.
Collapse
Affiliation(s)
- Muhil Vannan Seralathan
- a Environmental Health Division , National Environmental Engineering Research Institute , Nagpur 440022 , India
| | | | | | | | | | | |
Collapse
|
28
|
Function of a glutamine synthetase-like protein in bacterial aniline oxidation via γ-glutamylanilide. J Bacteriol 2013; 195:4406-14. [PMID: 23893114 DOI: 10.1128/jb.00397-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter sp. strain YAA has five genes (atdA1 to atdA5) involved in aniline oxidation as a part of the aniline degradation gene cluster. From sequence analysis, the five genes were expected to encode a glutamine synthetase (GS)-like protein (AtdA1), a glutamine amidotransferase-like protein (AtdA2), and an aromatic compound dioxygenase (AtdA3, AtdA4, and AtdA5) (M. Takeo, T. Fujii, and Y. Maeda, J. Ferment. Bioeng. 85:17-24, 1998). A recombinant Pseudomonas strain harboring these five genes quantitatively converted aniline into catechol, demonstrating that catechol is the major oxidation product from aniline. To elucidate the function of the GS-like protein AtdA1 in aniline oxidation, we purified it from recombinant Escherichia coli harboring atdA1. The purified AtdA1 protein produced gamma-glutamylanilide (γ-GA) quantitatively from aniline and l-glutamate in the presence of ATP and MgCl2. This reaction was identical to glutamine synthesis by GS, except for the use of aniline instead of ammonia as the substrate. Recombinant Pseudomonas strains harboring the dioxygenase genes (atdA3 to atdA5) were unable to degrade aniline but converted γ-GA into catechol, indicating that γ-GA is an intermediate to catechol and a direct substrate for the dioxygenase. Unexpectedly, a recombinant Pseudomonas strain harboring only atdA2 hydrolyzed γ-GA into aniline, reversing the γ-GA formation by AtdA1. Deletion of atdA2 from atdA1 to atdA5 caused γ-GA accumulation from aniline in recombinant Pseudomonas cells and inhibited the growth of a recombinant Acinetobacter strain on aniline, suggesting that AtdA2 prevents γ-GA accumulation that is harmful to the host cell.
Collapse
|
29
|
Khan F, Pandey J, Vikram S, Pal D, Cameotra SS. RETRACTED: Aerobic degradation of 4-nitroaniline (4-NA) via novel degradation intermediates by Rhodococcus sp. strain FK48. JOURNAL OF HAZARDOUS MATERIALS 2013; 254-255:72-78. [PMID: 23587930 DOI: 10.1016/j.jhazmat.2013.03.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/11/2013] [Accepted: 03/10/2013] [Indexed: 06/02/2023]
Abstract
An aerobic strain, Rhodococcus sp. strain FK48, capable of growing on 4-nitroaniline (4-NA) as the sole source of carbon, nitrogen, and energy has been isolated from enrichment cultures originating from contaminated soil samples. During growth studies with non- induced cells of FK48 catalyzed sequential denitrification (release of NO₂ substituent) and deamination (release of NH₂ substituent) of 4-NA. However, none of the degradation intermediates could be identified with growth studies. During resting cell studies, 4-NA-induced cells of strain FK48 transformed 4-NA via a previously unknown pathway which involved oxidative hydroxylation leading to formation of 4-aminophenol (4-AP). Subsequent degradation involved oxidated deamination of 4-AP and formation of 1,2,4-benzenetriol (BT) as the major identified terminal aromatic intermediate. Identification of these intermediates was ascertained by HPLC, and GC-MS analyses of the culture supernatants. 4-NA-induced cells of strain FK48 showed positive activity for 1,2,4-benzenetriol dioxygenase in spectrophotometric assay. This is the first conclusive study on aerobic microbial degradation of 4-NA and elucidation of corresponding metabolic pathway.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Institute of Microbial Technology (CSIR), Sector 39-A, Chandigarh 160 036, India
| | - Janmejay Pandey
- Institute of Microbial Technology (CSIR), Sector 39-A, Chandigarh 160 036, India
| | - Surendra Vikram
- Institute of Microbial Technology (CSIR), Sector 39-A, Chandigarh 160 036, India
| | - Deepika Pal
- Institute of Microbial Technology (CSIR), Sector 39-A, Chandigarh 160 036, India
| | | |
Collapse
|
30
|
Khan F, Pal D, Vikram S, Cameotra SS. Metabolism of 2-chloro-4-nitroaniline via novel aerobic degradation pathway by Rhodococcus sp. strain MB-P1. PLoS One 2013; 8:e62178. [PMID: 23614030 PMCID: PMC3629101 DOI: 10.1371/journal.pone.0062178] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 03/18/2013] [Indexed: 11/21/2022] Open
Abstract
