1
|
D’Aria S, Maquet C, Li S, Dhup S, Lepez A, Kohler A, Van Hée VF, Dadhich RK, Frenière M, Andris F, Nemazanyy I, Sonveaux P, Machiels B, Gillet L, Braun MY. Expression of the monocarboxylate transporter MCT1 is required for virus-specific mouse CD8 + T cell memory development. Proc Natl Acad Sci U S A 2024; 121:e2306763121. [PMID: 38498711 PMCID: PMC10990098 DOI: 10.1073/pnas.2306763121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 01/29/2024] [Indexed: 03/20/2024] Open
Abstract
Lactate-proton symporter monocarboxylate transporter 1 (MCT1) facilitates lactic acid export from T cells. Here, we report that MCT1 is mandatory for the development of virus-specific CD8+ T cell memory. MCT1-deficient T cells were exposed to acute pneumovirus (pneumonia virus of mice, PVM) or persistent γ-herpesvirus (Murid herpesvirus 4, MuHV-4) infection. MCT1 was required for the expansion of virus-specific CD8+ T cells and the control of virus replication in the acute phase of infection. This situation prevented the subsequent development of virus-specific T cell memory, a necessary step in containing virus reactivation during γ-herpesvirus latency. Instead, persistent active infection drove virus-specific CD8+ T cells toward functional exhaustion, a phenotype typically seen in chronic viral infections. Mechanistically, MCT1 deficiency sequentially impaired lactic acid efflux from activated CD8+ T cells, caused an intracellular acidification inhibiting glycolysis, disrupted nucleotide synthesis in the upstream pentose phosphate pathway, and halted cell proliferation which, ultimately, promoted functional CD8+ T cell exhaustion instead of memory development. Taken together, our data demonstrate that MCT1 expression is mandatory for inducing T cell memory and controlling viral infection by CD8+ T cells.
Collapse
Affiliation(s)
- Stefania D’Aria
- Institute for Medical Immunology, Faculty of Medicine, Université libre de Bruxelles, Gosselies6041, Belgium
| | - Céline Maquet
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - Fundamental and Applied Research for Animals & Health Research Unit, University of Liège, Liège4000, Belgium
| | - Shuang Li
- Institute for Medical Immunology, Faculty of Medicine, Université libre de Bruxelles, Gosselies6041, Belgium
| | - Suveera Dhup
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels1200, Belgium
| | - Anouk Lepez
- Immunobiology Laboratory, Faculty of Sciences, Université libre de Bruxelles, Gosselies6041, Belgium
| | - Arnaud Kohler
- Institute for Medical Immunology, Faculty of Medicine, Université libre de Bruxelles, Gosselies6041, Belgium
| | - Vincent F. Van Hée
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels1200, Belgium
| | - Rajesh K. Dadhich
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels1200, Belgium
| | - Marine Frenière
- Institute for Medical Immunology, Faculty of Medicine, Université libre de Bruxelles, Gosselies6041, Belgium
| | - Fabienne Andris
- Immunobiology Laboratory, Faculty of Sciences, Université libre de Bruxelles, Gosselies6041, Belgium
| | - Ivan Nemazanyy
- Plateforme d’étude du métabolisme, Institut Necker, Inserm US 24 - CNRS UMS 3633, Faculté de Médecine Paris Descartes, Paris75015, France
| | - Pierre Sonveaux
- WEL Research Institute, Welbio Department, Wavre1300, Belgium
| | - Bénédicte Machiels
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - Fundamental and Applied Research for Animals & Health Research Unit, University of Liège, Liège4000, Belgium
| | - Laurent Gillet
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - Fundamental and Applied Research for Animals & Health Research Unit, University of Liège, Liège4000, Belgium
| | - Michel Y. Braun
- Institute for Medical Immunology, Faculty of Medicine, Université libre de Bruxelles, Gosselies6041, Belgium
| |
Collapse
|
2
|
Rambold U, Sperling S, Chew Z, Wang Y, Steer B, Zeller K, Strobl LJ, Zimber-Strobl U, Adler H. A Mouse Model to Study the Pathogenesis of γ-herpesviral Infections in Germinal Center B Cells. Cells 2023; 12:2780. [PMID: 38132100 PMCID: PMC10741729 DOI: 10.3390/cells12242780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
CD30-positive germinal center (GC)-derived B cell lymphomas are frequently linked to Epstein-Barr Virus (EBV) infection. However, a suitable animal model for the investigation of the interplay between γ-herpesvirus and host cells in B cell pathogenesis is currently lacking. Here, we present a novel in vivo model enabling the analysis of genetically modified viruses in combination with genetically modified GC B cells. As a murine γ-herpesvirus, we used MHV-68 closely mirroring the biology of EBV. Our key finding was that Cre-mediated recombination can be successfully induced by an MHV-68 infection in GC B cells from Cγ1-Cre mice allowing for deletion or activation of loxP-flanked cellular genes. The implementation of PrimeFlow RNA assay for MHV-68 demonstrated the enrichment of MHV-68 in GC and isotype-switched B cells. As illustrations of virus and cellular modifications, we inserted the EBV gene LMP2A into the MHV-68 genome and induced constitutively active CD30-signaling in GC B cells through MHV-68 infections, respectively. While the LMP2A-expressing MHV-68 behaved similarly to wildtype MHV-68, virally induced constitutively active CD30-signaling in GC B cells led to the expansion of a pre-plasmablastic population. The findings underscore the potential of our novel tools to address crucial questions about the interaction between herpesviral infections and deregulated cellular gene-expression in future studies.
Collapse
Affiliation(s)
- Ursula Rambold
- Institute of Asthma and Allergy Prevention, Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), 85764 Neuherberg, Germany; (U.R.); (B.S.)
| | - Stefanie Sperling
- Research Unit Gene Vectors, Research Group B Cell Development and Activation, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 81377 Munich, Germany (Y.W.); (K.Z.); (L.J.S.)
| | - Zakir Chew
- Research Unit Gene Vectors, Research Group B Cell Development and Activation, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 81377 Munich, Germany (Y.W.); (K.Z.); (L.J.S.)
| | - Yan Wang
- Research Unit Gene Vectors, Research Group B Cell Development and Activation, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 81377 Munich, Germany (Y.W.); (K.Z.); (L.J.S.)
| | - Beatrix Steer
- Institute of Asthma and Allergy Prevention, Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), 85764 Neuherberg, Germany; (U.R.); (B.S.)
| | - Krisztina Zeller
- Research Unit Gene Vectors, Research Group B Cell Development and Activation, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 81377 Munich, Germany (Y.W.); (K.Z.); (L.J.S.)
| | - Lothar J. Strobl
- Research Unit Gene Vectors, Research Group B Cell Development and Activation, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 81377 Munich, Germany (Y.W.); (K.Z.); (L.J.S.)
- Institute of Lung Health and Immunity, Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), 85764 Neuherberg, Germany
| | - Ursula Zimber-Strobl
- Research Unit Gene Vectors, Research Group B Cell Development and Activation, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 81377 Munich, Germany (Y.W.); (K.Z.); (L.J.S.)
- Institute of Lung Health and Immunity, Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), 85764 Neuherberg, Germany
| | - Heiko Adler
- Institute of Asthma and Allergy Prevention, Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), 85764 Neuherberg, Germany; (U.R.); (B.S.)
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, Member of the German Center of Lung Research (DZL), 80336 Munich, Germany
| |
Collapse
|
3
|
Bruce K, Ma J, Lawler C, Xie W, Stevenson PG, Farrell HE. Recent Advancements in Understanding Primary Cytomegalovirus Infection in a Mouse Model. Viruses 2022; 14:v14091934. [PMID: 36146741 PMCID: PMC9505653 DOI: 10.3390/v14091934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Animal models that mimic human infections provide insights in virus–host interplay; knowledge that in vitro approaches cannot readily predict, nor easily reproduce. Human cytomegalovirus (HCMV) infections are acquired asymptomatically, and primary infections are difficult to capture. The gap in our knowledge of the early events of HCMV colonization and spread limits rational design of HCMV antivirals and vaccines. Studies of natural infection with mouse cytomegalovirus (MCMV) have demonstrated the olfactory epithelium as the site of natural colonization. Systemic spread from the olfactory epithelium is facilitated by infected dendritic cells (DC); tracking dissemination uncovered previously unappreciated DC trafficking pathways. The olfactory epithelium also provides a unique niche that supports efficient MCMV superinfection and virus recombination. In this review, we summarize recent advances to our understanding of MCMV infection and spread and the tissue-specific mechanisms utilized by MCMV to modulate DC trafficking. As these mechanisms are likely conserved with HCMV, they may inform new approaches for preventing HCMV infections in humans.
Collapse
|
4
|
Maquet C, Baiwir J, Loos P, Rodriguez-Rodriguez L, Javaux J, Sandor R, Perin F, Fallon PG, Mack M, Cataldo D, Gillet L, Machiels B. Ly6C
hi
monocytes balance regulatory and cytotoxic CD4 T cell responses to control virus-induced immunopathology. Sci Immunol 2022; 7:eabn3240. [DOI: 10.1126/sciimmunol.abn3240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gammaherpesviruses (γHVs) have coevolved with their host, leading to a remarkably high infection prevalence and establishment of latency. The lifelong persistence of γHVs in hosts appears to broadly shape host immunity, and we show here that pulmonary infection with Murid herpesvirus 4 (MuHV-4), a mouse γHV, drives the recruitment of Ly6C
hi
monocytes (MOs) into the airway, thereby modulating the host immune response. The absence of Ly6C
hi
MOs is associated with severe virus-induced immunopathology and the systemic release of inflammatory mediators. Mechanistically, MuHV-4–imprinted MOs recruit CD4 T cells to the airways and trigger immunosuppressive signaling pathways through the PD-L1/PD-1 axis, thereby dampening the deleterious activation of cytotoxic CD4 T cells. These results uncover a role for Ly6C
hi
MOs in modulating CD4 T cell functions and reveal pathways that could be targeted therapeutically to reduce detrimental immunopathological responses associated with respiratory viral infections.
Collapse
Affiliation(s)
- Céline Maquet
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège 4000, Belgium
| | - Jérôme Baiwir
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège 4000, Belgium
| | - Pauline Loos
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège 4000, Belgium
| | - Lucia Rodriguez-Rodriguez
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège 4000, Belgium
| | - Justine Javaux
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège 4000, Belgium
| | - Rémy Sandor
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège 4000, Belgium
| | - Fabienne Perin
- Laboratory of Biology of Tumor and Development, GIGA-Cancer ULiège and “Centre Hospitalier Universitaire de Liège (CHU)”, Liège 4000, Belgium
| | - Padraic G. Fallon
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Matthias Mack
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Didier Cataldo
- Laboratory of Biology of Tumor and Development, GIGA-Cancer ULiège and “Centre Hospitalier Universitaire de Liège (CHU)”, Liège 4000, Belgium
| | - Laurent Gillet
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège 4000, Belgium
| | - Bénédicte Machiels
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège 4000, Belgium
| |
Collapse
|
5
|
Olfactory Entry Promotes Herpesvirus Recombination. J Virol 2021; 95:e0155521. [PMID: 34523965 DOI: 10.1128/jvi.01555-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesvirus genomes show abundant evidence of past recombination. Its functional importance is unknown. A key question is whether recombinant viruses can outpace the immunity induced by their parents to reach higher loads. We tested this by coinfecting mice with attenuated mutants of murid herpesvirus 4 (MuHV-4). Infection by the natural olfactory route routinely allowed mutant viruses to reconstitute wild-type genotypes and reach normal viral loads. Lung coinfections rescued much less well. Attenuated murine cytomegalovirus mutants similarly showed recombinational rescue via the nose but not the lungs. These infections spread similarly, so route-specific rescue implied that recombination occurred close to the olfactory entry site. Rescue of replication-deficient MuHV-4 confirmed this, showing that coinfection occurred in the first encountered olfactory cells. This worked even with asynchronous inoculation, implying that a defective virus can wait here for later rescue. Virions entering the nose get caught on respiratory mucus, which the respiratory epithelial cilia push back toward the olfactory surface. Early infection was correspondingly focused on the anterior olfactory edge. Thus, by concentrating incoming infection into a small area, olfactory entry seems to promote functionally significant recombination. IMPORTANCE All organisms depend on genetic diversity to cope with environmental change. Small viruses rely on frequent point mutations. This is harder for herpesviruses because they have larger genomes. Recombination provides another means of genetic optimization. Human herpesviruses often coinfect, and they show evidence of past recombination, but whether this is rare and incidental or functionally important is unknown. We showed that herpesviruses entering mice via the natural olfactory route meet reliably enough for recombination routinely to repair crippling mutations and restore normal viral loads. It appeared to occur in the first encountered olfactory cells and reflected a concentration of infection at the anterior olfactory edge. Thus, natural host entry incorporates a significant capacity for herpesvirus recombination.
