1
|
Goldstein ME, Ignacio MA, Loube JM, Whorton MR, Scull MA. Human Stimulator of Interferon Genes Promotes Rhinovirus C Replication in Mouse Cells In Vitro and In Vivo. Viruses 2024; 16:1282. [PMID: 39205256 PMCID: PMC11358906 DOI: 10.3390/v16081282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Rhinovirus C (RV-C) infects airway epithelial cells and is an important cause of acute respiratory disease in humans. To interrogate the mechanisms of RV-C-mediated disease, animal models are essential. Towards this, RV-C infection was recently reported in wild-type (WT) mice, yet, titers were not sustained. Therefore, the requirements for RV-C infection in mice remain unclear. Notably, prior work has implicated human cadherin-related family member 3 (CDHR3) and stimulator of interferon genes (STING) as essential host factors for virus uptake and replication, respectively. Here, we report that even though human (h) and murine (m) CDHR3 orthologs have similar tissue distribution, amino acid sequence homology is limited. Further, while RV-C can replicate in mouse lung epithelial type 1 (LET1) cells and produce infectious virus, we observed a significant increase in the frequency and intensity of dsRNA-positive cells following hSTING expression. Based on these findings, we sought to assess the impact of hCDHR3 and hSTING on RV-C infection in mice in vivo. Thus, we developed hCDHR3 transgenic mice, and utilized adeno-associated virus (AAV) to deliver hSTING to the murine airways. Subsequent challenge of these mice with RV-C15 revealed significantly higher titers 24 h post-infection in mice expressing both hCDHR3 and hSTING-compared to either WT mice, or mice with hCDHR3 or hSTING alone, indicating more efficient infection. Ultimately, this mouse model can be further engineered to establish a robust in vivo model, recapitulating viral dynamics and disease.
Collapse
Affiliation(s)
- Monty E. Goldstein
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, 3134 Biosciences Research Building, University of Maryland, College Park, MD 20742, USA
| | - Maxinne A. Ignacio
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, 3134 Biosciences Research Building, University of Maryland, College Park, MD 20742, USA
| | - Jeffrey M. Loube
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, 3134 Biosciences Research Building, University of Maryland, College Park, MD 20742, USA
| | - Matthew R. Whorton
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Margaret A. Scull
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, 3134 Biosciences Research Building, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
2
|
Thomas PG, Shubina M, Balachandran S. ZBP1/DAI-Dependent Cell Death Pathways in Influenza A Virus Immunity and Pathogenesis. Curr Top Microbiol Immunol 2023; 442:41-63. [PMID: 31970498 DOI: 10.1007/82_2019_190] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Influenza A viruses (IAV) are members of the Orthomyxoviridae family of negative-sense RNA viruses. The greatest diversity of IAV strains is found in aquatic birds, but a subset of strains infects other avian as well as mammalian species, including humans. In aquatic birds, infection is largely restricted to the gastrointestinal tract and spread is through feces, while in humans and other mammals, respiratory epithelial cells are the primary sites supporting productive replication and transmission. IAV triggers the death of most cell types in which it replicates, both in culture and in vivo. When well controlled, such cell death is considered an effective host defense mechanism that eliminates infected cells and limits virus spread. Unchecked or inopportune cell death also results in immunopathology. In this chapter, we discuss the impact of cell death in restricting virus spread, supporting the adaptive immune response and driving pathogenesis in the mammalian respiratory tract. Recent studies have begun to shed light on the signaling pathways underlying IAV-activated cell death. These pathways, initiated by the pathogen sensor protein ZBP1 (also called DAI and DLM1), cause infected cells to undergo apoptosis, necroptosis, and pyroptosis. We outline mechanisms of ZBP1-mediated cell death signaling following IAV infection.
Collapse
Affiliation(s)
- Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, MS 351, 262 Danny Thomas Place, 38105, Memphis, TN, USA.
| | - Maria Shubina
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Room 224 Reimann Building, 333 Cottman Ave., 19111, Philadelphia, PA, USA
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Room 224 Reimann Building, 333 Cottman Ave., 19111, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Yin C, Zhang T, Balachandran S. Detecting Z-RNA and Z-DNA in Mammalian Cells. Methods Mol Biol 2023; 2651:277-284. [PMID: 36892774 DOI: 10.1007/978-1-0716-3084-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Eukaryotic cells sense and respond to virus infections by detecting conserved virus-generated molecular structures, called pathogen-associated molecular patterns (PAMPs). PAMPs are usually produced by replicating viruses, but not typically seen in uninfected cells. Double-stranded RNA (dsRNA) is a common PAMP produced by most, if not all, RNA viruses, as well as by many DNA viruses. DsRNA can adopt either the right-handed (A-RNA) or the left-handed (Z-RNA) double-helical conformation. A-RNA is sensed by cytosolic pattern recognition receptors (PRRs) such as RIG-1-like receptor MDA-5 and the dsRNA-dependent protein kinase PKR. Z-RNA is detected by Zα domain containing PRRs, including Z-form nucleic acid binding protein 1 (ZBP1) and the p150 subunit of adenosine deaminase RNA specific 1 (ADAR1). We have recently shown that Z-RNA is generated during orthomyxovirus (e.g., influenza A virus) infections and serves as activating ligand for ZBP1. In this chapter, we describe our procedure for detecting Z-RNA in influenza A virus (IAV)-infected cells. We also outline how this procedure can be used to detect Z-RNA produced during vaccinia virus infection, as well as Z-DNA induced by a small-molecule DNA intercalator.
Collapse
Affiliation(s)
- Chaoran Yin
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Ting Zhang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA. .,Lead Contact, Philadelphia, USA.
| |
Collapse
|
4
|
Zhang T, Yin C, Fedorov A, Qiao L, Bao H, Beknazarov N, Wang S, Gautam A, Williams RM, Crawford JC, Peri S, Studitsky V, Beg AA, Thomas PG, Walkley C, Xu Y, Poptsova M, Herbert A, Balachandran S. ADAR1 masks the cancer immunotherapeutic promise of ZBP1-driven necroptosis. Nature 2022; 606:594-602. [PMID: 35614224 PMCID: PMC9373927 DOI: 10.1038/s41586-022-04753-7] [Citation(s) in RCA: 202] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 04/11/2022] [Indexed: 12/11/2022]
Abstract
Only a small proportion of patients with cancer show lasting responses to immune checkpoint blockade (ICB)-based monotherapies. The RNA-editing enzyme ADAR1 is an emerging determinant of resistance to ICB therapy and prevents ICB responsiveness by repressing immunogenic double-stranded RNAs (dsRNAs), such as those arising from the dysregulated expression of endogenous retroviral elements (EREs)1-4. These dsRNAs trigger an interferon-dependent antitumour response by activating A-form dsRNA (A-RNA)-sensing proteins such as MDA-5 and PKR5. Here we show that ADAR1 also prevents the accrual of endogenous Z-form dsRNA elements (Z-RNAs), which were enriched in the 3' untranslated regions of interferon-stimulated mRNAs. Depletion or mutation of ADAR1 resulted in Z-RNA accumulation and activation of the Z-RNA sensor ZBP1, which culminated in RIPK3-mediated necroptosis. As no clinically viable ADAR1 inhibitors currently exist, we searched for a compound that can override the requirement for ADAR1 inhibition and directly activate ZBP1. We identified a small molecule, the curaxin CBL0137, which potently activates ZBP1 by triggering Z-DNA formation in cells. CBL0137 induced ZBP1-dependent necroptosis in cancer-associated fibroblasts and reversed ICB unresponsiveness in mouse models of melanoma. Collectively, these results demonstrate that ADAR1 represses endogenous Z-RNAs and identifies ZBP1-mediated necroptosis as a new determinant of tumour immunogenicity masked by ADAR1. Therapeutic activation of ZBP1-induced necroptosis provides a readily translatable avenue for rekindling the immune responsiveness of ICB-resistant human cancers.
Collapse
Affiliation(s)
- Ting Zhang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Chaoran Yin
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Aleksandr Fedorov
- Laboratory of Bioinformatics, Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia
| | - Liangjun Qiao
- College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Hongliang Bao
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Kiyotake, Japan
| | - Nazar Beknazarov
- Laboratory of Bioinformatics, Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia
| | - Shiyu Wang
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Kiyotake, Japan
| | - Avishekh Gautam
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Riley M Williams
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | - Suraj Peri
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Vasily Studitsky
- Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- Biology Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Amer A Beg
- Department of Immunology and Thoracic Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Paul G Thomas
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Carl Walkley
- Cancer & RNA Biology, St Vincent's Institute for Medical Research and Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Kiyotake, Japan
| | - Maria Poptsova
- Laboratory of Bioinformatics, Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia
| | - Alan Herbert
- Laboratory of Bioinformatics, Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia.
- InsideOutBio, Charlestown, MA, USA.
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Wyatt KD, Sarr D, Sakamoto K, Watford WT. Influenza-induced Tpl2 expression within alveolar epithelial cells is dispensable for host viral control and anti-viral immunity. PLoS One 2022; 17:e0262832. [PMID: 35051238 PMCID: PMC8775564 DOI: 10.1371/journal.pone.0262832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/05/2022] [Indexed: 01/22/2023] Open
Abstract
Tumor progression locus 2 (Tpl2) is a serine/threonine kinase that regulates the expression of inflammatory mediators in response to Toll-like receptors (TLR) and cytokine receptors. Global ablation of Tpl2 leads to severe disease in response to influenza A virus (IAV) infection, characterized by respiratory distress, and studies in bone marrow chimeric mice implicated Tpl2 in non-hematopoietic cells. Lung epithelial cells are primary targets and replicative niches of influenza viruses; however, the specific regulation of antiviral responses by Tpl2 within lung epithelial cells has not been investigated. Herein, we show that Tpl2 is basally expressed in primary airway epithelial cells and that its expression increases in both type I and type II airway epithelial cells (AECI and AECII) in response to influenza infection. We used Nkx2.1-cre to drive Tpl2 deletion within pulmonary epithelial cells to delineate epithelial cell-specific functions of Tpl2 during influenza infection in mice. Although modest increases in morbidity and mortality were attributed to cre-dependent deletion in lung epithelial cells, no alterations in host cytokine production or lung pathology were observed. In vitro, Tpl2 inhibition within the type I airway epithelial cell line, LET1, as well as genetic ablation in primary airway epithelial cells did not alter cytokine production. Overall, these findings establish that Tpl2-dependent defects in cells other than AECs are primarily responsible for the morbidity and mortality seen in influenza-infected mice with global Tpl2 ablation.
