1
|
Takáts K, Balázs B, Boros Á, Sipos D, Péterfi Z, Harmat M, Varga D, Zengő-Bedő Z, Pankovics P, Reuter G. A meningoencephalitis outbreak associated with echovirus type 18 (E18) in south-western Hungary in mid-2023. Arch Virol 2024; 169:237. [PMID: 39495348 DOI: 10.1007/s00705-024-06166-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/17/2024] [Indexed: 11/05/2024]
Abstract
Echovirus type 18 (E18) is a member of the genus Enterovirus of the family Picornaviridae. In this study, we investigated the characteristics of E18 infections in hospitalized adults with meningoencephalitis that occurred during an unusual epidemic in south-western Hungary in mid-2023. Five (6.1%) out of 82 cerebrospinal fluid specimens that were tested were positive for an enterovirus, four of which were E18 (OR372160 and PP861087-PP861090). Headache (100%), fever (75%), retrobulbar pain (50%), nausea (50%), joint/limb pain (50%), exanthema, photophobia, and vomiting were the most common symptoms. Sequence analysis showed that these viruses were related to unpublished emerging E18 strains from France (2022/2023) and China (2019/2020). Further study is necessary to monitor the circulation of epidemic/pandemic E18 variants over time.
Collapse
Affiliation(s)
- Károly Takáts
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12, Pécs, H-7624, Hungary
| | - Benigna Balázs
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12, Pécs, H-7624, Hungary
| | - Ákos Boros
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12, Pécs, H-7624, Hungary
| | - Dávid Sipos
- Department of Internal Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Zoltán Péterfi
- Department of Internal Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Márk Harmat
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | - Dávid Varga
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | - Zita Zengő-Bedő
- Department of Emergency Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Pankovics
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12, Pécs, H-7624, Hungary
| | - Gábor Reuter
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12, Pécs, H-7624, Hungary.
| |
Collapse
|
2
|
Li F, Lu RJ, Zhang YH, Shi P, Ao YY, Cao LF, Zhang YL, Tan WJ, Shen J. Clinical and molecular epidemiology of enterovirus D68 from 2013 to 2020 in Shanghai. Sci Rep 2024; 14:2161. [PMID: 38272942 PMCID: PMC10810781 DOI: 10.1038/s41598-024-52226-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Enterovirus D68 (EV-D68) is an emerging pathogen that has caused outbreaks of severe respiratory disease worldwide, especially in children. We aim to investigate the prevalence and genetic characteristics of EV-D68 in children from Shanghai. Nasopharyngeal swab or bronchoalveolar lavage fluid samples collected from children hospitalized with community-acquired pneumonia were screened for EV-D68. Nine of 3997 samples were EV-D68-positive. Seven of nine positive samples were sequenced and submitted to GenBank. Based on partial polyprotein gene (3D) or complete sequence analysis, we found the seven strains belong to different clades and subclades, including three D1 (detected in 2013 and 2014), one D2 (2013), one D3 (2019), and two B3 (2014 and 2018). Overall, we show different clades and subclades of EV-D68 spread with low positive rates (0.2%) among children in Shanghai between 2013 and 2020. Amino acid mutations were found in the epitopes of the VP1 BC and DE loops and C-terminus; similarity analysis provided evidence for recombination as an important mechanism of genomic diversification. Both single nucleotide mutations and recombination play a role in evolution of EV-D68. Genetic instability within these clinical strains may indicate large outbreaks could occur following cumulative mutations.
Collapse
Affiliation(s)
- Fei Li
- Infectious Disease Department, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Rou-Jian Lu
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Yu-Han Zhang
- Infectious Disease Department, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Peng Shi
- Statistics and Data Management Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yuan-Yun Ao
- Virology Department, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Lin-Feng Cao
- Virology Department, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yu-Lan Zhang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wen-Jie Tan
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China.
| | - Jun Shen
- Infectious Disease Department, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| |
Collapse
|
3
|
Rai A, Ammi Z, Anes-Boulahbal DL, Assadi AA, Amrane A, Baaloudj O, Mouni L. Molecular Amplification and Cell Culturing Efficiency for Enteroviruses' Detection in Cerebrospinal Fluids of Algerian Patients Suffering from Meningitis. Viruses 2024; 16:170. [PMID: 38399946 PMCID: PMC10891896 DOI: 10.3390/v16020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
Enteroviruses (EVs) represent a major cause of viral meningitis, being responsible for nearly 1 billion infections each year worldwide. Several techniques were developed to obtain better diagnostic results of EV infections. Herein, we evaluated the efficiency of EV detection through isolation on both Rhabdomyosarcoma (RD) and Vero cell line cultures, conventional reverse transcription-polymerase chain reaction (RT-PCR) and real-time RT-PCR. Thus, 50 cerebrospinal fluid (CSF) samples belonging to patients suspected to have viral meningitis in northern Algeria were collected, anonymously numbered from 1 to 50 and subjected to the above-mentioned techniques for EV detection. Using real-time RT-PCR, 34 CSF samples were revealed to be positive for viral origin of meningitis (68%). Thirteen of them were positive when the conventional RT-PCR was used (26%), and only three samples gave positive results when the cell culture technique was used (6%). Surprisingly, two cell culture-positive CSF samples, namely, 31 and 39, were negative using RT-PCR directly on the original samples. However, they turned to be positive when amplification was carried out on their corresponding cell culture supernatant. The cell-cultured viral isolates were then identified by sequencing their viral genome's VP1 regions. All of them were revealed to belong to the echovirus 27 strain. This investigation demonstrates that RT-PCR techniques are often more sensitive, accurate and much faster, providing reliable results within a clinically acceptable timeframe. However, viral isolation on cell cultures remains crucial to obtain enough viral load for serological tests or even to avoid the rare, but existing, false negative PCR.
Collapse
Affiliation(s)
- Abdelwahab Rai
- Laboratoire de Gestion et Valorisation des Ressources Naturelles et Assurance Qualité, Faculté SNVST, Université de Bouira, Bouira 10000, Algeria;
| | - Zohra Ammi
- Faculté SNVST, Université de Bouira, Bouira 10000, Algeria;
| | - Dahbia Leila Anes-Boulahbal
- Laboratoire des Entérovirus, Département de Virologie, Institut Pasteur d’Alger, Annexe de Sidi-Fredj, Alger 16000, Algeria;
| | - Aymen Amin Assadi
- College of Engineering, Imam Mohammad Ibn Saud Islamic University, IMSIU, Riyadh 11432, Saudi Arabia;
- Ecole Nationale Supérieure de Chimie de Rennes, University Rennes, CNRS, ISCR-UMR 6226, 35000 Rennes, France;
| | - Abdeltif Amrane
- Ecole Nationale Supérieure de Chimie de Rennes, University Rennes, CNRS, ISCR-UMR 6226, 35000 Rennes, France;
| | - Oussama Baaloudj
- Laboratory of Reaction Engineering, Faculty of Mechanical Engineering and Process Engineering, Université des Sciences et de la Technologie Houari Boumediene, BP 32, Algiers 16111, Algeria;
| | - Lotfi Mouni
- Laboratoire de Gestion et Valorisation des Ressources Naturelles et Assurance Qualité, Faculté SNVST, Université de Bouira, Bouira 10000, Algeria;
| |
Collapse
|
4
|
Zhang M, He D, Liu Y, Gong Y, Dong W, Chen Y, Ma S. Complete genome analysis of echovirus 30 strains isolated from hand-foot-and-mouth disease in Yunnan province, China. Virol J 2023; 20:215. [PMID: 37730633 PMCID: PMC10510139 DOI: 10.1186/s12985-023-02179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Echovirus 30 is prone to cause hand-foot-and-mouth disease in infants and children. However, molecular epidemiologic information on the spread of E30 in southwestern China remains limited. In this study, we determined and analyzed the whole genomic sequences of E30 strains isolated from the stools of patients with hand-foot-and-mouth disease in Yunnan Province, China, in 2019. METHODS E30 isolates were obtained from fecal samples of HFMD patients. The whole genomes were sequenced by segmented PCR and analyzed for phylogeny, mutation and recombination. MEGA and DNAStar were used to align the present isolates with the reference strains. The VP1 sequence of the isolates were analyzed for selection pressure using datamonkey server. RESULTS The complete genome sequences of four E30 were obtained from this virus isolation. Significant homologous recombination signals in the P2-3'UTR region were found in all four isolates with other serotypes. Phylogenetic analysis showed that the four E30 isolates belonged to lineage H. Comparison of the VP1 sequences of these four isolates with other E30 reference strains using three selection pressure analysis models FUBAR, FEL, and MEME, revealed a positive selection site at 133rd position. CONCLUSIONS This study extends the whole genome sequence of E30 in GenBank, in which mutations and recombinations have driven the evolution of E30 and further improved and enriched the genetic characteristics of E30, providing fundamental data for the prevention and control of diseases caused by E30. Furthermore, we demonstrated the value of continuous and extensive surveillance of enterovirus serotypes other than the major HFMD-causing viruses.
Collapse
Affiliation(s)
- Ming Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650118, PR China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Daqian He
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University Yunnan Cancer Hospital,Yunnan Cancer Center), Kunming, 650118, China
| | - Yuhan Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650118, PR China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Yue Gong
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University Yunnan Cancer Hospital,Yunnan Cancer Center), Kunming, 650118, China
| | - Wenxun Dong
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University Yunnan Cancer Hospital,Yunnan Cancer Center), Kunming, 650118, China
| | - Ying Chen
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University Yunnan Cancer Hospital,Yunnan Cancer Center), Kunming, 650118, China.
| | - Shaohui Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650118, PR China.
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China.
| |
Collapse
|
5
|
Fall A, Han L, Abdullah O, Norton JM, Eldesouki RE, Forman M, Morris CP, Klein E, Mostafa HH. An increase in enterovirus D68 circulation and viral evolution during a period of increased influenza like illness, The Johns Hopkins Health System, USA, 2022. J Clin Virol 2023; 160:105379. [PMID: 36652754 DOI: 10.1016/j.jcv.2023.105379] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/30/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
BACKGROUND An increase in influenza like illness in children and adolescents at the Johns Hopkins Health system during summer 2022 was associated with increased positivity for enterovirus/ rhinovirus. We sought to characterize the epidemiology and viral evolution of enterovirus D68 (EV-D68). METHODS A cohort of remnant respiratory samples tested at the Johns Hopkins Microbiology Laboratory was screened for EV-D68. EV-D68 positives were characterized by whole genome sequencing and viral loads were assessed by droplet digital PCR (ddPCR). Genomic changes and viral loads were analyzed along with patients' clinical presentations. RESULTS Of 566 screened samples, 126 were EV-D68 (22.3%). The median age of EV-D68 infected patients was four years, a total of 52 required supplemental oxygen (41.3%), and 35 (27.8%) were admitted. Lung disease was the most frequent comorbidity that was associated with hospitalization. A total of 75 complete and 32 partial genomes were characterized that made a new cluster within the B3 subclade that was closest to US genomes from 2018. Amino acid changes within the BC and DE loops were identified from 31 genomes (29%) which correlated with an increase in average viral load in respiratory specimens and the need for supplemental oxygen. CONCLUSIONS EV-D68 outbreaks continue to cause influenza like illness that could be overwhelming for the health system due to a significant demand for high flow oxygen. Viral evolution and an increase in the susceptible population are likely driving the trends of the increased EV-D68 infections.
Collapse
Affiliation(s)
- Amary Fall
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, United States
| | - Lijie Han
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, United States
| | - Omar Abdullah
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, United States
| | - Julie M Norton
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, United States
| | - Raghda E Eldesouki
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, United States
| | - Michael Forman
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, United States
| | - C Paul Morris
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, United States; National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States
| | - Eili Klein
- Department of Emergency Medicine, Johns Hopkins School of Medicine, United States; Center for Disease Dynamics, Economics, and Policy, Washington DC, United States
| | - Heba H Mostafa
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, United States.
| |
Collapse
|
6
|
Lee S, Yang JH, Lee JE, Kim YO. Serotype analysis of pediatric enteroviral meningitis in Gwangju, Republic of Korea: Number of annual cases, distribution by age group, and characteristics of each serotype. J Clin Virol 2022; 153:105192. [PMID: 35661584 DOI: 10.1016/j.jcv.2022.105192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/26/2022] [Accepted: 05/22/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Enteroviral meningitis is a common disease in children; however, serotype data are still lacking, especially for late childhood. OBJECTIVES This study analyzed the number of annual cases, distribution by age group, and characteristics of each serotype among children with enteroviral meningitis. STUDY DESIGN After the initial screening of 1,009 children (<18 years) with viral meningitis between 2008 and 2021, the data of enteroviral meningitis were retrospectively reviewed. The number of annual cases and serotypes were investigated. The distribution of serotypes across different ages was reviewed. Clinical characteristics of the major serotypes (detected in at least 15 patients) were further examined. RESULTS Among the 700 patients with enteroviral meningitis, serotypes were tested in 517 patients (73.9%), which could be typed in 370 patients (71.6%). EV-A71 was the most common serotype detected in 2010, 2012, and 2019. After 2020, enterovirus was rarely detected. The group B coxsackieviruses (CVBs) were commonly detected in neonates (CVB1, 33.3%) and infants (CVB5, 17.4%). The echoviruses were commonly detected beyond infancy; E30 was the most frequently detected in late childhood (14.4%) and adolescents (15.4%). EV-A71 was the most frequently detected in early childhood (17.2%). Between the 11 major serotypes, vomiting, headache, and irritability were more commonly associated with echoviruses (P <0.01). In EV-A71, neurologic symptoms and skin lesions were more common (P <0.01). CONCLUSION The CVBs were commonly detected in neonates and infants, whereas the echoviruses were commonly detected beyond infancy and caused vomiting, headache, and irritability. EV-A71 was the most frequently detected in early childhood, frequently causing neurologic and dermatologic problems.
