1
|
Panchal J, Prajapati J, Dabhi M, Patel A, Patel S, Rawal R, Saraf M, Goswami D. Comprehensive computational investigation for ligand recognition and binding dynamics of SdiA: a degenerate LuxR -type receptor in Klebsiella pneumoniae. Mol Divers 2024; 28:3897-3918. [PMID: 38212453 DOI: 10.1007/s11030-023-10785-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/26/2023] [Indexed: 01/13/2024]
Abstract
SdiA is a LuxR-type receptor that controls the virulence of Klebsiella pneumoniae, a Gram-negative bacterium that causes various infections in humans. SdiA senses exogenous acyl-homoserine lactones (AHLs) and autoinducer-2 (AI-2), two types of quorum sensing signals produced by other bacterial species. However, the molecular details of how SdiA recognizes and binds to different ligands and how this affects its function and regulation in K. pneumoniae still need to be better understood. This study uses computational methods to explore the protein-ligand binding dynamics of SdiA with 11 AHLs and 2 AI-2 ligands. The 3D structure of SdiA was predicted through homology modeling, followed by molecular docking with AHLs and AI-2 ligands. Binding affinities were quantified using MM-GBSA, and complex stability was assessed via Molecular Dynamics (MD) simulations. Results demonstrated that SdiA in Klebsiella pneumoniae exhibits a degenerate binding nature, capable of interacting with multiple AHLs and AI-2. Specific ligands, namely C10-HSL, C8-HSL, 3-oxo-C8-HSL, and 3-oxo-C10-HSL, were found to have high binding affinities and formed critical hydrogen bonds with key amino acid residues of SdiA. This finding aligns with the observed preference of SdiA for AHLs having 8 to 10 carbon-length acyl chains and lacking hydroxyl groups. In contrast, THMF and HMF demonstrated poor binding properties. Furthermore, AI-2 exhibited a low affinity, corroborating the inference that SdiA is not the primary receptor for AI-2 in K. pneumoniae. These findings provide insights into the protein-ligand binding dynamics of SdiA and its role in quorum sensing and virulence of K. pneumoniae.
Collapse
Affiliation(s)
- Janki Panchal
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Jignesh Prajapati
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Milan Dabhi
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Arun Patel
- Department of Veterinary Microbiology, College of Veterinary Sciences & Animal Husbandry, Kamdhenu University, Sardarkrushinagar 385505, Gujarat, India
| | - Sandip Patel
- Department of Veterinary Microbiology, College of Veterinary Sciences & Animal Husbandry, Kamdhenu University, Sardarkrushinagar 385505, Gujarat, India
| | - Rakesh Rawal
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Meenu Saraf
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Dweipayan Goswami
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
2
|
Miller ZA, Mueller A, Thompson JC, Sywanycz SM, Hill BL, Carey RM, Lee RJ. Pseudomonas aeruginosa metabolite 3-oxo-C12HSL induces apoptosis through T2R14 and the mitochondrial calcium uniporter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620094. [PMID: 39553967 PMCID: PMC11565734 DOI: 10.1101/2024.10.24.620094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Head and neck squamous cell carcinomas (HNSCCs) arise in the mucosal lining of the upper aerodigestive tract. HNSCCs have high mortality rates and current treatments can be associated with severe morbidities. It is vital to discover effective, minimally invasive therapies that improve survival and quality of life. We previously discovered that bitter taste receptor 14 (T2R14), a GPCR, kills HNSCC cells when activated by bitter agonists. We are now investigating endogenous bitter ligands that exist in HNSCC tumor microenvironment (TME). The TME includes cells, signaling molecules, and microbes that can greatly influence treatment responses and overall prognosis in HNSCC. Pseudomonas aeruginosa is a gram-negative bacterium that colonizes/infects HNSCC patients. 3-oxo-C12SHL is a quorum-sensing N-acyl homoserine lactone (AHL) secreted by P. aeruginosa which is also a bitter compound. 3-oxo-C12HSL induces apoptosis but this has never been linked to T2R activation. We hypothesized that 3-oxo-C12HSL induces apoptosis in HNSCC via T2R14. We show that 3-oxo-C12HSL activates intracellular Ca 2+ responses in HNSCC cells. This is inhibited with T2R14 antagonization. 3-oxo-C12HSL may activate additional Ca 2+ channels as the Ca 2+ dynamics are independent from store-operated calcium entry (SOCE). 3-oxo-C12HSL inhibits cell viability, depolarizes mitochondria, and produces ROS. This induces apoptosis in HNSCC cells. In a comparative screen of quorum-sensing AHLs, 3-oxo-C12HSL was the only AHL that elicited both a Ca 2+ response and reduced cell viability. These results suggest that P. aeruginosa may play a significant role in modulating an anti-tumor TME through 3-oxo-C12HSL. Moreover, 3-oxo-C12HSL could be a novel, higher-affinity bitter therapeutic for HNSCC. Further research is warranted to elucidate the mechanisms of other endogenous T2R agonists present in the TME.
Collapse
|
3
|
Lopez Marin MA, Strejcek M, Uhlik O. Joining the bacterial conversation: increasing the cultivation efficiency of soil bacteria with acyl-homoserine lactones and cAMP. Microbiol Spectr 2023; 11:e0186023. [PMID: 37787516 PMCID: PMC10715134 DOI: 10.1128/spectrum.01860-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/17/2023] [Indexed: 10/04/2023] Open
Abstract
IMPORTANCE Microorganisms are a repository of interesting metabolites and functions. Therefore, accessing them is an important exercise for advancing not only basic questions about their physiology but also to advance technological applications. In this sense, increasing the culturability of environmental microorganisms remains an important endeavor for modern microbiology. Because microorganisms do not live in isolation in their environments, molecules can be added to the cultivation strategies to "inform them" that they are present in growth-permissive environmental conditions. Signaling molecules such as acyl-homoserine lactones and 3',5'-cyclic adenosine monophosphate belong to the plethora of molecules used by bacteria to communicate with each other in a phenomenon called quorum sensing. Therefore, including quorum sensing molecules can be an incentive for microorganisms, specifically soil bacteria, to increase their numbers on solid media.
Collapse
Affiliation(s)
- Marco A. Lopez Marin
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Faculty of Food and Biochemical Technology, Prague, Czech Republic
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Prague, Czechia
| | - Michal Strejcek
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Faculty of Food and Biochemical Technology, Prague, Czech Republic
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Faculty of Food and Biochemical Technology, Prague, Czech Republic
| |
Collapse
|
4
|
Vitelli M, Tamer IM, Pritzker M, Budman H. Modeling the effect of oxidative stress on Bordetella pertussis fermentations. Biotechnol Prog 2023; 39:e3335. [PMID: 36799126 DOI: 10.1002/btpr.3335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
A mathematical model is proposed for Bordetella pertussis with the main goal to better understand and describe the relation between cell growth, oxidative stress and NADPH levels under different oxidative conditions. The model is validated with flask experiments conducted under different conditions of oxidative stress induced by high initial glutamate concentrations, low initial inoculum and secondary culturing following exposure to starvation. The model exhibited good accuracy when calibrated and validated for the different experimental conditions. From comparisons of model predictions to data with different model mechanisms, it was concluded that intracellular reactive oxidative species only have an indirect effect on growth rate by reacting with NADPH and thereby reducing the amount of NADPH that is available for growth.
Collapse
Affiliation(s)
- Michael Vitelli
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | | | - Mark Pritzker
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Hector Budman
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| |
Collapse
|
5
|
Sood U, Dhingra GG, Anand S, Hira P, Kumar R, Kaur J, Verma M, Singhvi N, Lal S, Rawat CD, Singh VK, Kaur J, Verma H, Tripathi C, Singh P, Dua A, Saxena A, Phartyal R, Jayaraj P, Makhija S, Gupta R, Sahni S, Nayyar N, Abraham JS, Somasundaram S, Lata P, Solanki R, Mahato NK, Prakash O, Bala K, Kumari R, Toteja R, Kalia VC, Lal R. Microbial Journey: Mount Everest to Mars. Indian J Microbiol 2022; 62:323-337. [PMID: 35974919 PMCID: PMC9375815 DOI: 10.1007/s12088-022-01029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/01/2022] [Indexed: 11/05/2022] Open
Abstract
A rigorous exploration of microbial diversity has revealed its presence on Earth, deep oceans, and vast space. The presence of microbial life in diverse environmental conditions, ranging from moderate to extreme temperature, pH, salinity, oxygen, radiations, and altitudes, has provided the necessary impetus to search for them by extending the limits of their habitats. Microbiology started as a distinct science in the mid-nineteenth century and has provided inputs for the betterment of mankind during the last 150 years. As beneficial microbes are assets and pathogens are detrimental, studying both have its own merits. Scientists are nowadays working on illustrating the microbial dynamics in Earth's subsurface, deep sea, and polar regions. In addition to studying the role of microbes in the environment, the microbe-host interactions in humans, animals and plants are also unearthing newer insights that can help us to improve the health of the host by modulating the microbiota. Microbes have the potential to remediate persistent organic pollutants. Antimicrobial resistance which is a serious concern can also be tackled only after monitoring the spread of resistant microbes using disciplines of genomics and metagenomics The cognizance of microbiology has reached the top of the world. Space Missions are now looking for signs of life on the planets (specifically Mars), the Moon and beyond them. Among the most potent pieces of evidence to support the existence of life is to look for microbial, plant, and animal fossils. There is also an urgent need to deliberate and communicate these findings to layman and policymakers that would help them to take an adequate decision for better health and the environment around us. Here, we present a glimpse of recent advancements by scientists from around the world, exploring and exploiting microbial diversity.