Collapse
Affiliation(s)
- Kara D. Wyatt
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Demba Sarr
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Kaori Sakamoto
- Department of Pathology, University of Georgia, Athens, Georgia, United States of America
| | - Wendy T. Watford
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
6
|
Strässle M, Laloli L, Gultom M, V'kovski P, Stoffel MH, Crespo Pomar S, Chanfon Bätzner A, Ebert N, Labroussaa F, Dijkman R, Jores J, Thiel V. Establishment of caprine airway epithelial cells grown in an air-liquid interface system to study caprine respiratory viruses and bacteria. Vet Microbiol 2021; 257:109067. [PMID: 33862331 DOI: 10.1016/j.vetmic.2021.109067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/06/2021] [Indexed: 11/29/2022]
Abstract
Respiratory diseases negatively impact the global goat industry, but are understudied. There is a shortage of established and biological relevant in vitro or ex vivo assays to study caprine respiratory infections. Here, we describe the establishment of an in vitro system based on well-differentiated caprine airway epithelial cell (AEC) cultures grown under air liquid interface conditions as an experimental platform to study caprine respiratory pathogens. The functional differentiation of the AEC cultures was monitored and confirmed by light and immunofluorescence microscopy, scanning electron microscopy and examination of histological sections. We validated the functionality of the platform by studying Influenza D Virus (IDV) infection and Mycoplasma mycoides subsp. capri (Mmc) colonization over 5 days, including monitoring of infectious agents by titration and qPCR as well as colour changing units, respectively. The inoculation of caprine AEC cultures with IDV showed that efficient viral replication takes place, and revealed that IDV has a marked cell tropism for ciliated cells. Furthermore, AEC cultures were successfully infected with Mmc using a multiplicity of infection of 0.1 and colonization was monitored over several days. Altogether, these results demonstrate that our newly-established caprine AEC cultures can be used to investigate host-pathogen interactions of caprine respiratory pathogens.
Collapse
Affiliation(s)
- Marina Strässle
- Institute of Virology and Immunology (IVI), Bern, Switzerland; Institute of Veterinary Bacteriology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Str. 122, PO Box 3001, Bern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Laura Laloli
- Institute of Virology and Immunology (IVI), Bern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Graduate School for Biomedical Science, University of Bern, Bern, Switzerland; Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Mitra Gultom
- Institute of Virology and Immunology (IVI), Bern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Graduate School for Biomedical Science, University of Bern, Bern, Switzerland; Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Philip V'kovski
- Institute of Virology and Immunology (IVI), Bern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Michael H Stoffel
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Länggass-Str. 120, PO Box 3001, Bern, Switzerland
| | - Silvia Crespo Pomar
- Institute of Veterinary Bacteriology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Str. 122, PO Box 3001, Bern, Switzerland
| | - Astrid Chanfon Bätzner
- Institute of Animal Pathology (COMPATH), Vetsuisse Faculty, University of Bern, Länggass-Str. 122, PO Box 3001, Bern, Switzerland
| | - Nadine Ebert
- Institute of Virology and Immunology (IVI), Bern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Fabien Labroussaa
- Institute of Veterinary Bacteriology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Str. 122, PO Box 3001, Bern, Switzerland
| | - Ronald Dijkman
- Institute of Virology and Immunology (IVI), Bern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Joerg Jores
- Institute of Veterinary Bacteriology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Str. 122, PO Box 3001, Bern, Switzerland.
| | - Volker Thiel
- Institute of Virology and Immunology (IVI), Bern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Watzenboeck ML, Drobits B, Zahalka S, Gorki AD, Farhat A, Quattrone F, Hladik A, Lakovits K, Richard GM, Lederer T, Strobl B, Versteeg GA, Boon L, Starkl P, Knapp S. Lipocalin 2 modulates dendritic cell activity and shapes immunity to influenza in a microbiome dependent manner. PLoS Pathog 2021; 17:e1009487. [PMID: 33905460 PMCID: PMC8078786 DOI: 10.1371/journal.ppat.1009487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 03/19/2021] [Indexed: 12/27/2022] Open
Abstract
Lipocalin 2 (LCN2) is a secreted glycoprotein with roles in multiple biological processes. It contributes to host defense by interference with bacterial iron uptake and exerts immunomodulatory functions in various diseases. Here, we aimed to characterize the function of LCN2 in lung macrophages and dendritic cells (DCs) using Lcn2-/- mice. Transcriptome analysis revealed strong LCN2-related effects in CD103+ DCs during homeostasis, with differential regulation of antigen processing and presentation and antiviral immunity pathways. We next validated the relevance of LCN2 in a mouse model of influenza infection, wherein LCN2 protected from excessive weight loss and improved survival. LCN2-deficiency was associated with enlarged mediastinal lymph nodes and increased lung T cell numbers, indicating a dysregulated immune response to influenza infection. Depletion of CD8+ T cells equalized weight loss between WT and Lcn2-/- mice, proving that LCN2 protects from excessive disease morbidity by dampening CD8+ T cell responses. In vivo T cell chimerism and in vitro T cell proliferation assays indicated that improved antigen processing by CD103+ DCs, rather than T cell intrinsic effects of LCN2, contribute to the exacerbated T cell response. Considering the antibacterial potential of LCN2 and that commensal microbes can modulate antiviral immune responses, we speculated that LCN2 might cause the observed influenza phenotype via the microbiome. Comparing the lung and gut microbiome of WT and Lcn2-/- mice by 16S rRNA gene sequencing, we observed profound effects of LCN2 on gut microbial composition. Interestingly, antibiotic treatment or co-housing of WT and Lcn2-/- mice prior to influenza infection equalized lung CD8+ T cell counts, suggesting that the LCN2-related effects are mediated by the microbiome. In summary, our results highlight a novel regulatory function of LCN2 in the modulation of antiviral immunity.
Collapse
Affiliation(s)
- Martin L. Watzenboeck
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Barbara Drobits
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Sophie Zahalka
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Anna-Dorothea Gorki
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Asma Farhat
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Federica Quattrone
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Anastasiya Hladik
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Karin Lakovits
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Gabriel M. Richard
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Therese Lederer
- Institute of Animal Breeding and Genetics, Department of Biomedical Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, Department of Biomedical Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gijs A. Versteeg
- Department of Microbiology, Immunobiology, and Genetics, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Louis Boon
- Polpharma Biologics, Utrecht, The Netherlands
| | - Philipp Starkl
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Sylvia Knapp
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| |
Collapse
|
8
|
Deliyannis G, Wong CY, McQuilten HA, Bachem A, Clarke M, Jia X, Horrocks K, Zeng W, Girkin J, Scott NE, Londrigan SL, Reading PC, Bartlett NW, Kedzierska K, Brown LE, Mercuri F, Demaison C, Jackson DC, Chua BY. TLR2-mediated activation of innate responses in the upper airways confers antiviral protection of the lungs. JCI Insight 2021; 6:140267. [PMID: 33561017 PMCID: PMC8021123 DOI: 10.1172/jci.insight.140267] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 02/03/2021] [Indexed: 12/21/2022] Open
Abstract
The impact of respiratory virus infections on global health is felt not just during a pandemic, but endemic seasonal infections pose an equal and ongoing risk of severe disease. Moreover, vaccines and antiviral drugs are not always effective or available for many respiratory viruses. We investigated how induction of effective and appropriate antigen-independent innate immunity in the upper airways can prevent the spread of respiratory virus infection to the vulnerable lower airways. Activation of TLR2, when restricted to the nasal turbinates, resulted in prompt induction of innate immune-driven antiviral responses through action of cytokines, chemokines, and cellular activity in the upper but not the lower airways. We have defined how nasal epithelial cells and recruitment of macrophages work in concert and play pivotal roles to limit progression of influenza virus to the lungs and sustain protection for up to 7 days. These results reveal underlying mechanisms of how control of viral infection in the upper airways can occur and support the implementation of strategies that can activate TLR2 in nasal passages to provide rapid protection, especially for at-risk populations, against severe respiratory infection when vaccines and antiviral drugs are not always effective or available.
Collapse
Affiliation(s)
- Georgia Deliyannis
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Chinn Yi Wong
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Hayley A. McQuilten
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Annabell Bachem
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Michele Clarke
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Xiaoxiao Jia
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Kylie Horrocks
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Weiguang Zeng
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jason Girkin
- Viral Immunology and Respiratory Disease group, School of Biomedical Science and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, Australia
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Nichollas E. Scott
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sarah L. Londrigan
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Patrick C. Reading
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Nathan W. Bartlett
- Viral Immunology and Respiratory Disease group, School of Biomedical Science and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, Australia
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Lorena E. Brown
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | | | | | - David C. Jackson
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Brendon Y. Chua
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Respiratory Epithelial Cells Respond to Lactobacillus plantarum but Provide No Cross-Protection against Virus-Induced Inflammation. Viruses 2020; 13:v13010002. [PMID: 33374950 PMCID: PMC7821944 DOI: 10.3390/v13010002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
Virus-induced inflammation plays a critical role in determining the clinical outcome of an acute respiratory virus infection. We have shown previously that the administration of immunobiotic Lactobacillus plantarum (Lp) directly to the respiratory tract prevents lethal inflammatory responses to subsequent infection with a mouse respiratory virus pathogen. While Lp-mediated protective responses involve non-redundant contributions of both Toll-like receptor 2 (TLR2) and NOD2, the cellular basis of these findings remains unclear. Here, we address the impact of Lp and its capacity to suppress inflammation in virus-infected respiratory epithelial cells in two cell culture models. We found that both MLE-12 cells and polarized mouse tracheal epithelial cells (mTECs) were susceptible to infection with Influenza A and released proinflammatory cytokines, including CCL2, CCL5, CXCL1, and CXCL10, in response to replicating virus. MLE-12 cells express NOD2 (81 ± 6.3%) and TLR2 (19 ± 4%), respond to Lp, and are TLR2-specific, but not NOD2-specific, biochemical agonists. By contrast, we found that mTECs express NOD2 (81 ± 17%) but minimal TLR2 (0.93 ± 0.58%); nonetheless, mTECs respond to Lp and the TLR2 agonist, Pam2CSK4, but not NOD2 agonists or the bifunctional TLR2-NOD2 agonist, CL-429. Although MLE-12 cells and mTECS were both activated by Lp, little to no cytokine suppression was observed in response to Lp followed by virus infection via a protocol that replicated experimental conditions that were effective in vivo. Further study and a more complex approach may be required to reveal critical factors that suppress virus-induced inflammatory responses.