Collapse
Affiliation(s)
- Sanghoon Lee
- Department of Pediatrics, Chonnam National University Children's Hospital, 42, Jebong-ro, Dong-gu, Gwangju 61469, Republic of Korea
| | - Jae Hyuk Yang
- Department of Pediatrics, Chonnam National University Children's Hospital, 42, Jebong-ro, Dong-gu, Gwangju 61469, Republic of Korea; Department of Pediatrics, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Ji-Eun Lee
- Division of Infectious Disease Research, Health and Environment Research Institute of Gwangju, 584 Mugindae-ro, Seo-gu, Gwangju 61954, Republic of Korea
| | - Young Ok Kim
- Department of Pediatrics, Chonnam National University Children's Hospital, 42, Jebong-ro, Dong-gu, Gwangju 61469, Republic of Korea; Department of Pediatrics, Chonnam National University Medical School, Gwangju, Republic of Korea.
| |
Collapse
|
7
|
Machado RS, Gomes-Neto F, Aguiar-Oliveira ML, Burlandy FM, Tavares FN, da Silva EE, Sousa IP. Analysis of Coxsackievirus B5 Infections in the Central Nervous System in Brazil: Insights into Molecular Epidemiology and Genetic Diversity. Viruses 2022; 14:v14050899. [PMID: 35632640 PMCID: PMC9146130 DOI: 10.3390/v14050899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Coxsackievirus B5 (CVB5) is one of the most prevalent enteroviruses types in humans and causes annual epidemics worldwide. In the present study, we explored viral genetic diversity, molecular and epidemiological aspects of CVB5 obtained from cerebrospinal fluid and stool samples of patients with aseptic meningitis or acute flaccid paralysis, information that is still scarce in Brazil. From 2005 to 2018, 57 isolates of CVB5 were identified in the scope of the Brazilian Poliomyelitis Surveillance Program. Phylogenetic analyses of VP1 sequences revealed the circulation of two CVB5 genogroups, with genogroup B circulating until 2017, further replaced by genogroup A. Network analysis based on deduced amino acid sequences showed important substitutions in residues known to play critical roles in viral host tropism, cell entry, and viral antigenicity. Amino acid substitutions were investigated by the Protein Variation Effect Analyzer (PROVEAN) tool, which revealed two deleterious substitutions: T130N and T130A. To the best of our knowledge, this is the first report to use in silico approaches to determine the putative impact of amino acid substitutions on the CVB5 capsid structure. This work provides valuable information on CVB5 diversity associated with central nervous system (CNS) infections, highlighting the importance of evaluating the biological impact of certain amino acids substitutions associated with epidemiological and structural analyses.
Collapse
Affiliation(s)
- Raiana S. Machado
- Laboratório de Enterovírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (R.S.M.); (F.M.B.); (E.E.d.S.)
- Programa de Pós-Graduação em Medicina Tropical, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Francisco Gomes-Neto
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil;
| | - Maria L. Aguiar-Oliveira
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil;
| | - Fernanda M. Burlandy
- Laboratório de Enterovírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (R.S.M.); (F.M.B.); (E.E.d.S.)
| | - Fernando N. Tavares
- Laboratório de Referência Regional em Enteroviroses, Seção de Virologia, Instituto Evandro Chagas/Serviço de Vigilância Saúde/Ministério de SaúdeS, Ananindeua 67030-000, Brazil;
| | - Edson E. da Silva
- Laboratório de Enterovírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (R.S.M.); (F.M.B.); (E.E.d.S.)
| | - Ivanildo P. Sousa
- Laboratório de Enterovírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (R.S.M.); (F.M.B.); (E.E.d.S.)
- Correspondence: ; Tel.: +55-21-2562-1781
| |
Collapse
|
8
|
Larsson SB, Vracar D, Karlsson M, Ringlander J, Norder H. Epidemiology and clinical manifestations of different enterovirus and rhinovirus types show EV‐D68 may still impact on severity of respiratory infections. J Med Virol 2022; 94:3829-3839. [PMID: 35403229 PMCID: PMC9321759 DOI: 10.1002/jmv.27767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/16/2022] [Accepted: 04/07/2022] [Indexed: 11/10/2022]
Abstract
Respiratory infections are often caused by enteroviruses (EVs). The aim of this study was to identify whether certain types of EV were more likely to cause severe illness in 2016, when an increasing spread of upper respiratory infections was observed in Gothenburg, Sweden. The EV strain in 137 of 1341 nasopharyngeal samples reactive for EV by polymerase chain reaction could be typed by sequencing the viral 5′‐untranslated region and VP1 regions. Phylogenetic trees were constructed. Patient records were reviewed. Hospital care was needed for 46 of 74 patients with available medical records. The majority of the patients (83) were infected with the rhinovirus (RV). The remaining 54 were infected with EV A, B, C, and D strains of 13 different types, with EV‐D68 and CV‐A10 being the most common (17 vs. 14). Significantly more patients with EV‐D68 presented with dyspnea, both when compared with other EV types (p = 0.003) and compared to all other EV and RV infections (p = 0.04). Phylogenetic analysis of the sequences revealed the spread of both Asian and European CV‐A10 strains and 12 different RV C types. This study showed an abundance of different EV types spreading during a year with increased upper respiratory increased infections. EV‐D68 infections were associated with more severe disease manifestation. Other EV and RV types were more evenly distributed between hospitalized and nonhospitalized patients. The EV type CV‐A10 was also found in infected patients, which warrants further studies and surveillance, as this pathogen could cause more severe disease and outbreaks of hand, foot, and mouth disease.
Collapse
Affiliation(s)
- Simon B. Larsson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
- Beroendekliniken, Region Västra Götaland, Sahlgrenska University HospitalGothenburgSweden
| | - Diana Vracar
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
- Department of Clinical Microbiology, Sahlgrenska University HospitalGothenburgSweden
| | - Marie Karlsson
- Department of Clinical Microbiology, Sahlgrenska University HospitalGothenburgSweden
| | - Johan Ringlander
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
- Department of Clinical Microbiology, Sahlgrenska University HospitalGothenburgSweden
| | - Heléne Norder
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| |
Collapse
|
9
|
Ahmad J, Ahmad M, Usman ARA, Al-Wabel MI. Prevalence of human pathogenic viruses in wastewater: A potential transmission risk as well as an effective tool for early outbreak detection for COVID-19. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113486. [PMID: 34391102 PMCID: PMC8352675 DOI: 10.1016/j.jenvman.2021.113486] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 08/01/2021] [Accepted: 08/05/2021] [Indexed: 05/09/2023]
Abstract
Millions of human pathogenic viral particles are shed from infected individuals and introduce into wastewater, subsequently causing waterborne diseases worldwide. These viruses can be transmitted from wastewater to human beings via direct contact and/or ingestion/inhalation of aerosols. Even the advanced wastewater treatment technologies are unable to remove pathogenic viruses from wastewater completely, posing a serious health risk. Recently, coronavirus disease 2019 (COVID-19) has been urged globally due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which has resulted in >4.1 million deaths until July 2021. A rapid human-to-human transmission, uncertainties in effective vaccines, non-specific medical treatments, and unclear symptoms compelled the world into complete lockdown, social distancing, air-travel suspension, and closure of educational institutions, subsequently damaging the global economy and trade. Although, few medical treatments, rapid detection tools, and vaccines have been developed so far to curb the spread of COVID-19; however, several uncertainties exist in their applicability. Further, the acceptance of vaccines among communities is lower owing to the fear of side effects such as blood-clotting and heart inflammation. SARS-CoV-2, an etiologic agent of COVID-19, has frequently been detected in wastewater, depicting a potential transmission risk to healthy individuals. Contrarily, the occurrence of SARS-CoV-2 in wastewater can be used as an early outbreak detection tool via water-based epidemiology. Therefore, the spread of SARS-CoV-2 through fecal-oral pathway can be reduced and any possible outbreak can be evaded by proper wastewater surveillance. In this review, wastewater recycling complications, potential health risks of COVID-19 emergence, and current epidemiological measures to control COVID-19 spread have been discussed. Moreover, the viability of SARS-CoV-2 in various environments and survival in wastewater has been reviewed. Additionally, the necessary actions (vaccination, face mask, social distancing, and hand sanitization) to limit the transmission of SARS-CoV-2 have been recommended. Therefore, wastewater surveillance can serve as a feasible, efficient, and reliable epidemiological measure to lessen the spread of COVID-19.
Collapse
Affiliation(s)
- Jahangir Ahmad
- Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Munir Ahmad
- Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Adel R A Usman
- Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia; Department of Soils and Water, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt
| | - Mohammad I Al-Wabel
- Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia; Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong.
| |
Collapse
|
10
|
Si J, Tang X, Xu L, Fu H, Li H, He Y, Bao J, Tang J, Li A, Lu N, Yang C. High throughput sequencing of whole transcriptome and construct of ceRNA regulatory network in RD cells infected with enterovirus D68. Virol J 2021; 18:216. [PMID: 34743709 PMCID: PMC8574037 DOI: 10.1186/s12985-021-01686-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/01/2021] [Indexed: 02/06/2023] Open
Abstract
Background With the advancement of sequencing technologies, a plethora of noncoding RNA (ncRNA) species have been widely discovered, including microRNAs (miRNAs), circular RNAs (circRNAs), and long ncRNAs (lncRNAs). However, the mechanism of these non-coding RNAs in diseases caused by enterovirus d68 (EV-D68) remains unclear. The goal of this research was to identify significantly altered circRNAs, lncRNAs, miRNAs, and mRNAs pathways in RD cells infected with EV-D68, analyze their target relationships, demonstrate the competing endogenous RNA (ceRNA) regulatory network, and evaluate their biological functions. Methods The total RNAs were sequenced by high-throughput sequencing technology, and differentially expressed genes between control and infection groups were screened using bioinformatics method. We discovered the targeting relationship between three ncRNAs and mRNA using bioinformatics methods, and then built a ceRNA regulatory network centered on miRNA. The biological functions of differentially expressed mRNAs (DEmRNAs) were discovered through GO and KEGG enrichment analysis. Create a protein interaction network (PPI) to seek for hub mRNAs and learn more about protein–protein interactions. The relative expression was verified using RT-qPCR. The effects of Fos and ARRDC3 on virus replication were confirmed using RT-qPCR, virus titer (TCID50/ml), Western blotting. Results 375 lncRNAs (154 upregulated and 221 downregulated), 33 circRNAs (32 upregulated and 1 downregulated), 96 miRNAs (49 upregulated and 47 downregulated), and 239 mRNAs (135 upregulated and 104 downregulated) were identified as differently in infected group compare to no-infected group. A single lncRNA or circRNA can be connected with numerous miRNAs, which subsequently coregulate additional mRNAs, according to the ceRNA regulatory network. The majority of DEmRNAs were shown to be connected to DNA binding, transcription regulation by RNA polymerase II, transcription factor, MAPK signaling pathways, Hippo signal pathway, and apoptosis pathway, according to GO and KEGG pathway enrichment analysis. The hub mRNAs with EGR1, Fos and Jun as the core were screened through PPI interaction network. We preliminarily demonstrated that the Fos and ARRDC3 genes can suppress EV-D68 viral replication in order to further verify the results of full transcriptome sequencing. Conclusion The results of whole transcriptome analysis after EV-D68 infection of RD cells were first reported in this study, and for the first time, a ceRNA regulation network containing miRNA at its center was established for the first time. The Fos and ARRDC3 genes were found to hinder viral in RD cells. This study establishes a novel insight host response during EV-D68 infection and further investigated potential drug targets. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-021-01686-x.