Collapse
Affiliation(s)
- Utkarsh Sood
- The Energy and Resources Institute, New Delhi, India
| | | | - Shailly Anand
- Deen Dayal Upadhyaya College, University of Delhi, New Delhi, India
| | - Princy Hira
- Maitreyi College, University of Delhi, New Delhi, India
| | - Roshan Kumar
- Post-Graduate Department of Zoology, Magadh University, Bodh Gaya, Bihar India
| | | | - Mansi Verma
- Sri Venkateswara College, University of Delhi, New Delhi, India
| | | | - Sukanya Lal
- Ramjas College, University of Delhi, Delhi, India
| | | | | | - Jaspreet Kaur
- Maitreyi College, University of Delhi, New Delhi, India
| | | | | | - Priya Singh
- Maitreyi College, University of Delhi, New Delhi, India
| | - Ankita Dua
- Shivaji College, University of Delhi, New Delhi, India
| | - Anjali Saxena
- Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | | | - Perumal Jayaraj
- Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Seema Makhija
- Acharya Narendra Dev College, University of Delhi, Delhi, India
| | - Renu Gupta
- Maitreyi College, University of Delhi, New Delhi, India
| | - Sumit Sahni
- Acharya Narendra Dev College, University of Delhi, Delhi, India
| | - Namita Nayyar
- Sri Venkateswara College, University of Delhi, New Delhi, India
| | | | | | - Pushp Lata
- Ramjas College, University of Delhi, Delhi, India
| | - Renu Solanki
- Deen Dayal Upadhyaya College, University of Delhi, New Delhi, India
| | - Nitish Kumar Mahato
- University Department of Zoology, Kolhan University, Chaibasa, Jharkhand India
| | - Om Prakash
- National Centre for Cell Sciences, Pune, Maharashtra India
| | - Kiran Bala
- Deshbandhu College, University of Delhi, New Delhi, India
| | - Rashmi Kumari
- College of Commerce, Arts and Science, Patliputra University, Patna, Bihar India
| | - Ravi Toteja
- Acharya Narendra Dev College, University of Delhi, Delhi, India
| | | | - Rup Lal
- The Energy and Resources Institute, New Delhi, India
| |
Collapse
|
6
|
Freitas PNN, Rovida AFDS, Silva CR, Pileggi SAV, Olchanheski LR, Pileggi M. Specific quorum sensing molecules are possibly associated with responses to herbicide toxicity in a Pseudomonas strain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117896. [PMID: 34358867 DOI: 10.1016/j.envpol.2021.117896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/25/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Pesticides contribute to pest control and increase agricultural production; however, they are toxic to non-target organisms, and they contaminate the environment. The exposure of bacteria to these substances can lead to the need for physiological and structural changes for survival, which can be determined by genes whose expression is regulated by quorum sensing (QS). However, it is not yet clear whether these processes can be induced by herbicides. Thus, the aim of this work was to determine whether there is a QS response system in the Pseudomonas fluorescens CMA55 strain that is modulated by herbicides. This strain was isolated from water storage tanks used for washing pesticide packaging and was tested against herbicides containing saflufenacil, glyphosate, sulfentrazone, 2,4-D, and dicamba as active molecules. Our results showed that in the presence of herbicides containing saflufenacil and glyphosate (the latter was not present at the bacterial isolation site) the strain had a profile of QS signaling molecules that may be involved in controlling the production of reactive oxygen species. Alternatively, the same strain, in the presence of sulfentrazone (it was not present at the bacterial isolation site), 2,4-D and dicamba-containing herbicides, presented another profile of molecules that may be involved in different stages of biofilm formation. These findings, as a first screening, suggest that this strain used strategies to activate antioxidant enzymes and biofilm production under the signaling of QS molecules to respond to herbicides, regardless of previous contact, representing a model of phenotypic plasticity for adaptation to agricultural environments that can be used in studies of herbicide bioremediation.
Collapse
Affiliation(s)
- Paloma Nathane Nunes Freitas
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, Ponta Grossa State University, Ponta Grossa, Paraná, Brazil
| | | | - Caroline Rosa Silva
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, Ponta Grossa State University, Ponta Grossa, Paraná, Brazil
| | - Sônia Alvim Veiga Pileggi
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, Ponta Grossa State University, Ponta Grossa, Paraná, Brazil
| | - Luiz Ricardo Olchanheski
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, Ponta Grossa State University, Ponta Grossa, Paraná, Brazil
| | - Marcos Pileggi
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, Ponta Grossa State University, Ponta Grossa, Paraná, Brazil.
| |
Collapse
|
7
|
Gnanasekaran G, Lim JY, Hwang I. Disappearance of Quorum Sensing in Burkholderia glumae During Experimental Evolution. MICROBIAL ECOLOGY 2020; 79:947-959. [PMID: 31828389 DOI: 10.1007/s00248-019-01445-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
The plant pathogen Burkholderia glumae uses quorum sensing (QS) that allows bacteria to share information and alter gene expression on the basis of cell density. The wild-type strain of B. glumae produces quorum-sensing signals (autoinducers) to detect their community and upregulate QS-dependent genes across the population for performing social and group behaviors. The model organism B. glumae was selected to investigate adaptation, estimate evolutionary parameters, and test diverse evolutionary hypotheses by using experimental evolution. The wild-type B. glumae virulent strain showed genotypic changes during regular subculture due to oxygen limitation. The laboratory-evolved clones failed to produce the signaling molecule of C8-HSL/C6-HSL for activation of the quorum-sensing system. Further, the laboratory-evolved clones failed to produce catalase and oxalate for protecting themselves from the toxic environment at stationary phase and phytotoxins (toxoflavin) for infecting rice grain, respectively. The laboratory-evolved clones were completely sequenced and compared with the wild-type. Sequencing analysis of the evolved clones revealed that mutations in QS-responsible genes (iclR), sensor genes (shk, mcp), and signaling genes (luxR) were responsible for quorum-sensing activity failure. The experimental results and sequencing analysis revealed quorum-sensing process failure in the laboratory-evolved clones. In conclusion, the wild-type B. glumae strain was often exposed to oxidative stress during regular subculture and evolved as an avirulent strain (quorum-sensing mutant) by losing the phenotypic and genotypic characteristics.
Collapse
Affiliation(s)
- Gopalsamy Gnanasekaran
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
| | - Jae Yun Lim
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ingyu Hwang
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Peptidyl-Prolyl Isomerase ppiB Is Essential for Proteome Homeostasis and Virulence in Burkholderia pseudomallei. Infect Immun 2019; 87:IAI.00528-19. [PMID: 31331957 DOI: 10.1128/iai.00528-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 12/17/2022] Open
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis, a disease endemic to Southeast Asia and northern Australia. Mortality rates in these areas are high even with antimicrobial treatment, and there are few options for effective therapy. Therefore, there is a need to identify antibacterial targets for the development of novel treatments. Cyclophilins are a family of highly conserved enzymes important in multiple cellular processes. Cyclophilins catalyze the cis-trans isomerization of xaa-proline bonds, a rate-limiting step in protein folding which has been shown to be important for bacterial virulence. B. pseudomallei carries a putative cyclophilin B gene, ppiB, the role of which was investigated. A B. pseudomallei ΔppiB (BpsΔppiB) mutant strain demonstrates impaired biofilm formation and reduced motility. Macrophage invasion and survival assays showed that although the BpsΔppiB strain retained the ability to infect macrophages, it had reduced survival and lacked the ability to spread cell to cell, indicating ppiB is essential for B. pseudomallei virulence. This is reflected in the BALB/c mouse infection model, demonstrating the requirement of ppiB for in vivo disease dissemination and progression. Proteomic analysis demonstrates that the loss of PpiB leads to pleiotropic effects, supporting the role of PpiB in maintaining proteome homeostasis. The loss of PpiB leads to decreased abundance of multiple virulence determinants, including flagellar machinery and alterations in type VI secretion system proteins. In addition, the loss of ppiB leads to increased sensitivity toward multiple antibiotics, including meropenem and doxycycline, highlighting ppiB inhibition as a promising antivirulence target to both treat B. pseudomallei infections and increase antibiotic efficacy.
Collapse
|
9
|
Hendiani S, Rybtke ML, Tolker-Nielsen T, Kashef N. Sub-lethal antimicrobial photodynamic inactivation affects Pseudomonas aeruginosa PAO1 quorum sensing and cyclic di-GMP regulatory systems. Photodiagnosis Photodyn Ther 2019; 27:467-473. [PMID: 31362113 DOI: 10.1016/j.pdpdt.2019.07.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/02/2019] [Accepted: 07/26/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Antimicrobial photodynamic inactivation (APDI) is a new therapeutic modality which needs more precision during application due to the possibility of exposure of bacteria to sub-lethal doses (sAPDI). In this study, we aimed to evaluate the effect of sAPDI on Pseudomonas aeruginosa quorum sensing (QS) and c-di-GMP signaling which are important virulence factor regulatory systems. METHODS Biofilm formation, pyoverdine, pyocyanin and protease production of P. aeruginosa was evaluated before and after a single sAPDI treatment with 0.8 mM methylene blue (MB) plus 1, 2, and 5-min irradiation with red laser light. Fluorescent lasB, rhlA, pqsA, and cdrA reporters of P. aeruginosa PAO1 and P. aeruginosa ΔmexAB-oprM were treated individually with sAPDI and the regulatory signals were detected. The gene expressions were also assessed after sAPDI using quantitative real-time PCR analysis. RESULTS Morphological observations and molecular assessments indicated that sAPDI with 0.8 mM MB along with 2- and 5-min irradiation led to an increase in the expression of the Las QS system and c-di-GMP signaling, while 1 min irradiation revealed dissimilar results (increase in lasB expression and decrease in c-di-GMP levels). Expression of rhlA and pqsA did not change in response to sAPDI. Further, a severe lethal effect of sAPDI was observed in P. aeruginosa ΔmexAB-oprM as compared with the wild type strain, whilst there was no difference in QS and c-di-GMP levels as detected by reporters between treated and untreated samples. CONCLUSION The results suggest that sAPDI affects QS and c-di-GMP signaling inP. aeruginosa in a time-dependent manner.
Collapse
Affiliation(s)
- Saghar Hendiani
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Morten Levin Rybtke
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Nasim Kashef
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
10
|
Su Y, Tang K, Liu J, Wang Y, Zheng Y, Zhang XH. Quorum Sensing System of Ruegeria mobilis Rm01 Controls Lipase and Biofilm Formation. Front Microbiol 2019; 9:3304. [PMID: 30687283 PMCID: PMC6333666 DOI: 10.3389/fmicb.2018.03304] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 12/19/2018] [Indexed: 01/02/2023] Open
Abstract
Quorum sensing (QS) promotes in situ extracellular enzyme (EE) activity via the exogenous signal N-acylhomoserine lactone (AHL), which facilitates marine particle degradation, but the species that engage in this regulatory mechanism remain unclear. Here, we obtained AHL-producing and AHL-degrading strains from marine particles. The strain Ruegeria mobilis Rm01 of the Roseobacter group (RBG), which was capable of both AHL producing and degrading, was chosen to represent these strains. We demonstrated that Rm01 possessed a complex QS network comprising AHL-based QS and quorum quenching (QQ) systems and autoinducer-2 (AI-2) perception system. Rm01 was able to respond to multiple exogenous QS signals through the QS network. By applying self-generated AHLs and non-self-generated AHLs and AI-2 QS signal molecules, we modulated biofilm formation and lipase production in Rm01, which reflected the coordination of bacterial metabolism with that of other species via eavesdropping on exogenous QS signals. These results suggest that R. mobilis might be one of the participators that could regulate EE activities by responding to QS signals in marine particles.