Collapse
|
10
|
Zhang T, Yin C, Boyd DF, Quarato G, Ingram JP, Shubina M, Ragan KB, Ishizuka T, Crawford JC, Tummers B, Rodriguez DA, Xue J, Peri S, Kaiser WJ, López CB, Xu Y, Upton JW, Thomas PG, Green DR, Balachandran S. Influenza Virus Z-RNAs Induce ZBP1-Mediated Necroptosis. Cell 2020; 180:1115-1129.e13. [PMID: 32200799 DOI: 10.1016/j.cell.2020.02.050] [Citation(s) in RCA: 332] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/13/2019] [Accepted: 02/24/2020] [Indexed: 12/26/2022]
Abstract
Influenza A virus (IAV) is a lytic RNA virus that triggers receptor-interacting serine/threonine-protein kinase 3 (RIPK3)-mediated pathways of apoptosis and mixed lineage kinase domain-like pseudokinase (MLKL)-dependent necroptosis in infected cells. ZBP1 initiates RIPK3-driven cell death by sensing IAV RNA and activating RIPK3. Here, we show that replicating IAV generates Z-RNAs, which activate ZBP1 in the nucleus of infected cells. ZBP1 then initiates RIPK3-mediated MLKL activation in the nucleus, resulting in nuclear envelope disruption, leakage of DNA into the cytosol, and eventual necroptosis. Cell death induced by nuclear MLKL was a potent activator of neutrophils, a cell type known to drive inflammatory pathology in virulent IAV disease. Consequently, MLKL-deficient mice manifest reduced nuclear disruption of lung epithelia, decreased neutrophil recruitment into infected lungs, and increased survival following a lethal dose of IAV. These results implicate Z-RNA as a new pathogen-associated molecular pattern and describe a ZBP1-initiated nucleus-to-plasma membrane "inside-out" death pathway with potentially pathogenic consequences in severe cases of influenza.
Collapse
Affiliation(s)
- Ting Zhang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Chaoran Yin
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - David F Boyd
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Giovanni Quarato
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Justin P Ingram
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Maria Shubina
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Katherine B Ragan
- Department of Molecular Biosciences, LaMontagne Center for Infectious Disease, University of Texas, Austin, Austin, TX, USA
| | - Takumi Ishizuka
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | | | - Bart Tummers
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Diego A Rodriguez
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jia Xue
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Suraj Peri
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - William J Kaiser
- University of Texas Health Sciences Center, San Antonio, San Antonio, TX, USA
| | - Carolina B López
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Jason W Upton
- Department of Molecular Biosciences, LaMontagne Center for Infectious Disease, University of Texas, Austin, Austin, TX, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Serpa GL, Renton ND, Lee N, Crane MJ, Jamieson AM. Electronic Nicotine Delivery System Aerosol-induced Cell Death and Dysfunction in Macrophages and Lung Epithelial Cells. Am J Respir Cell Mol Biol 2020; 63:306-316. [PMID: 32469619 DOI: 10.1165/rcmb.2019-0200oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Electronic nicotine delivery system (ENDS) use is outpacing our understanding of its potential harmful effects. Homeostasis of the lung is maintained through proper balance of cell death, efferocytic clearance, and phagocytosis of pathogens. To investigate whether ENDS use has the potential to alter this balance, we developed physiologically relevant ENDS exposure paradigms for lung epithelial cells and primary macrophages. In our studies, cells were exposed directly to aerosol made from carefully controlled components with and without nicotine. We found that ENDS aerosol exposure led to apoptosis, secondary necrosis, and necrosis in lung epithelial cell models. In contrast, macrophages died mostly by apoptosis and inflammatory caspase-mediated cell death when exposed to ENDS aerosol. The clearance of dead cells and pathogens by efferocytosis and phagocytosis, respectively, is an important process in maintaining a healthy lung. To investigate the impact of ENDS aerosol on macrophage function independent of general toxicity, we used an exposure time that did not induce cell death in primary macrophages. Exposure to ENDS aerosol containing nicotine inhibited nearly all phagocytic and greatly reduced the efferocytic abilities of primary macrophages. When challenged with a bacterial pathogen, there was decreased bacterial clearance. The presence of nicotine in the ENDS aerosol increased its toxicity and functional impact; however, nicotine exposure alone did not have any deleterious effects. These data demonstrate that ENDS aerosol exposure could lead to increased epithelial cell and macrophage death in the lung and impair important macrophage functions that are essential for maintenance of lung function.
Collapse
Affiliation(s)
- Gregory L Serpa
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island
| | - Nicholas D Renton
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island
| | - Nari Lee
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island
| | - Meredith J Crane
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island
| | - Amanda M Jamieson
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island
| |
Collapse
|
12
|
Wang H, Kjer-Nielsen L, Shi M, D'Souza C, Pediongco TJ, Cao H, Kostenko L, Lim XY, Eckle SBG, Meehan BS, Zhu T, Wang B, Zhao Z, Mak JYW, Fairlie DP, Teng MWL, Rossjohn J, Yu D, de St Groth BF, Lovrecz G, Lu L, McCluskey J, Strugnell RA, Corbett AJ, Chen Z. IL-23 costimulates antigen-specific MAIT cell activation and enables vaccination against bacterial infection. Sci Immunol 2020; 4:4/41/eaaw0402. [PMID: 31732518 DOI: 10.1126/sciimmunol.aaw0402] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/09/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022]
Abstract
Mucosal-associated invariant T (MAIT) cells are activated in a TCR-dependent manner by antigens derived from the riboflavin synthesis pathway, including 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-RU), bound to MHC-related protein-1 (MR1). However, MAIT cell activation in vivo has not been studied in detail. Here, we have found and characterized additional molecular signals required for optimal activation and expansion of MAIT cells after pulmonary Legionella or Salmonella infection in mice. We show that either bone marrow-derived APCs or non-bone marrow-derived cells can activate MAIT cells in vivo, depending on the pathogen. Optimal MAIT cell activation in vivo requires signaling through the inducible T cell costimulator (ICOS), which is highly expressed on MAIT cells. Subsequent expansion and maintenance of MAIT-17/1-type responses are dependent on IL-23. Vaccination with IL-23 plus 5-OP-RU augments MAIT cell-mediated control of pulmonary Legionella infection. These findings reveal cellular and molecular targets for manipulating MAIT cell function under physiological conditions.
Collapse
Affiliation(s)
- Huimeng Wang
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, China
| | - Lars Kjer-Nielsen
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Mai Shi
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.,School of Medicine, Tsinghua University, Beijing, China
| | - Criselle D'Souza
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, VIC 3010, Australia
| | - Troi J Pediongco
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hanwei Cao
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Lyudmila Kostenko
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Xin Yi Lim
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Sidonia B G Eckle
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Bronwyn S Meehan
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Tianyuan Zhu
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.,School of Medicine, Tsinghua University, Beijing, China
| | - Bingjie Wang
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Zhe Zhao
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jeffrey Y W Mak
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Saint Lucia, QLD 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Queensland, Saint Lucia, QLD 4072, Australia
| | - David P Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Saint Lucia, QLD 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Queensland, Saint Lucia, QLD 4072, Australia
| | - Michele W L Teng
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia.,Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, CF14 4XN Wales, UK
| | - Di Yu
- John Curtin School of Medical Research, The Australian National University, Acton, ACT 2601 Australia
| | - Barbara Fazekas de St Groth
- Discipline of Pathology, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - George Lovrecz
- Biomedical Manufacturing, CSIRO, Parkville, VIC, 3052, Australia
| | - Louis Lu
- Biomedical Manufacturing, CSIRO, Parkville, VIC, 3052, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Richard A Strugnell
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Alexandra J Corbett
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Zhenjun Chen
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| |
Collapse
|
13
|
Lin WC, Gowdy KM, Madenspacher JH, Zemans RL, Yamamoto K, Lyons-Cohen M, Nakano H, Janardhan K, Williams CJ, Cook DN, Mizgerd JP, Fessler MB. Epithelial membrane protein 2 governs transepithelial migration of neutrophils into the airspace. J Clin Invest 2020; 130:157-170. [PMID: 31550239 DOI: 10.1172/jci127144] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 09/18/2019] [Indexed: 02/06/2023] Open
Abstract
Whether respiratory epithelial cells regulate the final transit of extravasated neutrophils into the inflamed airspace or are a passive barrier is poorly understood. Alveolar epithelial type 1 (AT1) cells, best known for solute transport and gas exchange, have few established immune roles. Epithelial membrane protein 2 (EMP2), a tetraspan protein that promotes recruitment of integrins to lipid rafts, is highly expressed in AT1 cells but has no known function in lung biology. Here, we show that Emp2-/- mice exhibit reduced neutrophil influx into the airspace after a wide range of inhaled exposures. During bacterial pneumonia, Emp2-/- mice had attenuated neutrophilic lung injury and improved survival. Bone marrow chimeras, intravital neutrophil labeling, and in vitro assays suggested that defective transepithelial migration of neutrophils into the alveolar lumen occurs in Emp2-/- lungs. Emp2-/- AT1 cells had dysregulated surface display of multiple adhesion molecules, associated with reduced raft abundance. Epithelial raft abundance was dependent upon putative cholesterol-binding motifs in EMP2, whereas EMP2 supported adhesion molecule display and neutrophil transmigration through suppression of caveolins. Taken together, we propose that EMP2-dependent membrane organization ensures proper display on AT1 cells of a suite of proteins required to instruct paracellular neutrophil traffic into the alveolus.
Collapse
Affiliation(s)
- Wan-Chi Lin
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Kymberly M Gowdy
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Jennifer H Madenspacher
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Rachel L Zemans
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kazuko Yamamoto
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA.,Second Department of Internal Medicine, Nagasaki University Hospital, Nagasaki, Japan.,Department of Clinical Research Center, National Hospital Organization Nagasaki Medical Center, Omura, Japan
| | - Miranda Lyons-Cohen
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Hideki Nakano
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Kyathanahalli Janardhan
- Cellular & Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA.,Integrated Laboratory Systems Inc., Research Triangle Park, North Carolina, USA
| | - Carmen J Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Donald N Cook
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
14
|
Botwina P, Owczarek K, Rajfur Z, Ochman M, Urlik M, Nowakowska M, Szczubiałka K, Pyrc K. Berberine Hampers Influenza A Replication through Inhibition of MAPK/ERK Pathway. Viruses 2020; 12:v12030344. [PMID: 32245183 PMCID: PMC7150991 DOI: 10.3390/v12030344] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/15/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Berberine (BBR) is an isoquinoline alkaloid which exhibits a variety of biological and therapeutic properties, and has been reported by some to block replication of the influenza virus. However, contradictory results have also been presented, and the mechanistic explanation is lacking. Methods: A panel of cell lines (Madin–Darby canine kidney (MDCK), adenocarcinoma human alveolar basal epithelial cells (A549), lung epithelial type I (LET1)) and primary human airway epithelial cells (HAE) susceptible to influenza virus infection were infected with a seasonal influenza A virus in the presence or absence of BBR. Cytotoxicity towards cell lines was measured using XTT assay. The yield of the virus was analyzed using RT-qPCR. To study the molecular mechanism of BBR, confocal microscopy and Western blot analyses of cellular fractions were applied. Results and conclusions: Our results show cell-type-dependent anti-influenza properties of BBR in vitro which suggests that the compound acts on the cell and not the virus. Importantly, BBR hampers influenza replication in primary human airway epithelium 3D cultures that mimic the natural replication site of the virus. Studies show that the influenza A virus upregulates the mitogen-activated protein kinase/extracellular signal-related kinase (MAPK/ERK) pathway and hijacks this pathway for nucleolar export of the viral ribonucleoprotein. Our results suggest that BBR interferes with this process and hampers influenza A replication.