Collapse
Affiliation(s)
- Junzhuo Si
- Department of Pathogenic Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Xia Tang
- Department of Pathogenic Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Lei Xu
- Department of Pathogenic Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Huichao Fu
- Department of Pathogenic Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Huayi Li
- Department of Pathogenic Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yonglin He
- Department of Pathogenic Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Jiajia Bao
- Department of Pathogenic Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Jialing Tang
- Department of Pathogenic Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Anlong Li
- Department of Pathogenic Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Nan Lu
- Department of Pathogenic Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Chun Yang
- Department of Pathogenic Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
11
|
Sousa IP, Oliveira MDLA, Burlandy FM, Machado RS, Oliveira SS, Tavares FN, Gomes-Neto F, da Costa EV, da Silva EE. Molecular characterization and epidemiological aspects of non-polio enteroviruses isolated from acute flaccid paralysis in Brazil: a historical series (2005-2017). Emerg Microbes Infect 2021; 9:2536-2546. [PMID: 33179584 PMCID: PMC7717866 DOI: 10.1080/22221751.2020.1850181] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Due to the advanced stage of polio eradication, the possible role of non-polio enteroviruses (NPEVs) associated to acute flaccid paralysis (AFP) cases has been highlighted. In this study, we described epidemiological aspects of NPEVs infections associated to AFP and explore the viral genetic diversity, information still scarce in Brazil. From 2005 to 2017, 6707 stool samples were collected in the scope of the Brazilian Poliomyelitis Surveillance Program. NPEVs were isolated in 359 samples (5.3%) and 341 (94.9%) were genotyped. About 46 different NPEV types were identified with the following detection pattern EV-B > EV-A > EV-C. The major EV-types were CVA2, CV4, EV-A71, CVB3, CVB5, E6, E7, E11, CVA13 and EV-C99, which corresponds to 51.6% of the total. Uncommon types, such as CVA12, EV-90 and CVA11, were also identified. Different E6 genogroups were observed, prevailing the GenIII, despite periods of co-circulation, and replacement of genogroups along time. CVA2 sequences were classified as genotype C and data suggested its dispersion in South-American countries. CVA13 viruses belonged to cluster B and Venezuelan viruses composed a new putative cluster. This study provides extensive information on enterovirus diversity associated with AFP, reinforcing the need of tailoring current surveillance strategies to timely monitor emergence/re-emergence of NPEVs.
Collapse
Affiliation(s)
- Ivanildo P Sousa
- Laboratório de Enterovírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Fernanda M Burlandy
- Laboratório de Enterovírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Raiana S Machado
- Laboratório de Enterovírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Silas S Oliveira
- Laboratório de Enterovírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Fernando N Tavares
- Laboratório de Referência Regional em Enteroviroses, Seção de Virologia, Instituto Evandro Chagas, Ananindeua, Brazil
| | - Francisco Gomes-Neto
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Eliane V da Costa
- Laboratório de Enterovírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Edson E da Silva
- Laboratório de Enterovírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Multiple genotypes of Echovirus 11 circulated in mainland China between 1994 and 2017. Sci Rep 2019; 9:10583. [PMID: 31332200 PMCID: PMC6646367 DOI: 10.1038/s41598-019-46870-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/03/2019] [Indexed: 11/29/2022] Open
Abstract
Echovirus 11 (E-11) is one of the most frequently isolated enteroviruses causing meningitis and other diseases such as hand, foot, and mouth disease (HFMD) and acute flaccid paralysis (AFP). Fifty-nine newly determined E-11 VP1 sequences from the China AFP and HFMD surveillance network and 500 E-11 VP1 sequences obtained from the GenBank database, which were associated with 12 categories of diseases, were screened for phylogenetic analysis. Based on the standard method of genotype classification, E-11 strains circulated worldwide were reclassified into six genotypes as A, B, C, D, E, and F, in which genotype F is newly divided, and genotypes A and C are further divided into A1–5 and C1–4 by this research, whereas genotype D was still divided into D1–5 as in a previous study of Oberste et al. Sub-genotype A1 was the predominant sub-genotype in mainland China between 2008–2017, whereas sub-genotype D5 was the predominant sub-genotype circulated outside China from 1998–2014. However, genotype and sub-genotype spectra showed statistical significance among AFP and HFMD cases (χ2 = 60.86, P < 0.001), suggesting that different genotypes might have a tendency to cause different diseases. Strengthening the surveillance of E-11 might provide further information about pathogenic evolution or specific nucleotide mutation associated with different clinical diseases.
Collapse
|
13
|
Smuts H, Cronje S, Thomas J, Brink D, Korsman S, Hardie D. Molecular characterization of an outbreak of enterovirus-associated meningitis in Mossel Bay, South Africa, December 2015-January 2016. BMC Infect Dis 2018; 18:709. [PMID: 30594238 PMCID: PMC6311073 DOI: 10.1186/s12879-018-3641-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Human enteroviruses (HEVs) are common causal agents of aseptic meningitis in young children. Laboratory and syndromic surveillance during December 2015 and January 2016 noted an unusually high number of paediatric aseptic meningitis cases at a hospital in Mossel Bay, Western Cape Province, South Africa. HEV was detected in clinical samples, prompting an outbreak investigation. METHODS Epidemiological investigations were conducted to ascertain possible linkage between cases. Amplification, sequencing and phylogenetic analysis of the 5'UTR and VP1 regions was undertaken to determine the HEV serotype associated with the outbreak as well as other cases of aseptic meningitis in the area in the preceding 6 weeks. RESULTS Over the 2-month period, 63 CSF samples were available for testing. A total of 43 outbreak cases (68.3%) were observed, and the 26 (60.5%) that could be typed were coxsackie virus A9 (CVA9). Children attending three crèche facilities were epidemiologically linked, accounting for 60.5% (26/43) of the CVA9 cases. The majority of patients were under 10 years of age (55/63, 87.3%) and there was a male predominance (66%). Nucleotide sequence analysis of the 5'UTR and VP1 regions identified 2 lineages of CVA9 co-circulating during the outbreak, although the VP1 capsid protein sequence was identical as all nucleotide differences were synonymous. There was a unique isoleucine at position 64 and all outbreak viruses had a valine to threonine change in the hypervariable BC loop of VP1. Other HEV types circulating in the preceding period were echovirus 30 (n = 4), echovirus 5 (n = 3) and 1 each of echovirus 6, echovirus 9 and echovirus 15. CONCLUSION CVA9 was identified as the pathogen responsible for the large outbreak of aseptic meningitis, with 2 distinct co-circulating lineages.
Collapse
Affiliation(s)
- Heidi Smuts
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, South Africa and the National Health Laboratory Service, Anzio Road, Observatory, Cape Town, 7925, South Africa.
| | - Sarah Cronje
- Life Bay View Private Hospital, Ryk Tulbach Street & Alhof Drive, De Nova, Mossel Bay, 6506, South Africa
| | - Juno Thomas
- Centre for Enteric Diseases, National Institute for Communicable Diseases, 1 Modderfontein Road, Sandringham, Johannesburg, 2130, South Africa
| | - Delene Brink
- PathCare George Laboratory, 1 Gloucester Avenue, George, 6529, South Africa
| | - Stephen Korsman
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, South Africa and the National Health Laboratory Service, Anzio Road, Observatory, Cape Town, 7925, South Africa
| | - Diana Hardie
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, South Africa and the National Health Laboratory Service, Anzio Road, Observatory, Cape Town, 7925, South Africa
| |
Collapse
|
14
|
Eshaghi A, Duvvuri VR, Isabel S, Banh P, Li A, Peci A, Patel SN, Gubbay JB. Global Distribution and Evolutionary History of Enterovirus D68, with Emphasis on the 2014 Outbreak in Ontario, Canada. Front Microbiol 2017; 8:257. [PMID: 28298902 PMCID: PMC5331033 DOI: 10.3389/fmicb.2017.00257] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/07/2017] [Indexed: 11/25/2022] Open
Abstract
Despite its first appearance in 1962, human enterovirus D68 (EV-D68) has been recognized as an emerging respiratory pathogen in the last decade when it caused outbreaks and clusters in several countries including Japan, the Philippines, and the Netherlands. The most recent and largest outbreak of EV-D68 associated with severe respiratory illness took place in North America between August 2014 and January 2015. Between September 1 and October 31 2014, EV-D68 infection was laboratory confirmed among 153/907 (16.9%) persons tested for the virus in Ontario, Canada, using real time RT-PCR and subsequent genotyping by sequencing of partial VP1 gene. In order to understand the evolutionary history of the 2014 North American EV-D68 outbreak, we conducted phylogenetic and phylodynamic analyses using available partial VP1 genes (n = 469) and NCBI available whole genome sequences (WGS) (n = 38). The global EV-D68 phylogenetic tree (n = 469) reconfirms the divergence of three distinct clades A, B, and C from the prototype EV-D68 Fermon strain as previously documented. Two sub-clades (B1 and B2) were identified, with most 2014 EV-D68 outbreak strains belonging to sub-cluster B2b2 (one of the two emerging clusters within sub-clade B2), with two signature substitutions T650A and M700V in BC and DE loops of VP1 gene, respectively. The close homology between WGS of strains from Ontario (n = 2) and USA (n = 21) in the recent EV-D68 outbreak suggests genetic relatedness and also a common source for the outbreak. The time of most recent common ancestor of EV-D68 and the 2014 EV-D68 outbreak strain suggest that the viruses possibly emerged during 1960-1961 and 2012-2013, respectively. We observed lower mean evolutionary rates of global EV-D68 using WGS data than estimated with partial VP1 gene sequences. Based on WGS data, the estimated mean rate of evolution of the EV-D68 B2b cluster was 9.75 × 10-3 substitutions/site/year (95% BCI 4.11 × 10-3 to 16 × 10-3).
Collapse
Affiliation(s)
- Alireza Eshaghi
- Department of Clinical Laboratory and Microbiology Sciences, Public Health Ontario, TorontoON, Canada
| | - Venkata R. Duvvuri
- Department of Clinical Laboratory and Microbiology Sciences, Public Health Ontario, TorontoON, Canada
| | - Sandra Isabel
- Department of Paediatrics, The Hospital for Sick Children, University of Toronto, TorontoON, Canada
| | - Philip Banh
- Department of Clinical Laboratory and Microbiology Sciences, Public Health Ontario, TorontoON, Canada
| | - Aimin Li
- Department of Clinical Laboratory and Microbiology Sciences, Public Health Ontario, TorontoON, Canada
| | - Adriana Peci
- Department of Clinical Laboratory and Microbiology Sciences, Public Health Ontario, TorontoON, Canada
| | - Samir N. Patel
- Department of Clinical Laboratory and Microbiology Sciences, Public Health Ontario, TorontoON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, TorontoON, Canada
| | - Jonathan B. Gubbay
- Department of Clinical Laboratory and Microbiology Sciences, Public Health Ontario, TorontoON, Canada
- Department of Paediatrics, The Hospital for Sick Children, University of Toronto, TorontoON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, TorontoON, Canada
- Department of Microbiology, Mount Sinai Hospital, TorontoON, Canada
| |
Collapse
|
15
|
Gerba CP, Betancourt WQ, Kitajima M. How much reduction of virus is needed for recycled water: A continuous changing need for assessment? WATER RESEARCH 2017; 108:25-31. [PMID: 27838026 PMCID: PMC7112101 DOI: 10.1016/j.watres.2016.11.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 05/10/2023]
Abstract
To ensure the safety of wastewater reuse for irrigation of food crops and drinking water pathogenic viruses must be reduced to levels that pose no significant risk. To achieve this goal minimum reduction of viruses by treatment trains have been suggested. For use of edible crops a 6-log reduction and for production of potable drinking water a 12-log reduction has been suggested. These reductions were based on assuming infective virus concentrations of 105 to 106 per liter. Recent application of molecular methods suggests that some pathogenic viruses may be occurring in concentrations of 107 to 109 per liter. Factors influencing these levels include the development of molecular methods for virus detection, emergence of newly recognized viruses, decrease in per capita water use due to conservation measures, and outbreaks. Since neither cell culture nor molecular methods can assess all the potentially infectious virus in wastewater conservative estimates should be used to assess the virus load in untreated wastewater. This review indicates that an additional 2- to 3-log reduction of viruses above current recommendations may be needed to ensure the safety of recycled water. Information is needed on peak loading of viruses. In addition, more virus groups need to be quantified using better methods of virus quantification, including more accurate methods for measuring viral infectivity in order to better quantify risks from viruses in recycled water.
Collapse
Affiliation(s)
- Charles P Gerba
- The Water, Energy and Sustainable Technology Center, Department of Soil, Water and Environmental Science, University of Arizona, Tucson, AZ, United States.
| | - Walter Q Betancourt
- The Water, Energy and Sustainable Technology Center, Department of Soil, Water and Environmental Science, University of Arizona, Tucson, AZ, United States.