Collapse
Affiliation(s)
- Ying Su
- College of Marine Life Science, Ocean University of China, Qingdao, China.,Weifang Engineering Vocational College, Weifang, China
| | - Kaihao Tang
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Jiwen Liu
- College of Marine Life Science, Ocean University of China, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yan Wang
- College of Marine Life Science, Ocean University of China, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yanfen Zheng
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Xiao-Hua Zhang
- College of Marine Life Science, Ocean University of China, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
11
|
de Almeida FA, Carneiro DG, de Oliveira Mendes TA, Barros E, Pinto UM, de Oliveira LL, Vanetti MCD. N-dodecanoyl-homoserine lactone influences the levels of thiol and proteins related to oxidation-reduction process in Salmonella. PLoS One 2018; 13:e0204673. [PMID: 30304064 PMCID: PMC6179229 DOI: 10.1371/journal.pone.0204673] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/12/2018] [Indexed: 01/09/2023] Open
Abstract
Quorum sensing is a cell-cell communication mechanism mediated by chemical signals that leads to differential gene expression in response to high population density. Salmonella is unable to synthesize the autoinducer-1 (AI-1), N-acyl homoserine lactone (AHL), but is able to recognize AHLs produced by other microorganisms through SdiA protein. This study aimed to evaluate the fatty acid and protein profiles of Salmonella enterica serovar Enteritidis PT4 578 throughout time of cultivation in the presence of AHL. The presence of N-dodecanoyl-homoserine lactone (C12-HSL) altered the fatty acid and protein profiles of Salmonella cultivated during 4, 6, 7, 12 and 36 h in anaerobic condition. The profiles of Salmonella Enteritidis at logarithmic phase of growth (4 h of cultivation), in the presence of C12-HSL, were similar to those of cells at late stationary phase (36 h). In addition, there was less variation in both protein and fatty acid profiles along growth, suggesting that this quorum sensing signal anticipated a stationary phase response. The presence of C12-HSL increased the abundance of thiol related proteins such as Tpx, Q7CR42, Q8ZP25, YfgD, AhpC, NfsB, YdhD and TrxA, as well as the levels of free cellular thiol after 6 h of cultivation, suggesting that these cells have greater potential to resist oxidative stress. Additionally, the LuxS protein which synthesizes the AI-2 signaling molecule was differentially abundant in the presence of C12-HSL. The NfsB protein had its abundance increased in the presence of C12-HSL at all evaluated times, which is a suggestion that the cells may be susceptible to the action of nitrofurans or that AHLs present some toxicity. Overall, the presence of C12-HSL altered important pathways related to oxidative stress and stationary phase response in Salmonella.
Collapse
Affiliation(s)
| | | | | | - Edvaldo Barros
- Núcleo de Análise de Biomoléculas, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Uelinton Manoel Pinto
- Food Research Center, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
12
|
Yu Z, Zhou Z, Huang G, Zheng X, Wu L, Zhao S, Meng F. Two-Dimensional FTIR Spectroscopic Characterization of Functional Groups of NaOCl-Exposed Alginate: Insights into Membrane Refouling after Online Chemical Cleaning. ACS APPLIED BIO MATERIALS 2018; 1:593-603. [DOI: 10.1021/acsabm.8b00082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Zhong Yu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhongbo Zhou
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Guocheng Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xing Zheng
- Department of Civil and Environmental Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Linjie Wu
- Department of Civil and Environmental Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Shanshan Zhao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
13
|
Malleilactone Is a Burkholderia pseudomallei Virulence Factor Regulated by Antibiotics and Quorum Sensing. J Bacteriol 2018; 200:JB.00008-18. [PMID: 29735757 DOI: 10.1128/jb.00008-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Burkholderia pseudomallei, the causative agent of melioidosis, encodes almost a dozen predicted polyketide (PK) biosynthetic gene clusters. Many of these are regulated by LuxR-I-type acyl-homoserine (AHL) quorum-sensing systems. One of the PK gene clusters, the mal gene cluster, is conserved in the close relative Burkholderia thailandensis The B. thailandensis mal genes code for the cytotoxin malleilactone and are regulated by a genetically linked LuxR-type transcription factor, MalR. Although AHLs typically interact with LuxR-type proteins to modulate gene transcription, the B. thailandensis MalR does not appear to be an AHL receptor. Here, we characterize the mal genes and MalR in B. pseudomallei We use chemical analyses to demonstrate that the B. pseudomallei mal genes code for malleilactone. Our results show that MalR and the mal genes contribute to the ability of B. pseudomallei to kill Caenorhabditis elegans In B. thailandensis, antibiotics like trimethoprim can activate MalR by driving transcription of the mal genes, and we demonstrate that some of the same antibiotics induce expression of B. pseudomallei malR We also demonstrate that B. pseudomallei MalR does not respond directly to AHLs. Our results suggest that MalR is indirectly repressed by AHLs, possibly through a repressor, ScmR. We further show that malleilactone is a B. pseudomallei virulence factor and provide the foundation for understanding how malleilactone contributes to the pathology of melioidosis infections.IMPORTANCE Many bacterially produced polyketides are cytotoxic to mammalian cells and are potentially important contributors to pathogenesis during infection. We are interested in the polyketide gene clusters present in Burkholderia pseudomallei, which causes the often-fatal human disease melioidosis. Using knowledge gained by studies in the close relative Burkholderia thailandensis, we show that one of the B. pseudomallei polyketide biosynthetic clusters produces a cytotoxic polyketide, malleilactone. Malleilactone contributes to B. pseudomallei virulence in a Caenorhabditis elegans infection model and is regulated by an orphan LuxR family quorum-sensing transcription factor, MalR. Our studies demonstrate that malleilactone biosynthesis or MalR could be new targets for developing therapeutics to treat melioidosis.
Collapse
|
14
|
Duangurai T, Indrawattana N, Pumirat P. Burkholderia pseudomallei Adaptation for Survival in Stressful Conditions. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3039106. [PMID: 29992136 PMCID: PMC5994319 DOI: 10.1155/2018/3039106] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/09/2018] [Accepted: 04/05/2018] [Indexed: 12/19/2022]
Abstract
Burkholderia pseudomallei is a Gram-negative bacterium that causes melioidosis, which can be fatal in humans. Melioidosis is prevalent in the tropical regions of Southeast Asia and Northern Australia. Ecological data have shown that this bacterium can survive as a free-living organism in environmental niches, such as soil and water, as well as a parasite living in host organisms, such as ameba, plants, fungi, and animals. This review provides an overview of the survival and adaptation of B. pseudomallei to stressful conditions induced by hostile environmental factors, such as salinity, oxidation, and iron levels. The adaptation of B. pseudomallei in host cells is also reviewed. The adaptive survival mechanisms of this pathogen mainly involve modulation of gene and protein expression, which could cause alterations in the bacteria's cell membrane, metabolism, and virulence. Understanding the adaptations of this organism to environmental factors provides important insights into the survival and pathogenesis of B. pseudomallei, which may lead to the development of novel strategies for the control, prevention, and treatment of melioidosis in the future.
Collapse
Affiliation(s)
- Taksaon Duangurai
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Nitaya Indrawattana
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Pornpan Pumirat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
15
|
Liu J, Fu K, Wu C, Qin K, Li F, Zhou L. "In-Group" Communication in Marine Vibrio: A Review of N-Acyl Homoserine Lactones-Driven Quorum Sensing. Front Cell Infect Microbiol 2018; 8:139. [PMID: 29868495 PMCID: PMC5952220 DOI: 10.3389/fcimb.2018.00139] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
N-Acyl Homoserine Lactones (N-AHLs) are an important group of small quorum-sensing molecules generated and released into the surroundings by Gram-negative bacteria. N-AHLs play a crucial role in various infection-related biological processes of marine Vibrio species, including survival, colonization, invasion, and pathogenesis. With the increasing problem of antibiotic abuse and subsequently the emergence of drug-resistant bacteria, studies on AHLs are therefore expected to bring potential new breakthroughs for the prevention and treatment of Vibrio infections. This article starts from AHLs generation in marine Vibrio, and then discusses the advantages, disadvantages, and trends in the future development of various detection methods for AHLs characterization. In addition to a detailed classification of the various marine Vibrio-derived AHL types that have been reported over the years, the regulatory mechanisms of AHLs and their roles in marine Vibrio biofilms, pathogenicity and interaction with host cells are also highlighted. Intervention measures for AHLs in different stages are systematically reviewed, and the prospects of their future development and application are examined.
Collapse
Affiliation(s)
- Jianfei Liu
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Kaifei Fu
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Chenglin Wu
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Kewei Qin
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Fei Li
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Lijun Zhou
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| |
Collapse
|
16
|
Quorum Sensing in Burkholderia pseudomallei and Other Burkholderia species. CURRENT TROPICAL MEDICINE REPORTS 2017. [DOI: 10.1007/s40475-017-0127-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Dellus-Gur E, Ram Y, Hadany L. Errors in mutagenesis and the benefit of cell-to-cell signalling in the evolution of stress-induced mutagenesis. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170529. [PMID: 29291054 PMCID: PMC5717628 DOI: 10.1098/rsos.170529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/02/2017] [Indexed: 06/07/2023]
Abstract
Stress-induced mutagenesis is a widely observed phenomenon. Theoretical models have shown that stress-induced mutagenesis can be favoured by natural selection due to the beneficial mutations it generates. These models, however, assumed an error-free regulation of mutation rate in response to stress. Here, we explore the effects of errors in the regulation of mutagenesis on the evolution of stress-induced mutagenesis, and consider the role of cell-to-cell signalling. Using theoretical models, we show (i) that stress-induced mutagenesis can be disadvantageous if errors are common; and (ii) that cell-to-cell signalling can allow stress-induced mutagenesis to be favoured by selection even when error rates are high. We conclude that cell-to-cell signalling can facilitate the evolution of stress-induced mutagenesis in microbes through second-order selection.