Collapse
Affiliation(s)
- Paweł Botwina
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (P.B.); (K.O.)
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Katarzyna Owczarek
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (P.B.); (K.O.)
| | - Zenon Rajfur
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Sciences, Jagiellonian University, Lojasiewicza 11, 30-348 Krakow, Poland;
| | - Marek Ochman
- Department of Cardiac Surgery and Transplantology, Silesian Center for Heart Diseases, Marii Curie-Skłodowskiej 9, 41-800 Zabrze, Poland; (M.O.); (M.U.)
| | - Maciej Urlik
- Department of Cardiac Surgery and Transplantology, Silesian Center for Heart Diseases, Marii Curie-Skłodowskiej 9, 41-800 Zabrze, Poland; (M.O.); (M.U.)
| | - Maria Nowakowska
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (M.N.); (K.S.)
| | - Krzysztof Szczubiałka
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (M.N.); (K.S.)
| | - Krzysztof Pyrc
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (P.B.); (K.O.)
- Correspondence:
| |
Collapse
|
15
|
Qing E, Hantak M, Perlman S, Gallagher T. Distinct Roles for Sialoside and Protein Receptors in Coronavirus Infection. mBio 2020; 11:e02764-19. [PMID: 32047128 PMCID: PMC7018658 DOI: 10.1128/mbio.02764-19] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/21/2020] [Indexed: 12/18/2022] Open
Abstract
Coronaviruses (CoVs) are common human and animal pathogens that can transmit zoonotically and cause severe respiratory disease syndromes. CoV infection requires spike proteins, which bind viruses to host cell receptors and catalyze virus-cell membrane fusion. Several CoV strains have spike proteins with two receptor-binding domains, an S1A that engages host sialic acids and an S1B that recognizes host transmembrane proteins. As this bivalent binding may enable broad zoonotic CoV infection, we aimed to identify roles for each receptor in distinct infection stages. Focusing on two betacoronaviruses, murine JHM-CoV and human Middle East respiratory syndrome coronavirus (MERS-CoV), we found that virus particle binding to cells was mediated by sialic acids; however, the transmembrane protein receptors were required for a subsequent virus infection. These results favored a two-step process in which viruses first adhere to sialic acids and then require subsequent engagement with protein receptors during infectious cell entry. However, sialic acids sufficiently facilitated the later stages of virus spread through cell-cell membrane fusion, without requiring protein receptors. This virus spread in the absence of the prototype protein receptors was increased by adaptive S1A mutations. Overall, these findings reveal roles for sialic acids in virus-cell binding, viral spike protein-directed cell-cell fusion, and resultant spread of CoV infections.IMPORTANCE CoVs can transmit from animals to humans to cause serious disease. This zoonotic transmission uses spike proteins, which bind CoVs to cells with two receptor-binding domains. Here, we identified the roles for the two binding processes in the CoV infection process. Binding to sialic acids promoted infection and also supported the intercellular expansion of CoV infections through syncytial development. Adaptive mutations in the sialic acid-binding spike domains increased the intercellular expansion process. These findings raise the possibility that the lectin-like properties of many CoVs contribute to facile zoonotic transmission and intercellular spread within infected organisms.
Collapse
Affiliation(s)
- Enya Qing
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Michael Hantak
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
16
|
Chao TL, Gu SY, Lin PH, Chou YT, Ling TY, Chang SY. Characterization of Influenza A Virus Infection in Mouse Pulmonary Stem/Progenitor Cells. Front Microbiol 2020; 10:2942. [PMID: 32038512 PMCID: PMC6985155 DOI: 10.3389/fmicb.2019.02942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/06/2019] [Indexed: 12/26/2022] Open
Abstract
The pulmonary stem/progenitor cells, which could be differentiated into downstream cells to repair tissue damage caused by influenza A virus, have also been shown to be the target cells of influenza virus infection. In this study, mouse pulmonary stem/progenitor cells (mPSCs) with capability to differentiate into type I or type II alveolar cells were used as an in vitro cell model to characterize replication and pathogenic effects of influenza viruses in PSCs. First, mPSCs and its immortalized cell line mPSCsOct4+ were shown to be susceptible to PR8, seasonal H1N1, 2009 pandemic H1N1, and H7N9 influenza viruses and can generate infectious virus particles, although with a lower virus titer, which could be attributed by the reduced vRNA replication and nucleoprotein (NP) aggregation in the cytoplasm. Nevertheless, a significant increase of interleukin (IL)-6 and interferon (IFN)-γ at 12 h and IFN-β at 24 h post infection in mPSCs implicates that mPSCs might function as a sensor to modulate immune responses to influenza virus infection. In summary, our results demonstrated mPSCs, as one of the target cells for influenza A viruses, could modulate early proinflammatory responses to influenza virus infection.
Collapse
Affiliation(s)
- Tai-Ling Chao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sing-Yi Gu
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pi-Han Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Tien Chou
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Thai-Yen Ling
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
17
|
Persistence of Burkholderia thailandensis E264 in lung tissue after a single binge alcohol episode. PLoS One 2019; 14:e0218147. [PMID: 31821337 PMCID: PMC6903738 DOI: 10.1371/journal.pone.0218147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
Background Binge drinking, an increasingly common form of alcohol use disorder, is associated with substantial morbidity and mortality; yet, its effects on the immune system’s ability to defend against infectious agents are poorly understood. Burkholderia pseudomallei, the causative agent of melioidosis can occur in healthy humans, yet binge alcohol intoxication is increasingly being recognized as a major risk factor. Although our previous studies demonstrated that binge alcohol exposure increased B. pseudomallei near-neighbor virulence in vivo and increased paracellular diffusion and intracellular invasion, no experimental studies have examined the extent to which bacterial and alcohol dosage play a role in disease progression. In addition, the temporal effects of a single binge alcohol dose prior to infection has not been examined in vivo. Principal findings In this study, we used B. thailandensis E264 a close genetic relative of B. pseudomallei, as useful BSL-2 model system. Eight-week-old female C57BL/6 mice were utilized in three distinct animal models to address the effects of 1) bacterial dosage, 2) alcohol dosage, and 3) the temporal effects, of a single binge alcohol episode. Alcohol was administered comparable to human binge drinking (≤ 4.4 g/kg) or PBS intraperitoneally before a non-lethal intranasal infection. Bacterial colonization of lung and spleen was increased in mice administered alcohol even after bacterial dose was decreased 10-fold. Lung and not spleen tissue were colonized even after alcohol dosage was decreased 20 times below the U.S legal limit. Temporally, a single binge alcohol episode affected lung bacterial colonization for more than 24 h after alcohol was no longer detected in the blood. Pulmonary and splenic cytokine expression (TNF-α, GM-CSF) remained suppressed, while IL-12/p40 increased in mice administered alcohol 6 or 24 h prior to infection. Increased lung and not intestinal bacterial invasion was observed in human and murine non-phagocytic epithelial cells exposed to 0.2% v/v alcohol in vitro. Conclusions Our results indicate that the effects of a single binge alcohol episode are tissue specific. A single binge alcohol intoxication event increases bacterial colonization in mouse lung tissue even after very low BACs and decreases the dose required to colonize the lungs with less virulent B. thailandensis. Additionally, the temporal effects of binge alcohol alters lung and spleen cytokine expression for at least 24 h after alcohol is detected in the blood. Delayed recovery in lung and not spleen tissue may provide a means for B. pseudomallei and near-neighbors to successfully colonize lung tissue through increased intracellular invasion of non-phagocytic cells in patients with hazardous alcohol intake.
Collapse
|
18
|
Misra RS, Nayak JL. The Importance of Vaccinating Children and Pregnant Women against Influenza Virus Infection. Pathogens 2019; 8:pathogens8040265. [PMID: 31779153 PMCID: PMC6963306 DOI: 10.3390/pathogens8040265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022] Open
Abstract
Influenza virus infection is responsible for significant morbidity and mortality in the pediatric and pregnant women populations, with deaths frequently caused by severe influenza-associated lower respiratory tract infection and acute respiratory distress syndrome (ARDS). An appropriate immune response requires controlling the viral infection through activation of antiviral defenses, which involves cells of the lung and immune system. High levels of viral infection or high levels of inflammation in the lower airways can contribute to ARDS. Pregnant women and young children, especially those born prematurely, may develop serious complications if infected with influenza virus. Vaccination against influenza will lead to lower infection rates and fewer complications, even if the vaccine is poorly matched to circulating viral strains, with maternal vaccination offering infants protection via antibody transmission through the placenta and breast milk. Despite the health benefits of the influenza vaccine, vaccination rates around the world remain well below targets. Trust in the use of vaccines among the public must be restored in order to increase vaccination rates and decrease the public health burden of influenza.
Collapse
Affiliation(s)
- Ravi S Misra
- Department of Pediatrics Division of Neonatology, The University of Rochester Medical Center, Rochester, NY 14623, USA
- Correspondence:
| | - Jennifer L Nayak
- Department of Pediatrics Division of Pediatric Infectious Diseases, The University of Rochester Medical Center, Rochester, NY 14623, USA;
| |
Collapse
|
19
|
Quantification of epitope abundance reveals the effect of direct and cross-presentation on influenza CTL responses. Nat Commun 2019; 10:2846. [PMID: 31253788 PMCID: PMC6599079 DOI: 10.1038/s41467-019-10661-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/24/2019] [Indexed: 11/08/2022] Open
Abstract
The magnitude of T cell responses to infection is a function of the naïve T cell repertoire combined with the context and duration of antigen presentation. Using mass spectrometry, we identify and quantify 21 class 1 MHC-restricted influenza A virus (IAV)-peptides following either direct or cross-presentation. All these peptides, including seven novel epitopes, elicit T cell responses in infected C57BL/6 mice. Directly presented IAV epitopes maintain their relative abundance across distinct cell types and reveal a broad range of epitope abundances. In contrast, cross-presented epitopes are more uniform in abundance. We observe a clear disparity in the abundance of the two key immunodominant IAV antigens, wherein direct infection drives optimal nucleoprotein (NP)366–374 presentation, while cross-presentation is optimal for acid polymerase (PA)224–233 presentation. The study demonstrates how assessment of epitope abundance in both modes of antigen presentation is necessary to fully understand the immunogenicity and response magnitude to T cell epitopes. CTL responses are critical in protection against pathogens. Here, using mass spectrometry and flow cytometry, the authors characterize the kinetics of influenza A virus class I MHC epitopes cross-presented in professional antigen presenting cells and identify new epitopes that elicit T cell responses in infected mice.