Collapse
|
6
|
Wang Y, Tibbetts SA, Krug LT. Conquering the Host: Determinants of Pathogenesis Learned from Murine Gammaherpesvirus 68. Annu Rev Virol 2021; 8:349-371. [PMID: 34586873 PMCID: PMC9153731 DOI: 10.1146/annurev-virology-011921-082615] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Gammaherpesviruses are an important class of oncogenic pathogens that are exquisitely evolved to their respective hosts. As such, the human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi sarcoma herpesvirus (KSHV) do not naturally infect nonhuman primates or rodents. There is a clear need to fully explore mechanisms of gammaherpesvirus pathogenesis, host control, and immune evasion in the host. A gammaherpesvirus pathogen isolated from murid rodents was first reported in 1980; 40 years later, murine gammaherpesvirus 68 (MHV68, MuHV-4, γHV68) infection of laboratory mice is a well-established pathogenesis system recognized for its utility in applying state-of-the-art approaches to investigate virus-host interactions ranging from the whole host to the individual cell. Here, we highlight recent advancements in our understanding of the processes by which MHV68 colonizes the host and drives disease. Lessons that inform KSHV and EBV pathogenesis and provide future avenues for novel interventions against infection and virus-associated cancers are emphasized.
Collapse
Affiliation(s)
- Yiping Wang
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Scott A Tibbetts
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Laurie T Krug
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA;
| |
Collapse
|
7
|
Erazo D, Pedersen AB, Gallagher K, Fenton A. Who acquires infection from whom? Estimating herpesvirus transmission rates between wild rodent host groups. Epidemics 2021; 35:100451. [PMID: 33761448 DOI: 10.1016/j.epidem.2021.100451] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/10/2021] [Accepted: 03/10/2021] [Indexed: 11/24/2022] Open
Abstract
To date, few studies of parasite epidemiology have investigated 'who acquires infection from whom' in wildlife populations. Nonetheless, identifying routes of disease transmission within a population, and determining the key groups of individuals that drive parasite transmission and maintenance, are fundamental to understanding disease dynamics. Gammaherpesviruses are a widespread group of DNA viruses that infect many vertebrate species, and murine gammaherpesviruses (i.e. MuHV-4) are a standard lab model for studying human herpesviruses, for which much about the pathology and immune response elicited to infection is well understood. However, despite this extensive research effort, primarily in the lab, the transmission route of murine gammaherpesviruses within their natural host populations is not well understood. Here, we aimed to understand wood mouse herpesvirus (WMHV) transmission, by fitting a series of population dynamic models to field data on wood mice naturally infected with WMHV and then estimating transmission parameters within and between demographic groups of the host population. Different models accounted for different combinations of host sex (male/female), age (subadult/adult) and transmission functions (density/frequency-dependent). We found that a density-dependent transmission model incorporating explicit sex groups fitted the data better than all other proposed models. Male-to-male transmission was the highest among all possible combinations of between- and within-sex transmission classes, suggesting that male behaviour is a key factor driving WMHV transmission. Our models also suggest that transmission between sexes, although important, wasn't symmetrical, with infected males playing a significant role in infecting naïve females but not vice versa. Overall this work shows the power of coupling population dynamic models with long-term field data to elucidate otherwise unobservable transmission processes in wild disease systems.
Collapse
Affiliation(s)
- Diana Erazo
- Institute of Infection, Veterinary, and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZB, UK.
| | - Amy B Pedersen
- Institute of Evolutionary Biology & Centre for Infection, Immunity and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Kayleigh Gallagher
- Institute of Infection, Veterinary, and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Andy Fenton
- Institute of Infection, Veterinary, and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZB, UK
| |
Collapse
|
8
|
Dangerous Liaisons: Gammaherpesvirus Subversion of the Immunoglobulin Repertoire. Viruses 2020; 12:v12080788. [PMID: 32717815 PMCID: PMC7472090 DOI: 10.3390/v12080788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
A common biologic property of the gammaherpesviruses Epstein–Barr Virus and Kaposi sarcoma herpesvirus is their use of B lymphocytes as a reservoir of latency in healthy individuals that can undergo oncogenic transformation later in life. Gammaherpesviruses (GHVs) employ an impressive arsenal of proteins and non-coding RNAs to reprogram lymphocytes for proliferative expansion. Within lymphoid tissues, the germinal center (GC) reaction is a hub of B cell proliferation and death. The goal of a GC is to generate and then select for a pool of immunoglobulin (Ig) genes that will provide a protective humoral adaptive immune response. B cells infected with GHVs are detected in GCs and bear the hallmark signatures of the mutagenic processes of somatic hypermutation and isotype class switching of the Ig genes. However, data also supports extrafollicular B cells as a reservoir engaged by GHVs. Next-generation sequencing technologies provide unprecedented detail of the Ig sequence that informs the natural history of infection at the single cell level. Here, we review recent reports from human and murine GHV systems that identify striking differences in the immunoglobulin repertoire of infected B cells compared to their uninfected counterparts. Implications for virus biology, GHV-associated cancers, and host immune dysfunction will be discussed.
Collapse
|
9
|
Lawler C, Stevenson PG. Limited protection against γ-herpesvirus infection by replication-deficient virus particles. J Gen Virol 2020; 101:420-425. [PMID: 31985394 DOI: 10.1099/jgv.0.001391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The γ-herpesviruses have proved hard to vaccination against, with no convincing protection against long-term latent infection by recombinant viral subunits. In experimental settings, whole-virus vaccines have proved more effective, even when the vaccine virus itself establishes latent infection poorly. The main alternative is replication-deficient virus particles. Here high-dose, replication-deficient murid herpesvirus-4 only protected mice partially against wild-type infection. By contrast, latency-deficient but replication-competent vaccine protected mice strongly, even when delivered non-invasively to the olfactory epithelium. Thus, this approach seems to provide the best chance of a safe and effective γ-herpesvirus vaccine.
Collapse
Affiliation(s)
- Clara Lawler
- Present address: School of Biochemistry and Immunology, Trinity College, Dublin, Ireland.,School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Philip G Stevenson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia.,Child Health Research Center, University of Queensland, South Brisbane, Australia
| |
Collapse
|
10
|
Zeippen C, Javaux J, Snoeck R, Neyts J, Gillet L. Antiviral effect of the nucleoside analogue cidofovir in the context of sexual transmission of a gammaherpesvirus in mice. J Antimicrob Chemother 2019; 73:2095-2103. [PMID: 29788354 DOI: 10.1093/jac/dky161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/07/2018] [Indexed: 12/31/2022] Open
Abstract
Objectives To investigate the efficacy of cidofovir to block gammaherpesvirus replication in the context of sexual transmission. Methods A luciferase-expressing strain of murid herpesvirus 4 (MuHV-4) was used to monitor genital virus excretion from infected female BALB/c mice and sexual transmission to naive males. The efficiency of cidofovir to block genital excretion from infected females or replication and host colonization of naive males after sexual contact was tested by treating infected females (either once daily or at a single timepoint), naive males before exposure (either once daily or at a single timepoint) or males 24 h post-exposure. Results We showed that daily treatment of infected females can reduce MuHV-4 genital shedding by 75%. Similarly, daily preventive treatment of naive males was sufficient to block viral replication and latency establishment in males. In contrast, a single administration of cidofovir to infected females at day 14 post-infection or to naive males 2 to 6 days before contact with MuHV-4-excreting females was not sufficient to significantly reduce viral shedding from females or infection of males, respectively. Interestingly, a single administration of cidofovir to males 24 h after contact with MuHV-4-infected females excreting the virus in the genital tract significantly reduced virus replication in males and seroconversion. Conclusions Altogether, our results show that cidofovir can significantly reduce gammaherpesvirus replication, excretion and colonization of the naive partner in the context of sexual transmission. Such treatments could therefore be recommended in some specific conditions where gammaherpesvirus infections could be deleterious.
Collapse
Affiliation(s)
| | - Justine Javaux
- Immunology-Vaccinology, FARAH, University of Liège, Belgium
| | - Robert Snoeck
- Laboratory of Virology and Chemotherapy (Rega Institute), Department of Microbiology and Immunology, University of Leuven, Belgium
| | - Johan Neyts
- Laboratory of Virology and Chemotherapy (Rega Institute), Department of Microbiology and Immunology, University of Leuven, Belgium
| | - Laurent Gillet
- Immunology-Vaccinology, FARAH, University of Liège, Belgium
| |
Collapse
|
11
|
IFN-λ Decreases Murid Herpesvirus-4 Infection of the Olfactory Epithelium but Fails to Prevent Virus Reactivation in the Vaginal Mucosa. Viruses 2019; 11:v11080757. [PMID: 31426334 PMCID: PMC6722623 DOI: 10.3390/v11080757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 12/14/2022] Open
Abstract
Murid herpesvirus-4 (MuHV-4), a natural gammaherpesvirus of rodents, can infect the mouse through the nasal mucosa, where it targets sustentacular cells and olfactory neurons in the olfactory epithelium before it propagates to myeloid cells and then to B cells in lymphoid tissues. After establishment of latency in B cells, viral reactivation occurs in the genital tract in 80% of female mice, which can lead to spontaneous sexual transmission to co-housed males. Interferon-lambda (IFN-λ) is a key player of the innate immune response at mucosal surfaces and is believed to limit the transmission of numerous viruses by acting on epithelial cells. We used in vivo plasmid-mediated IFN-λ expression to assess whether IFN-λ could prophylactically limit MuHV-4 infection in the olfactory and vaginal mucosae. In vitro, IFN-λ decreased MuHV-4 infection in cells that overexpressed IFN-λ receptor 1 (IFNLR1). In vivo, prophylactic IFN-λ expression decreased infection of the olfactory epithelium but did not prevent virus propagation to downstream organs, such as the spleen where the virus establishes latency. In the olfactory epithelium, sustentacular cells readily responded to IFN-λ. In contrast, olfactory neurons did not respond to IFN-λ, thus, likely allowing viral entry. In the female genital tract, columnar epithelial cells strongly responded to IFN-λ, as did most vaginal epithelial cells, although with some variation from mouse to mouse. IFN-λ expression, however, failed to prevent virus reactivation in the vaginal mucosa. In conclusion, IFN-λ decreased MuHV-4 replication in the upper respiratory epithelium, likely by protecting the sustentacular epithelial cells, but it did not protect olfactory neurons and failed to block virus reactivation in the genital mucosa.
Collapse
|
12
|
Abstract
Vaccination against γ-herpesviruses has been hampered by our limited understanding of their normal control. Epstein–Barr virus (EBV)-transformed B cells are killed by viral latency antigen-specific CD8+ T cells in vitro, but attempts to block B cell infection with antibody or to prime anti-viral CD8+ T cells have protected poorly in vivo. The Doherty laboratory used Murid Herpesvirus-4 (MuHV-4) to analyze γ-herpesvirus control in mice and found CD4+ T cell dependence, with viral evasion limiting CD8+ T cell function. MuHV-4 colonizes germinal center (GC) B cells via lytic transfer from myeloid cells, and CD4+ T cells control myeloid infection. GC colonization and protective, lytic antigen-specific CD4+ T cells are now evident also for EBV. Subunit vaccines have protected only transiently against MuHV-4, but whole virus vaccines give long-term protection, via CD4+ T cells and antibody. They block infection transfer to B cells, and need include no known viral latency gene, nor any MuHV-4-specific gene. Thus, the Doherty approach of in vivo murine analysis has led to a plausible vaccine strategy for EBV and, perhaps, some insight into what CD8+ T cells really do.
Collapse
Affiliation(s)
- Philip G Stevenson
- School of Chemistry and Molecular Biosciences, University of Queensland and Brisbane, Australia.,Child Health Research Center, Brisbane, Australia
| |
Collapse
|
13
|
Abstract
Cytomegaloviruses (CMVs) are large, complex pathogens that persistently and systemically colonize most mammals. Human cytomegalovirus (HCMV) causes congenital harm, and has proved hard to control. One problem is that key vaccine targets - virus entry and spread in naive hosts - remain ill-defined. As CMVs predate human speciation, those of other mammals can provide new insight. Murine CMV (MCMV) enters new hosts via olfactory neurons. Like HCMV it binds to heparan, which is lacking from most differentiated apical epithelia but is displayed on olfactory neuronal cilia. It then spreads via infected dendritic cells (DCs), which migrate to draining lymph nodes (LNs), rejoin the circulation by entering high endothelial venules (HEVs), and extravasate into other tissues. This migration depends quantitatively on M33, a constitutively active viral G protein-coupled receptor (GPCR). The homologous US28 GPCR of HCMV can substitute for M33 in allowing MCMV-infected DCs to leave LNs via HEVs, so HCMV could potentially use the same route. The capacity of DCs to seed MCMV to tissues, and for other DCs to collect it for redistribution, suggest that DC recirculation chronically maintains and links diverse CMV reservoirs through lytic exchange.