Collapse
|
18
|
Liu J, Fu K, Wang Y, Wu C, Li F, Shi L, Ge Y, Zhou L. Detection of Diverse N-Acyl-Homoserine Lactones in Vibrio alginolyticus and Regulation of Biofilm Formation by N-(3-Oxodecanoyl) Homoserine Lactone In vitro. Front Microbiol 2017; 8:1097. [PMID: 28670299 PMCID: PMC5472671 DOI: 10.3389/fmicb.2017.01097] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 05/30/2017] [Indexed: 11/15/2022] Open
Abstract
Quorum sensing (QS) is a cell-to-cell communication system based on the exchange of small intercellular signal molecules, such as N-Acyl homoserine lactones (AHLs), which act as cell-density mediators of QS gene expression, and are highly variable both in types and amounts in most Gram-negative Proteobacteria. Understanding the regulation of AHLs may contribute to the elucidation of cell density-dependent phenomena, such as biofilm formation. Vibrio alginolyticus is among the most frequently observed marine opportunistic Vibrio pathogens. However, AHL production of this species and its effects on biofilm formation remain to be understood. Here, our study reported the diverse AHL profiles of 47 marine-isolated V. alginolyticus strains and the effects of exogenous 3-oxo-C10-HSL on biofilm formation under different temperature conditions (16°C and 28°C). A total of 11 detected AHLs were produced by the isolates, of which 3-OH-C4-HSL, 3-oxo-C10-HSL and 3-oxo-C14-HSL comprised the largest proportions. We also observed that moderate levels of exogenous 3-oxo-C10-HSL (10 and 20 μM) could induce or enhance biofilm formation and alter its structure, while high levels (40 and 100 μM) did not significantly improve and even inhibited biofilm formation in V. alginolyticus. Further, regulation by exogenous 3-oxo-C10-HSL was both concentration- and temperature-dependent in V. alginolyticus.
Collapse
Affiliation(s)
- Jianfei Liu
- Department of Biochemistry and Molecular Biology, Medical College of Qingdao UniversityQingdao, China.,Central Laboratory, Navy General Hospital of PLABeijing, China
| | - Kaifei Fu
- Central Laboratory, Navy General Hospital of PLABeijing, China
| | - Yuxiao Wang
- Central Laboratory, Navy General Hospital of PLABeijing, China
| | - Chenglin Wu
- Central Laboratory, Navy General Hospital of PLABeijing, China
| | - Fei Li
- Central Laboratory, Navy General Hospital of PLABeijing, China
| | - Lei Shi
- Institute of Food Safety and Nutrition, Jinan UniversityGuangzhou, China
| | - Yinlin Ge
- Department of Biochemistry and Molecular Biology, Medical College of Qingdao UniversityQingdao, China
| | - Lijun Zhou
- Central Laboratory, Navy General Hospital of PLABeijing, China
| |
Collapse
|
19
|
Cai W, Liu Y. Enhanced membrane biofouling potential by on-line chemical cleaning in membrane bioreactor. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.03.039] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Mongkolrob R, Taweechaisupapong S, Tungpradabkul S. Correlation between biofilm production, antibiotic susceptibility and exopolysaccharide composition in Burkholderia pseudomallei bpsI, ppk, and rpoS mutant strains. Microbiol Immunol 2016; 59:653-63. [PMID: 26486518 DOI: 10.1111/1348-0421.12331] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/12/2015] [Accepted: 10/14/2015] [Indexed: 11/28/2022]
Abstract
Burkholderia pseudomallei is the cause of melioidosis, a fatal tropical infectious disease, which has been reported to have a high rate of recurrence, even when an intensive dose of antibiotics is used. Biofilm formation is believed to be one of the possible causes of relapse because of its ability to increase drug resistance. EPS in biofilms have been reported to be related to the limitation of antibiotic penetration in B. pseudomallei. However, the mechanisms by which biofilms restrict the diffusion of antibiotics remain unclear. The present study presents a correlation between exopolysaccharide production in biofilm matrix and antibiotic resistance in B. pseudomallei using bpsI, ppk, and rpoS mutant strains. CLSM revealed a reduction in exopolysaccharide production and disabled micro-colony formation in B. pseudomallei mutants, which paralleled the antibiotic resistance. Different ratios of carbohydrate contents in the exopolysaccharides of the mutants were detected, although they have the same components, including glucose, galactose, mannose, and rhamnose, with the exception being that no detectable rhamnose peak was observed in the bpsI mutant. These results indicate that the correlation between these phenomena in the B. pseudomallei biofilm at least results from the exopolysaccharide, which may be under the regulation of bpsI, ppk, or rpoS genes.
Collapse
Affiliation(s)
- Rungrawee Mongkolrob
- Biochemistry Department, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Suwimol Taweechaisupapong
- Melioidosis Research Center and Biofilm research group, Faculty of Dentistry, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sumalee Tungpradabkul
- Biochemistry Department, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| |
Collapse
|
21
|
Lin L, Dai S, Tian B, Li T, Yu J, Liu C, Wang L, Xu H, Zhao Y, Hua Y. DqsIR quorum sensing-mediated gene regulation of the extremophilic bacterium Deinococcus radiodurans in response to oxidative stress. Mol Microbiol 2016; 100:527-41. [PMID: 26789904 DOI: 10.1111/mmi.13331] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2016] [Indexed: 11/30/2022]
Abstract
Here, we show that AHLs can be employed by Deinococcus radiodurans, which belongs to the unique phylum Deinococcus-Thermus and is known for its cellular resistance to environmental stresses. An AHL-mediated quorum-sensing system (DqsI/DqsR) was identified in D. radiodurans. We found that under non-stress conditions, the AHL level was "shielded" by quorum quenching enzymes, whereas AHLs accumulated when D. radiodurans was exposed to oxidative stress. Upon exposure to H2 O2 , AHL synthetic enzymes (DqsI) were immediately induced, while the expression of quorum-quenching enzymes began to increase approximately 30 min after exposure to H2 O2 , as shown by time-course analyses of gene expression. Both dqsI mutant (DMDqsI) and dqsR mutant (MDqsR) were more sensitive to oxidative stress compared with the wild-type strain. Exogenous AHLs (5 μM) could completely restore the survival fraction of DMDqsI under oxidative stress. RNA-seq analysis showed that a number of genes involved in stress-response, cellular cleansing, and DNA repair had altered transcriptional levels in MDqsR. The DqsR, acting as a regulator of quorum sensing, controls gene expression along with AHLs. Hence, the DqsIR-mediated quorum sensing that mediates gene regulation is an adaptive strategy for D. radiodurans in response to oxidative stresses and is conserved in the extremophilic Deinococcus bacteria.
Collapse
Affiliation(s)
- Lin Lin
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Shang Dai
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Bing Tian
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Tao Li
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Jiangliu Yu
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Chengzhi Liu
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Liangyan Wang
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Hong Xu
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Ye Zhao
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Yuejin Hua
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Gambino M, Cappitelli F. Mini-review: Biofilm responses to oxidative stress. BIOFOULING 2016; 32:167-178. [PMID: 26901587 DOI: 10.1080/08927014.2015.1134515] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
Biofilms constitute the predominant microbial style of life in natural and engineered ecosystems. Facing harsh environmental conditions, microorganisms accumulate reactive oxygen species (ROS), potentially encountering a dangerous condition called oxidative stress. While high levels of oxidative stress are toxic, low levels act as a cue, triggering bacteria to activate effective scavenging mechanisms or to shift metabolic pathways. Although a complex and fragmentary picture results from current knowledge of the pathways activated in response to oxidative stress, three main responses are shown to be central: the existence of common regulators, the production of extracellular polymeric substances, and biofilm heterogeneity. An investigation into the mechanisms activated by biofilms in response to different oxidative stress levels could have important consequences from ecological and economic points of view, and could be exploited to propose alternative strategies to control microbial virulence and deterioration.
Collapse
Affiliation(s)
- Michela Gambino
- a Department of Food, Environmental and Nutrition Sciences , Università degli Studi di Milano , Milan , Italy
| | - Francesca Cappitelli
- a Department of Food, Environmental and Nutrition Sciences , Università degli Studi di Milano , Milan , Italy
| |
Collapse
|
23
|
Niyompanich S, Srisanga K, Jaresitthikunchai J, Roytrakul S, Tungpradabkul S. Utilization of Whole-Cell MALDI-TOF Mass Spectrometry to Differentiate Burkholderia pseudomallei Wild-Type and Constructed Mutants. PLoS One 2015; 10:e0144128. [PMID: 26656930 PMCID: PMC4685992 DOI: 10.1371/journal.pone.0144128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/14/2015] [Indexed: 01/19/2023] Open
Abstract
Whole-cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (whole-cell MALDI-TOF MS) has been widely adopted as a useful technology in the identification and typing of microorganisms. This study employed the whole-cell MALDI-TOF MS to identify and differentiate wild-type and mutants containing constructed single gene mutations of Burkholderia pseudomallei, a pathogenic bacterium causing melioidosis disease in both humans and animals. Candidate biomarkers for the B. pseudomallei mutants, including rpoS, ppk, and bpsI isolates, were determined. Taxon-specific and clinical isolate-specific biomarkers of B. pseudomallei were consistently found and conserved across all average mass spectra. Cluster analysis of MALDI spectra of all isolates exhibited separate distribution. A total of twelve potential mass peaks discriminating between wild-type and mutant isolates were identified using ClinProTools analysis. Two peaks (m/z 2721 and 2748 Da) were specific for the rpoS isolate, three (m/z 3150, 3378, and 7994 Da) for ppk, and seven (m/z 3420, 3520, 3587, 3688, 4623, 4708, and 5450 Da) for bpsI. Our findings demonstrated that the rapid, accurate, and reproducible mass profiling technology could have new implications in laboratory-based rapid differentiation of extensive libraries of genetically altered bacteria.