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan.
| |
Collapse
|
16
|
Deshpande JM, Sharma DK, Saxena VK, Shetty SA, Qureshi THIH, Nalavade UP. Genomic characterization of two new enterovirus types, EV-A114 and EV-A121. J Med Microbiol 2016; 65:1465-1471. [PMID: 27902407 DOI: 10.1099/jmm.0.000380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enteroviruses cause a variety of illnesses of the gastrointestinal tract, central nervous system and cardiovascular system. Phylogenetic analysis of VP1 sequences has identified 106 different human enteroviruses classified into four enterovirus species within the genus Enterovirus of the family Picornaviridae. It is likely that not all enterovirus types have been discovered. Between September 2013 and October 2014, stool samples of 6274 apparently healthy children of up to 5 years of age residing in Gorakhpur district, Uttar Pradesh, India were screened for enteroviruses. Virus isolates obtained in RD and Hep-2c cells were identified by complete VP1 sequencing. Enteroviruses were isolated from 3042 samples. A total of 87 different enterovirus types were identified. Two isolates with 71 and 74 % nucleotide sequence similarity to all other known enteroviruses were recognized as novel types. In this paper we report identification and complete genome sequence analysis of these two isolates classified as EV-A114 and EV-A121.
Collapse
Affiliation(s)
- Jagadish M Deshpande
- Enterovirus Research Centre, Haffkine Institute Compound, AD Marg, Parel, Mumbai, Maharashtra 400012, India
| | - Deepa K Sharma
- Enterovirus Research Centre, Haffkine Institute Compound, AD Marg, Parel, Mumbai, Maharashtra 400012, India
| | - Vinay K Saxena
- Enterovirus Research Centre, Haffkine Institute Compound, AD Marg, Parel, Mumbai, Maharashtra 400012, India
| | - Sushmitha A Shetty
- Enterovirus Research Centre, Haffkine Institute Compound, AD Marg, Parel, Mumbai, Maharashtra 400012, India
| | - Tarique Husain I H Qureshi
- Enterovirus Research Centre, Haffkine Institute Compound, AD Marg, Parel, Mumbai, Maharashtra 400012, India
| | - Uma P Nalavade
- Enterovirus Research Centre, Haffkine Institute Compound, AD Marg, Parel, Mumbai, Maharashtra 400012, India
| |
Collapse
|
17
|
Isolation and Characterization of a Highly Mutated Chinese Isolate of Enterovirus B84 from a Patient with Acute Flaccid Paralysis. Sci Rep 2016; 6:31059. [PMID: 27499334 PMCID: PMC4976325 DOI: 10.1038/srep31059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/13/2016] [Indexed: 12/03/2022] Open
Abstract
Enterovirus B84 (EV-B84) is a newly identified serotype within the species Enterovirus B (EV-B). To date, only ten nucleotide sequences of EV-B84 are published and only one full-length genome sequence (the prototype strain) is available in the GenBank database. Here, a highly mutated EV-B84 (strain AFP452/GD/CHN/2004) was recovered from a patient with acute flaccid paralysis in the Guangdong province of China in 2004 making this the first report of EV-B84 in China. Sequence comparison and phylogenetic dendrogram analysis revealed high variation from the global EV-B84 strains (African and Indian strains) and frequent intertypic recombination in the non-structural protein region, suggesting high genetic diversity in EV-B84. The Chinese EV-B84 strain, apparently evolving independently of the other ten strains, strongly suggests that the EV-B84 strain has been circulating for many years. However, the extremely low isolation rate suggests that it is not a prevalent EV serotype in China or worldwide. This study provides valuable information about the molecular epidemiology of EV-B84 in China, and will be helpful in future studies to understand the association of EV-B84 with neurological disorders; it also helps expand the number of whole virus genome sequences of EV-B84 in the GenBank database.
Collapse
|
18
|
Gong YN, Yang SL, Shih SR, Huang YC, Chang PY, Huang CG, Kao KC, Hu HC, Liu YC, Tsao KC. Molecular evolution and the global reemergence of enterovirus D68 by genome-wide analysis. Medicine (Baltimore) 2016; 95:e4416. [PMID: 27495059 PMCID: PMC4979813 DOI: 10.1097/md.0000000000004416] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Human enterovirus D68 (EV-D68) was first reported in the United States in 1962; thereafter, a few cases were reported from 1970 to 2005, but 2 outbreaks occurred in the Philippines (2008) and the United States (2014). However, little is known regarding the molecular evolution of this globally reemerging virus due to a lack of whole-genome sequences and analyses. Here, all publically available sequences including 147 full and 1248 partial genomes from GenBank were collected and compared at the clade and subclade level; 11 whole genomes isolated in Taiwan (TW) in 2014 were also added to the database. Phylogenetic trees were constructed to identify a new subclade, B3, and represent clade circulations among strains. Nucleotide sequence identities of the VP1 gene were 94% to 95% based on a comparison of subclade B3 to B1 and B2 and 87% to 91% when comparing A, C, and D. The patterns of clade circulation need to be clarified to improve global monitoring of EV-D68, even though this virus showed lower diversity among clades compared with the common enterovirus EV-71. Notably, severe cases isolated from Taiwan and China in 2014 were found in subclade B3. One severe case from Taiwan occurred in a female patient with underlying angioimmunoblastic T-cell lymphoma, from whom a bronchoalveolar lavage specimen was obtained. Although host factors play a key role in disease severity, we cannot exclude the possibility that EV-D68 may trigger clinical symptoms or death. To further investigate the genetic diversity of EV-D68, we reported 34 amino acid (aa) polymorphisms identified by comparing subclade B3 to B1 and B2. Clade D strains had a 1-aa deletion and a 2-aa insertion in the VP1 gene, and 1 of our TW/2014 strains had a shorter deletion in the 5' untranslated region than a previously reported deletion. In summary, a new subclade, genetic indels, and polymorphisms in global strains were discovered elucidating evolutionary and epidemiological trends of EV-D68, and 11 genomes were added to the database. Virus variants may contribute to disease severity and clinical manifestations, and further studies are needed to investigate the associations between genetic diversity and clinical outcomes.
Collapse
Affiliation(s)
- Yu-Nong Gong
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital
| | - Shu-Li Yang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital
- Department of Medical Biotechnology and Laboratory Science
| | - Shin-Ru Shih
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital
- Department of Medical Biotechnology and Laboratory Science
- Research Center for Emerging Viral Infections, Chang Gung University
| | - Yhu-Chering Huang
- Department of Pediatrics, Linkou Chang Gung Memorial Hospital
- College of Medicine, Chang Gung University
| | - Pi-Yueh Chang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital
- Department of Medical Biotechnology and Laboratory Science
| | - Chung-Guei Huang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital
- Department of Medical Biotechnology and Laboratory Science
- Research Center for Emerging Viral Infections, Chang Gung University
| | - Kuo-Chin Kao
- Department of Respiratory Therapy
- Department of Pulmonary and Critical Care Medicine, Linkou Chang Gung Memorial Hospital
- Department of Respiratory Therapy
- Department of Pulmonary and Critical Care Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Han-Chung Hu
- Department of Respiratory Therapy
- Department of Pulmonary and Critical Care Medicine, Linkou Chang Gung Memorial Hospital
- Department of Respiratory Therapy
- Department of Pulmonary and Critical Care Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Chun Liu
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital
| | - Kuo-Chien Tsao
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital
- Department of Medical Biotechnology and Laboratory Science
- Research Center for Emerging Viral Infections, Chang Gung University
- Correspondence: Kuo-ChienTsao, Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan (e-mail: )
| |
Collapse
|
19
|
Tang J, Li Q, Tian B, Zhang J, Li K, Ding Z, Lu L. Complete Genome Analysis of an Enterovirus EV-B83 Isolated in China. Sci Rep 2016; 6:29432. [PMID: 27405393 PMCID: PMC4942604 DOI: 10.1038/srep29432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/16/2016] [Indexed: 11/09/2022] Open
Abstract
Enterovirus B83 (EV-B83) is a recently identified member of enterovirus species B. It is a rarely reported serotype and up to date, only the complete genome sequence of the prototype strain from the United States is available. In this study, we describe the complete genomic characterization of an EV-B83 strain 246/YN/CHN/08HC isolated from a healthy child living in border region of Yunnan Province, China in 2008. Compared with the prototype strain, it had 79.6% similarity in the complete genome and 78.9% similarity in the VP1 coding region, reflecting the great genetic divergence among them. VP1-coding region alignment revealed it had 77.2–91.3% with other EV-B83 sequences available in GenBank. Similarity plot analysis revealed it had higher identity with several other EV-B serotypes than the EV-B83 prototype strain in the P2 and P3 coding region, suggesting multiple recombination events might have occurred. The great genetic divergence with previously isolated strains and the extremely rare isolation suggest this serotype has circulated at a low epidemic strength for many years. This is the first report of complete genome of EV-B83 in China.
Collapse
Affiliation(s)
- Jingjing Tang
- Yunnan Center for Disease Control and Prevention, Kunming, Yunnan Province, People's Republic of China
| | - Qiongfen Li
- Yunnan Center for Disease Control and Prevention, Kunming, Yunnan Province, People's Republic of China
| | - Bingjun Tian
- Yunnan Center for Disease Control and Prevention, Kunming, Yunnan Province, People's Republic of China
| | - Jie Zhang
- Yunnan Center for Disease Control and Prevention, Kunming, Yunnan Province, People's Republic of China
| | - Kai Li
- Yunnan Center for Disease Control and Prevention, Kunming, Yunnan Province, People's Republic of China
| | - Zhengrong Ding
- Yunnan Center for Disease Control and Prevention, Kunming, Yunnan Province, People's Republic of China
| | - Lin Lu
- Yunnan Center for Disease Control and Prevention, Kunming, Yunnan Province, People's Republic of China
| |
Collapse
|
20
|
Opanda SM, Wamunyokoli F, Khamadi S, Coldren R, Bulimo WD. Genotyping of enteroviruses isolated in Kenya from pediatric patients using partial VP1 region. SPRINGERPLUS 2016; 5:158. [PMID: 27026855 PMCID: PMC4766141 DOI: 10.1186/s40064-016-1834-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/15/2016] [Indexed: 01/12/2023]
Abstract
Enteroviruses (EV) are responsible for a wide range of clinical diseases in humans. Though studied broadly in several regions of the world, the genetic diversity of human enteroviruses (HEV) circulating in the sub-Saharan Africa remains under-documented. In the current study, we molecularly typed 61 HEV strains isolated in Kenya between 2008 and 2011 targeting the 3′-end of the VP1 gene. Viral RNA was extracted from the archived isolates and part of the VP1 gene amplified by RT-PCR, followed by sequence analysis. Twenty-two different EV types were detected. Majority (72.0 %) of these belonged to Enterovirus B species followed by Enterovirus D (21.3 %) and Enterovirus A (6.5 %). The most frequently detected types were Enterovirus-D68 (EV-D68), followed by Coxsackievirus B2 (CV-B2), CV-B1, CV-B4 and CV-B3. Phylogenetic analyses of these viruses revealed that Kenyan CV-B1 isolates were segregated among sequences of global CV-B1 strains. Conversely, the Kenyan CV-B2, CV-B3, CV-B4 and EV-D68 strains generally grouped together with those detected from other countries. Notably, the Kenyan EV-D68 strains largely clustered with sequences of global strains obtained between 2008 and 2010 than those circulating in recent years. Overall, our results indicate that HEV strains belonging to Enterovirus D and Enterovirus B species pre-dominantly circulated and played a significant role in pediatric respiratory infection in Kenya, during the study period. The Kenyan CV-B1 strains were genetically divergent from those circulating in other countries. Phylogenetic clustering of Kenyan EV-D68 strains with sequences of global strains circulating between 2008 and 2010 than those obtained in recent years suggests a high genomic variability associated with the surface protein encoding VP1 gene in these enteroviruses.
Collapse
Affiliation(s)
- Silvanos M Opanda
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Kenya, P.O. Box 606-00621, Nairobi, Kenya ; College of Health Sciences (COHES), Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Fred Wamunyokoli
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Samoel Khamadi
- The Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | - Rodney Coldren
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Kenya, P.O. Box 606-00621, Nairobi, Kenya
| | - Wallace D Bulimo
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Kenya, P.O. Box 606-00621, Nairobi, Kenya ; Department of Biochemistry, School of Medicine, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
21
|
Sporadic isolation of sabin-like polioviruses and high-level detection of non-polio enteroviruses during sewage surveillance in seven Italian cities, after several years of inactivated poliovirus vaccination. Appl Environ Microbiol 2015; 80:4491-501. [PMID: 24814793 DOI: 10.1128/aem.00108-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sewage surveillance in seven Italian cities between 2005 and 2008, after the introduction of inactivated poliovirus vaccination (IPV) in 2002, showed rare polioviruses, none that were wild-type or circulating vaccine-derived poliovirus (cVDPV), and many other enteroviruses among 1,392 samples analyzed. Two of five polioviruses (PV) detected were Sabin-like PV2 and three PV3, based on enzyme-linked immunosorbent assay (ELISA) and PCR results. Neurovirulence-related mutations were found in the 5'noncoding region (5'NCR) of all strains and, for a PV2, also in VP1 region 143 (Ile>Thr). Intertypic recombination in the 3D region was detected in a second PV2 (Sabin 2/Sabin 1) and a PV3 (Sabin 3/Sabin 2). The low mutation rate in VP1 for all PVs suggests limited interhuman virus passages, consistent with efficient polio immunization in Italy. Nonetheless, these findings highlight the risk of wild or Sabin poliovirus reintroduction from abroad. Non-polio enteroviruses (NPEVs) were detected, 448 of which were coxsackievirus B (CVB) and 294 of which were echoviruses (Echo). Fifty-six NPEVs failing serological typing were characterized by sequencing the VP1 region (nucleotides [nt] 2628 to 2976). A total of 448 CVB and 294 Echo strains were identified; among those strains, CVB2, CVB5, and Echo 11 predominated. Environmental CVB5 and CVB2 strains from this study showed high sequence identity with GenBank global strains. The high similarity between environmental NPEVs and clinical strains from the same areas of Italy and the same periods indicates that environmental strains reflect the viruses circulating in the population and highlights the potential risk of inefficient wastewater treatments. This study confirmed that sewage surveillance can be more sensitive than acute flaccid paralysis (AFP) surveillance in monitoring silent poliovirus circulation in the population as well as the suitability of molecular approaches to enterovirus typing.