Collapse
Affiliation(s)
- Helen E Farrell
- School of Chemistry and Molecular Biosciences and Child Health Research Centre, University of Queensland, Brisbane, Australia
| | - Philip G Stevenson
- School of Chemistry and Molecular Biosciences and Child Health Research Centre, University of Queensland, Brisbane, Australia
| |
Collapse
|
14
|
Bussey KA, Murthy S, Reimer E, Chan B, Hatesuer B, Schughart K, Glaunsinger B, Adler H, Brinkmann MM. Endosomal Toll-Like Receptors 7 and 9 Cooperate in Detection of Murine Gammaherpesvirus 68 Infection. J Virol 2019; 93:e01173-18. [PMID: 30429335 PMCID: PMC6340039 DOI: 10.1128/jvi.01173-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022] Open
Abstract
Murine gammaherpesvirus 68 (MHV68) is a small-animal model suitable for study of the human pathogens Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus. Here, we have characterized the roles of the endosomal Toll-like receptor (TLR) escort protein UNC93B, endosomal TLR7, -9, and -13, and cell surface TLR2 in MHV68 detection. We found that the alpha interferon (IFN-α) response of plasmacytoid dendritic cells (pDC) to MHV68 was reduced in Tlr9-/- cells compared to levels in wild type (WT) cells but not completely lost. Tlr7-/- pDC responded similarly to WT. However, we found that in Unc93b-/- pDC, as well as in Tlr7-/-Tlr9-/- double-knockout pDC, the IFN-α response to MHV68 was completely abolished. Thus, the only pattern recognition receptors contributing to the IFN-α response to MHV68 in pDC are TLR7 and TLR9, but the contribution of TLR7 is masked by the presence of TLR9. To address the role of UNC93B and TLR for MHV68 infection in vivo, we infected mice with MHV68. Lytic replication of MHV68 after intravenous infection was enhanced in the lungs, spleen, and liver of UNC93B-deficient mice, in the spleen of TLR9-deficient mice, and in the liver and spleen of Tlr7-/-Tlr9-/- mice. The absence of TLR2 or TLR13 did not affect lytic viral titers. We then compared reactivation of MHV68 from latently infected WT, Unc93b-/-, Tlr7-/-Tlr9-/-, Tlr7-/-, and Tlr9-/- splenocytes. We observed enhanced reactivation and latent viral loads, particularly from Tlr7-/-Tlr9-/- splenocytes compared to levels in the WT. Our data show that UNC93B-dependent TLR7 and TLR9 cooperate in and contribute to detection and control of MHV68 infection.IMPORTANCE The two human gammaherpesviruses, Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), can cause aggressive forms of cancer. These herpesviruses are strictly host specific, and therefore the homolog murine gammaherpesvirus 68 (MHV68) is a widely used model to obtain in vivo insights into the interaction between these two gammaherpesviruses and their host. Like EBV and KSHV, MHV68 establishes lifelong latency in B cells. The innate immune system serves as one of the first lines of host defense, with pattern recognition receptors such as the Toll-like receptors playing a crucial role in mounting a potent antiviral immune response to various pathogens. Here, we shed light on a yet unanticipated role of Toll-like receptor 7 in the recognition of MHV68 in a subset of immune cells called plasmacytoid dendritic cells, as well as on the control of this virus in its host.
Collapse
Affiliation(s)
- Kendra A Bussey
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sripriya Murthy
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Elisa Reimer
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Baca Chan
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Bastian Hatesuer
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
- University of Veterinary Medicine Hannover, Hannover, Germany
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Britt Glaunsinger
- Department of Plant and Microbial Biology, University of California Berkeley, Howard Hughes Medical Institute, Berkeley, California, USA
| | - Heiko Adler
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München-German Research Center for Environmental Health, German Center of Lung Research, Munich, Germany
| | - Melanie M Brinkmann
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
15
|
Glauser DL, Milho R, Lawler C, Stevenson PG. Antibody arrests γ-herpesvirus olfactory super-infection independently of neutralization. J Gen Virol 2018; 100:246-258. [PMID: 30526737 DOI: 10.1099/jgv.0.001183] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Protecting against persistent viruses is an unsolved challenge. The clearest example for a gamma-herpesvirus is resistance to super-infection by Murid herpesvirus-4 (MuHV-4). Most experimental infections have delivered MuHV-4 into the lungs. A more likely natural entry site is the olfactory epithelium. Its protection remains unexplored. Here, prior exposure to olfactory MuHV-4 gave good protection against super-infection. The protection was upstream of B cell infection, which occurs in lymph nodes, and showed redundancy between antibody and T cells. Adding antibody to virions that blocked heparan binding strongly reduced olfactory host entry - unlike in the lungs, opsonized virions did not reach IgG Fc receptor+ myeloid cells. However, the nasal antibody response to primary infection was too low to reduce host entry. Instead, the antibody acted downstream, reducing viral replication in the olfactory epithelium. This depended on IgG Fc receptor engagement rather than virion neutralization. Thus antibody can protect against natural γ-herpesvirus infection before it reaches B cells and independently of neutralization.
Collapse
Affiliation(s)
- Daniel L Glauser
- 1Division of Virology, University of Cambridge, UK
- ‡Present address: Suisselab AG, Bern, Switzerland
| | - Ricardo Milho
- 1Division of Virology, University of Cambridge, UK
- §Present address: Costello Medical, Cambridge, UK
| | - Clara Lawler
- 2School of Chemistry and Molecular Biosciences, University of Queensland, Australia
| | - Philip G Stevenson
- 3Royal Children's Hospital, Brisbane, Australia
- 1Division of Virology, University of Cambridge, UK
- 2School of Chemistry and Molecular Biosciences, University of Queensland, Australia
| |
Collapse
|
16
|
Helminth-induced IL-4 expands bystander memory CD8 + T cells for early control of viral infection. Nat Commun 2018; 9:4516. [PMID: 30375396 PMCID: PMC6207712 DOI: 10.1038/s41467-018-06978-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/05/2018] [Indexed: 12/26/2022] Open
Abstract
Infection with parasitic helminths can imprint the immune system to modulate bystander inflammatory processes. Bystander or virtual memory CD8+ T cells (TVM) are non-conventional T cells displaying memory properties that can be generated through responsiveness to interleukin (IL)-4. However, it is not clear if helminth-induced type 2 immunity functionally affects the TVM compartment. Here, we show that helminths expand CD44hiCD62LhiCXCR3hiCD49dlo TVM cells through direct IL-4 signaling in CD8+ T cells. Importantly, helminth-mediated conditioning of TVM cells provided enhanced control of acute respiratory infection with the murid gammaherpesvirus 4 (MuHV-4). This enhanced control of MuHV-4 infection could further be explained by an increase in antigen-specific CD8+ T cell effector responses in the lung and was directly dependent on IL-4 signaling. These results demonstrate that IL-4 during helminth infection can non-specifically condition CD8+ T cells, leading to a subsequently raised antigen-specific CD8+ T cell activation that enhances control of viral infection. Parasitic helminth infection is known to impact upon the host response to other bystander inflammatory processes. Here the authors show that IL4 production induced by helminth infection results in expansion of bystander CD8+ memory T cells and enhanced control to viral infection.
Collapse
|
17
|
Gammaherpesvirus Colonization of the Spleen Requires Lytic Replication in B Cells. J Virol 2018; 92:JVI.02199-17. [PMID: 29343572 DOI: 10.1128/jvi.02199-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 01/09/2018] [Indexed: 11/20/2022] Open
Abstract
Gammaherpesviruses infect lymphocytes and cause lymphocytic cancers. Murid herpesvirus-4 (MuHV-4), Epstein-Barr virus, and Kaposi's sarcoma-associated herpesvirus all infect B cells. Latent infection can spread by B cell recirculation and proliferation, but whether this alone achieves systemic infection is unclear. To test the need of MuHV-4 for lytic infection in B cells, we flanked its essential ORF50 lytic transactivator with loxP sites and then infected mice expressing B cell-specific Cre (CD19-Cre). The floxed virus replicated normally in Cre- mice. In CD19-Cre mice, nasal and lymph node infections were maintained; but there was little splenomegaly, and splenic virus loads remained low. Cre-mediated removal of other essential lytic genes gave a similar phenotype. CD19-Cre spleen infection by intraperitoneal virus was also impaired. Therefore, MuHV-4 had to emerge lytically from B cells to colonize the spleen. An important role for B cell lytic infection in host colonization is consistent with the large CD8+ T cell responses made to gammaherpesvirus lytic antigens during infectious mononucleosis and suggests that vaccine-induced immunity capable of suppressing B cell lytic infection might reduce long-term virus loads.IMPORTANCE Gammaherpesviruses cause B cell cancers. Most models of host colonization derive from cell cultures with continuous, virus-driven B cell proliferation. However, vaccines based on these models have worked poorly. To test whether proliferating B cells suffice for host colonization, we inactivated the capacity of MuHV-4, a gammaherpesvirus of mice, to reemerge from B cells. The modified virus was able to colonize a first wave of B cells in lymph nodes but spread poorly to B cells in secondary sites such as the spleen. Consequently, viral loads remained low. These results were consistent with virus-driven B cell proliferation exploiting normal host pathways and thus having to transfer lytically to new B cells for new proliferation. We conclude that viral lytic infection is a potential target to reduce B cell proliferation.
Collapse
|
18
|
Type I Interferon Signaling to Dendritic Cells Limits Murid Herpesvirus 4 Spread from the Olfactory Epithelium. J Virol 2017; 91:JVI.00951-17. [PMID: 28904198 DOI: 10.1128/jvi.00951-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/08/2017] [Indexed: 12/23/2022] Open
Abstract
Murid herpesvirus 4 (MuHV-4) is a B cell-tropic gammaherpesvirus that can be studied in vivo Despite viral evasion, type I interferons (IFN-I) limit its spread. After MuHV-4 inoculation into footpads, IFN-I protect lymph node subcapsular sinus macrophages (SSM) against productive infection; after peritoneal inoculation, they protect splenic marginal zone macrophages, and they limit MuHV-4 replication in the lungs. While invasive infections can be used to test specific aspects of host colonization, it is also important to understand natural infection. MuHV-4 taken up spontaneously by alert mice enters them via olfactory neurons. We determined how IFN-I act in this context. Blocking IFN-I signaling did not increase neuronal infection but allowed the virus to spread to the adjacent respiratory epithelium. In lymph nodes, a complete IFN-I signaling block increased MuHV-4 lytic infection in SSM and increased the number of dendritic cells (DC) expressing viral green fluorescent protein (GFP) independently of lytic infection. A CD11c+ cell-directed signaling block increased infection of DC only. However, this was sufficient to increase downstream infection, consistent with DC providing the main viral route to B cells. The capacity of IFN-I to limit DC infection indicated that viral IFN-I evasion was only partly effective. Therefore, DC are a possible target for IFN-I-based interventions to reduce host colonization.IMPORTANCE Human gammaherpesviruses infect B cells and cause B cell cancers. Interventions to block virus binding to B cells have not stopped their infection. Therefore, we must identify other control points that are relevant to natural infection. Human infections are difficult to analyze. However, gammaherpesviruses colonize all mammals. A related gammaherpesvirus of mice reaches B cells not directly but via infected dendritic cells. We show that type I interferons, an important general antiviral defense, limit gammaherpesvirus B cell infection by acting on dendritic cells. Therefore, dendritic cell infection is a potential point of interferon-based therapeutic intervention.