Collapse
Affiliation(s)
- Suthamat Niyompanich
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kitima Srisanga
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Janthima Jaresitthikunchai
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani, Thailand
| | - Sumalee Tungpradabkul
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
24
|
Lim YL, Ee R, How KY, Lee SK, Yong D, Tee KK, Yin WF, Chan KG. Complete genome sequencing of Pandoraea pnomenusa RB38 and Molecular Characterization of Its N-acyl homoserine lactone synthase gene ppnI. PeerJ 2015; 3:e1225. [PMID: 26336650 PMCID: PMC4556143 DOI: 10.7717/peerj.1225] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 08/11/2015] [Indexed: 01/05/2023] Open
Abstract
In this study, we sequenced the genome of Pandoraea pnomenusa RB38 using Pacific Biosciences RSII (PacBio) Single Molecule Real Time (SMRT) sequencing technology. A pair of cognate luxI/R homologs was identified where the luxI homolog, ppnI, was found adjacent to a luxR homolog, ppnR1. An additional orphan luxR homolog, ppnR2, was also discovered. Multiple sequence alignment and phylogenetic analysis revealed that ppnI is an N-acyl homoserine lactone (AHL) synthase gene that is distinct from those of the nearest phylogenetic neighbor viz. Burkholderia spp. High resolution tandem mass spectrometry (LC-MS/MS) analysis showed that Escherichia coli BL21 harboring ppnI produced a similar AHL profile (N-octanoylhomoserine lactone, C8-HSL) as P. pnomenusa RB38, the wild-type donor strain, confirming that PpnI directed the synthesis of AHL in P. pnomenusa RB38. To our knowledge, this is the first documentation of the luxI/R homologs of the genus Pandoraea.
Collapse
Affiliation(s)
- Yan-Lue Lim
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya , Kuala Lumpur , Malaysia
| | - Robson Ee
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya , Kuala Lumpur , Malaysia
| | - Kah-Yan How
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya , Kuala Lumpur , Malaysia
| | - Siew-Kim Lee
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya , Kuala Lumpur , Malaysia
| | - Delicia Yong
- Department of Medicine, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Kok Keng Tee
- Department of Medicine, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya , Kuala Lumpur , Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya , Kuala Lumpur , Malaysia
| |
Collapse
|
25
|
Kudva IT, Krastins B, Torres AG, Griffin RW, Sheng H, Sarracino DA, Hovde CJ, Calderwood SB, John M. The Escherichia coli O157:H7 cattle immunoproteome includes outer membrane protein A (OmpA), a modulator of adherence to bovine rectoanal junction squamous epithelial (RSE) cells. Proteomics 2015; 15:1829-42. [PMID: 25643951 PMCID: PMC4456246 DOI: 10.1002/pmic.201400432] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 11/18/2014] [Accepted: 01/20/2015] [Indexed: 12/20/2022]
Abstract
Building on previous studies, we defined the repertoire of proteins comprising the immunoproteome (IP) of Escherichia coli O157:H7 (O157) cultured in DMEM supplemented with norepinephrine (O157 IP), a β-adrenergic hormone that regulates E. coli O157 gene expression in the gastrointestinal tract, using a variation of a novel proteomics-based platform proteome mining tool for antigen discovery, called "proteomics-based expression library screening" (PELS; Kudva et al., 2006). The E. coli O157 IP (O157-IP) comprised 91 proteins, and included those identified previously using proteomics-based expression library screening, and also proteins comprising DMEM and bovine rumen fluid proteomes. Outer membrane protein A (OmpA), a common component of the above proteomes, and reportedly a contributor to E. coli O157 adherence to cultured HEp-2 epithelial cells, was interestingly found to be a modulator rather than a contributor to E. coli O157 adherence to bovine rectoanal junction squamous epithelial cells. Our results point to a role for yet to be identified members of the O157-IP in E. coli O157 adherence to rectoanal junction squamous epithelial cells, and additionally implicate a possible role for the outer membrane protein A regulator, TdcA, in the expression of such adhesins. Our observations have implications for the development of efficacious vaccines for preventing E. coli O157 colonization of the bovine gastrointestinal tract.
Collapse
Affiliation(s)
- Indira T. Kudva
- Food Safety and Enteric Pathogens Research Unit National Animal Disease Center Agricultural Research Service U.S. Department of Agriculture Ames, Iowa. 50010
| | - Bryan Krastins
- Harvard Partners Center For Genetics and Genomics 65 Landsdowne Street Cambridge, Massachusetts 02139
| | - Alfredo G. Torres
- Departments of Microbiology and Immunology, and Pathology University of Texas Medical Branch Galveston, Texas 77555-1070
| | - Robert W. Griffin
- Division of Infectious Diseases Massachusetts General Hospital Boston, Massachusetts 02114
| | - Haiqing Sheng
- Department of Microbiology, Molecular Biology, and Biochemistry University of Idaho, Moscow, Idaho 83844-3052
| | - David A. Sarracino
- Harvard Partners Center For Genetics and Genomics 65 Landsdowne Street Cambridge, Massachusetts 02139
| | - Carolyn J. Hovde
- Department of Microbiology, Molecular Biology, and Biochemistry University of Idaho, Moscow, Idaho 83844-3052
| | - Stephen B. Calderwood
- Division of Infectious Diseases Massachusetts General Hospital Boston, Massachusetts 02114
- Department of Medicine Harvard Medical School Boston, Massachusetts 02114
- Department of Microbiology and Immunobiology Harvard Medical School Boston, Massachusetts 02114
| | - Manohar John
- Division of Infectious Diseases Massachusetts General Hospital Boston, Massachusetts 02114
- Department of Medicine Harvard Medical School Boston, Massachusetts 02114
- Department of Microbiology and Immunobiology Harvard Medical School Boston, Massachusetts 02114
| |
Collapse
|
26
|
Cross-species comparison of the Burkholderia pseudomallei, Burkholderia thailandensis, and Burkholderia mallei quorum-sensing regulons. J Bacteriol 2014; 196:3862-71. [PMID: 25182491 DOI: 10.1128/jb.01974-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Burkholderia pseudomallei, Burkholderia thailandensis, and Burkholderia mallei (the Bptm group) are close relatives with very different lifestyles: B. pseudomallei is an opportunistic pathogen, B. thailandensis is a nonpathogenic saprophyte, and B. mallei is a host-restricted pathogen. The acyl-homoserine lactone quorum-sensing (QS) systems of these three species show a high level of conservation. We used transcriptome sequencing (RNA-seq) to define the quorum-sensing regulon in each species, and we performed a cross-species analysis of the QS-controlled orthologs. Our analysis revealed a core set of QS-regulated genes in all three species, as well as QS-controlled factors shared by only two species or unique to a given species. This global survey of the QS regulons of B. pseudomallei, B. thailandensis, and B. mallei serves as a platform for predicting which QS-controlled processes might be important in different bacterial niches and contribute to the pathogenesis of B. pseudomallei and B. mallei.
Collapse
|
27
|
García-Contreras R, Nuñez-López L, Jasso-Chávez R, Kwan BW, Belmont JA, Rangel-Vega A, Maeda T, Wood TK. Quorum sensing enhancement of the stress response promotes resistance to quorum quenching and prevents social cheating. ISME JOURNAL 2014; 9:115-25. [PMID: 24936763 DOI: 10.1038/ismej.2014.98] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/09/2014] [Accepted: 05/12/2014] [Indexed: 12/24/2022]
Abstract
Quorum sensing (QS) coordinates the expression of virulence factors and allows bacteria to counteract the immune response, partly by increasing their tolerance to the oxidative stress generated by immune cells. Despite the recognized role of QS in enhancing the oxidative stress response, the consequences of this relationship for the bacterial ecology remain unexplored. Here we demonstrate that QS increases resistance also to osmotic, thermal and heavy metal stress. Furthermore a QS-deficient lasR rhlR mutant is unable to exert a robust response against H2O2 as it has less induction of catalase and NADPH-producing dehydrogenases. Phenotypic microarrays revealed that the mutant is very sensitive to several toxic compounds. As the anti-oxidative enzymes are private goods not shared by the population, only the individuals that produce them benefit from their action. Based on this premise, we show that in mixed populations of wild-type and the mexR mutant (resistant to the QS inhibitor furanone C-30), treatment with C-30 and H2O2 increases the proportion of mexR mutants; hence, oxidative stress selects resistance to QS compounds. In addition, oxidative stress alone strongly selects for strains with active QS systems that are able to exert a robust anti oxidative response and thereby decreases the proportion of QS cheaters in cultures that are otherwise prone to invasion by cheats. As in natural environments stress is omnipresent, it is likely that this QS enhancement of stress tolerance allows cells to counteract QS inhibition and invasions by social cheaters, therefore having a broad impact in bacterial ecology.