Collapse
|
20
|
Unique Transcriptional Architecture in Airway Epithelial Cells and Macrophages Shapes Distinct Responses following Influenza Virus Infection Ex Vivo. J Virol 2019; 93:JVI.01986-18. [PMID: 30626665 DOI: 10.1128/jvi.01986-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 12/19/2018] [Indexed: 12/15/2022] Open
Abstract
Airway epithelial cells and macrophages differ markedly in their responses to influenza A virus (IAV) infection. To investigate transcriptional responses underlying these differences, purified subsets of type II airway epithelial cells (ATII) and alveolar macrophages (AM) recovered from the lungs of mock- or IAV-infected mice at 9 h postinfection were subjected to RNA sequencing. This time point was chosen to allow for characterization of cell types first infected with the virus inoculum, prior to multicycle virus replication and the infiltration of inflammatory cells into the airways. In the absence of infection, AM predominantly expressed genes related to immunity, whereas ATII expressed genes consistent with their physiological roles in the lung. Following IAV infection, AM almost exclusively activated cell-intrinsic antiviral pathways that were dependent on interferon (IFN) regulatory factor 3/7 (IRF3/7) and/or type I IFN signaling. In contrast, IAV-infected ATII activated a broader range of physiological responses, including cell-intrinsic antiviral pathways, which were both independent of and dependent on IRF3/7 and/or type I IFN. These data suggest that transcriptional profiles hardwired during development are a major determinant underlying the different responses of ATII and AM to IAV infection.IMPORTANCE Airway epithelial cells (AEC) and airway macrophages (AM) represent major targets of influenza A virus (IAV) infection in the lung, yet the two cell types respond very differently to IAV infection. We have used RNA sequencing to define the host transcriptional responses in each cell type under steady-state conditions as well as following IAV infection. To do this, different cell subsets isolated from the lungs of mock- and IAV-infected mice were subjected to RNA sequencing. Under steady-state conditions, AM and AEC express distinct transcriptional activities, consistent with distinct physiological roles in the airways. Not surprisingly, these cells also exhibited major differences in transcriptional responses following IAV infection. These studies shed light on how the different transcriptional architectures of airway cells from two different lineages drive transcriptional responses to IAV infection.
Collapse
|
21
|
Miura TA. Respiratory epithelial cells as master communicators during viral infections. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019; 6:10-17. [PMID: 31592409 PMCID: PMC6779166 DOI: 10.1007/s40588-019-0111-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW Communication by epithelial cells during respiratory viral infections is critical in orchestrating effective anti-viral responses but also can lead to excessive inflammation. This review will evaluate studies that investigate how respiratory epithelial cells influence the behavior of immune cells and how epithelial cell/immune cell interactions contribute to antiviral responses and immunopathology outcomes. RECENT FINDINGS Previous studies have characterized cytokine responses of virus-infected epithelial cells. More recent studies have carefully demonstrated the effects of these cytokines on cellular behaviors within the infected lung. Infected epithelial cells release exosomes that specifically regulate responses of monocytes and neighboring epithelial cells without promoting spread of virus. In contrast, rhinovirus-infected cells induce monocytes to upregulate expression of the viral receptor, promoting spread of the virus to alternate cell types. The precise alteration of PDL expression on infected epithelial cells has been shown to switch between inhibition and activation of antiviral responses. SUMMARY These studies have more precisely defined the interactions between epithelial and immune cells during viral infections. This level of understanding is critical for the development of novel therapeutic strategies that promote effective antiviral responses or epithelial repair, or inhibit damaging inflammatory responses during severe respiratory viral infections.
Collapse
Affiliation(s)
- Tanya A Miura
- Department of Biological Sciences and Center for Modeling Complex Interactions, University of Idaho, Moscow, ID 83844, USA,
| |
Collapse
|
22
|
Rüdiger D, Kupke SY, Laske T, Zmora P, Reichl U. Multiscale modeling of influenza A virus replication in cell cultures predicts infection dynamics for highly different infection conditions. PLoS Comput Biol 2019; 15:e1006819. [PMID: 30779733 PMCID: PMC6396949 DOI: 10.1371/journal.pcbi.1006819] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 03/01/2019] [Accepted: 01/22/2019] [Indexed: 01/02/2023] Open
Abstract
Influenza A viruses (IAV) are commonly used to infect animal cell cultures for research purposes and vaccine production. Their replication is influenced strongly by the multiplicity of infection (MOI), which ranges over several orders of magnitude depending on the respective application. So far, mathematical models of IAV replication have paid little attention to the impact of the MOI on infection dynamics and virus yields. To address this issue, we extended an existing model of IAV replication in adherent MDCK cells with kinetics that explicitly consider the time point of cell infection. This modification does not only enable the fitting of high MOI measurements, but also the successful prediction of viral release dynamics of low MOI experiments using the same set of parameters. Furthermore, this model allows the investigation of defective interfering particle (DIP) propagation in different MOI regimes. The key difference between high and low MOI conditions is the percentage of infectious virions among the total virus particle release. Simulation studies show that DIP interference at a high MOI is determined exclusively by the DIP content of the seed virus while, in low MOI conditions, it is predominantly controlled by the de novo generation of DIPs. Overall, the extended model provides an ideal framework for the prediction and optimization of cell culture-derived IAV manufacturing and the production of DIPs for therapeutic use.
Collapse
Affiliation(s)
- Daniel Rüdiger
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- * E-mail:
| | - Sascha Young Kupke
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Tanja Laske
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Pawel Zmora
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Chair of Bioprocess Engineering, Institute of Process Engineering, Faculty of Process & Systems Engineering, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
23
|
Mesci P, Macia A, LaRock CN, Tejwani L, Fernandes IR, Suarez NA, de A Zanotto PM, Beltrão-Braga PCB, Nizet V, Muotri AR. Modeling neuro-immune interactions during Zika virus infection. Hum Mol Genet 2019; 27:41-52. [PMID: 29048558 DOI: 10.1093/hmg/ddx382] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/15/2017] [Indexed: 01/09/2023] Open
Abstract
Although Zika virus (ZIKV) infection is often asymptomatic, in some cases, it can lead to birth defects in newborns or serious neurologic complications in adults. However, little is known about the interplay between immune and neural cells that could contribute to the ZIKV pathology. To understand the mechanisms at play during infection and the antiviral immune response, we focused on neural precursor cells (NPCs)-microglia interactions. Our data indicate that human microglia infected with the current circulating Brazilian ZIKV induces a similar pro-inflammatory response found in ZIKV-infected human tissues. Importantly, using our model, we show that microglia interact with ZIKV-infected NPCs and further spread the virus. Finally, we show that Sofosbuvir, an FDA-approved drug for Hepatitis C, blocked viral infection in NPCs and therefore the transmission of the virus from microglia to NPCs. Thus, our model provides a new tool for studying neuro-immune interactions and a platform to test new therapeutic drugs.
Collapse
Affiliation(s)
- Pinar Mesci
- Department of Pediatrics/Rady Children's Hospital San Diego, University of California San Diego, La Jolla, CA 92093-0695, USA.,Department of Cellular & Molecular Medicine, Stem Cell Program, School of Medicine, University of California San Diego, La Jolla, CA 92093-0695, USA
| | - Angela Macia
- Department of Pediatrics/Rady Children's Hospital San Diego, University of California San Diego, La Jolla, CA 92093-0695, USA.,Department of Cellular & Molecular Medicine, Stem Cell Program, School of Medicine, University of California San Diego, La Jolla, CA 92093-0695, USA
| | - Christopher N LaRock
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, School of Medicine, University of California San Diego, La Jolla, CA 92093-0760, USA
| | - Leon Tejwani
- Department of Pediatrics/Rady Children's Hospital San Diego, University of California San Diego, La Jolla, CA 92093-0695, USA.,Department of Cellular & Molecular Medicine, Stem Cell Program, School of Medicine, University of California San Diego, La Jolla, CA 92093-0695, USA
| | - Isabella R Fernandes
- Department of Pediatrics/Rady Children's Hospital San Diego, University of California San Diego, La Jolla, CA 92093-0695, USA.,Department of Cellular & Molecular Medicine, Stem Cell Program, School of Medicine, University of California San Diego, La Jolla, CA 92093-0695, USA
| | - Nicole A Suarez
- Department of Pediatrics/Rady Children's Hospital San Diego, University of California San Diego, La Jolla, CA 92093-0695, USA.,Department of Cellular & Molecular Medicine, Stem Cell Program, School of Medicine, University of California San Diego, La Jolla, CA 92093-0695, USA
| | - Paolo M de A Zanotto
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Institute of Microbiology Sciences, University of Sao Paulo, São Paulo, SP 05508-000, Brazil
| | - Patricia C B Beltrão-Braga
- Laboratory of Stem Cell and Disease Modeling, Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, 05508-000, Brazil.,Department of Obstetrics, School of Arts Sciences and Humanities, University of São Paulo, São Paulo, SP, 03828-000, Brazil.,Center for Cellular and Molecular Therapy (NETCEM), School of Medicine, University of São Paulo, São Paulo, SP, 01246-903, Brazil
| | - Victor Nizet
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, School of Medicine, University of California San Diego, La Jolla, CA 92093-0760, USA
| | - Alysson R Muotri
- Department of Pediatrics/Rady Children's Hospital San Diego, University of California San Diego, La Jolla, CA 92093-0695, USA.,Department of Cellular & Molecular Medicine, Stem Cell Program, School of Medicine, University of California San Diego, La Jolla, CA 92093-0695, USA
| |
Collapse
|
24
|
Guo XZJ, Dash P, Crawford JC, Allen EK, Zamora AE, Boyd DF, Duan S, Bajracharya R, Awad WA, Apiwattanakul N, Vogel P, Kanneganti TD, Thomas PG. Lung γδ T Cells Mediate Protective Responses during Neonatal Influenza Infection that Are Associated with Type 2 Immunity. Immunity 2018; 49:531-544.e6. [PMID: 30170813 DOI: 10.1016/j.immuni.2018.07.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 04/25/2018] [Accepted: 07/20/2018] [Indexed: 12/25/2022]
Abstract
Compared to adults, infants suffer higher rates of hospitalization, severe clinical complications, and mortality due to influenza infection. We found that γδ T cells protected neonatal mice against mortality during influenza infection. γδ T cell deficiency did not alter viral clearance or interferon-γ production. Instead, neonatal influenza infection induced the accumulation of interleukin-17A (IL-17A)-producing γδ T cells, which was associated with IL-33 production by lung epithelial cells. Neonates lacking IL-17A-expressing γδ T cells or Il33 had higher mortality upon influenza infection. γδ T cells and IL-33 promoted lung infiltration of group 2 innate lymphoid cells and regulatory T cells, resulting in increased amphiregulin secretion and tissue repair. In influenza-infected children, IL-17A, IL-33, and amphiregulin expression were correlated, and increased IL-17A levels in nasal aspirates were associated with better clinical outcomes. Our results indicate that γδ T cells are required in influenza-infected neonates to initiate protective immunity and mediate lung homeostasis.