Collapse
|
19
|
Hajnická V, Kúdelová M, Štibrániová I, Slovák M, Bartíková P, Halásová Z, Pančík P, Belvončíková P, Vrbová M, Holíková V, Hails RS, Nuttall PA. Tick-Borne Transmission of Murine Gammaherpesvirus 68. Front Cell Infect Microbiol 2017; 7:458. [PMID: 29164067 PMCID: PMC5674927 DOI: 10.3389/fcimb.2017.00458] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/16/2017] [Indexed: 12/27/2022] Open
Abstract
Herpesviruses are a large group of DNA viruses infecting mainly vertebrates. Murine gammaherpesvirus 68 (MHV68) is often used as a model in studies of the pathogenesis of clinically important human gammaherpesviruses such as Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus. This rodent virus appears to be geographically widespread; however, its natural transmission cycle is unknown. Following detection of MHV68 in field-collected ticks, including isolation of the virus from tick salivary glands and ovaries, we investigated whether MHV68 is a tick-borne virus. Uninfected Ixodes ricinus ticks were shown to acquire the virus by feeding on experimentally infected laboratory mice. The virus survived tick molting, and the molted ticks transmitted the virus to uninfected laboratory mice on which they subsequently fed. MHV68 was isolated from the tick salivary glands, consistent with transmission via tick saliva. The virus survived in ticks without loss of infectivity for at least 120 days, and subsequently was transmitted vertically from one tick generation to the next, surviving more than 500 days. Furthermore, the F1 generation (derived from F0 infected females) transmitted MHV68 to uninfected mice on which they fed, with MHV68 M3 gene transcripts detected in blood, lung, and spleen tissue of mice on which F1 nymphs and F1 adults engorged. These experimental data fulfill the transmission criteria that define an arthropod-borne virus (arbovirus), the largest biological group of viruses. Currently, African swine fever virus (ASFV) is the only DNA virus recognized as an arbovirus. Like ASFV, MHV68 showed evidence of pathogenesis in ticks. Previous studies have reported MHV68 in free-living ticks and in mammals commonly infested with I. ricinus, and neutralizing antibodies to MHV68 have been detected in large mammals (e.g., deer) including humans. Further studies are needed to determine if these reports are the result of tick-borne transmission of MHV68 in nature, and whether humans are at risk of infection.
Collapse
Affiliation(s)
- Valeria Hajnická
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marcela Kúdelová
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Iveta Štibrániová
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mirko Slovák
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Pavlína Bartíková
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Halásová
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Peter Pančík
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Petra Belvončíková
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michaela Vrbová
- Department of Microbiology and Virology, Comenius University, Bratislava, Slovakia
| | - Viera Holíková
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Patricia A Nuttall
- Centre for Ecology and Hydrology, Wallingford, United Kingdom.,Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
20
|
The Major Envelope Glycoprotein of Murid Herpesvirus 4 Promotes Sexual Transmission. J Virol 2017; 91:JVI.00235-17. [PMID: 28424280 DOI: 10.1128/jvi.00235-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/10/2017] [Indexed: 12/25/2022] Open
Abstract
Gammaherpesviruses are important human and animal pathogens. Infection control has proven difficult because the key process of transmission is ill understood. Murid herpesvirus 4 (MuHV-4), a gammaherpesvirus of mice, is transmitted sexually. We show that this depends on the major virion envelope glycoprotein gp150. gp150 is redundant for host entry, and in vitro, it regulates rather than promotes cell binding. We show that gp150-deficient MuHV-4 reaches and replicates normally in the female genital tract after nasal infection but is poorly released from vaginal epithelial cells and fails to pass from the female to the male genital tract during sexual contact. Thus, we show that the regulation of virion binding is a key component of spontaneous gammaherpesvirus transmission.IMPORTANCE Gammaherpesviruses are responsible for many important diseases in both animals and humans. Some important aspects of their life cycle are still poorly understood. Key among these is viral transmission. Here we show that the major envelope glycoprotein of murid herpesvirus 4 functions not in entry or dissemination but in virion release to allow sexual transmission to new hosts.
Collapse
|
21
|
Tan CSE, Lawler C, Stevenson PG. CD8+ T cell evasion mandates CD4+ T cell control of chronic gamma-herpesvirus infection. PLoS Pathog 2017; 13:e1006311. [PMID: 28394921 PMCID: PMC5398720 DOI: 10.1371/journal.ppat.1006311] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 04/20/2017] [Accepted: 03/23/2017] [Indexed: 12/15/2022] Open
Abstract
Gamma-herpesvirus infections are regulated by both CD4+ and CD8+ T cells. However clinical disease occurs mainly in CD4+ T cell-deficient hosts. In CD4+ T cell-deficient mice, CD8+ T cells control acute but not chronic lung infection by Murid Herpesvirus-4 (MuHV-4). We show that acute and chronic lung infections differ in distribution: most acute infection was epithelial, whereas most chronic infection was in myeloid cells. CD8+ T cells controlled epithelial infection, but CD4+ T cells and IFNγ were required to control myeloid cell infection. Disrupting the MuHV-4 K3, which degrades MHC class I heavy chains, increased viral epitope presentation by infected lung alveolar macrophages and allowed CD8+ T cells to prevent disease. Thus, viral CD8+ T cell evasion led to niche-specific immune control, and an essential role for CD4+ T cells in limiting chronic infection. Gamma-herpesviruses chronically infect most people. While infection is usually asymptomatic, disease occurs if the immune system is weakened. Understanding how immune control normally works should provide a basis for preventing disease. In mice, CD8+ T cells can control acute gamma-herpesvirus infection but not chronic infection. We show that acute and chronic infections involve different cell types. CD8+ T cells controlled epithelial cell infection, which predominated acutely, but they could not control chronic macrophage infection unless viral immune evasion was disabled. Instead CD4+ T cells were required. Thus, viral evasion made host defence cell type-specific: CD8+ T cells controlled epithelial cell infection; CD4+ T cells controlled macrophage infection; and comprehensive control required both T cell subsets.
Collapse
Affiliation(s)
- Cindy S. E. Tan
- School of Chemistry and Molecular Biosciences, University of Queensland and Royal Children’s Hospital, Brisbane, Australia
| | - Clara Lawler
- School of Chemistry and Molecular Biosciences, University of Queensland and Royal Children’s Hospital, Brisbane, Australia
| | - Philip G. Stevenson
- School of Chemistry and Molecular Biosciences, University of Queensland and Royal Children’s Hospital, Brisbane, Australia
- * E-mail:
| |
Collapse
|
22
|
Dong S, Forrest JC, Liang X. Murine Gammaherpesvirus 68: A Small Animal Model for Gammaherpesvirus-Associated Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1018:225-236. [DOI: 10.1007/978-981-10-5765-6_14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Trammell RA, Toth LA. Effects of Chronic Diurnal Disruption and Acute Inflammatory Challenge on Mice with Latent Murine Gammaherpesvirus Infection. Comp Med 2016; 66:445-454. [PMID: 28304247 PMCID: PMC5157959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 04/28/2016] [Accepted: 06/12/2016] [Indexed: 06/06/2023]
Abstract
People who engage in shift work (SW) have increased risk of developing illnesses, including infectious diseases and various inflammatory conditions. We hypothesized that exposure to repeated cycles of diurnal disruption, mimicking SW, influences viral clearance, latent viral load, or viral reactivation from latency in mice infected with murine gammaherpesvirus (MuGHV). To test this idea, we inoculated BALB/cByJ and C.129S7(B6)-Ifng tm1Ts/J (IFNgKO) mice with MuGHV and housed them under either a stable light:dark (LD) cycle or one mimicking SW. Compared with BALB/cByJ mice, IFNgKO mice generally had higher levels of lytic virus during the 6-wk period after inoculation. In addition, more IFNgKO mice were positive for replicating virus than were BALB/cByJ mice. Exposure to SW did not alter these measures consistently. After the virus had entered the latent phase of infection, mice received either LPS or pyrogen-free saline intraperitoneally. Mice exposed to SW and then injected with LPS during latent infection had greater viral loads and more replicating virus in the lung at 7 d after injection than did either mice that received pyrogen-free saline or those exposed to LD and then treated with LPS. Some cytokine and chemokine concentrations were changed in lung collected 1 d after but not at 7 d after LPS administration. These findings suggest that exposure to repeated chronic diurnal disruption and an acute inflammatory challenge during latent MuGHV infection, in the context of impaired host immune competence, contribute to enhanced viral reactivity and an increased viral load that might trigger 'sickness behavior' symptoms of infectious disease and perhaps contribute to chronic fatigue syndrome.
Collapse
Affiliation(s)
- Rita A Trammell
- Departments of Internal Medicine, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Linda A Toth
- Departments of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois;,
| |
Collapse
|
24
|
Farrell H, Oliveira M, Macdonald K, Yunis J, Mach M, Bruce K, Stevenson P, Cardin R, Davis-Poynter N. Luciferase-tagged wild-type and tropism-deficient mouse cytomegaloviruses reveal early dynamics of host colonization following peripheral challenge. J Gen Virol 2016; 97:3379-3391. [PMID: 27902356 DOI: 10.1099/jgv.0.000642] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cytomegaloviruses (CMVs) establish persistent, systemic infections and cause disease by maternal-foetal transfer, suggesting that their dissemination is a key target for antiviral intervention. Late clinical presentation has meant that human CMV (HCMV) dissemination is not well understood. Murine CMV (MCMV) provides a tractable model. Whole mouse imaging of virus-expressed luciferase has proved a useful way to track systemic infections. MCMV, in which the abundant lytic gene M78 was luciferase-tagged via a self-cleaving peptide (M78-LUC), allowed serial, unbiased imaging of systemic and peripheral infection without significant virus attenuation. Ex vivo luciferase imaging showed greater sensitivity than plaque assay, and revealed both well-known infection sites (the lungs, lymph nodes, salivary glands, liver, spleen and pancreas) and less explored sites (the bone marrow and upper respiratory tract). We applied luciferase imaging to tracking MCMV lacking M33, a chemokine receptor conserved in HCMV and a proposed anti-viral drug target. M33-deficient M78-LUC colonized normally in peripheral sites and local draining lymph nodes but spread poorly to the salivary gland, suggesting a defect in vascular transport consistent with properties of a chemokine receptor.
Collapse
Affiliation(s)
- Helen Farrell
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Martha Oliveira
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia.,Child Health Research Centre, University of Queensland, South Brisbane, Australia
| | - Kate Macdonald
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Joseph Yunis
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Michael Mach
- Institut fur Klinische und Molekulare Virologie, Friedrich-Alexander-Universitat Erlangen-Nurnber, Erlangen, Germany
| | - Kimberley Bruce
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Philip Stevenson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Rhonda Cardin
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | | |
Collapse
|
25
|
Type I Interferons and NK Cells Restrict Gammaherpesvirus Lymph Node Infection. J Virol 2016; 90:9046-57. [PMID: 27466430 DOI: 10.1128/jvi.01108-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/22/2016] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Gammaherpesviruses establish persistent, systemic infections and cause cancers. Murid herpesvirus 4 (MuHV-4) provides a unique window into the early events of host colonization. It spreads via lymph nodes. While dendritic cells (DC) pass MuHV-4 to lymph node B cells, subcapsular sinus macrophages (SSM), which capture virions from the afferent lymph, restrict its spread. Understanding how this restriction works offers potential clues to a more comprehensive defense. Type I interferon (IFN-I) blocked SSM lytic infection and reduced lytic cycle-independent viral reporter gene expression. Plasmacytoid DC were not required, but neither were SSM the only source of IFN-I, as IFN-I blockade increased infection in both intact and SSM-depleted mice. NK cells restricted lytic SSM infection independently of IFN-I, and SSM-derived virions spread to the spleen only when both IFN-I responses and NK cells were lacking. Thus, multiple innate defenses allowed SSM to adsorb virions from the afferent lymph with relative impunity. Enhancing IFN-I and NK cell recruitment could potentially also restrict DC infection and thus improve infection control. IMPORTANCE Human gammaherpesviruses cause cancers by infecting B cells. However, vaccines designed to block virus binding to B cells have not stopped infection. Using a related gammaherpesvirus of mice, we have shown that B cells are infected not via cell-free virus but via infected myeloid cells. This suggests a different strategy to stop B cell infection: stop virus production by myeloid cells. Not all myeloid infection is productive. We show that subcapsular sinus macrophages, which do not pass infection to B cells, restrict gammaherpesvirus production by recruiting type I interferons and natural killer cells. Therefore, a vaccine that speeds the recruitment of these defenses might stop B cell infection.