Collapse
|
22
|
Imamura T, Oshitani H. Global reemergence of enterovirus D68 as an important pathogen for acute respiratory infections. Rev Med Virol 2014; 25:102-14. [PMID: 25471236 PMCID: PMC4407910 DOI: 10.1002/rmv.1820] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 11/09/2022]
Abstract
We previously detected enterovirus D68 (EV-D68) in children with severe acute respiratory infections in the Philippines in 2008-2009. Since then, the detection frequency of EV-D68 has increased in different parts of the world, and EV-D68 is now recognized as a reemerging pathogen. However, the epidemiological profile and clinical significance of EV-D68 is yet to be defined, and the virological characteristics of EV-D68 are not fully understood. Recent studies have revealed that EV-D68 is detected among patients with acute respiratory infections of differing severities ranging from mild upper respiratory tract infections to severe pneumonia including fatal cases in pediatric and adult patients. In some study sites, the EV-D68 detection rate was higher among patients with lower respiratory tract infections than among those with upper respiratory tract infections, suggesting that EV-D68 infections are more likely to be associated with severe respiratory illnesses. EV-D68 strains circulating in recent years have been divided into three distinct genetic lineages with different antigenicity. However, the association between genetic differences and disease severity, as well as the occurrence of large-scale outbreaks, remains elusive. Previous studies have revealed that EV-D68 is acid sensitive and has an optimal growth temperature of 33 °C. EV-D68 binds to α2,6-linked sialic acids; hence, it is assumed that it has an affinity for the upper respiratory track where these glycans are present. However, the lack of suitable animal model constrains comprehensive understanding of the pathogenesis of EV-D68.
Collapse
|
23
|
Angez M, Shaukat S, Zahra R, Khurshid A, Sharif S, Alam MM, Zaidi SSZ. Molecular epidemiology of enterovirus B77 isolated from non polio acute flaccid paralytic patients in Pakistan during 2013. INFECTION GENETICS AND EVOLUTION 2014; 29:189-95. [PMID: 25433133 DOI: 10.1016/j.meegid.2014.11.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/02/2014] [Accepted: 11/22/2014] [Indexed: 01/09/2023]
Abstract
Human enteroviruses are associated with various clinical syndromes and severe neurological disorders. The aim of this study was to determine the molecular epidemiology of non polio enteroviruses and their correlation with acute flaccid paralysis (AFP) patients living in Khyber Pakhtunkhwa (KP) and Federally Administered Tribal Areas (FATA) of Pakistan. The stool samples collected from these patients were used for isolation of non polio enteroviruses (NPEVs). Out of 38 samples, 29 (76.3%) were successfully typed by microneutralization assay into eleven serotypes including echovirus (E)-3 (5.3%), E-7 (2.6%), E-11 (13.2%), E-12 (7.9%), E-13 (10.5%), E-20 (7.9%), E-27 (5.3%), E-29 (10.5%), E-30 (7.9%), E-33 (2.6%), coxsackievirus (CV) B5 (2.6%) and nine isolates (23.7%) remained untyped which were confirmed as NPEVs by real time RT-PCR. Complete VP1 genetic sequencing data characterized untypeable isolates into enterovirus B77 (EV-B77). Moreover, molecular phylogenetic analysis classified these viruses into two new genotypes having high genetic diversity (at least 17.7%) with prototype. This study provides valuable information on extensive genetic diversity of EV-B77 genotypes. Although, its association with neurological disorder has not yet been known but isolation of nine EV-B77 viruses from AFP cases highlights the fact that they may have a contributing role in the etiology of AFP. In addition, it is needed to establish enterovirus surveillance system and laboratory diagnostic facilities for early detection of NPEVs that may cause poliomyelitis like paralysis especially in the situation when we are at the verge of polio eradication.
Collapse
Affiliation(s)
- Mehar Angez
- Department of Virology, National Institute of Health, Chak Shahzad, Park Road, Islamabad 45500, Pakistan; Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Shahzad Shaukat
- Department of Virology, National Institute of Health, Chak Shahzad, Park Road, Islamabad 45500, Pakistan.
| | - Rabaab Zahra
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Adnan Khurshid
- Department of Virology, National Institute of Health, Chak Shahzad, Park Road, Islamabad 45500, Pakistan.
| | - Salmaan Sharif
- Department of Virology, National Institute of Health, Chak Shahzad, Park Road, Islamabad 45500, Pakistan.
| | - Muhammad Masroor Alam
- Department of Virology, National Institute of Health, Chak Shahzad, Park Road, Islamabad 45500, Pakistan.
| | - Syed Sohail Zahoor Zaidi
- Department of Virology, National Institute of Health, Chak Shahzad, Park Road, Islamabad 45500, Pakistan.
| |
Collapse
|
24
|
Junttila N, Lévêque N, Magnius L, Kabue J, Muyembe-Tamfum JJ, Maslin J, Lina B, Norder H. Complete coding regions of the prototypes enterovirus B93 and C95: Phylogenetic analyses of the P1 and P3 regions of EV-B and EV-C strains. J Med Virol 2014; 87:485-97. [DOI: 10.1002/jmv.24062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2014] [Indexed: 01/30/2023]
Affiliation(s)
- N. Junttila
- MTC; Karolinska Institutet; Stockholm Sweden
| | - N. Lévêque
- Clinical and Molecular Virology Unit; University Hospital Faculty of Medicine; Reims France
- Laboratory of Virology, National Enterovirus Laboratory; Hospices Civils de Lyon; France
| | | | - J.P. Kabue
- National Institute of Biomedical Research; Kinshasa, Democratic Republic of the Congo
| | - J. J. Muyembe-Tamfum
- National Institute of Biomedical Research; Kinshasa, Democratic Republic of the Congo
| | - J. Maslin
- Department of Biology; Saint-Anne Military Hospital; Toulon France
| | - B. Lina
- Laboratory of Virology, National Enterovirus Laboratory; Hospices Civils de Lyon; France
| | - H. Norder
- MTC; Karolinska Institutet; Stockholm Sweden
- Department of Infectious Diseases/Section of Clinical Virology; Institute of Biomedicine; University of Gothenburg; Gothenburg Sweden
| |
Collapse
|
25
|
Non-polio enteroviruses from acute flaccid paralysis surveillance in Shandong Province, China, 1988-2013. Sci Rep 2014; 4:6167. [PMID: 25145609 PMCID: PMC4141246 DOI: 10.1038/srep06167] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/04/2014] [Indexed: 12/04/2022] Open
Abstract
Enteroviruses (EVs) are important human pathogens associated with various clinical syndromes. This study represents an overview of non-polio enteroviruses (NPEVs) isolated from acute flaccid paralysis (AFP) surveillance in Shandong Province, China from 1988 to 2013. Altogether 792 and 170 NPEV isolates were isolated from stool specimens of 9263 AFP cases and 1059 contacts, respectively. Complete VP1 sequencing and typing on all 962 isolates revealed 53 NPEV types in which echovirus (E) 6 (7.6%), E14 (7.6%), E11 (7.4%), coxsackievirus (CV) B3 (7.4%), E25 (5.6%), CVB5 (4.9%), E7 (4.5%) and EV-A71 (4.4%) were the eight most commonly reported serotypes. Distinct summer–fall seasonality was observed, with June–October accounting for 79.3% of isolation from AFP cases with known month of specimen collection. Increase of isolation of EV-A71 and CVA—the predominant pathogens for the hand, foot, and mouth disease—was observed in recent years. Sequence analysis on VP1 coding region of EV-A71 and E6 suggested Shandong strains had great genetic divergence with isolates from other countries. The results described in this study provide valuable information on the circulation and emergence of different EV types in the context of limited EV surveillance in China.
Collapse
|
26
|
Oyero OG, Adu FD, Ayukekbong JA. Molecular characterization of diverse species enterovirus-B types from children with acute flaccid paralysis and asymptomatic children in Nigeria. Virus Res 2014; 189:189-93. [DOI: 10.1016/j.virusres.2014.05.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 01/17/2023]
|
27
|
Opanda SM, Wamunyokoli F, Khamadi S, Coldren R, Bulimo WD. Genetic diversity of human enterovirus 68 strains isolated in Kenya using the hypervariable 3'-end of VP1 gene. PLoS One 2014; 9:e102866. [PMID: 25054861 PMCID: PMC4108357 DOI: 10.1371/journal.pone.0102866] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/23/2014] [Indexed: 11/18/2022] Open
Abstract
Reports of increasing worldwide circulation of human enterovirus-68 (EV68) are well documented. Despite health concerns posed by resurgence of these viruses, little is known about EV68 strains circulating in Kenya. In this study, we characterized 13 EV68 strains isolated in Kenya between 2008 and 2011 based on the Hypervariable 3'-end of the VP1 gene. Viral RNA was extracted from the isolates and partial VP1 gene amplified by RT-PCR, followed by nucleotide sequencing. Alignment of deduced amino acid sequences revealed substitutions in Kenyan EV68 isolates absent in the prototype reference strain (Fermon). The majority of these changes were present in the BC and DE-loop regions, which are associated with viral antigenicity and virulence. The Kenyan strains exhibited high sequence homology with respect to those from other countries. Natural selection analysis based on the VP1 region showed that the Kenyan EV68 isolates were under purifying selection. Phylogenetic analysis revealed that majority (84.6%) of the Kenyan strains belonged to clade A, while a minority belonged to clades B and C. Overall, our results illustrate that although EV68 strains isolated in Kenya were genetically and antigenically divergent from the prototype strain (Fermon), they were closely related to those circulating in other countries, suggesting worldwide transmissibility. Further, the presence of shared mutations by Kenyan EV68 strains and those isolated in other countries, indicates evolution in the VP1 region may be contributing to increased worldwide detection of the viruses. This is the first study to document circulation of EV68 in Kenya.
Collapse
Affiliation(s)
- Silvanos M. Opanda
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Unit-Kenya (USAMRU-K), Nairobi, Kenya
- College of Health Sciences (COHES), Jomo Kenyatta University of Agriculture and Technology, (JKUAT), Nairobi, Kenya
| | - Fred Wamunyokoli
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, (JKUAT), Nairobi, Kenya
| | - Samoel Khamadi
- The Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | - Rodney Coldren
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Unit-Kenya (USAMRU-K), Nairobi, Kenya
| | - Wallace D. Bulimo
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Unit-Kenya (USAMRU-K), Nairobi, Kenya
- * E-mail:
| |
Collapse
|
28
|
Zhou F, Wang Q, Sintchenko V, Gilbert GL, O'Sullivan MVN, Iredell JR, Dwyer DE. Use of the 5' untranslated region and VP1 region to examine the molecular diversity in enterovirus B species. J Med Microbiol 2014; 63:1339-1355. [PMID: 25038138 DOI: 10.1099/jmm.0.074682-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human enteroviruses evolve quickly. The 5' untranslated region (UTR) is fundamentally important for efficient viral replication and for virulence; the VP1 region correlates well with antigenic typing by neutralization, and can be used for virus identification and evolutionary studies. In order to investigate the molecular diversity in EV-B species, the 5' UTR and VP1 regions were analysed for 208 clinical isolates from a single public-health laboratory (serving New South Wales, Australia), representing 28 EV-B types. Sequences were compared with the 5' UTR and VP1 regions of 98 strains available in GenBank, representing the same 28 types. The genetic relationships were analysed using two types of software (mega and BioNumerics). The sequence analyses of the 5' UTR and VP1 regions of 306 EV-B strains demonstrated that: (i) comparing the two regions gives strong evidence of epidemiological linkage of strains in some serotypes; (ii) the intraserotypic genetic variation within each gene reveals that they evolve distinctly largely due to their different functions; and (iii) mutation and possible recombination in the two regions play significant roles in the molecular diversity of EV-B. Understanding the tempo and pattern of molecular diversity and evolution is of great importance in the pathogenesis of EV-B enteroviruses, information which will assist in disease prevention and control.