Collapse
Affiliation(s)
- Xi-Zhi J Guo
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Pradyot Dash
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jeremy Chase Crawford
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - E Kaitlynn Allen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anthony E Zamora
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - David F Boyd
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Susu Duan
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Resha Bajracharya
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Walid A Awad
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Nopporn Apiwattanakul
- Division of Infectious Diseases, Department of Pediatrics Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Peter Vogel
- Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
25
|
Earnest JT, Hantak MP, Li K, McCray PB, Perlman S, Gallagher T. The tetraspanin CD9 facilitates MERS-coronavirus entry by scaffolding host cell receptors and proteases. PLoS Pathog 2017; 13:e1006546. [PMID: 28759649 PMCID: PMC5552337 DOI: 10.1371/journal.ppat.1006546] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/10/2017] [Accepted: 07/21/2017] [Indexed: 01/27/2023] Open
Abstract
Infection by enveloped coronaviruses (CoVs) initiates with viral spike (S) proteins binding to cellular receptors, and is followed by proteolytic cleavage of receptor-bound S proteins, which prompts S protein-mediated virus-cell membrane fusion. Infection therefore requires close proximity of receptors and proteases. We considered whether tetraspanins, scaffolding proteins known to facilitate CoV infections, hold receptors and proteases together on cell membranes. Using knockout cell lines, we found that the tetraspanin CD9, but not the tetraspanin CD81, formed cell-surface complexes of dipeptidyl peptidase 4 (DPP4), the MERS-CoV receptor, and the type II transmembrane serine protease (TTSP) member TMPRSS2, a CoV-activating protease. This CD9-facilitated condensation of receptors and proteases allowed MERS-CoV pseudoviruses to enter cells rapidly and efficiently. Without CD9, MERS-CoV viruses were not activated by TTSPs, and they trafficked into endosomes to be cleaved much later and less efficiently by cathepsins. Thus, we identified DPP4:CD9:TTSP as the protein complexes necessary for early, efficient MERS-CoV entry. To evaluate the importance of these complexes in an in vivo CoV infection model, we used recombinant Adenovirus 5 (rAd5) vectors to express human DPP4 in mouse lungs, thereby sensitizing the animals to MERS-CoV infection. When the rAd5-hDPP4 vectors co-expressed small RNAs silencing Cd9 or Tmprss2, the animals were significantly less susceptible, indicating that CD9 and TMPRSS2 facilitated robust in vivo MERS-CoV infection of mouse lungs. Furthermore, the S proteins of virulent mouse-adapted MERS-CoVs acquired a CD9-dependent cell entry character, suggesting that CD9 is a selective agent in the evolution of CoV virulence.
Collapse
Affiliation(s)
- James T. Earnest
- Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, IL, United States of America
| | - Michael P. Hantak
- Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, IL, United States of America
| | - Kun Li
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
| | - Paul B. McCray
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
| | - Stanley Perlman
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
- Department of Microbiology, University of Iowa, Iowa City, IA, United States of America
| | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, IL, United States of America
- * E-mail:
| |
Collapse
|
26
|
Guo XZJ, Thomas PG. New fronts emerge in the influenza cytokine storm. Semin Immunopathol 2017; 39:541-550. [PMID: 28555383 PMCID: PMC5580809 DOI: 10.1007/s00281-017-0636-y] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/23/2017] [Indexed: 12/17/2022]
Abstract
Influenza virus is a significant pathogen in humans and animals with the ability to cause extensive morbidity and mortality. Exuberant immune responses induced following infection have been described as a "cytokine storm," associated with excessive levels of proinflammatory cytokines and widespread tissue damage. Recent studies have painted a more complex picture of cytokine networks and their contributions to clinical outcomes. While many cytokines clearly inflict immunopathology, others have non-pathological delimited roles in sending alarm signals, facilitating viral clearance, and promoting tissue repair, such as the IL-33-amphiregulin axis, which plays a key role in resolving some types of lung damage. Recent literature suggests that type 2 cytokines, traditionally thought of as not involved in anti-influenza immunity, may play an important regulatory role. Here, we discuss the diverse roles played by cytokines after influenza infection and highlight new, serene features of the cytokine storm, while highlighting the specific functions of relevant cytokines that perform unique immune functions and may have applications for influenza therapy.
Collapse
Affiliation(s)
- Xi-Zhi J Guo
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Integrated Biomedical Sciences Program, Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Integrated Biomedical Sciences Program, Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
27
|
Rosenberger CM, Podyminogin RL, Diercks AH, Treuting PM, Peschon JJ, Rodriguez D, Gundapuneni M, Weiss MJ, Aderem A. miR-144 attenuates the host response to influenza virus by targeting the TRAF6-IRF7 signaling axis. PLoS Pathog 2017; 13:e1006305. [PMID: 28380049 PMCID: PMC5393898 DOI: 10.1371/journal.ppat.1006305] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/17/2017] [Accepted: 03/20/2017] [Indexed: 02/07/2023] Open
Abstract
Antiviral responses must rapidly defend against infection while minimizing inflammatory damage, but the mechanisms that regulate the magnitude of response within an infected cell are not well understood. miRNAs are small non-coding RNAs that suppress protein levels by binding target sequences on their cognate mRNA. Here, we identify miR-144 as a negative regulator of the host antiviral response. Ectopic expression of miR-144 resulted in increased replication of three RNA viruses in primary mouse lung epithelial cells: influenza virus, EMCV, and VSV. We identified the transcriptional network regulated by miR-144 and demonstrate that miR-144 post-transcriptionally suppresses TRAF6 levels. In vivo ablation of miR-144 reduced influenza virus replication in the lung and disease severity. These data suggest that miR-144 reduces the antiviral response by attenuating the TRAF6-IRF7 pathway to alter the cellular antiviral transcriptional landscape. Antiviral responses must be regulated to rapidly defend against infection while minimizing inflammatory damage. However, the mechanisms for establishing the magnitude of response within an infected cell are incompletely understood. miRNAs are small non-coding RNAs that negatively regulate protein levels by binding complementary sequences on their target mRNA. In this study, we show that microRNA-144 impairs the ability of host cells to control the replication of three viruses: influenza virus, EMCV, and VSV. We identify a mechanism underlying the effect of this microRNA on antiviral responses. microRNA-144 suppresses TRAF6 levels and impairs the gene expression program regulated by the transcription factor IRF7. The resulting dysregulated expression of antiviral genes correlates with enhanced viral replication. Our findings in isolated lung epithelial cells were consistent with the effects observed in influenza virus-infected mice lacking miR-144. Together, these data support a role for miRNAs in tuning transcriptional programs during early responses to viral infection.
Collapse
Affiliation(s)
- Carrie M. Rosenberger
- Center for Infectious Disease Research, Seattle, WA United States of America
- * E-mail: (CMR); (AA)
| | | | - Alan H. Diercks
- Center for Infectious Disease Research, Seattle, WA United States of America
| | - Piper M. Treuting
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, United States of America
| | - Jacques J. Peschon
- Center for Infectious Disease Research, Seattle, WA United States of America
| | - David Rodriguez
- Center for Infectious Disease Research, Seattle, WA United States of America
| | | | - Mitchell J. Weiss
- Hematology, St. Jude Children's Research Hospital, Memphis, TN United States of America
| | - Alan Aderem
- Center for Infectious Disease Research, Seattle, WA United States of America
- * E-mail: (CMR); (AA)
| |
Collapse
|
28
|
Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice. Proc Natl Acad Sci U S A 2017; 114:E3119-E3128. [PMID: 28348219 DOI: 10.1073/pnas.1619109114] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Middle East respiratory syndrome (MERS) emerged in Saudi Arabia in 2012, caused by a zoonotically transmitted coronavirus (CoV). Over 1,900 cases have been reported to date, with ∼36% fatality rate. Lack of autopsies from MERS cases has hindered understanding of MERS-CoV pathogenesis. A small animal model that develops progressive pulmonary manifestations when infected with MERS-CoV would advance the field. As mice are restricted to infection at the level of DPP4, the MERS-CoV receptor, we generated mice with humanized exons 10-12 of the mouse Dpp4 locus. Upon inoculation with MERS-CoV, human DPP4 knockin (KI) mice supported virus replication in the lungs, but developed no illness. After 30 serial passages through the lungs of KI mice, a mouse-adapted virus emerged (MERSMA) that grew in lungs to over 100 times higher titers than the starting virus. A plaque-purified MERSMA clone caused weight loss and fatal infection. Virus antigen was observed in airway epithelia, pneumocytes, and macrophages. Pathologic findings included diffuse alveolar damage with pulmonary edema and hyaline membrane formation associated with accumulation of activated inflammatory monocyte-macrophages and neutrophils in the lungs. Relative to the parental MERS-CoV, MERSMA viruses contained 13-22 mutations, including several within the spike (S) glycoprotein gene. S-protein mutations sensitized viruses to entry-activating serine proteases and conferred more rapid entry kinetics. Recombinant MERSMA bearing mutant S proteins were more virulent than the parental virus in hDPP4 KI mice. The hDPP4 KI mouse and the MERSMA provide tools to investigate disease causes and develop new therapies.
Collapse
|
29
|
Deng Y, Yan Y, Tan KS, Liu J, Chow VT, Tao ZZ, Wang DY. MicroRNA-146a induction during influenza H3N2 virus infection targets and regulates TRAF6 levels in human nasal epithelial cells (hNECs). Exp Cell Res 2017; 352:184-192. [PMID: 28131813 DOI: 10.1016/j.yexcr.2017.01.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 01/13/2017] [Accepted: 01/21/2017] [Indexed: 12/25/2022]
Abstract
We have previously shown that human nasal epithelial cells (hNECs) are highly permissive cells for respiratory viruses including influenza A virus (IAV) and respiratory syncytial virus. Recent studies have indicated that microRNAs (miRNAs) are involved in virus-host relationship, and this led us to investigate its essential roles in the in vitro hNECs model derived from multiple donors. By comparing the differential expression of miRNAs upon IAV infection among animal and cell line studies, candidates were selected with focus on the initial immune response. After infection of influenza H3N2 virus, hNECs showed constant increase virus titer at 24-72h post-infection (hpi); accompanied with a significantly elevated level of miR-146a-5p at 72 hpi. The exponential elevation of progeny virus titer correlated with a key influenza sensing Toll-like receptor (TLR)7 pathway. TLR7 downstream gene transcripts, myeloid differentiation primary response gene 88 (MyD88), interferon regulator factor 7 (IRF7), and interferon-β (IFN-β) were significantly upregulated at 48 and 72 hpi, while interleukin-1 receptor-associated kinase 1 (IRAK1) and TNF receptor associated factor-6 (TRAF6) were unchanged. Interestingly, when miR-146a was overexpressed with miRNA mimics prior to H3N2 infection, further decreased transcripts of TRAF6, but not IRAK1, were detected. By using the in vitro hNEC model, we demonstrated that H3N2-induced miR-146a specifically targets and regulates TRAF6 expression; but not IRAK expression in the nasal epithelium. We also found that unlike the cell model studies that lead to our studies, when ran across a heterogeneous model of different individual, miRNA signals were highly varied and the expression of most miRNAs, including miR-146a-5p, was more subdued compared to homogenous cell line model, highlighting a need for a more thorough analysis of miRNA signals and targets in a model more mimicking a clinical influenza infection.