Collapse
Affiliation(s)
| | - Leslie Nuñez-López
- Biochemistry Department, National Institute of Cardiology, Mexico City, Mexico
| | | | - Brian W Kwan
- Department of Chemical Engineeringy, Pennsylvania State University, University Park, PA, USA
| | - Javier A Belmont
- Biochemistry Department, National Institute of Cardiology, Mexico City, Mexico
| | - Adrián Rangel-Vega
- Internal Medicine Department, Speciality Hospital, National Medical Center 'Siglo XXI', IMSS, Mexico City, Mexico
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - Thomas K Wood
- 1] Department of Chemical Engineeringy, Pennsylvania State University, University Park, PA, USA [2] Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
28
|
Al-Maleki AR, Mariappan V, Vellasamy KM, Shankar EM, Tay ST, Vadivelu J. Enhanced intracellular survival and epithelial cell adherence abilities of Burkholderia pseudomallei morphotypes are dependent on differential expression of virulence-associated proteins during mid-logarithmic growth phase. J Proteomics 2014; 106:205-20. [DOI: 10.1016/j.jprot.2014.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 03/21/2014] [Accepted: 04/02/2014] [Indexed: 10/25/2022]
|
29
|
Ooi WF, Ong C, Nandi T, Kreisberg JF, Chua HH, Sun G, Chen Y, Mueller C, Conejero L, Eshaghi M, Ang RML, Liu J, Sobral BW, Korbsrisate S, Gan YH, Titball RW, Bancroft GJ, Valade E, Tan P. The condition-dependent transcriptional landscape of Burkholderia pseudomallei. PLoS Genet 2013; 9:e1003795. [PMID: 24068961 PMCID: PMC3772027 DOI: 10.1371/journal.pgen.1003795] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/29/2013] [Indexed: 12/25/2022] Open
Abstract
Burkholderia pseudomallei (Bp), the causative agent of the often-deadly infectious disease melioidosis, contains one of the largest prokaryotic genomes sequenced to date, at 7.2 Mb with two large circular chromosomes (1 and 2). To comprehensively delineate the Bp transcriptome, we integrated whole-genome tiling array expression data of Bp exposed to >80 diverse physical, chemical, and biological conditions. Our results provide direct experimental support for the strand-specific expression of 5,467 Sanger protein-coding genes, 1,041 operons, and 766 non-coding RNAs. A large proportion of these transcripts displayed condition-dependent expression, consistent with them playing functional roles. The two Bp chromosomes exhibited dramatically different transcriptional landscapes — Chr 1 genes were highly and constitutively expressed, while Chr 2 genes exhibited mosaic expression where distinct subsets were expressed in a strongly condition-dependent manner. We identified dozens of cis-regulatory motifs associated with specific condition-dependent expression programs, and used the condition compendium to elucidate key biological processes associated with two complex pathogen phenotypes — quorum sensing and in vivo infection. Our results demonstrate the utility of a Bp condition-compendium as a community resource for biological discovery. Moreover, the observation that significant portions of the Bp virulence machinery can be activated by specific in vitro cues provides insights into Bp's capacity as an “accidental pathogen”, where genetic pathways used by the bacterium to survive in environmental niches may have also facilitated its ability to colonize human hosts. Bacterial transcriptomes are dynamic, context-specific and condition-dependent. Infection by the soil bacterium, Burkholderia pseudomallei, causes melioidosis, an often fatal infectious disease of humans and animals. Possessing a large multi-chromosomal genome, B. pseudomallei is able to persist and survive in a multitude of environments. To obtain a comprehensive overview of B. pseudomallei expressed transcripts, we initiated whole-genome transcriptome profiling covering a broad spectrum of conditions and exposures — a so-called “condition compendium”. Using the compendium, we confirmed many previously-annotated genes and operons, and also identified hundreds of novel transcripts including anti-sense transcripts and non-coding RNAs. By systematically examining genes exhibiting highly similar expression patterns, we ascribed putative functions to previously uncharacterized genes, and identified novel regulatory elements controlling these expression patterns. We also used the compendium to elucidate candidate virulence pathways associated with quorum-sensing and infection in mice. Our study showcases the power of a B. pseudomallei condition compendium as a valuable resource for understanding microbial physiology and the pathogenesis of melioidosis.
Collapse
Affiliation(s)
- Wen Fong Ooi
- Genome Institute of Singapore, Singapore, Republic of Singapore
| | - Catherine Ong
- 2DMERI@DSO, DSO National Laboratories, Singapore, Republic of Singapore
| | - Tannistha Nandi
- Genome Institute of Singapore, Singapore, Republic of Singapore
| | | | - Hui Hoon Chua
- Genome Institute of Singapore, Singapore, Republic of Singapore
| | - Guangwen Sun
- School of Applied Science, Republic Polytechnic, Singapore, Republic of Singapore
| | - Yahua Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Claudia Mueller
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Laura Conejero
- Department of Immunology and Infection, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Majid Eshaghi
- Genome Institute of Singapore, Singapore, Republic of Singapore
| | - Roy Moh Lik Ang
- Genome Institute of Singapore, Singapore, Republic of Singapore
| | - Jianhua Liu
- Genome Institute of Singapore, Singapore, Republic of Singapore
| | - Bruno W. Sobral
- Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, Virginia, United States of America
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Yunn Hwen Gan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Richard W. Titball
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Gregory J. Bancroft
- Department of Immunology and Infection, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Eric Valade
- Institut de Recherche Biomédicale des Armées/CRSSA, La Tronche, France
- Ecole du Val-de-Grâce, Paris, France
| | - Patrick Tan
- Genome Institute of Singapore, Singapore, Republic of Singapore
- Duke-NUS Graduate Medical School, Singapore, Republic of Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Republic of Singapore
- * E-mail:
| |
Collapse
|
30
|
Horton RE, Grant GD, Matthews B, Batzloff M, Owen SJ, Kyan S, Flegg CP, Clark AM, Ulett GC, Morrison N, Peak IR, Beacham IR. Quorum sensing negatively regulates multinucleate cell formation during intracellular growth of Burkholderia pseudomallei in macrophage-like cells. PLoS One 2013; 8:e63394. [PMID: 23704903 PMCID: PMC3660431 DOI: 10.1371/journal.pone.0063394] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/01/2013] [Indexed: 01/29/2023] Open
Abstract
Burkholderia pseudomallei is a Gram-negative environmental bacterium and the causative agent of melioidosis, a potentially fatal, acute or chronic disease endemic in the tropics. Acyl homoserine lactone (AHL)-mediated quorum sensing and signalling have been associated with virulence and biofilm formation in numerous bacterial pathogens. In the canonical acyl-homoserine lactone signalling paradigm, AHLs are detected by a response regulator. B. pseudomallei encodes three AHL synthases, encoded by bpsI1, bpsI2 and bpsI3, and five regulator genes. In this study, we mutated the B. pseudomallei AHL synthases individually and in double and triple combination. Five AHLs were detected and quantified by tandem liquid chromatography-mass spectroscopy. The major AHLs produced were N-octanoylhomoserine lactone and N-(3-hydroxy-decanoyl)homoserine lactone, the expression of which depended on bpsI1 and bpsI2, respectively. B. pseudomallei infection of macrophage cells causes cell fusion, leading to multinucleated cells (3 or more nuclei per cell). A triple mutant defective in production of all three AHL synthases was associated with a striking phenotype of massively enhanced host cellular fusion in macrophages. However, neither abrogation of host cell fusion, achieved by mutation of bimA or hcp1, nor enhancement of fusion altered intracellular replication of B. pseudomallei. Furthermore, when tested in murine models of acute melioidosis the AHL synthase mutants were not attenuated for virulence. Collectively, this study identifies important new aspects of the genetic basis of AHL synthesis in B. pseudomallei and the roles of these AHLs in systemic infection and in cell fusion in macrophages for this important human pathogen.
Collapse
Affiliation(s)
- Rachel E. Horton
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Gary D. Grant
- School of Pharmacy, Griffith University, Gold Coast, Queensland, Australia
| | - Ben Matthews
- Smart Water Research Centre, Griffith University, Gold Coast, Queensland, Australia
| | - Michael Batzloff
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Suzzanne J. Owen
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Stephanie Kyan
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Cameron P. Flegg
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Amanda M. Clark
- School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Glen C. Ulett
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
- School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Nigel Morrison
- School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Ian R. Peak
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
- School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Ifor R. Beacham
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
31
|
Wongtrakoongate P, Tumapa S, Tungpradabkul S. Regulation of a quorum sensing system by stationary phase sigma factor RpoS and their co-regulation of target genes
in Burkholderia pseudomallei. Microbiol Immunol 2012; 56:281-94. [DOI: 10.1111/j.1348-0421.2012.00447.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Wei Q, Minh PNL, Dötsch A, Hildebrand F, Panmanee W, Elfarash A, Schulz S, Plaisance S, Charlier D, Hassett D, Häussler S, Cornelis P. Global regulation of gene expression by OxyR in an important human opportunistic pathogen. Nucleic Acids Res 2012; 40:4320-33. [PMID: 22275523 PMCID: PMC3378865 DOI: 10.1093/nar/gks017] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Most bacteria control oxidative stress through the H(2)O(2)-responsive transactivator OxyR, a member of the LTTR family (LysR Type Transcriptional Regulators), which activates the expression of defensive genes such as those encoding catalases, alkyl hydroperoxide reductases and superoxide dismutases. In the human opportunistic pathogen Pseudomonas aeruginosa, OxyR positively regulates expression of the oxidative stress response genes katA, katB, ahpB and ahpCF. To identify additional targets of OxyR in P. aeruginosa PAO1, we performed chromatin immunoprecipitation in combination with whole genome tiling array analyses (ChIP-chip). We detected 56 genes including all the previously identified defensive genes and a battery of novel direct targets of OxyR. Electrophoretic mobility shift assays (EMSAs) for selected newly identified targets indicated that ∼70% of those were bound by purified oxidized OxyR and their regulation was confirmed by quantitative real-time polymerase chain reaction. Furthermore, a thioredoxin system was identified to enzymatically reduce OxyR under oxidative stress. Functional classification analysis showed that OxyR controls a core regulon of oxidative stress defensive genes, and other genes involved in regulation of iron homeostasis (pvdS), quorum-sensing (rsaL), protein synthesis (rpsL) and oxidative phosphorylation (cyoA and snr1). Collectively, our results indicate that OxyR is involved in oxidative stress defense and regulates other aspects of cellular metabolism as well.
Collapse
Affiliation(s)
- Qing Wei
- Department of Bioengineering Sciences, Research group Microbiology, VIB Department of Structural Biology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Bridier A, Briandet R, Thomas V, Dubois-Brissonnet F. Resistance of bacterial biofilms to disinfectants: a review. BIOFOULING 2011; 27:1017-32. [PMID: 22011093 DOI: 10.1080/08927014.2011.626899] [Citation(s) in RCA: 537] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A biofilm can be defined as a community of microorganisms adhering to a surface and surrounded by a complex matrix of extrapolymeric substances. It is now generally accepted that the biofilm growth mode induces microbial resistance to disinfection that can lead to substantial economic and health concerns. Although the precise origin of such resistance remains unclear, different studies have shown that it is a multifactorial process involving the spatial organization of the biofilm. This review will discuss the mechanisms identified as playing a role in biofilm resistance to disinfectants, as well as novel anti-biofilm strategies that have recently been explored.