Collapse
|
26
|
Edgar RS, Stangherlin A, Nagy AD, Nicoll MP, Efstathiou S, O'Neill JS, Reddy AB. Cell autonomous regulation of herpes and influenza virus infection by the circadian clock. Proc Natl Acad Sci U S A 2016; 113:10085-90. [PMID: 27528682 PMCID: PMC5018795 DOI: 10.1073/pnas.1601895113] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Viruses are intracellular pathogens that hijack host cell machinery and resources to replicate. Rather than being constant, host physiology is rhythmic, undergoing circadian (∼24 h) oscillations in many virus-relevant pathways, but whether daily rhythms impact on viral replication is unknown. We find that the time of day of host infection regulates virus progression in live mice and individual cells. Furthermore, we demonstrate that herpes and influenza A virus infections are enhanced when host circadian rhythms are abolished by disrupting the key clock gene transcription factor Bmal1. Intracellular trafficking, biosynthetic processes, protein synthesis, and chromatin assembly all contribute to circadian regulation of virus infection. Moreover, herpesviruses differentially target components of the molecular circadian clockwork. Our work demonstrates that viruses exploit the clockwork for their own gain and that the clock represents a novel target for modulating viral replication that extends beyond any single family of these ubiquitous pathogens.
Collapse
Affiliation(s)
- Rachel S Edgar
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Alessandra Stangherlin
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Andras D Nagy
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Anatomy, University of Pecs Medical School, H-7624 Pecs, Hungary
| | - Michael P Nicoll
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Stacey Efstathiou
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - John S O'Neill
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Akhilesh B Reddy
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom;
| |
Collapse
|
27
|
Latency-Associated Nuclear Antigen E3 Ubiquitin Ligase Activity Impacts Gammaherpesvirus-Driven Germinal Center B Cell Proliferation. J Virol 2016; 90:7667-83. [PMID: 27307564 DOI: 10.1128/jvi.00813-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/06/2016] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED Viruses have evolved mechanisms to hijack components of cellular E3 ubiquitin ligases, thus modulating the ubiquitination pathway. However, the biological relevance of such mechanisms for viral pathogenesis in vivo remains largely unknown. Here, we utilized murid herpesvirus 4 (MuHV-4) infection of mice as a model system to address the role of MuHV-4 latency-associated nuclear antigen (mLANA) E3 ligase activity in gammaherpesvirus latent infection. We show that specific mutations in the mLANA SOCS box (V199A, V199A/L202A, or P203A/P206A) disrupted mLANA's ability to recruit Elongin C and Cullin 5, thereby impairing the formation of the Elongin BC/Cullin 5/SOCS (EC5S(mLANA)) complex and mLANA's E3 ligase activity on host NF-κB and Myc. Although these mutations resulted in considerably reduced mLANA binding to viral terminal repeat DNA as assessed by electrophoretic mobility shift assay (EMSA), the mutations did not disrupt mLANA's ability to mediate episome persistence. In vivo, MuHV-4 recombinant viruses bearing these mLANA SOCS box mutations exhibited a deficit in latency amplification in germinal center (GC) B cells. These findings demonstrate that the E3 ligase activity of mLANA contributes to gammaherpesvirus-driven GC B cell proliferation. Hence, pharmacological inhibition of viral E3 ligase activity through targeting SOCS box motifs is a putative strategy to control gammaherpesvirus-driven lymphoproliferation and associated disease. IMPORTANCE The gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) cause lifelong persistent infection and play causative roles in several human malignancies. Colonization of B cells is crucial for virus persistence, and access to the B cell compartment is gained by virus-driven proliferation in germinal center (GC) B cells. Infection of B cells is predominantly latent, with the viral genome persisting as a multicopy episome and expressing only a small subset of viral genes. Here, we focused on latency-associated nuclear antigen (mLANA) encoded by murid herpesvirus-4 (MuHV-4), which exhibits homology in sequence, structure, and function to KSHV LANA (kLANA), thereby allowing the study of LANA-mediated pathogenesis in mice. Our experiments show that mLANA's E3 ubiquitin ligase activity is necessary for efficient expansion of latency in GC B cells, suggesting that the development of pharmacological inhibitors of LANA E3 ubiquitin ligase activity may allow strategies to interfere with gammaherpesvirus-driven lymphoproliferation and associated disease.
Collapse
|
28
|
Cieniewicz B, Santana AL, Minkah N, Krug LT. Interplay of Murine Gammaherpesvirus 68 with NF-kappaB Signaling of the Host. Front Microbiol 2016; 7:1202. [PMID: 27582728 PMCID: PMC4987367 DOI: 10.3389/fmicb.2016.01202] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/19/2016] [Indexed: 11/13/2022] Open
Abstract
Herpesviruses establish a chronic infection in the host characterized by intervals of lytic replication, quiescent latency, and reactivation from latency. Murine gammaherpesvirus 68 (MHV68) naturally infects small rodents and has genetic and biologic parallels with the human gammaherpesviruses (gHVs), Kaposi's sarcoma-associated herpesvirus and Epstein-Barr virus. The murine gammaherpesvirus model pathogen system provides a platform to apply cutting-edge approaches to dissect the interplay of gammaherpesvirus and host determinants that enable colonization of the host, and that shape the latent or lytic fate of an infected cell. This knowledge is critical for the development of novel therapeutic interventions against the oncogenic gHVs. The nuclear factor kappa B (NF-κB) signaling pathway is well-known for its role in the promotion of inflammation and many aspects of B cell biology. Here, we review key aspects of the virus lifecycle in the host, with an emphasis on the route that the virus takes to gain access to the B cell latency reservoir. We highlight how the murine gammaherpesvirus requires components of the NF-κB signaling pathway to promote replication, latency establishment, and maintenance of latency. These studies emphasize the complexity of gammaherpesvirus interactions with NF-κB signaling components that direct innate and adaptive immune responses of the host. Importantly, multiple facets of NF-κB signaling have been identified that might be targeted to reduce the burden of gammaherpesvirus-associated diseases.
Collapse
Affiliation(s)
- Brandon Cieniewicz
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Alexis L Santana
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Nana Minkah
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Laurie T Krug
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| |
Collapse
|
29
|
Tan CSE, Lawler C, May JS, Belz GT, Stevenson PG. Type I Interferons Direct Gammaherpesvirus Host Colonization. PLoS Pathog 2016; 12:e1005654. [PMID: 27223694 PMCID: PMC4880296 DOI: 10.1371/journal.ppat.1005654] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/02/2016] [Indexed: 12/24/2022] Open
Abstract
Gamma-herpesviruses colonise lymphocytes. Murid Herpesvirus-4 (MuHV-4) infects B cells via epithelial to myeloid to lymphoid transfer. This indirect route entails exposure to host defences, and type I interferons (IFN-I) limit infection while viral evasion promotes it. To understand how IFN-I and its evasion both control infection outcomes, we used Mx1-cre mice to tag floxed viral genomes in IFN-I responding cells. Epithelial-derived MuHV-4 showed low IFN-I exposure, and neither disrupting viral evasion nor blocking IFN-I signalling markedly affected acute viral replication in the lungs. Maximising IFN-I induction with poly(I:C) increased virus tagging in lung macrophages, but the tagged virus spread poorly. Lymphoid-derived MuHV-4 showed contrastingly high IFN-I exposure. This occurred mainly in B cells. IFN-I induction increased tagging without reducing viral loads; disrupting viral evasion caused marked attenuation; and blocking IFN-I signalling opened up new lytic spread between macrophages. Thus, the impact of IFN-I on viral replication was strongly cell type-dependent: epithelial infection induced little response; IFN-I largely suppressed macrophage infection; and viral evasion allowed passage through B cells despite IFN-I responses. As a result, IFN-I and its evasion promoted a switch in infection from acutely lytic in myeloid cells to chronically latent in B cells. Murine cytomegalovirus also showed a capacity to pass through IFN-I-responding cells, arguing that this is a core feature of herpesvirus host colonization.
Collapse
Affiliation(s)
- Cindy S. E. Tan
- School of Chemistry and Molecular Biosciences, University of Queensland and Royal Children’s Hospital, Brisbane, Australia
| | - Clara Lawler
- School of Chemistry and Molecular Biosciences, University of Queensland and Royal Children’s Hospital, Brisbane, Australia
| | - Janet S. May
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Gabrielle T. Belz
- Molecular Immunology, Walter and Eliza Hall Institute, Parkville, Melbourne, Australia
| | - Philip G. Stevenson
- School of Chemistry and Molecular Biosciences, University of Queensland and Royal Children’s Hospital, Brisbane, Australia
- * E-mail:
| |
Collapse
|
30
|
Abstract
Viruses transmit via the environmental and social interactions of their hosts. Herpesviruses have colonized mammals since their earliest origins, suggesting that they exploit ancient, common pathways. Cytomegaloviruses (CMVs) are assumed to enter new hosts orally, but no site has been identified. We show by live imaging that murine CMV (MCMV) infects nasally rather than orally, both after experimental virus uptake and during natural transmission. Replication-deficient virions revealed the primary target as olfactory neurons. Local, nasal replication by wild-type MCMV was not extensive, but there was rapid systemic spread, associated with macrophage infection. A long-term, transmissible infection was then maintained in the salivary glands. The viral m131/m129 chemokine homolog, which influences tropism, promoted salivary gland colonization after nasal entry but was not required for entry per se. The capacity of MCMV to transmit via olfaction, together with previous demonstrations of experimental olfactory infection by murid herpesvirus 4 (MuHV-4) and herpes simplex virus 1 (HSV-1), suggest that this is a common, conserved route of mammalian herpesvirus entry. Cytomegaloviruses (CMVs) infect most mammals. Human CMV (HCMV) harms people with poor immune function and can damage the unborn fetus. It infects approximately 1% of live births. We lack a good vaccine. One problem is that how CMVs first enter new hosts remains unclear. Oral entry is often assumed, but the evidence is indirect, and no infection site is known. The difficulty of analyzing HCMV makes related animal viruses an important source of insights. Murine CMV (MCMV) infected not orally but nasally. Specifically, it targeted olfactory neurons. Viral transmission was also a nasal infection. Like HCMV, MCMV infected cells by binding to heparan, and olfactory surfaces display heparan to incoming viruses, whereas most other mucosal surfaces do not. These data establish a new understanding of CMV infections and a basis for infection control.
Collapse
|
31
|
Taylor A, Harker JA, Chanthong K, Stevenson PG, Zuniga EI, Rudd CE. Glycogen Synthase Kinase 3 Inactivation Drives T-bet-Mediated Downregulation of Co-receptor PD-1 to Enhance CD8(+) Cytolytic T Cell Responses. Immunity 2016; 44:274-86. [PMID: 26885856 PMCID: PMC4760122 DOI: 10.1016/j.immuni.2016.01.018] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 05/12/2015] [Accepted: 11/11/2015] [Indexed: 01/22/2023]
Abstract
Despite the importance of the co-receptor PD-1 in T cell immunity, the upstream signaling pathway that regulates PD-1 expression has not been defined. Glycogen synthase kinase 3 (GSK-3, isoforms α and β) is a serine-threonine kinase implicated in cellular processes. Here, we identified GSK-3 as a key upstream kinase that regulated PD-1 expression in CD8(+) T cells. GSK-3 siRNA downregulation, or inhibition by small molecules, blocked PD-1 expression, resulting in increased CD8(+) cytotoxic T lymphocyte (CTL) function. Mechanistically, GSK-3 inactivation increased Tbx21 transcription, promoting enhanced T-bet expression and subsequent suppression of Pdcd1 (encodes PD-1) transcription in CD8(+) CTLs. Injection of GSK-3 inhibitors in mice increased in vivo CD8(+) OT-I CTL function and the clearance of murine gamma-herpesvirus 68 and lymphocytic choriomeningitis clone 13 and reversed T cell exhaustion. Our findings identify GSK-3 as a regulator of PD-1 expression and demonstrate the applicability of GSK-3 inhibitors in the modulation of PD-1 in immunotherapy.