Collapse
Affiliation(s)
- Yuqin Deng
- Department of Otolaryngology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China; Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yan Yan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kai Sen Tan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jing Liu
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Vincent T Chow
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ze-Zhang Tao
- Department of Otolaryngology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China.
| | - De-Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
30
|
Cardani A, Boulton A, Kim TS, Braciale TJ. Alveolar Macrophages Prevent Lethal Influenza Pneumonia By Inhibiting Infection Of Type-1 Alveolar Epithelial Cells. PLoS Pathog 2017; 13:e1006140. [PMID: 28085958 PMCID: PMC5268648 DOI: 10.1371/journal.ppat.1006140] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/26/2017] [Accepted: 12/19/2016] [Indexed: 12/21/2022] Open
Abstract
The Influenza A virus (IAV) is a major human pathogen that produces significant morbidity and mortality. To explore the contribution of alveolar macrophages (AlvMΦs) in regulating the severity of IAV infection we employed a murine model in which the Core Binding Factor Beta gene is conditionally disrupted in myeloid cells. These mice exhibit a selective deficiency in AlvMΦs. Following IAV infection these AlvMΦ deficient mice developed severe diffuse alveolar damage, lethal respiratory compromise, and consequent lethality. Lethal injury in these mice resulted from increased infection of their Type-1 Alveolar Epithelial Cells (T1AECs) and the subsequent elimination of the infected T1AECs by the adaptive immune T cell response. Further analysis indicated AlvMΦ-mediated suppression of the cysteinyl leukotriene (cysLT) pathway genes in T1AECs in vivo and in vitro. Inhibition of the cysLT pathway enzymes in a T1AECs cell line reduced the susceptibility of T1AECs to IAV infection, suggesting that AlvMΦ-mediated suppression of this pathway contributes to the resistance of T1AECs to IAV infection. Furthermore, inhibition of the cysLT pathway enzymes, as well as blockade of the cysteinyl leukotriene receptors in the AlvMΦ deficient mice reduced the susceptibility of their T1AECs to IAV infection and protected these mice from lethal infection. These results suggest that AlvMΦs may utilize a previously unappreciated mechanism to protect T1AECs against IAV infection, and thereby reduce the severity of infection. The findings further suggest that the cysLT pathway and the receptors for cysLT metabolites represent potential therapeutic targets in severe IAV infection. A primary feature of lethal influenza infection is viral pneumonia. Influenza viral pneumonia is caused by the direct infection of alveolar epithelial cells, which subsequently causes extensive alveolar inflammation and injury. Clinically this pathology manifests as diffuse alveolar damage leading to acute respiratory distress syndrome. As alveolar macrophages are positioned in the alveoli, they are the ideally localized to be a first-line of defense against alveolar invading pathogens, such as influenza. To explore the contribution of alveolar macrophages to the development of lethal influenza pneumonia, we generated a novel mouse model with a selective deficiency in alveolar macrophages. As a result of the alveolar macrophage deficiency, these mice developed severe diffuse alveolar damage and lethal respiratory compromise after influenza infection. Lethal injury resulted from increased infection of type-1 alveolar epithelial cells, and the elimination of these infected cells by effector T cells. Further analysis indicated that in order to render type 1 cells resistant to influenza infection, alveolar macrophages suppress leukotrieneD4 production and autocrine-signaling in type 1 cells. These results suggest that alveolar macrophages play a previously unappreciated role in protecting type 1 alveolar epithelial cells against IAV infection, and thus the severity of infection.
Collapse
Affiliation(s)
- Amber Cardani
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Adam Boulton
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Taeg S. Kim
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Thomas J. Braciale
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
31
|
Schock SN, Chandra NV, Sun Y, Irie T, Kitagawa Y, Gotoh B, Coscoy L, Winoto A. Induction of necroptotic cell death by viral activation of the RIG-I or STING pathway. Cell Death Differ 2017; 24:615-625. [PMID: 28060376 DOI: 10.1038/cdd.2016.153] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 11/26/2016] [Accepted: 12/07/2016] [Indexed: 01/02/2023] Open
Abstract
Necroptosis is a form of necrotic cell death that requires the activity of the death domain-containing kinase RIP1 and its family member RIP3. Necroptosis occurs when RIP1 is deubiquitinated to form a complex with RIP3 in cells deficient in the death receptor adapter molecule FADD or caspase-8. Necroptosis may play a role in host defense during viral infection as viruses like vaccinia can induce necroptosis while murine cytomegalovirus encodes a viral inhibitor of necroptosis. To see how general the interplay between viruses and necroptosis is, we surveyed seven different viruses. We found that two of the viruses tested, Sendai virus (SeV) and murine gammaherpesvirus-68 (MHV68), are capable of inducing dramatic necroptosis in the fibrosarcoma L929 cell line. We show that MHV68-induced cell death occurs through the cytosolic STING sensor pathway in a TNF-dependent manner. In contrast, SeV-induced death is mostly independent of TNF. Knockdown of the RNA sensing molecule RIG-I or the RIP1 deubiquitin protein, CYLD, but not STING, rescued cells from SeV-induced necroptosis. Accompanying necroptosis, we also find that wild type but not mutant SeV lacking the viral proteins Y1 and Y2 result in the non-ubiquitinated form of RIP1. Expression of Y1 or Y2 alone can suppress RIP1 ubiquitination but CYLD is dispensable for this process. Instead, we found that Y1 and Y2 can inhibit cIAP1-mediated RIP1 ubiquitination. Interestingly, we also found that SeV infection of B6 RIP3-/- mice results in increased inflammation in the lung and elevated SeV-specific T cells. Collectively, these data identify viruses and pathways that can trigger necroptosis and highlight the dynamic interplay between pathogen-recognition receptors and cell death induction.
Collapse
Affiliation(s)
- Suruchi N Schock
- Department of Molecular and Cell Biology and Cancer Research Laboratory, 469 LSA, University of California, Berkeley, CA 94720-3200, USA
| | - Neha V Chandra
- Department of Molecular and Cell Biology and Cancer Research Laboratory, 469 LSA, University of California, Berkeley, CA 94720-3200, USA
| | - Yuefang Sun
- Department of Molecular and Cell Biology and Cancer Research Laboratory, 469 LSA, University of California, Berkeley, CA 94720-3200, USA
| | - Takashi Irie
- Department of Virology, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Yoshinori Kitagawa
- Division of Microbiology and Infectious Diseases, Department of Pathology, Shiga University of Medical Science, Seta, Otsu, Shiga 520-2192, Japan
| | - Bin Gotoh
- Division of Microbiology and Infectious Diseases, Department of Pathology, Shiga University of Medical Science, Seta, Otsu, Shiga 520-2192, Japan
| | - Laurent Coscoy
- Department of Molecular and Cell Biology and Cancer Research Laboratory, 469 LSA, University of California, Berkeley, CA 94720-3200, USA
| | - Astar Winoto
- Department of Molecular and Cell Biology and Cancer Research Laboratory, 469 LSA, University of California, Berkeley, CA 94720-3200, USA
| |
Collapse
|
32
|
Penkert RR, Jones BG, Häcker H, Partridge JF, Hurwitz JL. Vitamin A differentially regulates cytokine expression in respiratory epithelial and macrophage cell lines. Cytokine 2016; 91:1-5. [PMID: 27940088 DOI: 10.1016/j.cyto.2016.11.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/13/2016] [Accepted: 11/28/2016] [Indexed: 01/16/2023]
Abstract
Vitamin A is an essential nutrient for the protection of children from respiratory tract disease. Supplementation with vitamin A is frequently prescribed in the clinical setting, in part to combat deficiencies among children in developing countries, and in part to treat respiratory infections in clinical trials. This vitamin influences immune responses via multiple, and sometimes seemingly contradictory mechanisms. For example, in separate reports, vitamin A was shown to decrease Th17 T-cell activity by downregulating IL-6, and to promote B cell production of IgA by upregulating IL-6. To explain these apparent contradictions, we evaluated the effects of retinoic acid (RA), a key metabolite of vitamin A, on cell lines of respiratory tract epithelial cells (LETs) and macrophages (MACs). When triggered with LPS or Sendai virus, a mouse respiratory pathogen, these two cell lines experienced opposing influences of RA on IL-6. Both IL-6 protein production and transcript levels were downregulated by RA in LETs, but upregulated in MACs. RA also increased transcript levels of MCP-1, GMCSF, and IL-10 in MACs, but not in LETs. Conversely, when LETs, but not MACs, were exposed to RA, there was an increase in transcripts for RARβ, an RA receptor with known inhibitory effects on cell metabolism. Results help explain past discrepancies in the literature by demonstrating that the effects of RA are cell target dependent, and suggest close attention be paid to cell-specific effects in clinical trials involving vitamin A supplements.
Collapse
Affiliation(s)
- Rhiannon R Penkert
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Bart G Jones
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Hans Häcker
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Janet F Partridge
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Julia L Hurwitz
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
33
|
Thapa RJ, Ingram JP, Ragan KB, Nogusa S, Boyd DF, Benitez AA, Sridharan H, Kosoff R, Shubina M, Landsteiner VJ, Andrake M, Vogel P, Sigal LJ, tenOever BR, Thomas PG, Upton JW, Balachandran S. DAI Senses Influenza A Virus Genomic RNA and Activates RIPK3-Dependent Cell Death. Cell Host Microbe 2016; 20:674-681. [PMID: 27746097 DOI: 10.1016/j.chom.2016.09.014] [Citation(s) in RCA: 294] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/20/2016] [Accepted: 09/27/2016] [Indexed: 12/31/2022]
Abstract
Influenza A virus (IAV) is an RNA virus that is cytotoxic to most cell types in which it replicates. IAV activates the host kinase RIPK3, which induces cell death via parallel pathways of necroptosis, driven by the pseudokinase MLKL, and apoptosis, dependent on the adaptor proteins RIPK1 and FADD. How IAV activates RIPK3 remains unknown. We report that DAI (ZBP1/DLM-1), previously implicated as a cytoplasmic DNA sensor, is essential for RIPK3 activation by IAV. Upon infection, DAI recognizes IAV genomic RNA, associates with RIPK3, and is required for recruitment of MLKL and RIPK1 to RIPK3. Cells lacking DAI or containing DAI mutants deficient in nucleic acid binding are resistant to IAV-triggered necroptosis and apoptosis. DAI-deficient mice fail to control IAV replication and succumb to lethal respiratory infection. These results identify DAI as a link between IAV replication and RIPK3 activation and implicate DAI as a sensor of RNA viruses.