Collapse
Affiliation(s)
- A Bridier
- AgroParisTech, UMR MICALIS, F-91300 Massy, France
| | | | | | | |
Collapse
|
34
|
Gamage AM, Shui G, Wenk MR, Chua KL. N-Octanoylhomoserine lactone signalling mediated by the BpsI–BpsR quorum sensing system plays a major role in biofilm formation of Burkholderia pseudomallei. Microbiology (Reading) 2011; 157:1176-1186. [DOI: 10.1099/mic.0.046540-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genome of Burkholderia pseudomallei encodes three acylhomoserine lactone (AHL) quorum sensing systems, each comprising an AHL synthase and a signal receptor/regulator. The BpsI–BpsR system produces N-octanoylhomoserine lactone (C8HL) and is positively auto-regulated by its AHL product. The products of the remaining two systems have not been identified. In this study, tandem MS was used to identify and quantify the AHL species produced by three clinical B. pseudomallei isolates – KHW, K96243 and H11 – three isogenic KHW mutants that each contain a null mutation in an AHL synthase gene, and recombinant Escherichia coli heterologously expressing each of the three B. pseudomallei AHL synthase genes. BpsI synthesized predominantly C8HL, which accounted for more than 95 % of the extracellular AHLs produced in stationary-phase KHW cultures. The major products of BpsI2 and BpsI3 were N-(3-hydroxy-octanoyl)homoserine lactone (OHC8HL) and N-(3-hydroxy-decanoyl)homoserine lactone, respectively, and their corresponding transcriptional regulators, BpsR2 and BpsR3, were capable of driving reporter gene expression in the presence of these cognate lactones. Formation of biofilm by B. pseudomallei KHW was severely impaired in mutants lacking either BpsI or BpsR but could be restored to near wild-type levels by exogenous C8HL. BpsI2 was not required, and BpsI3 was partially required for biofilm formation. Unlike the bpsI mutant, biofilm formation in the bpsI3
mutant could not be restored to wild-type levels in the presence of OHC8HL, the product of BpsI3. C8HL and OHC8HL had opposite effects on biofilm formation; exogenous C8HL enhanced biofilm formation in both the bpsI3
mutant and wild-type KHW while exogenous OHC8HL suppressed the formation of biofilm in the same strains. We propose that exogenous OHC8HL antagonizes biofilm formation in B. pseudomallei, possibly by competing with endogenous C8HL for binding to BpsR.
Collapse
Affiliation(s)
- Akshamal Mihiranga Gamage
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597 Singapore
| | - Guanghou Shui
- Life Science Institute, National University of Singapore, 28 Medical Drive, 117456 Singapore
| | - Markus R. Wenk
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543 Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597 Singapore
| | - Kim Lee Chua
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597 Singapore
| |
Collapse
|
35
|
Modulation of a thermoregulated type VI secretion system by AHL-dependent quorum sensing in Yersinia pseudotuberculosis. Arch Microbiol 2011; 193:351-63. [PMID: 21298257 DOI: 10.1007/s00203-011-0680-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 01/11/2011] [Accepted: 01/19/2011] [Indexed: 10/18/2022]
Abstract
The type VI secretion system (T6SS) is a novel secretion system found in many Gram-negative bacterial pathogens, which appears to be tightly regulated by different regulatory mechanisms. In the present study, we identified 4 T6SS clusters in Yersinia pseudotuberculosis and demonstrated that they were differentially thermoregulated. Among them, T6SS4 was preferentially expressed at 26°C, and its expression was growth phase dependent and subject to quorum sensing regulation. Both YpsI and YtbI AHL synthases contributed to the positive regulation of T6SS4, whereas YpsI synthase played the major role as T6SS4 expression was reduced strongly in the ypsI mutant strain but weakly in the ytbI mutant strain. Moreover, we provided evidence that exogenous addition of different synthetic AHLs complemented T6SS4 expression in different efficiencies in an ypsIytbI double mutant strain, suggesting C6-HSL had an antagonistic effect on T6SS4 expression. This is the first study demonstrating that the expression of T6SS is precisely regulated by temperature, growth phase, and AHL-dependent quorum sensing systems in Y. pseudotuberculosis.
Collapse
|
36
|
Galyov EE, Brett PJ, DeShazer D. Molecular insights into Burkholderia pseudomallei and Burkholderia mallei pathogenesis. Annu Rev Microbiol 2010; 64:495-517. [PMID: 20528691 DOI: 10.1146/annurev.micro.112408.134030] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Burkholderia pseudomallei and Burkholderia mallei are closely related gram-negative bacteria that can cause serious diseases in humans and animals. This review summarizes the current and rapidly expanding knowledge on the specific virulence factors employed by these pathogens and their roles in the pathogenesis of melioidosis and glanders. In particular, the contributions of recently identified virulence factors are described in the context of the intracellular lifestyle of these pathogens. Throughout this review, unique and shared virulence features of B. pseudomallei and B. mallei are discussed.
Collapse
Affiliation(s)
- Edouard E Galyov
- Department of Infection, Immunity and Inflammation, MSB, University of Leicester, Leicester LE1 9HN, United Kingdom.
| | | | | |
Collapse
|
37
|
Abstract
This review describes the chemistry of the bacterial biofilms including the chemistry of their constituents and signalling compounds that mediate or inhibit the formation of biofilms. Systems are described with special emphasis, in which quorum sensing molecules (autoinducers) trigger the formation of biofilms. In the first instance, N-acyl-L-homoserine lactones (AHLs) are the focus of this review, whereas the inter-species signal known as furanosyl borate diester and peptide autoinducers used by Gram-positive bacteria are not discussed in detail. Since the first discovery of an AHL autoinducer from Vibrio fischeri a large and further increasing number of different AHL structures from Gram-negative bacteria have been identified. This review gives a summary of all known AHL autoinducers and producing bacterial species. A few systems are discussed, where biofilm formation is suppressed by enzymatic degradation of AHL molecules or interference of secondary metabolites from other species with the quorum sensing systems of communicating bacteria. Finally, the multi-channel quorum sensing system, the intracellular downstream processing of the signal, and the resulting response of whole populations including biofilm formation are discussed for the Vibrio genus that has been extensively investigated.
Collapse
Affiliation(s)
- Jeroen S Dickschat
- Institute of Organic Chemistry, Technical University of Braunschweig, Hagenring 30, Braunschweig, Germany.
| |
Collapse
|
38
|
O'Grady EP, Viteri DF, Malott RJ, Sokol PA. Reciprocal regulation by the CepIR and CciIR quorum sensing systems in Burkholderia cenocepacia. BMC Genomics 2009; 10:441. [PMID: 19761612 PMCID: PMC2753556 DOI: 10.1186/1471-2164-10-441] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 09/17/2009] [Indexed: 01/10/2023] Open
Abstract
Background Burkholderia cenocepacia belongs to a group of closely related organisms called the B. cepacia complex (Bcc) which are important opportunistic human pathogens. B. cenocepacia utilizes a mechanism of cell-cell communication called quorum sensing to control gene expression including genes involved in virulence. The B. cenocepacia quorum sensing network includes the CepIR and CciIR regulatory systems. Results Global gene expression profiles during growth in stationary phase were generated using microarrays of B. cenocepacia cepR, cciR and cepRcciIR mutants. This is the first time CciR was shown to be a global regulator of quorum sensing gene expression. CepR was primarily responsible for positive regulation of gene expression while CciR generally exerted negative gene regulation. Many of the genes that were regulated by both quorum sensing systems were reciprocally regulated by CepR and CciR. Microarray analysis of the cepRcciIR mutant suggested that CepR is positioned upstream of CciR in the quorum sensing hierarchy in B. cenocepacia. A comparison of CepIR-regulated genes identified in previous studies and in the current study showed a substantial amount of overlap validating the microarray approach. Several novel quorum sensing-controlled genes were confirmed using qRT-PCR or promoter::lux fusions. CepR and CciR inversely regulated flagellar-associated genes, the nematocidal protein AidA and a large gene cluster on Chromosome 3. CepR and CciR also regulated genes required for iron transport, synthesis of extracellular enzymes and surface appendages, resistance to oxidative stress, and phage-related genes. Conclusion For the first time, the influence of CciIR on global gene regulation in B. cenocepacia has been elucidated. Novel genes under the control of the CepIR and CciIR quorum sensing systems in B. cenocepacia have been identified. The two quorum sensing systems exert reciprocal regulation of many genes likely enabling fine-tuned control of quorum sensing gene expression in B. cenocepacia strains carrying the cenocepacia island.
Collapse
Affiliation(s)
- Eoin P O'Grady
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| | | | | | | |
Collapse
|
39
|
Lazar Adler NR, Govan B, Cullinane M, Harper M, Adler B, Boyce JD. The molecular and cellular basis of pathogenesis in melioidosis: how does Burkholderia pseudomallei cause disease? FEMS Microbiol Rev 2009; 33:1079-99. [PMID: 19732156 DOI: 10.1111/j.1574-6976.2009.00189.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Melioidosis, a febrile illness with disease states ranging from acute pneumonia or septicaemia to chronic abscesses, was first documented by Whitmore & Krishnaswami (1912). The causative agent, Burkholderia pseudomallei, was subsequently identified as a motile, gram-negative bacillus, which is principally an environmental saprophyte. Melioidosis has become an increasingly important disease in endemic areas such as northern Thailand and Australia (Currie et al., 2000). This health burden, plus the classification of B. pseudomallei as a category B biological agent (Rotz et al., 2002), has resulted in an escalation of research interest. This review focuses on the molecular and cellular basis of pathogenesis in melioidosis, with a comprehensive overview of the current knowledge on how B. pseudomallei can cause disease. The process of B. pseudomallei movement from the environmental reservoir to attachment and invasion of epithelial and macrophage cells and the subsequent intracellular survival and spread is outlined. Furthermore, the diverse assortment of virulence factors that allow B. pseudomallei to become an effective opportunistic pathogen, as well as to avoid or subvert the host immune response, is discussed. With the recent increase in genomic and molecular studies, the current understanding of the infection process of melioidosis has increased substantially, yet, much still remains to be elucidated.
Collapse
|
40
|
Chun H, Choi O, Goo E, Kim N, Kim H, Kang Y, Kim J, Moon JS, Hwang I. The quorum sensing-dependent gene katG of Burkholderia glumae is important for protection from visible light. J Bacteriol 2009; 191:4152-7. [PMID: 19395481 PMCID: PMC2698513 DOI: 10.1128/jb.00227-09] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 04/21/2009] [Indexed: 12/31/2022] Open
Abstract
Quorum sensing (QS) plays important roles in the pathogenicity of Burkholderia glumae, the causative agent of bacterial rice grain rot. We determined how QS is involved in catalase expression in B. glumae. The QS-defective mutant of B. glumae exhibited less catalase activity than wild-type B. glumae. A beta-glucuronidase assay of a katG::Tn3-gusA78 reporter fusion protein revealed that katG expression is under the control of QS. Furthermore, katG expression was upregulated by QsmR, a transcriptional activator for flagellar-gene expression that is regulated by QS. A gel mobility shift assay confirmed that QsmR directly activates katG expression. The katG mutant produced toxoflavin but exhibited less severe disease than BGR1 on rice panicles. Under visible light conditions and a photon flux density of 61.6 micromol(-1) m(-2), the survival rate of the katG mutant was 10(5)-fold lower than that of BGR1. This suggests that KatG is a major catalase that protects bacterial cells from visible light, which probably results in less severe disease caused by the katG mutant.