Collapse
Affiliation(s)
- Fei Zhou
- Centre for Infectious Diseases and Microbiology (CIDM), Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia
| | - Qinning Wang
- Centre for Infectious Diseases and Microbiology (CIDM), Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology (CIDM), Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia
| | - Gwendolyn L Gilbert
- Centre for Infectious Diseases and Microbiology (CIDM), Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia
| | - Matthew V N O'Sullivan
- Centre for Infectious Diseases and Microbiology (CIDM), Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia
| | - Jonathan R Iredell
- Centre for Infectious Diseases and Microbiology (CIDM), Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia
| | - Dominic E Dwyer
- Centre for Infectious Diseases and Microbiology (CIDM), Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
29
|
Puenpa J, Mauleekoonphairoj J, Linsuwanon P, Suwannakarn K, Chieochansin T, Korkong S, Theamboonlers A, Poovorawan Y. Prevalence and characterization of enterovirus infections among pediatric patients with hand foot mouth disease, herpangina and influenza like illness in Thailand, 2012. PLoS One 2014; 9:e98888. [PMID: 24887237 PMCID: PMC4041783 DOI: 10.1371/journal.pone.0098888] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 05/07/2014] [Indexed: 12/18/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) and herpangina are common infectious diseases caused by several genotypes of human enterovirus species A and frequently occurring in young children. This study was aimed at analyzing enteroviruses from patients with these diseases in Thailand in 2012. Detection and genotype determination of enteroviruses were accomplished by reverse transcription-polymerase chain reaction and sequencing of the VP1 region. Enterovirus-positive samples were differentiated into 17 genotypes (coxsackievirus A4 (CAV4), A5, A6, A8, A9, A10, A12, A16, A21, B1, B2, B4, B5, echovirus 7, 16, 25 and Enterovirus 71). The result showed CAV6 (33.5%), followed by CAV16 (9.4%) and EV71 (8.8%) as the most frequent genotypes in HFMD, CAV8 (19.3%) in herpangina and CAV6 (1.5%) in influenza like illness. Enterovirus infections were most prevalent during July with 34.4% in HFMD, 39.8% in herpangina and 1.6% in ILI. The higher enterovirus infection associated with HFMD and herpangina occurred in infants over one year-old. This represents the first report describing the circulation of multiple enteroviruses in Thailand.
Collapse
Affiliation(s)
- Jiratchaya Puenpa
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - John Mauleekoonphairoj
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Piyada Linsuwanon
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kamol Suwannakarn
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thaweesak Chieochansin
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sumeth Korkong
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Apiradee Theamboonlers
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
30
|
Complete genome characterization of a novel enterovirus type EV-B106 isolated in China, 2012. Sci Rep 2014; 4:4255. [PMID: 24584702 PMCID: PMC3939458 DOI: 10.1038/srep04255] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 02/13/2014] [Indexed: 11/19/2022] Open
Abstract
Human enterovirus B106 (EV-B106) is a recently identified member of enterovirus species B. In this study, we report the complete genomic characterization of an EV-B106 strain (148/YN/CHN/12) isolated from an acute flaccid paralysis patient in Yunnan Province, China. The new strain had 79.2–81.3% nucleotide and 89.1–94.8% amino acid similarity in the VP1 region with the other two EV-B106 strains from Bolivia and Pakistan. When compared with other EV serotypes, it had the highest (73.3%) VP1 nucleotide similarity with the EV-B77 prototype strain CF496-99. However, when aligned with all EV-B106 and EV-B77 sequences available from the GenBank database, two major frame shifts were observed in the VP1 coding region, which resulted in substantial (20.5%) VP1 amino acid divergence between the two serotypes. Phylogenetic analysis and similarity plot analysis revealed multiple recombination events in the genome of this strain. This is the first report of the complete genome of EV-B106.
Collapse
|
31
|
Zhang Y, Hong M, Sun Q, Zhu S, Tsewang, Li X, Yan D, Wang D, Xu W. Molecular typing and characterization of a new serotype of human enterovirus (EV-B111) identified in China. Virus Res 2014; 183:75-80. [PMID: 24503225 DOI: 10.1016/j.virusres.2014.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 11/29/2022]
Abstract
Molecular methods, based on sequencing the region encoding the complete VP1 or P1 protein, have enabled the rapid identification of new enterovirus serotypes. In the present study, the complete genome of a newly discovered enterovirus serotype, strain Q0011/XZ/CHN/2000 (hereafter referred to as Q0011), was sequenced and analyzed. The virus, isolated from a stool sample from a patient with acute flaccid paralysis in the Tibet region of China in 2000, was characterized by amplicon sequencing and comparison to a GenBank database of enterovirus nucleotide sequences. The nucleotide sequence encoding the complete VP1 capsid protein is most closely related to the sequences of viruses within the species enterovirus B (EV-B), but is less than 72.1% identical to the homologous sequences of the recognized human enterovirus serotypes, with the greatest homology to EV-B101 and echovirus 32. Moreover, the deduced amino acid sequence of the complete VP1 region is less than 84.7% identical to those of the recognized serotypes, suggesting that the strain is a new serotype of enterovirus within EV-B. The virus was characterized as a new enterovirus type, named EV-B111, by the Picornaviridae Study Group of the International Committee on Taxonomy of Viruses. Low positive rate and titer of neutralizing antibody against EV-B111 were found in the Tibet region of China. Nearly 50% of children ≤5 years had no neutralizing antibody against EV-B111. So the extent of transmission and the exposure of the population to this new EV are very limited. This is the first identification of a new serotype of human enterovirus in China, and strain Q0011 was designated the prototype strain of EV-B111.
Collapse
Affiliation(s)
- Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Mei Hong
- Tibet Center for Disease Control and Prevention, Lhasa City, Tibet Autonomous Region, People's Republic of China
| | - Qiang Sun
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Shuangli Zhu
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Tsewang
- Tibet Center for Disease Control and Prevention, Lhasa City, Tibet Autonomous Region, People's Republic of China
| | - Xiaolei Li
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Dongmei Yan
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Dongyan Wang
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China.
| |
Collapse
|
32
|
Abstract
UNLABELLED Increased detection of enterovirus 68 (EV68) among patients with acute respiratory infections has been reported from different parts of the world in the late 2000s since its first detection in pediatric patients with lower-respiratory-tract infections in 1962. However, the underlying molecular mechanisms for this trend are still unknown. We therefore aimed to study the antigenicity and receptor binding properties of EV68 detected in recent years in comparison to the prototype strain of EV68, the Fermon strain. We first performed neutralization (NT) and hemagglutination inhibition (HI) tests using antisera generated for EV68 strains detected in recent years. We found that the Fermon strain had lower HI and NT titers than recently detected EV68 strains. The HI and NT titers were also significantly different between strains of different genetic lineages among recently detected EV68 strains. We further studied receptor binding specificities of EV68 strains for sialyloligosaccharides using glycan array analysis. In glycan array analysis, all tested EV68 strains showed affinity for α2-6-linked sialic acids (α2-6 SAs) compared to α2-3 SAs. Our study demonstrates that emergence of strains with different antigenicity is the possible reason for the increased detection of EV68 in recent years. Additionally, we found that EV68 preferably binds to α2-6 SAs, which suggests that EV68 might have affinity for the upper respiratory tract. IMPORTANCE Numbers of cases of enterovirus 68 (EV68) infection in different parts of the world increased significantly in the late 2000s. We studied the antigenicity and receptor binding properties of recently detected EV68 strains in comparison to the prototype strain of EV68, Fermon. The hemagglutination inhibition (HI) and neutralization (NT) titers were significantly different between strains of different genetic lineages among recently detected EV68 strains. We further studied receptor binding specificities of EV68 strains for sialyloligosaccharides using glycan array analysis, which showed affinity for α2-6-linked sialic acids (α2-6 SAs) compared to α2-3 SAs. Our study suggested that the emergence of strains with different antigenicities was the possible reason for the increased detections of EV68 in recent years. Additionally, we revealed that EV68 preferably binds to α2-6 SAs. This is the first report describing the properties of EV68 receptor binding to the specific types of sialic acids.
Collapse
|
33
|
Peacey M, Hall RJ, Wang J, Todd AK, Yen S, Chan-Hyams J, Rand CJ, Stanton JA, Huang QS. Enterovirus 74 infection in children. PLoS One 2013; 8:e76492. [PMID: 24098514 PMCID: PMC3788726 DOI: 10.1371/journal.pone.0076492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 08/29/2013] [Indexed: 11/19/2022] Open
Abstract
Enterovirus 74 (EV74) is a rarely detected viral infection of children. In 2010, EV74 was identified in New Zealand in a 2 year old child with acute flaccid paralysis (AFP) through routine polio AFP surveillance. A further three cases of EV74 were identified in children within six months. These cases are the first report of EV74 in New Zealand. In this study we describe the near complete genome sequence of four EV74 isolates from New Zealand, which shows only limited sequence identity in the non-structural proteins when compared to the other two known EV74 sequences. As is typical of enteroviruses multiple recombination events were evident, particularly in the P2 region and P3 regions. This is the first complete EV74 genome sequenced from a patient with acute flaccid paralysis.
Collapse
Affiliation(s)
- Matthew Peacey
- Clinical Virology, The Institute of Environmental Science and Research, National Centre for Biosecurity and Infectious Disease, Wellington, New Zealand
- * E-mail:
| | - Richard J. Hall
- Clinical Virology, The Institute of Environmental Science and Research, National Centre for Biosecurity and Infectious Disease, Wellington, New Zealand
| | - Jing Wang
- Clinical Virology, The Institute of Environmental Science and Research, National Centre for Biosecurity and Infectious Disease, Wellington, New Zealand
| | - Angela K. Todd
- Clinical Virology, The Institute of Environmental Science and Research, National Centre for Biosecurity and Infectious Disease, Wellington, New Zealand
| | - Seiha Yen
- Clinical Virology, The Institute of Environmental Science and Research, National Centre for Biosecurity and Infectious Disease, Wellington, New Zealand
| | - Jasmine Chan-Hyams
- Clinical Virology, The Institute of Environmental Science and Research, National Centre for Biosecurity and Infectious Disease, Wellington, New Zealand
| | - Christy J. Rand
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Jo-Ann Stanton
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Q. Sue Huang
- Clinical Virology, The Institute of Environmental Science and Research, National Centre for Biosecurity and Infectious Disease, Wellington, New Zealand
| |
Collapse
|
34
|
Huang YP, Lin TL, Chen YJ, Hsu CC, Lin TH, Wu HS. Phylogenetic analysis and development of an immunofluorescence assay for untypeable strains of coxsackievirus B3. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2013; 47:447-54. [PMID: 23993765 DOI: 10.1016/j.jmii.2013.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/22/2013] [Accepted: 07/10/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND/PURPOSE In recent years, coxsackievirus B3 (CV-B3) has been determined as a dominant enterovirus serotype that may cause severe complications in patients. Since 2008 in Taiwan, some enterovirus isolates have been regarded as untypeable [by employing commercial immunofluorescence assay (IFA) kits]. In 2012, the number of isolates increased. Genetic sequence analysis further confirmed that CV-B3 was present in most of the untypeable viruses. METHODS Isolates of CV-B3 were collected for basic local alignment search tool (BLAST) analysis and for phylogenetic analyses, based on VP1 gene sequences. In addition, the Taiwan Centers for Disease Control (Taiwan CDC) developed an in-house indirect IFA using polyclonal antibodies (e.g., rabbit antisera) for diagnosis. The sensitivity and specificity were both evaluated by testing 61 reference enteroviruses and 307 local enteroviruses that were isolated between 1998 and 2010. RESULTS Based on the results of the BLAST and phylogenetic analyses, five main genogroups (i.e., GI-GV) were classified and the reference strains in Taiwan in previous years were primarily clustered in the GV-A subgenogroup. However, the 15 CV-B3 isolates recently analyzed in this study were classified in four different groups: GIII, GIV, GV-A, and GV-B. Among these 15 isolates, all 10 isolates in the GV-B group were initially reported as untypeable nonpolio enteroviruses when using commercial kits. The conditions of the in-house indirect IFA were optimized by checkerboard titration, thereby resulting in a sensitivity of 100% and a specificity of 98.5%. CONCLUSION This is the first report describing the phylogenetic relatedness of recent CV-B3 strains in Taiwan. An indirect IFA kit was developed by the Taiwan CDC for detecting CV-B3 viruses that are untypeable by commercial IFA kits.