Collapse
Affiliation(s)
- Roshan J Thapa
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Justin P Ingram
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Katherine B Ragan
- Department of Molecular Biosciences, LaMontagne Center for Infectious Disease, University of Texas, Austin, TX 78712, USA
| | - Shoko Nogusa
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - David F Boyd
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Asiel A Benitez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Haripriya Sridharan
- Department of Molecular Biosciences, LaMontagne Center for Infectious Disease, University of Texas, Austin, TX 78712, USA
| | - Rachelle Kosoff
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Maria Shubina
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Vanessa J Landsteiner
- Department of Molecular Biosciences, LaMontagne Center for Infectious Disease, University of Texas, Austin, TX 78712, USA
| | - Mark Andrake
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Peter Vogel
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Luis J Sigal
- Department of Microbiology and Immunology, Thomas Jefferson School of Medicine, Philadelphia, PA 19107, USA
| | - Benjamin R tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jason W Upton
- Department of Molecular Biosciences, LaMontagne Center for Infectious Disease, University of Texas, Austin, TX 78712, USA.
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
34
|
Nogusa S, Thapa RJ, Dillon CP, Liedmann S, Oguin TH, Ingram JP, Rodriguez DA, Kosoff R, Sharma S, Sturm O, Verbist K, Gough PJ, Bertin J, Hartmann BM, Sealfon SC, Kaiser WJ, Mocarski ES, López CB, Thomas PG, Oberst A, Green DR, Balachandran S. RIPK3 Activates Parallel Pathways of MLKL-Driven Necroptosis and FADD-Mediated Apoptosis to Protect against Influenza A Virus. Cell Host Microbe 2016; 20:13-24. [PMID: 27321907 PMCID: PMC5026823 DOI: 10.1016/j.chom.2016.05.011] [Citation(s) in RCA: 289] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 04/11/2016] [Accepted: 05/16/2016] [Indexed: 12/26/2022]
Abstract
Influenza A virus (IAV) is a lytic virus in primary cultures of many cell types and in vivo. We report that the kinase RIPK3 is essential for IAV-induced lysis of mammalian fibroblasts and lung epithelial cells. Replicating IAV drives assembly of a RIPK3-containing complex that includes the kinase RIPK1, the pseudokinase MLKL, and the adaptor protein FADD, and forms independently of signaling by RNA-sensing innate immune receptors (RLRs, TLRs, PKR), or the cytokines type I interferons and TNF-α. Downstream of RIPK3, IAV activates parallel pathways of MLKL-driven necroptosis and FADD-mediated apoptosis, with the former reliant on RIPK3 kinase activity and neither on RIPK1 activity. Mice deficient in RIPK3 or doubly deficient in MLKL and FADD, but not MLKL alone, are more susceptible to IAV than their wild-type counterparts, revealing an important role for RIPK3-mediated apoptosis in antiviral immunity. Collectively, these results outline RIPK3-activated cytolytic mechanisms essential for controlling respiratory IAV infection.
Collapse
Affiliation(s)
- Shoko Nogusa
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Roshan J Thapa
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Christopher P Dillon
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Swantje Liedmann
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Thomas H Oguin
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Justin P Ingram
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Diego A Rodriguez
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Rachelle Kosoff
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Shalini Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Oliver Sturm
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Katherine Verbist
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Peter J Gough
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - John Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Boris M Hartmann
- Department of Neurology, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA
| | - Stuart C Sealfon
- Department of Neurology, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA
| | | | | | - Carolina B López
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Andrew Oberst
- Department of Microbiology and Immunology, University of Washington, Seattle, WA 98109, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
35
|
Kaewborisuth C, Zanin M, Häcker H, Webby RJ, Lekcharoensuk P. G45R mutation in the nonstructural protein 1 of A/Puerto Rico/8/1934 (H1N1) enhances viral replication independent of dsRNA-binding activity and type I interferon biology. Virol J 2016; 13:127. [PMID: 27405392 PMCID: PMC4942902 DOI: 10.1186/s12985-016-0585-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 07/06/2016] [Indexed: 11/25/2022] Open
Abstract
Background The nonstructural protein 1 (NS1) of influenza A viruses can act as a viral replication enhancer by antagonizing type I interferon (IFN) induction and response in infected cells. We previously reported that A/Puerto Rico/8/1934 (H1N1) (PR8) containing the NS1 gene derived from A/swine/IA/15/1930 (H1N1) (IA30) replicated more efficiently than the wild type virus. Here, we identified amino acids in NS1 critical for enhancing viral replication. Methods To identify a key amino acid in NS1 which can increase the virus replication, growth kinetics of PR8 viruses encoding single mutation in NS1 were compared in A549 cells. NS1 mutant functions were studied using dsRNA-protein pull down, RIG-I mediated IFNβ-promoter activity assays and growth curve analysis in murine lung epithelial type I (Let1) cells. Results The G45R mutation in the NS1 of PR8 (G45R/NS1) virus is critical for the enhanced viral replication in A549 cells. G45R/NS1 slightly decreased NS1 binding to dsRNA but did not interfere with its suppression of RIG-I-mediated type I IFN production. Likewise, replication of G45R/NS1 virus was increased in comparison to wild type virus in both wild type and type I interferon receptor null Let1 cells. Conclusions The non-conserved amino acid, R45, enhances viral replication which is apparently independent of dsRNA binding and suppression of type I IFN, suggesting a non-characterized function of NS1 for the enhanced viral replication. As G45R/NS1 virus induced the type I IFN induction and response in infected A549 cells, it is also interesting to investigate virus virulence for further studies. Electronic supplementary material The online version of this article (doi:10.1186/s12985-016-0585-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Challika Kaewborisuth
- Interdisciplinary Graduate Program in Genetic Engineering, The Graduate School, Kasetsart University, Bangkok, 10900, Thailand.,Department of Infectious Diseases, Division of Virology, St. Jude Children's Research Hospital, Memphis, 38105-2794, TN, USA
| | - Mark Zanin
- Department of Infectious Diseases, Division of Virology, St. Jude Children's Research Hospital, Memphis, 38105-2794, TN, USA
| | - Hans Häcker
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, 38105-2794, TN, USA
| | - Richard J Webby
- Department of Infectious Diseases, Division of Virology, St. Jude Children's Research Hospital, Memphis, 38105-2794, TN, USA
| | - Porntippa Lekcharoensuk
- Interdisciplinary Graduate Program in Genetic Engineering, The Graduate School, Kasetsart University, Bangkok, 10900, Thailand. .,Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, 50th Ngamwongwan Rd., Chatuchak, Bangkok, 10900, Thailand. .,Center for Advances Studies in Agriculture and Food, KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
36
|
Bucukovski J, Latorre-Margalef N, Stallknecht DE, Miller BL. A Multiplex Label-Free Approach to Avian Influenza Surveillance and Serology. PLoS One 2015; 10:e0134484. [PMID: 26241048 PMCID: PMC4524619 DOI: 10.1371/journal.pone.0134484] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/10/2015] [Indexed: 01/06/2023] Open
Abstract
Influenza serology has traditionally relied on techniques such as hemagglutination inhibition, microneutralization, and ELISA. These assays are complex, challenging to implement in a format allowing detection of several types of antibody-analyte interactions at once (multiplex), and troublesome to implement in the field. As an alternative, we have developed a hemagglutinin microarray on the Arrayed Imaging Reflectometry (AIR) platform. AIR provides sensitive, rapid, and label-free multiplex detection of targets in complex analyte samples such as serum. In preliminary work, we demonstrated the application of this array to the testing of human samples from a vaccine trial. Here, we report the application of an expanded label-free hemagglutinin microarray to the analysis of avian serum samples. Samples from influenza virus challenge experiments in mallards yielded strong, selective detection of antibodies to the challenge antigen in most cases. Samples acquired in the field from mallards were also analyzed, and compared with viral hemagglutinin inhibition and microneutralization assays. We find that the AIR hemagglutinin microarray can provide a simple and robust alternative to standard methods, offering substantially greater information density from a simple workflow.
Collapse
Affiliation(s)
- Joseph Bucukovski
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States of America
- Department of Dermatology, University of Rochester, Rochester, New York, United States of America
| | - Neus Latorre-Margalef
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - David E. Stallknecht
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Benjamin L. Miller
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States of America
- Department of Dermatology, University of Rochester, Rochester, New York, United States of America
| |
Collapse
|
37
|
25-Hydroxycholesterol acts as an amplifier of inflammatory signaling. Proc Natl Acad Sci U S A 2014; 111:10666-71. [PMID: 24994901 DOI: 10.1073/pnas.1404271111] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cross-talk between sterol regulatory pathways and inflammatory pathways has been demonstrated to significantly impact the development of both atherosclerosis and infectious disease. The oxysterol 25-hydroxycholesterol (25HC) plays multiple roles in lipid biosynthesis and immunity. We recently used a systems biology approach to identify 25HC as an innate immune mediator that had a predicted role in atherosclerosis and we demonstrated a role for 25HC in foam cell formation. Here, we show that this mediator also has several complex roles in the antiviral response. The host response to viruses involves gene regulatory circuits with multiple feedback loops and we show here that 25HC acts as an amplifier of inflammatory signaling in macrophages. We determined that 25HC amplifies inflammatory signaling, at least in part, by mediating the recruitment of the AP-1 components FBJ osteosarcoma oncogene (FOS) and jun proto-oncogene (JUN) to the promoters of a subset of Toll-like receptor-responsive genes. Consistent with previous reports, we found that 25HC inhibits in vitro infection of airway epithelial cells by influenza. Surprisingly, we found that deletion of Ch25h, the gene encoding the enzyme responsible for 25HC production, is protective in a mouse model of influenza infection as a result of decreased inflammatory-induced pathology. Thus, our study demonstrates, for the first time to our knowledge, that in addition to its direct antiviral role, 25HC also regulates transcriptional responses and acts as an amplifier of inflammation via AP-1 and that the resulting alteration in inflammatory response leads to increased tissue damage in mice following infection with influenza.
Collapse
|