Collapse
Affiliation(s)
- Alison Taylor
- Cell Signalling Section, Division of Immunology, Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge CB2 1QP, UK
| | - James A Harker
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Kittiphat Chanthong
- Cell Signalling Section, Division of Immunology, Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge CB2 1QP, UK
| | - Philip G Stevenson
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Elina I Zuniga
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Christopher E Rudd
- Cell Signalling Section, Division of Immunology, Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge CB2 1QP, UK.
| |
Collapse
|
32
|
Deletion of Murid Herpesvirus 4 ORF63 Affects the Trafficking of Incoming Capsids toward the Nucleus. J Virol 2015; 90:2455-72. [PMID: 26676769 DOI: 10.1128/jvi.02942-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/08/2015] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Gammaherpesviruses are important human and animal pathogens. Despite the fact that they display the classical architecture of herpesviruses, the function of most of their structural proteins is still poorly defined. This is especially true for tegument proteins. Interestingly, a potential role in immune evasion has recently been proposed for the tegument protein encoded by Kaposi's sarcoma-associated herpesvirus open reading frame 63 (ORF63). To gain insight about the roles of ORF63 in the life cycle of a gammaherpesvirus, we generated null mutations in the ORF63 gene of murid herpesvirus 4 (MuHV-4). We showed that disruption of ORF63 was associated with a severe MuHV-4 growth deficit both in vitro and in vivo. The latter deficit was mainly associated with a defect of replication in the lung but did not affect the establishment of latency in the spleen. From a functional point of view, inhibition of caspase-1 or the inflammasome did not restore the growth of the ORF63-deficient mutant, suggesting that the observed deficit was not associated with the immune evasion mechanism identified previously. Moreover, this growth deficit was also not associated with a defect in virion egress from the infected cells. In contrast, it appeared that MuHV-4 ORF63-deficient mutants failed to address most of their capsids to the nucleus during entry into the host cell, suggesting that ORF63 plays a role in capsid movement. In the future, ORF63 could therefore be considered a target to block gammaherpesvirus infection at a very early stage of the infection. IMPORTANCE The important diseases caused by gammaherpesviruses in human and animal populations justify a better understanding of their life cycle. In particular, the role of most of their tegument proteins is still largely unknown. In this study, we used murid herpesvirus 4, a gammaherpesvirus infecting mice, to decipher the role of the protein encoded by the viral ORF63 gene. We showed that the absence of this protein is associated with a severe growth deficit both in vitro and in vivo that was mainly due to impaired migration of viral capsids toward the nucleus during entry. Together, our results provide new insights about the life cycle of gammaherpesviruses and could allow the development of new antiviral strategies aimed at blocking gammaherpesvirus infection at the very early stages.
Collapse
|
33
|
Bocan TM, Panchal RG, Bavari S. Applications of in vivo imaging in the evaluation of the pathophysiology of viral and bacterial infections and in development of countermeasures to BSL3/4 pathogens. Mol Imaging Biol 2015; 17:4-17. [PMID: 25008802 PMCID: PMC4544652 DOI: 10.1007/s11307-014-0759-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
While preclinical and clinical imaging have been applied to drug discovery/development and characterization of disease pathology, few examples exist where imaging has been used to evaluate infectious agents or countermeasures to biosafety level (BSL)3/4 threat agents. Viruses engineered with reporter constructs, i.e., enzymes and receptors, which are amenable to detection by positron emission tomography (PET), single photon emission tomography (SPECT), or magnetic resonance imaging (MRI) have been used to evaluate the biodistribution of viruses containing specific therapeutic or gene transfer payloads. Bioluminescence and nuclear approaches involving engineered reporters, direct labeling of bacteria with radiotracers, or tracking bacteria through their constitutively expressed thymidine kinase have been utilized to characterize viral and bacterial pathogens post-infection. Most PET, SPECT, CT, or MRI approaches have focused on evaluating host responses to the pathogens such as inflammation, brain neurochemistry, and structural changes and on assessing the biodistribution of radiolabeled drugs. Imaging has the potential when applied preclinically to the development of countermeasures against BSL3/4 threat agents to address the following: (1) presence, biodistribution, and time course of infection in the presence or absence of drug; (2) binding of the therapeutic to the target; and (3) expression of a pharmacologic effect either related to drug mechanism, efficacy, or safety. Preclinical imaging could potentially provide real-time dynamic tools to characterize the pathogen and animal model and for developing countermeasures under the U.S. FDA Animal Rule provision with high confidence of success and clinical benefit.
Collapse
Affiliation(s)
- Thomas M Bocan
- Molecular and Translational Sciences, US Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Ft. Detrick, MD, 21702, USA,
| | | | | |
Collapse
|
34
|
Gillet L, Frederico B, Stevenson PG. Host entry by gamma-herpesviruses--lessons from animal viruses? Curr Opin Virol 2015; 15:34-40. [PMID: 26246389 DOI: 10.1016/j.coviro.2015.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/13/2015] [Accepted: 07/14/2015] [Indexed: 12/15/2022]
Abstract
The oncogenicity of gamma-herpesviruses (γHVs) motivates efforts to control them and their persistence makes early events key targets for intervention. Human γHVs are often assumed to enter naive hosts orally and infect B cells directly. However, neither assumption is supported by direct evidence, and vaccination with the Epstein-Barr virus (EBV) gp350, to block virion binding to B cells, failed to reduce infection rates. Thus, there is a need to re-evaluate assumptions about γHV host entry. Given the difficulty of analysing early human infections, potentially much can be learned from animal models. Genomic comparisons argue that γHVs colonized mammals long before humans speciation, and so that human γHVs are unlikely to differ dramatically in behaviour from those of other mammals. Murid Herpesvirus-4 (MuHV-4), which like EBV and the Kaposi's Sarcoma-associated Herpesvirus (KSHV) persists in memory B cells, enters new hosts via olfactory neurons and exploits myeloid cells to spread. Integrating these data with existing knowledge of human and veterinary γHVs suggests a new model of host entry, with potentially important implications for infection control.
Collapse
Affiliation(s)
- Laurent Gillet
- Immunology/Vaccinology, Faculty of Veterinary Medicine, FARAH, University of Liège, Belgium.
| | - Bruno Frederico
- Cancer Research UK, Lincoln's Inn Fields, London, United Kingdom
| | - Philip G Stevenson
- Sir Albert Sakzewski Virus Research Centre, University of Queensland and Royal Children's Hospital, Brisbane, Australia
| |
Collapse
|
35
|
Chao B, Frederico B, Stevenson PG. B-cell-independent lymphoid tissue infection by a B-cell-tropic rhadinovirus. J Gen Virol 2015; 96:2788-2793. [PMID: 25986632 DOI: 10.1099/vir.0.000188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lymphocytes provide gammaherpesviruses with a self-renewing substrate for persistent infection and with transport to mucosal sites for host exit. Their role in the initial colonization of new hosts is less clear. Murid herpesvirus 4 (MuHV-4), an experimentally accessible, B-cell-tropic rhadinovirus (gamma-2 herpesvirus), persistently infects both immunocompetent and B-cell-deficient mice. A lack of B-cells did not compromise MuHV-4 entry into lymphoid tissue, which involved myeloid cell infection. However, it impaired infection amplification and MuHV-4 exit from lymphoid tissue, which involved myeloid to B-cell transfer.
Collapse
Affiliation(s)
- Brittany Chao
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Bruno Frederico
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Philip G Stevenson
- Sir Albert Sakzewski Virus Research Centre, Clinical Medical Virology Centre, School of Chemistry and Molecular Biosciences, Royal Children's Hospital and University of Queensland, Brisbane, Australia.,Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
36
|
Frederico B, Chao B, Lawler C, May JS, Stevenson PG. Subcapsular sinus macrophages limit acute gammaherpesvirus dissemination. J Gen Virol 2015; 96:2314-2327. [PMID: 25872742 PMCID: PMC4681069 DOI: 10.1099/vir.0.000140] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lymphocyte proliferation, mobility and longevity make them prime targets for virus infection. Myeloid cells that process and present environmental antigens to lymphocytes are consequently an important line of defence. Subcapsular sinus macrophages (SSMs) filter the afferent lymph and communicate with B-cells. How they interact with B-cell-tropic viruses is unknown. We analysed their encounter with murid herpesvirus-4 (MuHV-4), an experimentally accessible gammaherpesvirus related to Kaposi's sarcoma-associated herpesvirus. MuHV-4 disseminated via lymph nodes, and intranasally or subcutaneously inoculated virions readily infected SSMs. However, this infection was poorly productive. SSM depletion with clodronate-loaded liposomes or with diphtheria toxin in CD169–diphtheria toxin receptor transgenic mice increased B-cell infection and hastened virus spread to the spleen. Dendritic cells provided the main route to B-cells, and SSMs slowed host colonization, apparently by absorbing virions non-productively from the afferent lymph.
Collapse
Affiliation(s)
- Bruno Frederico
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Brittany Chao
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Clara Lawler
- Sir Albert Sakzewski Virus Research Centre, Clinical Medical Virology Centre, School of Chemistry and Molecular Biosciences, Royal Children's Hospital and University of Queensland, Brisbane, Australia
| | - Janet S May
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Philip G Stevenson
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK.,Sir Albert Sakzewski Virus Research Centre, Clinical Medical Virology Centre, School of Chemistry and Molecular Biosciences, Royal Children's Hospital and University of Queensland, Brisbane, Australia
| |
Collapse
|
37
|
Lawler C, Milho R, May JS, Stevenson PG. Rhadinovirus host entry by co-operative infection. PLoS Pathog 2015; 11:e1004761. [PMID: 25790477 PMCID: PMC4366105 DOI: 10.1371/journal.ppat.1004761] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 02/23/2015] [Indexed: 12/27/2022] Open
Abstract
Rhadinoviruses establish chronic infections of clinical and economic importance. Several show respiratory transmission and cause lung pathologies. We used Murid Herpesvirus-4 (MuHV-4) to understand how rhadinovirus lung infection might work. A primary epithelial or B cell infection often is assumed. MuHV-4 targeted instead alveolar macrophages, and their depletion reduced markedly host entry. While host entry was efficient, alveolar macrophages lacked heparan - an important rhadinovirus binding target - and were infected poorly ex vivo. In situ analysis revealed that virions bound initially not to macrophages but to heparan+ type 1 alveolar epithelial cells (AECs). Although epithelial cell lines endocytose MuHV-4 readily in vitro, AECs did not. Rather bound virions were acquired by macrophages; epithelial infection occurred only later. Thus, host entry was co-operative - virion binding to epithelial cells licensed macrophage infection, and this in turn licensed AEC infection. An antibody block of epithelial cell binding failed to block host entry: opsonization provided merely another route to macrophages. By contrast an antibody block of membrane fusion was effective. Therefore co-operative infection extended viral tropism beyond the normal paradigm of a target cell infected readily in vitro; and macrophage involvement in host entry required neutralization to act down-stream of cell binding. All viral infections start with host entry. Entry into cells is studied widely in isolated cultures; entry into live hosts is more complicated and less well understood: our tissues have specific anatomical structures and our cells differ markedly from most cultured cells in size, shape and behaviour. The respiratory tract is a common site of virus infection. Size dictates where inhaled particles come to rest, and virus-sized particles can reach the lungs. Rhadinoviruses chronically infect both humans and economically important animals, and cause lung disease. We used a well-characterized murine example to determine how a rhadinovirus enters the lungs. At its peak, infection was prominent in epithelial cells lining the lung air spaces. However it started in macrophages, which normally clear the lungs of inhaled debris. Only epithelial cells expressed the molecules required for virus binding, but only macrophages internalized virus particles after binding; infection involved interaction between these different cell types. Blocking epithelial infection with an antibody did not stop host entry because attached antibodies increase virus uptake by lung macrophages; but an antibody that blocks macrophage infection was effective. Thus, understanding how rhadinovirus infections work in normal tissues provided important information for their control.
Collapse
Affiliation(s)
- Clara Lawler
- Sir Albert Sakzewski Virus Research Centre, School of Chemistry and Molecular Biosciences, Royal Children’s Hospital and University of Queensland, Brisbane, Australia
| | - Ricardo Milho
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Janet S. May
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Philip G. Stevenson
- Sir Albert Sakzewski Virus Research Centre, School of Chemistry and Molecular Biosciences, Royal Children’s Hospital and University of Queensland, Brisbane, Australia
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
38
|
Frederico B, Chao B, May JS, Belz GT, Stevenson PG. A murid gamma-herpesviruses exploits normal splenic immune communication routes for systemic spread. Cell Host Microbe 2015; 15:457-70. [PMID: 24721574 DOI: 10.1016/j.chom.2014.03.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 12/05/2013] [Accepted: 02/03/2014] [Indexed: 12/12/2022]
Abstract
Gamma-herpesviruses (γHVs) are widespread oncogenic pathogens that chronically infect circulating lymphocytes. How they subvert the immune check-point function of the spleen to promote persistent infection is not clear. We show that Murid Herpesvirus-4 (MuHV-4) enters the spleen by infecting marginal zone (MZ) macrophages, which provided a conduit to MZ B cells. Relocation of MZ B cells to the white pulp allowed virus transfer to follicular dendritic cells. From here the virus reached germinal center B cells to establish persistent infection. Mice lacking MZ B cells, or treated with a sphingosine-1-phosphate receptor agonist to dislocate them, were protected against MuHV-4 colonization. MuHV-4 lacking ORF27, which encodes a glycoprotein necessary for efficient intercellular spread, could infect MZ macrophages but was impaired in long-term infection. Thus, MuHV-4, a γHV, exploits normal immune communication routes to spread by serial lymphoid/myeloid exchange.