Collapse
Affiliation(s)
- Yuan-Pin Huang
- Research and Diagnostic Center, Centers for Disease Control, Department of Health, Taipei, Taiwan, ROC
| | - Tsuey-Li Lin
- Research and Diagnostic Center, Centers for Disease Control, Department of Health, Taipei, Taiwan, ROC
| | - Yu-Ju Chen
- Research and Diagnostic Center, Centers for Disease Control, Department of Health, Taipei, Taiwan, ROC
| | - Chiu-Chu Hsu
- Research and Diagnostic Center, Centers for Disease Control, Department of Health, Taipei, Taiwan, ROC
| | - Ting-Han Lin
- Research and Diagnostic Center, Centers for Disease Control, Department of Health, Taipei, Taiwan, ROC
| | - Ho-Sheng Wu
- Research and Diagnostic Center, Centers for Disease Control, Department of Health, Taipei, Taiwan, ROC; School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan, ROC.
| |
Collapse
|
35
|
Pellegrinelli L, Binda S, Chiaramonte I, Primache V, Fiore L, Battistone A, Fiore S, Gambino M, Bubba L, Barbi M. Detection and distribution of culturable Human Enteroviruses through environmental surveillance in Milan, Italy. J Appl Microbiol 2013; 115:1231-9. [PMID: 23910458 DOI: 10.1111/jam.12321] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/05/2013] [Accepted: 07/28/2013] [Indexed: 12/22/2022]
Abstract
AIMS Human Enteroviruses (HEVs) infections have a significant impact on public health, being implicated in outbreaks of meningitis, encephalitis, hand-foot-mouth disease and other acute and chronic manifestation. In the strategic plan for poliomyelitis eradication, the environmental surveillance of poliovirus (PV) has been identified by the World Health Organization (WHO) as an activity that can complement the surveillance of polio. Having wastewater samples available for PV surveillance allows us to study nonpolio enteroviruses (NPEVs) circulating in the study population, which are widely spread. METHODS AND RESULTS This study was carried out according to the WHO guidelines for environmental surveillance of PV and analysed the circulation of PV and NPEVs through the isolation of viruses in cell cultures in Milan area; from 2006 to 2010, 321 wastewater samples were collected, regularly over time, at the inlet of three diverse waste water treatment plants (WWTPs). Culturable HEVs were isolated in 80% of sewage samples: all isolates belonged to the HEV-B group and those circulating more intensely were CVB5 and Echo 6, while CVB4 was the predominant serotype found in 2010. In this study, two type 2 PVs were isolated, both characterized as Sabin like. CONCLUSION Environmental monitoring of HEVs in Milan has proved to be an interesting tool to investigate the circulation and distribution of viruses. SIGNIFICANCE AND IMPACT OF THE STUDY The detection of PV and other NPEV could be predictive of possible re-emergence of these viruses with an impact on public health. NPEV monitoring could also be a powerful public health tool to investigate the possible role of NPEV in different clinical manifestations.
Collapse
Affiliation(s)
- L Pellegrinelli
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Xiao H, Guan D, Chen R, Chen P, Monagin C, Li W, Su J, Ma C, Zhang W, Ke C. Molecular characterization of echovirus 30-associated outbreak of aseptic meningitis in Guangdong in 2012. Virol J 2013; 10:263. [PMID: 23968330 PMCID: PMC4016494 DOI: 10.1186/1743-422x-10-263] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 08/20/2013] [Indexed: 11/10/2022] Open
Abstract
Background Evaluation of the primary etiologic agents that cause aseptic meningitis outbreaks may provide valuable information regarding the prevention and management of aseptic meningitis. An outbreak of aseptic meningitis occurred from May to June, 2012, in Guangdong Province, China. In order to determine the etiologic agent, CSF specimens from 121 children hospitalized for aseptic meningitis at Luoding People’s Hospital of Guangdong Province were tested for virus isolation and identification. Results Enterovirus RNA was positive in 62.0% of 121 CSF sspecimens by real-time polymerase chain reaction (RT-PCR). Amplification and sequencing of the VP1 region of enterovirus isolates revealed Echovirus 30 (E30) was the most common isolated serotype (80% of 40 enterovirus strains).For the molecular characterization of the E30 isolates, the VP1 gene sequence of 20 Luoding E30 isolates was compared pairwise using the MegAlign with reference strains from GenBank. The pairwise comparison of the nucleotide sequences of the VP1 genes demonstrated that the sequences of the strains differed from those of lineage groups C, D, E, F, and G. Reconstruction of the phylogenetic tree based on the VP1 nucleotide sequences resulted in a monophyletic tree, with seven clustered lineage groups. Most of the isolates were segregated from other lineage groups. Four E30 isolates causing this outbreak aggregated into the Lineage A cluster which was derived from E30 strains that circulated in other regions of China from 2003–2010. Conclusions This study demonstrated the Luoding strains were a distinct lineage of E30, and a probable cause of this outbreak. The study also demonstrated that different E30 variants existed in the local meningitis outbreak.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Changwen Ke
- Key Laboratory for Emergency Pathogen Detection, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, Guangdong, China.
| |
Collapse
|
37
|
McIntyre CL, Knowles NJ, Simmonds P. Proposals for the classification of human rhinovirus species A, B and C into genotypically assigned types. J Gen Virol 2013; 94:1791-1806. [PMID: 23677786 PMCID: PMC3749525 DOI: 10.1099/vir.0.053686-0] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human rhinoviruses (HRVs) frequently cause mild upper respiratory tract infections and more severe disease manifestations such as bronchiolitis and asthma exacerbations. HRV is classified into three species within the genus Enterovirus of the family Picornaviridae. HRV species A and B contain 75 and 25 serotypes identified by cross-neutralization assays, although the use of such assays for routine HRV typing is hampered by the large number of serotypes, replacement of virus isolation by molecular methods in HRV diagnosis and the poor or absent replication of HRV species C in cell culture. To address these problems, we propose an alternative, genotypic classification of HRV-based genetic relatedness analogous to that used for enteroviruses. Nucleotide distances between 384 complete VP1 sequences of currently assigned HRV (sero)types identified divergence thresholds of 13, 12 and 13 % for species A, B and C, respectively, that divided inter- and intra-type comparisons. These were paralleled by 10, 9.5 and 10 % thresholds in the larger dataset of >3800 VP4 region sequences. Assignments based on VP1 sequences led to minor revisions of existing type designations (such as the reclassification of serotype pairs, e.g. A8/A95 and A29/A44, as single serotypes) and the designation of new HRV types A101–106, B101–103 and C34–C51. A protocol for assignment and numbering of new HRV types using VP1 sequences and the restriction of VP4 sequence comparisons to type identification and provisional type assignments is proposed. Genotypic assignment and identification of HRV types will be of considerable value in the future investigation of type-associated differences in disease outcomes, transmission and epidemiology.
Collapse
Affiliation(s)
- Chloe L McIntyre
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH15 9RG, UK
| | - Nick J Knowles
- Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Peter Simmonds
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH15 9RG, UK
| |
Collapse
|
38
|
Virus detection and semiquantitation in explanted heart tissues of idiopathic dilated cardiomyopathy adult patients by use of PCR coupled with mass spectrometry analysis. J Clin Microbiol 2013; 51:2288-94. [PMID: 23658274 DOI: 10.1128/jcm.00820-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral detection in heart tissues has become a central issue for the diagnosis and exploration of the pathogenesis of idiopathic dilated cardiomyopathy (IDCM). In the present study, common cardiotropic viruses in 67 explanted heart samples of 31 IDCM adult patients were detected and semiquantified by using for the first time a new technology based on PCR assay coupled to electrospray ionization-time of flight mass spectrometry analysis (PCR-MS), with comparison to reference quantitative real-time PCR (RT-qPCR) assay. PCR-MS identified single or mixed enterovirus (EV) and parvovirus B19 (PVB19) infections in 27 (40.2%) of 67 samples, corresponding to 15 (48.3%) of the 31 patients, whereas RT-qPCR identified viral infections in 26 (38.8%) samples, corresponding to 16 (51.6%) of the patients. The PCR-MS results correlated well with EV and PVB19 detection by RT-qPCR (kappa = 0.85 [95% confidence interval {CI}, 0.72 to 1.00] and kappa = 0.82 [95% CI, 0.66 to 0.99], respectively). The levels of EV RNA (median, 550 [range, 178 to 3,200] copies/μg of total extracted nucleic acids) and of PVB19 DNA (median, 486 [range, 80 to 1,157] copies/μg of total extracted nucleic acids) were measured using PCR-MS and correlated with those obtained by RT-qPCR (r(2) = 0.57, P = 0.002 and r(2) = 0.64, P < 0.001 for EV and PVB19, respectively). No viruses other than EV and PVB19 strains were detected using the new PCR-MS technology, which is capable of simultaneously identifying 84 known human viruses in one assay. In conclusion, we identified single or mixed EV and PVB19 cardiac infections as potential causes of IDCM. The PCR-MS analysis appeared to be a valuable tool to rapidly detect and semiquantify common viruses in cardiac tissues and may be of major interest to better understand the role of viruses in unexplained cardiomyopathies.
Collapse
|
39
|
Transmission of human enterovirus 85 recombinants containing new unknown serotype HEV-B donor sequences in Xinjiang Uighur autonomous region, China. PLoS One 2013; 8:e55480. [PMID: 23383202 PMCID: PMC3561255 DOI: 10.1371/journal.pone.0055480] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 12/23/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Human enterovirus 85 (HEV85), whose prototype strain (Strain BAN00-10353/BAN/2000) was isolated in Bangladesh in 2000, is a recently identified serotype within the human enterovirus B (HEV-B) species. At present, only one nucleotide sequence of HEV85 (the complete genome sequence of the prototype strain) is available in the GenBank database. PRINCIPAL FINDINGS In this study, we report the genetic characteristics of 33 HEV85 isolates that circulated in the Xinjiang Uighur autonomous region of China in 2011. Sequence analysis revealed that all these Chinese HEV85 isolates belong to 2 transmission chains, and intertypic recombination was found with the new unknown serotype HEV-B donor sequences. Two HEV85 isolates recovered from a patient presenting acute flaccid paralysis and one of his contacts were temperature-insensitive strains, and some nucleotide substitutions in the non-coding regions and in the 2C or 3D coding regions may have affected the temperature sensitivity of HEV85 strains. CONCLUSIONS The Chinese HEV85 recombinant described in this study trapped a new unknown serotype HEV-B donor sequence, indicating that new unknown HEV-B serotypes exist or circulate in Xinjiang of China. Our study also indicated that HEV85 is a prevalent and common enterovirus serotype in Xinjiang.
Collapse
|
40
|
Miyoshi M, Komagome R, Ishida S, Nagano H, Takahashi K, Okano M. Genomic characterization of echovirus 6 causing aseptic meningitis in Hokkaido, Japan: a novel cluster in the nonstructural protein coding region of human enterovirus B. Arch Virol 2012. [DOI: 10.1007/s00705-012-1535-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
41
|
Combining cell lines to optimize isolation of human enterovirus from clinical specimens: Report of 25 years of experience. J Med Virol 2012; 85:116-20. [DOI: 10.1002/jmv.23426] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2012] [Indexed: 11/07/2022]
|
42
|
Park K, Lee B, Baek K, Cheon D, Yeo S, Park J, Soh J, Cheon H, Yoon K, Choi Y. Enteroviruses isolated from herpangina and hand-foot-and-mouth disease in Korean children. Virol J 2012; 9:205. [PMID: 22985487 PMCID: PMC3490919 DOI: 10.1186/1743-422x-9-205] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 09/11/2012] [Indexed: 11/10/2022] Open
Abstract
Hand-foot-and-mouth disease (HFMD) and herpangina are commonly prevalent illness in young children. They are similarly characterized by lesions on the skin and oral mucosa. Both diseases are associated with various enterovirus serotypes. In this study, enteroviruses from patients with these diseases in Korea in 2009 were isolated and analyzed. Demographic data for patients with HFMD and herpangina were compared and all enterovirus isolates were amplified in the VP1 region by reverse transcription-polymerase chain reaction and sequenced. Among the enterovirus isolates, prevalent agents were coxsackievirus A16 in HFMD and coxsackievirus A5 in herpangina. More prevalent months for HFMD were June (69.2%) and May (11.5%), and June (40.0%) and July (24.0%) for herpangina. Age prevalence of HFMD patients with enterovirus infection was 1 year (23.1%), 4 years (19.2%), and over 5 years (19.2%). However, the dominant age group of herpangina patients with enterovirus infection was 1 year (48.0%) followed by 2 years (28.0%). Comparison of pairwise VP1 nucleotide sequence alignment of all isolates within the same serotypes revealed high intra-type variation of CVA2 isolates (84.6–99.3% nucleotide identity). HFMD and herpangina showed differences in demographic data and serotypes of isolated enteroviruses, but there was no notable difference in amino acid sequences by clinical syndromes in multiple comparison of the partial VP1 gene sequence.