2-chloro-4-nitroaniline (2-C-4-NA) is used as an intermediate in the manufacture of dyes, pharmaceuticals, corrosion inhibitor and also used in the synthesis of niclosamide, a molluscicide. It is marked as a black-listed substance due to its poor biodegradability. We report biodegradation of 2-C-4-NA and its pathway characterization by Rhodococcus sp. strain MB-P1 under aerobic conditions. The strain MB-P1 utilizes 2-C-4-NA as the sole carbon, nitrogen, and energy source. In the growth medium, the degradation of 2-C-4-NA occurs with the release of nitrite ions, chloride ions, and ammonia. During the resting cell studies, the 2-C-4-NA-induced cells of strain MB-P1 transformed 2-C-4-NA stoichiometrically to 4-amino-3-chlorophenol (4-A-3-CP), which subsequently gets transformed to 6-chlorohydroxyquinol (6-CHQ) metabolite. Enzyme assays by cell-free lysates prepared from 2-C-4-NA-induced MB-P1 cells, demonstrated that the first enzyme in the 2-C-4-NA degradation pathway is a flavin-dependent monooxygenase that catalyzes the stoichiometric removal of nitro group and production of 4-A-3-CP. Oxygen uptake studies on 4-A-3-CP and related anilines by 2-C-4-NA-induced MB-P1 cells demonstrated the involvement of aniline dioxygenase in the second step of 2-C-4-NA degradation. This is the first report showing 2-C-4-NA degradation and elucidation of corresponding metabolic pathway by an aerobic bacterium.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Deepika Pal
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Surendra Vikram
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Swaranjit Singh Cameotra
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
- * E-mail:
| |
Collapse
|
31
|
Li C, Zhang J, Wu ZG, Cao L, Yan X, Li SP. Biodegradation of buprofezin by Rhodococcus sp. strain YL-1 isolated from rice field soil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:2531-2537. [PMID: 22335821 DOI: 10.1021/jf205185n] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A buprofezin-degrading bacterium, YL-1, was isolated from rice field soil. YL-1 was identified as Rhodococcus sp. on the basis of the comparative analysis of 16S rDNA sequences. The strain could use buprofezin as the sole source of carbon and nitrogen for growth and was able to degrade 92.4% of 50 mg L(-1) buprofezin within 48 h in liquid culture. During the degradation of buprofezin, four possible metabolites, 2-tert-butylimino-3-isopropyl-1,3,5-thiadiazinan-4-one, N-tert-butyl-thioformimidic acid formylaminomethyl ester, 2-isothiocyanato-2-methyl-propane, and 2-isothiocyanato-propane, were identified using gas chromatography-mass spectrometry (GC-MS) analysis. The catechol 2,3-dioxygenase activity was strongly induced during the degradation of buprofezin. A novel microbial biodegradation pathway for buprofezin was proposed on the basis of these metabolites. The inoculation of soils treated with buprofezin with strain YL-1 resulted in a higher degradation rate than that observed in noninoculated soils, indicating that strain YL-1 has the potential to be used in the bioremediation of buprofezin-contaminated environments.
Collapse
Affiliation(s)
- Chao Li
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu Province, People's Republic of China
| | | | | | | | | | | |
Collapse
|
32
|
Procópio A, Procópio R, Pizzirani-Kleiner A, Melo I. Diversity of propanil-degrading bacteria isolated from rice rhizosphere and their potential for plant growth promotion. GENETICS AND MOLECULAR RESEARCH 2012; 11:2021-34. [DOI: 10.4238/2012.august.6.6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
33
|
Zhang J, Sun JQ, Yuan QY, Li C, Yan X, Hong Q, Li SP. Characterization of the propanil biodegradation pathway in Sphingomonas sp. Y57 and cloning of the propanil hydrolase gene prpH. JOURNAL OF HAZARDOUS MATERIALS 2011; 196:412-419. [PMID: 21974851 DOI: 10.1016/j.jhazmat.2011.09.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/09/2011] [Accepted: 09/12/2011] [Indexed: 05/31/2023]
Abstract
In our previous study, the isoproturon-degrading strain Sphingomonas sp. Y57 was isolated from the wastewater treatment system of an herbicide factory. Interestingly, this strain also showed the ability to degrade propanil (3,4-dichloropropionamilide). The present work reveals that Y57 degrades propanil via the following pathway: propanil was initially hydrolyzed to 3,4-dichloroaniline (3,4-DCA) and then converted to 4,5-dichlorocatechol, which was then subjected to aromatic ring cleavage and further processing. N-acylation and N-deacylation of 3,4-DCA also occurred, and among N-acylation products, 3,4-dichloropropionanilide was found for the first time. The gene encoding the propanil hydrolase responsible for transforming propanil into 3,4-DCA was cloned from Y57 and was designated as prpH. PrpH was expressed in Escherichia coli BL21 and purified using Ni-nitrilotriacetic acid affinity chromatography. PrpH displayed the highest activity against propanil at 40°C and at pH 7.0. The effect of metal ions on the propanil-degrading activity of PrpH was also determined. To our knowledge, this is the first report of a strain that can degrade both propanil and 3,4-DCA and the first identification of a gene encoding a propanil hydrolase in bacteria.
Collapse
Affiliation(s)
- Ji Zhang
- Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Science, Nanjing Agriculture University, 210095, Nanjing, Jiangsu Province, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|