Collapse
Affiliation(s)
- Bruno Frederico
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Brittany Chao
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Janet S May
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Gabrielle T Belz
- Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia
| | - Philip G Stevenson
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 2QQ, UK; Sir Albert Sakzewski Virus Research Centre and Queensland Children's Medical Research Institute, University of Queensland, Brisbane, Queensland 4029, Australia.
| |
Collapse
|
39
|
Abstract
UNLABELLED Viruses commonly infect the respiratory tract. Analyses of host defense have focused on the lungs and the respiratory epithelium. Spontaneously inhaled murid herpesvirus 4 (MuHV-4) and herpes simplex virus 1 (HSV-1) instead infect the olfactory epithelium, where neuronal cilia are exposed to environmental antigens and provide a route across the epithelial mucus. We used MuHV-4 to define how B cells respond to virus replication in this less well-characterized site. Olfactory infection elicited generally weaker acute responses than lung infection, particularly in the spleen, reflecting slower viral replication and spread. Few virus-specific antibody-forming cells (AFCs) were found in the nasal-associated lymphoid tissue (NALT), a prominent response site for respiratory epithelial infection. Instead, they appeared first in the superficial cervical lymph nodes. The focus of the AFC response then moved to the spleen, matching the geography of virus dissemination. Little virus-specific IgA response was detected until later in the bone marrow. Neuroepithelial HSV-1 infection also elicited no significant AFC response in the NALT and a weak IgA response. Thus, olfactory herpesvirus infection differed immunologically from an infection of the adjacent respiratory epithelium. Poor IgA induction may help herpesviruses to transmit via long-term mucosal shedding. IMPORTANCE Herpesviruses are widespread, persistent pathogens against which vaccines have had limited success. We need to understand better how they interact with host immunity. MuHV-4 and HSV-1 inhaled by alert mice infect the olfactory neuroepithelium, suggesting that this is a natural entry route. Its immunology is almost completely unknown. The antibody response to neuroepithelial herpesvirus infection started in the cervical lymph nodes, and unlike respiratory influenza virus infection, did not significantly involve the nasal-associated lymphoid tissue. MuHV-4 and HSV-1 infections also elicited little virus-specific IgA. Therefore, vaccine-induced IgA might provide a defense that herpesviruses are ill-equipped to meet.
Collapse
|
40
|
Tan CSE, Frederico B, Stevenson PG. Herpesvirus delivery to the murine respiratory tract. J Virol Methods 2014; 206:105-14. [PMID: 24928692 DOI: 10.1016/j.jviromet.2014.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 05/29/2014] [Accepted: 06/03/2014] [Indexed: 01/26/2023]
Abstract
Herpesvirus transmission is sporadic, and infection may be asymptomatic or present only with secondary lesions after dissemination. Consequently host entry remains ill-understood. Experimental infections can be informative, but depend on inoculations that are inherently artificial and so need validation. Mice are a widely used experimental host. Alert mice inhale readily small (5 μl) liquid volumes, and Indian ink, luciferase or radiolabel delivered thus distributed to the nasopharynx and oropharynx. Murid Herpesvirus-4 or Herpes simplex virus type 1 delivered thus infected only the nose, arguing that host entry is nasal rather than oral. Marker or virus delivery to the lung depended on general anesthesia and a large inoculum volume (30 μl), and so needs further validation of physiological relevance. While lungs could be infected at lower doses than the upper respiratory tract, tracking experiments showed that nasal inocula pass mostly into the oropharynx, even when restricted to 1 μl. Thus, the relative inefficiency of experimental upper respiratory tract infection was attributable to limited liquid retention in this site. Nonetheless low volume intranasal delivery to alert mice provides a convenient way to model experimentally an apparently natural mode of herpesvirus host entry.
Collapse
Affiliation(s)
- Cindy S E Tan
- Sir Albert Sakzewski Virus Research Centre, Queensland Children's Medical Research Institute and Australian Infectious Disease Research Centre, University of Queensland and Royal Children's Hospital, Brisbane, Queensland 4029, Australia
| | - Bruno Frederico
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Philip G Stevenson
- Sir Albert Sakzewski Virus Research Centre, Queensland Children's Medical Research Institute and Australian Infectious Disease Research Centre, University of Queensland and Royal Children's Hospital, Brisbane, Queensland 4029, Australia; Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 2QQ, UK.
| |
Collapse
|
41
|
Abernathy E, Clyde K, Yeasmin R, Krug LT, Burlingame A, Coscoy L, Glaunsinger B. Gammaherpesviral gene expression and virion composition are broadly controlled by accelerated mRNA degradation. PLoS Pathog 2014; 10:e1003882. [PMID: 24453974 PMCID: PMC3894220 DOI: 10.1371/journal.ppat.1003882] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/26/2013] [Indexed: 11/19/2022] Open
Abstract
Lytic gammaherpesvirus infection restricts host gene expression by promoting widespread degradation of cytoplasmic mRNA through the activity of the viral endonuclease SOX. Though generally assumed to be selective for cellular transcripts, the extent to which SOX impacts viral mRNA stability has remained unknown. We addressed this issue using the model murine gammaherpesvirus MHV68 and, unexpectedly, found that all stages of viral gene expression are controlled through mRNA degradation. Using both comprehensive RNA expression profiling and half-life studies we reveal that the levels of the majority of viral mRNAs but not noncoding RNAs are tempered by MHV68 SOX (muSOX) activity. The targeting of viral mRNA by muSOX is functionally significant, as it impacts intracellular viral protein abundance and progeny virion composition. In the absence of muSOX-imposed gene expression control the viral particles display increased cell surface binding and entry as well as enhanced immediate early gene expression. These phenotypes culminate in a viral replication defect in multiple cell types as well as in vivo, highlighting the importance of maintaining the appropriate balance of viral RNA during gammaherpesviral infection. This is the first example of a virus that fails to broadly discriminate between cellular and viral transcripts during host shutoff and instead uses the targeting of viral messages to fine-tune overall gene expression. Many viruses restrict host gene expression during infection, presumably to provide a competitive expression advantage to viral transcripts. Not surprisingly, viruses that induce this ‘host shutoff’ phenotype therefore generally possess mechanisms to selectively spare viral genes. Gammaherpesviruses promote host shutoff by inducing widespread mRNA degradation, a process initiated by the viral SOX nuclease. However, the effect of SOX on viral mRNA during infection was unknown. Here, we reveal that during infection with the murine gammaherpesvirus MHV68, the majority of viral transcripts of all kinetic classes are broadly down regulated through the activity of the MHV68 SOX protein (muSOX). We further demonstrate that in the absence of muSOX-induced control of viral mRNA abundance, viral protein levels increase, thereby affecting the composition of progeny viral particles. Altered virion composition directly impacts early events such as entry and induction of lytic gene expression in subsequent rounds of replication. Furthermore, decreasing both virus and host gene expression via global mRNA degradation is critical for viral replication in a cell type specific manner both in vitro and in vivo. This is the first example of a eukaryotic virus whose host shutoff mechanism similarly tempers viral gene expression, and highlights the degree to which gammaherpesviral gene expression must be fine tuned to ensure replicative success.
Collapse
Affiliation(s)
- Emma Abernathy
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California, United States of America
| | - Karen Clyde
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California, United States of America
| | - Rukhsana Yeasmin
- Department of Computer Science, Stony Brook University, Stony Brook, New York, United States of America
| | - Laurie T. Krug
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Al Burlingame
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, United States of America
| | - Laurent Coscoy
- Department of Cell and Molecular Biology, University of California at Berkeley, Berkeley, California, United States of America
| | - Britt Glaunsinger
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California, United States of America
- Department of Cell and Molecular Biology, University of California at Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
42
|
In vivo imaging in NHP models of malaria: challenges, progress and outlooks. Parasitol Int 2013; 63:206-15. [PMID: 24042056 PMCID: PMC7108422 DOI: 10.1016/j.parint.2013.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 08/30/2013] [Accepted: 09/06/2013] [Indexed: 12/22/2022]
Abstract
Animal models of malaria, mainly mice, have made a large contribution to our knowledge of host-pathogen interactions and immune responses, and to drug and vaccine design. Non-human primate (NHP) models for malaria are admittedly under-used, although they are probably closer models than mice for human malaria; in particular, NHP models allow the use of human pathogens (Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium knowlesi). NHPs, whether natural hosts or experimentally challenged with a simian Plasmodium, can also serve as robust pre-clinical models. Some simian parasites are closely related to a human counterpart, with which they may share a common ancestor, and display similar major features with the human infection and pathology. NHP models allow longitudinal studies, from the early events following sporozoite inoculation to the later events, including analysis of organs and tissues, particularly liver, spleen, brain and bone marrow. NHP models have one other significant advantage over mouse models: NHPs are our closest relatives and thus their biology is very similar to ours. Recently developed in vivo imaging tools have provided insight into malaria parasite infection and disease in mouse models. One advantage of these tools is that they limit the need for invasive procedures, such as tissue biopsies. Many such technologies are now available for NHP studies and provide new opportunities for elucidating host/parasite interactions. The aim of this review is to bring the malaria community up to date on what is currently possible and what soon will be, in terms of in vivo imaging in NHP models of malaria, to consider the pros and the cons of the various techniques, and to identify challenges.
Collapse
|
43
|
Abstract
Glycoprotein B (gB) is a conserved herpesvirus virion component implicated in membrane fusion. As with many—but not all—herpesviruses, the gB of murid herpesvirus 4 (MuHV-4) is cleaved into disulfide-linked subunits, apparently by furin. Preventing gB cleavage for some herpesviruses causes minor infection deficits in vitro, but what the cleavage contributes to host colonization has been unclear. To address this, we mutated the furin cleavage site (R-R-K-R) of the MuHV-4 gB. Abolishing gB cleavage did not affect its expression levels, glycosylation, or antigenic conformation. In vitro, mutant viruses entered fibroblasts and epithelial cells normally but had a significant entry deficit in myeloid cells such as macrophages and bone marrow-derived dendritic cells. The deficit in myeloid cells was not due to reduced virion binding or endocytosis, suggesting that gB cleavage promotes infection at a postendocytic entry step, presumably viral membrane fusion. In vivo, viruses lacking gB cleavage showed reduced lytic spread in the lungs. Alveolar epithelial cell infection was normal, but alveolar macrophage infection was significantly reduced. Normal long-term latency in lymphoid tissue was established nonetheless.
Collapse
|
44
|
Abstract
Herpes simplex virus 1 (HSV-1) is a ubiquitous and important human pathogen. It is known to persist in trigeminal ganglia (TG), but how it reaches this site has been difficult to determine, as viral transmission is sporadic, pathogenesis is complicated, and early infection is largely asymptomatic. We used mice to compare the most likely natural HSV-1 host entry routes: oral and nasal. Intranasal infection was 100-fold more efficient than oral and targeted predominantly the olfactory neuroepithelium. Live imaging of HSV-1-expressed luciferase showed infection progressing from the nose to the TG and then reemerging in the facial skin. The brain remained largely luciferase negative throughout. Infected cell tagging by viral Cre recombinase expression in floxed reporter gene mice showed nasal virus routinely reaching the TG and only rarely reaching the olfactory bulbs. Thus, HSV-1 spread from the olfactory neuroepithelium to the TG and reemerged peripherally without causing significant neurological disease. This recapitulation of typical clinical infection suggests that HSV-1 might sometimes also enter humans via the respiratory tract.