Collapse
Affiliation(s)
- Heejin Chun
- Department of Agricultural Biotechnology, Seoul National University, Seoul , Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Duerkop BA, Varga J, Chandler JR, Peterson SB, Herman JP, Churchill MEA, Parsek MR, Nierman WC, Greenberg EP. Quorum-sensing control of antibiotic synthesis in Burkholderia thailandensis. J Bacteriol 2009; 191:3909-18. [PMID: 19376863 PMCID: PMC2698390 DOI: 10.1128/jb.00200-09] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Accepted: 04/06/2009] [Indexed: 11/20/2022] Open
Abstract
The genome of Burkholderia thailandensis codes for several LuxR-LuxI quorum-sensing systems. We used B. thailandensis quorum-sensing deletion mutants and recombinant Escherichia coli to determine the nature of the signals produced by one of the systems, BtaR2-BtaI2, and to show that this system controls genes required for the synthesis of an antibiotic. BtaI2 is an acyl-homoserine lactone (acyl-HSL) synthase that produces two hydroxylated acyl-HSLs, N-3-hydroxy-decanoyl-HSL (3OHC(10)-HSL) and N-3-hydroxy-octanoyl-HSL (3OHC(8)-HSL). The btaI2 gene is positively regulated by BtaR2 in response to either 3OHC(10)-HSL or 3OHC(8)-HSL. The btaR2-btaI2 genes are located within clusters of genes with annotations that suggest they are involved in the synthesis of polyketide or peptide antibiotics. Stationary-phase cultures of wild-type B. thailandensis, but not a btaR2 mutant or a strain deficient in acyl-HSL synthesis, produced an antibiotic effective against gram-positive bacteria. Two of the putative antibiotic synthesis gene clusters require BtaR2 and either 3OHC(10)-HSL or 3OHC(8)-HSL for activation. This represents another example where antibiotic synthesis is controlled by quorum sensing, and it has implications for the evolutionary divergence of B. thailandensis and its close relatives Burkholderia pseudomallei and Burkholderia mallei.
Collapse
Affiliation(s)
- Breck A Duerkop
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195-7242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
A Burkholderia cenocepacia orphan LuxR homolog is involved in quorum-sensing regulation. J Bacteriol 2009; 191:2447-60. [PMID: 19201791 DOI: 10.1128/jb.01746-08] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Burkholderia cenocepacia utilizes quorum sensing to control gene expression, including the expression of genes involved in virulence. In addition to CepR and CciR, a third LuxR homolog, CepR2, was found to regulate gene expression and virulence factor production. All B. cenocepacia strains examined contained this orphan LuxR homolog, which was not associated with an adjacent N-acyl-homoserine lactone synthase gene. Expression of cepR2 was negatively autoregulated and was negatively regulated by CciR in strain K56-2. Microarray analysis and quantitative reverse transcription-PCR determined that CepR2 did not influence expression of cepIR or cciIR. However, in strain K56-2, CepR2 negatively regulated expression of several known quorum-sensing-controlled genes, including genes encoding zinc metalloproteases. CepR2 exerted positive and negative regulation on genes on three chromosomes, including strong negative regulation of a gene cluster located adjacent to cepR2. In strain H111, which lacks the CciIR quorum-sensing system, CepR2 positively regulated pyochelin production by controlling transcription of one of the operons required for the biosynthesis of the siderophore in an N-acyl-homoserine lactone-independent manner. CepR2 activation of a luxI promoter was demonstrated in a heterologous Escherichia coli host, providing further evidence that CepR2 can function in the absence of signaling molecules. This study demonstrates that the orphan LuxR homolog CepR2 contributes to the quorum-sensing regulatory network in two distinct strains of B. cenocepacia.
Collapse
|
43
|
Roles and interactions of Burkholderia pseudomallei BpsIR quorum-sensing system determinants. J Bacteriol 2008; 190:7291-7. [PMID: 18757538 DOI: 10.1128/jb.00739-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Burkholderia pseudomallei quorum-sensing system (QSS), designated BpsIR, is encoded by five bpsR genes and three bpsI genes. This study investigated the roles and interactions of the QSS determinants in terms of gene regulation and protein interaction. We report two novel findings, that BpsR can function as an activator and a repressor for bpsI expression and that BpsR may form homodimers and heterodimers.
Collapse
|
44
|
Sjöblom S, Harjunpää H, Brader G, Palva ET. A novel plant ferredoxin-like protein and the regulator Hor are quorum-sensing targets in the plant pathogen Erwinia carotovora. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:967-978. [PMID: 18533837 DOI: 10.1094/mpmi-21-7-0967] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Quorum sensing (QS), a population-density-sensing mechanism, controls the production of the main virulence determinants, the plant cell-wall-degrading enzymes (PCWDEs) of the soft-rot phytopathogen Erwinia carotovora subsp. carotovora. In this study, we used random transposon mutagenesis with a gusA reporter construct to identify two new QS-controlled genes encoding the regulator Hor and a plant ferredoxin-like protein, FerE. The QS control of the identified genes was executed by the QS regulators ExpR1 and ExpR2 and mediated by the global repressor RsmA. Hor was shown to contribute to bacterial virulence at least partly through its control of PCWDE production. Our results showed that FerE contributes to oxidative stress tolerance and in planta fitness of the bacteria and suggest that QS could be central to control of oxidative stress tolerance. The presence of the FerE protein appears to be rather unique in heterotrophic bacteria and suggests an acquisition of the corresponding gene from plant host by horizontal gene transfer.
Collapse
Affiliation(s)
- Solveig Sjöblom
- Viikki Biocenter, Faculty of Biosciences, Department of Biological and Environmental Sciences, Division of Genetics, University of Helsinki, P.O.Box 56, FIN-00014, Helsinki, Finland
| | | | | | | |
Collapse
|
45
|
The Burkholderia mallei BmaR3-BmaI3 quorum-sensing system produces and responds to N-3-hydroxy-octanoyl homoserine lactone. J Bacteriol 2008; 190:5137-41. [PMID: 18487338 DOI: 10.1128/jb.00246-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia mallei has two acyl-homoserine lactone (acyl-HSL) signal generator-receptor pairs and two additional signal receptors, all of which contribute to virulence. We show that B. mallei produces N-3-hydroxy-octanoyl HSL (3OHC8-HSL) but a bmaI3 mutant does not. Recombinant Escherichia coli expressing BmaI3 produces hydroxylated acyl-HSLs, with 3OHC8-HSL being the most abundant compound. In recombinant E. coli, BmaR3 responds to 3OHC8-HSL but not to other acyl-HSLs. These data indicate that the signal for BmaR3-BmaI3 quorum sensing is 3OHC8-HSL.
Collapse
|
46
|
Duerkop BA, Ulrich RL, Greenberg EP. Octanoyl-homoserine lactone is the cognate signal for Burkholderia mallei BmaR1-BmaI1 quorum sensing. J Bacteriol 2007; 189:5034-40. [PMID: 17496085 PMCID: PMC1951878 DOI: 10.1128/jb.00317-07] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2007] [Accepted: 05/02/2007] [Indexed: 11/20/2022] Open
Abstract
Acyl-homoserine lactones (HSLs) serve as quorum-sensing signals for many Proteobacteria. Members of the LuxI family of signal generators catalyze the production of acyl-HSLs, which bind to a cognate receptor in the LuxR family of transcription factors. The obligate animal pathogen Burkholderia mallei produces several acyl-HSLs, and the B. mallei genome has four luxR and two luxI homologs, each of which has been established as a virulence factor. To begin to delineate the relevant acyl-HSL signals for B. mallei LuxR homologs, we analyzed the BmaR1-BmaI1 system. A comparison of acyl-HSL profiles from B. mallei ATCC 23344 and a B. mallei bmaI1 mutant indicates that octanoyl-HSL synthesis is BmaI1 dependent. Furthermore, octanoyl-HSL is the predominant acyl-HSL produced by BmaI1 in recombinant Escherichia coli. The synthesis of soluble BmaR1 in recombinant E. coli requires octanoyl-HSL or decanoyl-HSL. Insoluble aggregates of BmaR1 are produced in the presence of other acyl-HSLs and in the absence of acyl-HSLs. The bmaI1 promoter is activated by BmaR1 and octanoyl-HSL, and a 20-bp inverted repeat in the bmaI1 promoter is required for bmaI1 activation. Purified BmaR1 binds to this promoter region. These findings implicate octanoyl-HSL as the signal for BmaR1-BmaI1 quorum sensing and show that octanoyl-HSL and BmaR1 activate bmaI1 transcription.
Collapse
Affiliation(s)
- Breck A Duerkop
- Department of Microbiology, University of Washington School of Medicine, 1959 N. E. Pacific Street, Box 357242, Seattle, WA 98195-7242, USA
| | | | | |
Collapse
|
47
|
Chan YY, Bian HS, Tan TMC, Mattmann ME, Geske GD, Igarashi J, Hatano T, Suga H, Blackwell HE, Chua KL. Control of quorum sensing by a Burkholderia pseudomallei multidrug efflux pump. J Bacteriol 2007; 189:4320-4. [PMID: 17384185 PMCID: PMC1913402 DOI: 10.1128/jb.00003-07] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Burkholderia pseudomallei KHW quorum-sensing systems produced N-octanoyl-homoserine lactone, N-decanoyl-homoserine lactone, N-(3-hydroxy)-octanoyl-homoserine lactone, N-(3-hydroxy)-decanoyl-homoserine lactone, N-(3-oxo)-decanoyl-homoserine lactone, and N-(3-oxo)-tetradecanoyl-homoserine lactone. The extracellular secretion of these acyl-homoserine lactones is dependent absolutely on the function of the B. pseudomallei BpeAB-OprB efflux pump.
Collapse
Affiliation(s)
- Ying Ying Chan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|