Collapse
|
45
|
François S, Vidick S, Sarlet M, Desmecht D, Drion P, Stevenson PG, Vanderplasschen A, Gillet L. Illumination of murine gammaherpesvirus-68 cycle reveals a sexual transmission route from females to males in laboratory mice. PLoS Pathog 2013; 9:e1003292. [PMID: 23593002 PMCID: PMC3616973 DOI: 10.1371/journal.ppat.1003292] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 02/22/2013] [Indexed: 12/11/2022] Open
Abstract
Transmission is a matter of life or death for pathogen lineages and can therefore be considered as the main motor of their evolution. Gammaherpesviruses are archetypal pathogenic persistent viruses which have evolved to be transmitted in presence of specific immune response. Identifying their mode of transmission and their mechanisms of immune evasion is therefore essential to develop prophylactic and therapeutic strategies against these infections. As the known human gammaherpesviruses, Epstein-Barr virus and Kaposi's Sarcoma-associated Herpesvirus are host-specific and lack a convenient in vivo infection model; related animal gammaherpesviruses, such as murine gammaherpesvirus-68 (MHV-68), are commonly used as general models of gammaherpesvirus infections in vivo. To date, it has however never been possible to monitor viral excretion or virus transmission of MHV-68 in laboratory mice population. In this study, we have used MHV-68 associated with global luciferase imaging to investigate potential excretion sites of this virus in laboratory mice. This allowed us to identify a genital excretion site of MHV-68 following intranasal infection and latency establishment in female mice. This excretion occurred at the external border of the vagina and was dependent on the presence of estrogens. However, MHV-68 vaginal excretion was not associated with vertical transmission to the litter or with horizontal transmission to female mice. In contrast, we observed efficient virus transmission to naïve males after sexual contact. In vivo imaging allowed us to show that MHV-68 firstly replicated in penis epithelium and corpus cavernosum before spreading to draining lymph nodes and spleen. All together, those results revealed the first experimental transmission model for MHV-68 in laboratory mice. In the future, this model could help us to better understand the biology of gammaherpesviruses and could also allow the development of strategies that could prevent the spread of these viruses in natural populations. Epstein-Barr virus and the Kaposi's Sarcoma-associated Herpesvirus are two human gammaherpesviruses which are linked to the development of several cancers. Efficient control of these infections is therefore of major interest, particularly in some epidemiological circumstances. These viruses are however host-specific and cannot be experimentally studied in vivo. The identification of a closely related viral species, called Murid herpesvirus 4 with the main strain called murine gammaherpesvirus-68 (MHV-68), in wild rodents opened new horizons to the study of gammaherpesvirus biology. Surprisingly, despite 30 years of research, MHV-68 transmission had never been observed in captivity. In this study, using in vivo imaging, we showed that MHV-68 is genitally excreted after latency establishment in intranasally infected female mice. This allowed us to observe, for the first time, sexual transmission of MHV-68 between laboratory mice. In the future, this model should be important to better understand the biology of gammaherpesviruses and should also allow the development of strategies that could prevent the spread of these viruses in natural populations.
Collapse
Affiliation(s)
- Sylvie François
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Sarah Vidick
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Mickaël Sarlet
- Pathology (B43), Department of Morphology and Pathology, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Daniel Desmecht
- Pathology (B43), Department of Morphology and Pathology, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Pierre Drion
- Animal Facility (B23), GIGA-University of Liège, Liège, Belgium
| | - Philip G. Stevenson
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Alain Vanderplasschen
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Laurent Gillet
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
46
|
Systemic and local infection routes govern different cellular dissemination pathways during gammaherpesvirus infection in vivo. J Virol 2013; 87:4596-608. [PMID: 23408606 DOI: 10.1128/jvi.03135-12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Human gammaherpesviruses cause morbidity and mortality associated with infection and transformation of lymphoid and endothelial cells. Knowledge of cell types involved in virus dissemination from primary virus entry to virus latency is fundamental for the understanding of gammaherpesvirus pathogenesis. However, the inability to directly trace cell types with respect to virus dissemination pathways has prevented definitive conclusions regarding the relative contribution of individual cell types. Here, we describe that the route of infection affects gammaherpesvirus dissemination pathways. We constructed a recombinant murine gammaherpesvirus 68 (MHV-68) variant harboring a cassette which switches fluorescent markers in a Cre-dependent manner. Since the recombinant virus which was constructed on the wild-type background was attenuated, in this study we used an M1-deleted version, which infected mice with normal kinetics. Infection of Cre-transgenic mice with this convertible virus was used to estimate the quantitative contribution of defined cell types to virus productivity and dissemination during the acute phase of MHV-68 infection. In systemic infection, we found splenic vascular endothelial cells (EC) among the first and main cells to produce virus. After local infection, the contribution of EC to splenic virus production did not represent such early kinetics. However, at later time points, B cell-derived viruses dominated splenic productivity independently of systemic or local infection. Systemic versus local infection also governed the cell types involved in loading peritoneal exudate cells, leading to latency in F4/80- and CD11b-positive target cells. Systemic infection supported EC-driven dissemination, whereas local infection supported B cell-driven dissemination.
Collapse
|
47
|
Milho R, Frederico B, Efstathiou S, Stevenson PG. A heparan-dependent herpesvirus targets the olfactory neuroepithelium for host entry. PLoS Pathog 2012; 8:e1002986. [PMID: 23133384 PMCID: PMC3486907 DOI: 10.1371/journal.ppat.1002986] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 09/07/2012] [Indexed: 11/19/2022] Open
Abstract
Herpesviruses are ubiquitous pathogens that cause much disease. The difficulty of clearing their established infections makes host entry an important target for control. However, while herpesviruses have been studied extensively in vitro, how they cross differentiated mucus-covered epithelia in vivo is unclear. To establish general principles we tracked host entry by Murid Herpesvirus-4 (MuHV-4), a lymphotropic rhadinovirus related to the Kaposi's Sarcoma-associated Herpesvirus. Spontaneously acquired virions targeted the olfactory neuroepithelium. Like many herpesviruses, MuHV-4 binds to heparan sulfate (HS), and virions unable to bind HS showed poor host entry. While the respiratory epithelium expressed only basolateral HS and was bound poorly by incoming virions, the neuroepithelium also displayed HS on its apical neuronal cilia and was bound strongly. Incoming virions tracked down the neuronal cilia, and either infected neurons or reached the underlying microvilli of the adjacent glial (sustentacular) cells and infected them. Thus the olfactory neuroepithelium provides an important and complex site of HS-dependent herpesvirus uptake. Herpesviruses are supremely successful mammalian parasites. Yet their infections rarely present until well established, so how new hosts are first infected has been unclear. Understanding this is likely to be crucial for infection control. Using Murid Herpesvirus-4, a relative of the Kaposi's Sarcoma-associated Herpesvirus, we identified the olfactory neuroepithelium as a major portal of host entry. Heparan sulfate (HS) binding, which is common to many herpesviruses, played a key role. The HS of most epithelia is solely basolateral and therefore inaccessible to incoming, apical virions. The neuroepithelium, by contrast, also displayed HS on its apical surface. This comprises a dense meshwork of the neuronal cilia that mediate olfaction. Incoming virions bound to the cilia, as did a recombinant form of the virion glycoprotein H/L heterodimer. Some virions tracked down the cilia to infect neurons. Others were transferred to the microvilli of adjacent sustentacular cells. The central role of HS in this first detailed description of host entry by a mammalian herpesvirus, and the paucity of accessible HS on other epithelia, suggested that many HS-binding herpesviruses could follow a similar path.
Collapse
Affiliation(s)
| | | | | | - Philip G. Stevenson
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
48
|
Knowles SCL, Fenton A, Pedersen AB. Epidemiology and fitness effects of wood mouse herpesvirus in a natural host population. J Gen Virol 2012; 93:2447-2456. [PMID: 22915692 PMCID: PMC3542127 DOI: 10.1099/vir.0.044826-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/16/2012] [Indexed: 11/18/2022] Open
Abstract
Rodent gammaherpesviruses have become important models for understanding human herpesvirus diseases. In particular, interactions between murid herpesvirus 4 and Mus musculus (a non-natural host species) have been extensively studied under controlled laboratory conditions. However, several fundamental aspects of murine gammaherpesvirus biology are not well understood, including how these viruses are transmitted from host to host, and their impacts on host fitness under natural conditions. Here, we investigate the epidemiology of a gammaherpesvirus in free-living wood mice (Apodemus sylvaticus) and bank voles (Myodes glareolus) in a 2-year longitudinal study. Wood mouse herpesvirus (WMHV) was the only herpesvirus detected and occurred frequently in wood mice and also less commonly in bank voles. Strikingly, WMHV infection probability was highest in reproductively active, heavy male mice. Infection risk also showed a repeatable seasonal pattern, peaking in spring and declining through the summer. We show that this seasonal decline can be at least partly attributed to reduced recapture of WMHV-infected adults. These results suggest that male reproductive behaviours could provide an important natural route of transmission for these viruses. They also suggest that gammaherpesvirus infection may have significant detrimental effects in wild hosts, questioning the view that these viruses have limited impacts in natural, co-evolved host species.
Collapse
Affiliation(s)
- Sarah C. L. Knowles
- Centre for Immunity, Infection and Evolution (CIIE), Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT, UK
| | - Andy Fenton
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK
| | - Amy B. Pedersen
- Centre for Immunity, Infection and Evolution (CIIE), Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT, UK
| |
Collapse
|
49
|
Frederico B, Milho R, May JS, Gillet L, Stevenson PG. Myeloid infection links epithelial and B cell tropisms of Murid Herpesvirus-4. PLoS Pathog 2012; 8:e1002935. [PMID: 23028329 PMCID: PMC3447751 DOI: 10.1371/journal.ppat.1002935] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/14/2012] [Indexed: 11/18/2022] Open
Abstract
Gamma-herpesviruses persist in lymphocytes and cause disease by driving their proliferation. Lymphocyte infection is therefore a key pathogenetic event. Murid Herpesvirus-4 (MuHV-4) is a rhadinovirus that like the related Kaposi's Sarcoma-associated Herpesvirus persists in B cells in vivo yet infects them poorly in vitro. Here we used MuHV-4 to understand how virion tropism sets the path to lymphocyte colonization. Virions that were highly infectious in vivo showed a severe post-binding block to B cell infection. Host entry was accordingly an epithelial infection and B cell infection a secondary event. Macrophage infection by cell-free virions was also poor, but improved markedly when virion binding improved or when macrophages were co-cultured with infected fibroblasts. Under the same conditions B cell infection remained poor; it improved only when virions came from macrophages. This reflected better cell penetration and correlated with antigenic changes in the virion fusion complex. Macrophages were seen to contact acutely infected epithelial cells, and cre/lox-based virus tagging showed that almost all the virus recovered from lymphoid tissue had passed through lysM+ and CD11c+ myeloid cells. Thus MuHV-4 reached B cells in 3 distinct stages: incoming virions infected epithelial cells; infection then passed to myeloid cells; glycoprotein changes then allowed B cell infection. These data identify new complexity in rhadinovirus infection and potentially also new vulnerability to intervention. Rhadinoviruses cause lymphocytic cancers. Their infection of lymphocytes is therefore an important therapeutic target. How this occurs is unclear. One prevalent hypothesis has been that virions directly infect lymphocytes when they enter new hosts. Here we show that host entry by Murid Herpesvirus-4, a close relative of the Kaposi's Sarcoma-associated Herpesvirus, is an epithelial rather than a lymphocyte infection: the mucosal lymphoid colonization typical of acute infectious mononucleosis only occurred later. Macrophages were closely associated with the acutely infected epithelium, and most if not all of the virus reaching B cells showed evidence of previous myeloid cell infection. Macrophage-derived virions showed a greatly enhanced capacity for lymphocyte infection that was associated with antigenic changes in the viral fusion proteins. Thus host colonization required epithelial and myeloid infections before there was lymphocyte infection. The implication is that each of these infection events could be independently targeted to limit viral persistence.
Collapse
Affiliation(s)
| | | | | | | | - Philip G. Stevenson
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrookes Hospital, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
50
|
Tiled microarray identification of novel viral transcript structures and distinct transcriptional profiles during two modes of productive murine gammaherpesvirus 68 infection. J Virol 2012; 86:4340-57. [PMID: 22318145 DOI: 10.1128/jvi.05892-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We applied a custom tiled microarray to examine murine gammaherpesvirus 68 (MHV68) polyadenylated transcript expression in a time course of de novo infection of fibroblast cells and following phorbol ester-mediated reactivation from a latently infected B cell line. During de novo infection, all open reading frames (ORFs) were transcribed and clustered into four major temporal groups that were overlapping yet distinct from clusters based on the phorbol ester-stimulated B cell reactivation time course. High-density transcript analysis at 2-h intervals during de novo infection mapped gene boundaries with a 20-nucleotide resolution, including a previously undefined ORF73 transcript and the MHV68 ORF63 homolog of Kaposi's sarcoma-associated herpesvirus vNLRP1. ORF6 transcript initiation was mapped by tiled array and confirmed by 5' rapid amplification of cDNA ends. The ∼1.3-kb region upstream of ORF6 was responsive to lytic infection and MHV68 RTA, identifying a novel RTA-responsive promoter. Transcription in intergenic regions consistent with the previously defined expressed genomic regions was detected during both types of productive infection. We conclude that the MHV68 transcriptome is dynamic and distinct during de novo fibroblast infection and upon phorbol ester-stimulated B cell reactivation, highlighting the need to evaluate further transcript structure and the context-dependent molecular events that govern viral gene expression during chronic infection.
Collapse
|