Collapse
Affiliation(s)
- KwiSung Park
- Department of Clinical Pathology, Daejeon Health Sciences College, Daejeon, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lukashev AN, Drexler JF, Kotova VO, Amjaga EN, Reznik VI, Gmyl AP, Grard G, Taty Taty R, Trotsenko OE, Leroy EM, Drosten C. Novel serotypes 105 and 116 are members of distinct subgroups of human enterovirus C. J Gen Virol 2012; 93:2357-2362. [PMID: 22894922 DOI: 10.1099/vir.0.043216-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The full coding sequences of two novel human enterovirus (HEV)-C serotypes 105 and 116, sampled in the Republic of the Congo in 2010 and in Russia in 2011, were identified in this study. Enterovirus (EV)-105 was closest to EV-104 in the 5' NTR and to EV-109 in the coding genome region. It had the same unconventional 5' NTR as EV-104 and EV-109. The non-cytopathogenic EV-116 was phylogenetically close to coxsackievirus (CV)-A1, CV-A19 and CV-A22, which also cannot be propagated in routinely used cell cultures. There were signs of recombination within this subgroup of HEV-C; however, recombination with conventional HEV-C was restricted, implying partial reproductive isolation. As there is also evidence of different permissive replication systems and distinct genetic properties of these subgroups, they may represent subspecies of the HEV-C species or different stages of speciation.
Collapse
Affiliation(s)
| | - Jan Felix Drexler
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - Valeria O Kotova
- Khabarovsk Institute of Epidemiology and Microbiology, Khabarovsk, Russia
| | - Elena N Amjaga
- Khabarovsk Institute of Epidemiology and Microbiology, Khabarovsk, Russia
| | - Vadim I Reznik
- Center of Hygiene and Epidemiology in Khabarovsk Region, Khabarovsk, Russia
| | - Anatoly P Gmyl
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russia
| | - Gilda Grard
- Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | - Raphael Taty Taty
- Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | - Olga E Trotsenko
- Khabarovsk Institute of Epidemiology and Microbiology, Khabarovsk, Russia
| | - Eric M Leroy
- Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | - Christian Drosten
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| |
Collapse
|
44
|
Wang J, Zhang Y, Hong M, Li X, Zhu S, Yan D, Wang D, An H, Tsewang, Han J, Xu W. Isolation and characterization of a Chinese strain of human enterovirus 74 from a healthy child in the Tibet Autonomous Region of China. Arch Virol 2012; 157:1593-8. [PMID: 22576315 DOI: 10.1007/s00705-012-1332-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 03/29/2012] [Indexed: 10/28/2022]
Abstract
Human enterovirus 74 (HEV74) is a recently described serotype within the species Human enterovirus B (HEV-B). Few nucleotide sequences of HEV74 are available, and only one complete genome sequence (the prototype strain) has been published. In this study, we report the complete genome sequence of an HEV74 strain isolated from a healthy child during a stool survey in the Tibet Autonomous Region of China. The results indicated that HEV74 may be a prevalent and common enterovirus type, and that HEV74 is globally distributed, especially in Asia. Sequence analysis revealed high variability among HEV74 strains and indicated frequent recombination within HEV-B.
Collapse
Affiliation(s)
- Jitao Wang
- School of Life Science, Shanxi University, Taiyuan City, Shanxi Province, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Meijer A, van der Sanden S, Snijders BEP, Jaramillo-Gutierrez G, Bont L, van der Ent CK, Overduin P, Jenny SL, Jusic E, van der Avoort HGAM, Smith GJD, Donker GA, Koopmans MPG. Emergence and epidemic occurrence of enterovirus 68 respiratory infections in The Netherlands in 2010. Virology 2011; 423:49-57. [PMID: 22177700 DOI: 10.1016/j.virol.2011.11.021] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 11/05/2011] [Accepted: 11/23/2011] [Indexed: 12/20/2022]
Abstract
Following an increase in detection of enterovirus 68 (EV68) in community surveillance of respiratory infections in The Netherlands in 2010, epidemiological and virological analyses were performed to investigate the possible public health impact of EV68 infections. We retrospectively tested specimens collected from acute respiratory infections surveillance and through three children cohort studies conducted in The Netherlands from 1994 through 2010. A total of 71 of 13,310 (0.5%) specimens were positive for EV68, of which 67 (94%) were from symptomatic persons. Twenty-four (34%) of the EV68 positive specimens were collected during 2010. EV68-positive patients with respiratory symptoms showed significantly more dyspnea, cough and bronchitis than EV68-negative patients with respiratory symptoms. Phylogenetic analysis showed an increased VP1 gene diversity in 2010, suggesting that the increased number of EV68 detections in 2010 reflects a real epidemic. Clinical laboratories should consider enterovirus diagnostics in the differential diagnosis of patients presenting with respiratory symptoms.
Collapse
Affiliation(s)
- Adam Meijer
- Center for Infectious Disease Control, Laboratory for Infectious Diseases and Perinatal Screening, National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA, Bilthoven, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wei C, Wang G, Chen X, Huang H, Liu B, Xu Y, Li F. Identification and typing of human enterovirus: a genomic barcode approach. PLoS One 2011; 6:e26296. [PMID: 22022592 PMCID: PMC3194813 DOI: 10.1371/journal.pone.0026296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 09/23/2011] [Indexed: 11/18/2022] Open
Abstract
Identification and typing of human enterovirus (HEVs) are important to pathogen detection and therapy. Previous phylogeny-based typing methods are mainly based on multiple sequence alignments of specific genes in the HEVs, but the results are not stable with respect to different choices of genes. Here we report a novel method for identification and typing of HEVs based on information derived from their whole genomes. Specifically, we calculate the k-mer based barcode image for each genome, HEV or other human viruses, for a fixed k, 1<k<7, where a genome barcode is defined in terms of the k-mer frequency distribution across the whole genome for all combinations of k-mers. A phylogenetic tree is constructed using a barcode-based distance and a neighbor-joining method among a set of 443 representative non-HEV human viruses and 395 HEV sequences. The tree shows a clear separation of the HEV viruses from all the non-HEV viruses with 100% accuracy and a separation of the HEVs into four distinct clads with 93.4% consistency with a multiple sequence alignment-based phylogeny. Our detailed analyses of the HEVs having different typing results by the two methods indicate that our results are in better agreement with known information about the HEVs.
Collapse
Affiliation(s)
- Chengguo Wei
- Department of Pathogeny Biology, Norman Bethune Medical College of Jilin University, Changchun, Jilin, China
| | - Guoqing Wang
- Department of Pathogeny Biology, Norman Bethune Medical College of Jilin University, Changchun, Jilin, China
| | - Xin Chen
- College of Computer Science and Technology, Jilin University, Changchun, Jilin, China
| | - Honglan Huang
- Department of Pathogeny Biology, Norman Bethune Medical College of Jilin University, Changchun, Jilin, China
| | - Bin Liu
- The First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Xu
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
- College of Computer Science and Technology, Jilin University, Changchun, Jilin, China
- * E-mail: (YX); (FL)
| | - Fan Li
- Department of Pathogeny Biology, Norman Bethune Medical College of Jilin University, Changchun, Jilin, China
- * E-mail: (YX); (FL)
| |
Collapse
|
47
|
Rezig D, Fares W, Seghier M, Yahia AB, Touzi H, Triki H. Update on molecular characterization of coxsackievirus B5 strains. J Med Virol 2011; 83:1247-54. [PMID: 21567427 DOI: 10.1002/jmv.22084] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Among Coxsackie B viruses, Coxsckievirus B5 is one of the most predominant serotypes in human, it is frequently associated with cases of neurological diseases, epidemics of meningitis and is a common cause of cardiomyopathy and diabetes. In the present study 27 isolates of Coxsackievirus B5 from North Africa, obtained from cerebrospinal fluid and stool samples of healthy individuals, patients with acute flaccid paralysis or aseptic meningitis were investigated by partial sequencing in the 5' half of the VP1 region and compared to the up-to-date published Coxsackievirus B5 sequences in the same genomic region. Four distinct genomic groups and ten different clusters were individualized. Most of the isolates from Algeria and Tunisia belonged to two clusters. For both, the sequences from North Africa clustered mainly with sequences from European countries, the majority isolated recently during the 2000s. The analysis of the alignment of amino-acids sequences in the VP1 gene revealed four major substitutions in strains from different clusters, we also noticed changes in the BC-loop region; this region is associated with viral antigenicity. This study permit to better identify circulating Coxsackievirus B5 strains throughout the world and their genetic relationship. The protein analysis showed changes that could imply some antigenic significance. J. Med. Virol. 83:1247-1254, 2011. © 2011 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Dorra Rezig
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles, Institut Pasteur de Tunis, Tunis, Belvédère, Tunisia.
| | | | | | | | | | | |
Collapse
|
48
|
Baek K, Yeo S, Lee B, Park K, Song J, Yu J, Rheem I, Kim J, Hwang S, Choi Y, Cheon D, Park J. Epidemics of enterovirus infection in Chungnam Korea, 2008 and 2009. Virol J 2011; 8:297. [PMID: 21668960 PMCID: PMC3130694 DOI: 10.1186/1743-422x-8-297] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 06/13/2011] [Indexed: 11/24/2022] Open
Abstract
Previously, we explored the epidemic pattern and molecular characterization of enteroviruses isolated in Chungnam, Korea from 2005 to 2006. The present study extended these observations to 2008 and 2009. In this study, enteroviruses showed similar seasonal prevalent pattern from summer to fall and age distribution to previous investigation. The most prevalent month was July: 42.9% in 2008 and 31.9% in 2009. The highest rate of enterovirus-positive samples occurred in children < 1-year-old-age. Enterovirus-positive samples were subjected to sequence determination of the VP1 region, which resolved the isolated enteroviruses into 10 types in 2008 (coxsackievirus A4, A16, B1, B3, echovirus 6, 7, 9, 11, 16, and 30) and 8 types in 2009 (coxsackievirus A2, A4, A5, A16, B1, B5, echovirus 11, and enterovirus 71). The most prevalent enterovirus serotype in 2008 and 2009 was echovirus 30 and coxsackievirus B1, respectively, whereas echovirus 18 and echovirus 5 were the most prevalent types in 2005 and 2006, respectively. Comparison of coxsackievirus B1 and B5 of prevalent enterovirus type in Korea in 2009 with reference strains of each same serotype were conducted to genetic analysis by a phylogenetic tree. The sequences of coxsackievirus B1 strains segregated into four distinct clusters (A, B, C, and D) with some temporal and regional sub-clustering. Most of Korean coxsackievirus B1 strains in 2008 and 2009 were in cluster D, while only "Kor08-CVB1-001CN" was cluster C. The coxsackievirus B5 strains segregated in five distinct genetic groups (clusters A-E) were supported by high bootstrap values. The Korean strains isolated in 2001 belonged to cluster D, whereas Korean strains isolated in 2005 and 2009 belonged to cluster E. Comparison of the VP1 amino acid sequences of the Korean coxsackievirus B5 isolates with reference strains revealed amino acid sequence substitutions at nine amino acid sequences (532, 562, 570, 571, 576-578, 582, 583, and 585).
Collapse
Affiliation(s)
- KyoungAh Baek
- Department of Microbiology, Chungcheongnam-Do Institute of Health and Environmental Research, Daejeon, Korea
| | - SangGu Yeo
- Divison of Enteric and Hepatitis viruses, National Institute of Health, Korea Center for Disease Control and Prevention, Seoul, Korea
| | | | - KwiSung Park
- Department of Microbiology, Chungcheongnam-Do Institute of Health and Environmental Research, Daejeon, Korea
| | - JaeHyoung Song
- Department of Herbal Resources, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Korea
| | - JeeSuk Yu
- Departments of Pediatrics, College of Medicine, Dankook University, Cheonan, Korea
| | - InSoo Rheem
- Departments of Laboratory Medicine, College of Medicine, Dankook University, Cheonan, Korea
| | - JaeKyung Kim
- Departments of Laboratory Medicine, College of Medicine, Dankook University, Cheonan, Korea
| | - SeoYeon Hwang
- Divison of Enteric and Hepatitis viruses, National Institute of Health, Korea Center for Disease Control and Prevention, Seoul, Korea
- Department of Biology, College of Sciences, Kyunghee University, Seoul, Korea
| | - YoungJin Choi
- Department of Biology, College of Sciences, Kyunghee University, Seoul, Korea
| | - DooSung Cheon
- Divison of Enteric and Hepatitis viruses, National Institute of Health, Korea Center for Disease Control and Prevention, Seoul, Korea
| | - JoonSoo Park
- Departments of Laboratory Medicine, College of Medicine, Soonchunhyang University, Cheonan, Korea
- Departments of Pediatrics, College of Medicine, Soonchunhyang University, Cheonan, Korea
| |
Collapse
|
49
|
Petitjean-Lecherbonnier J, Dina J, Nguyen E, Gouarin S, Lebigot E, Vabret A. [Molecular diagnosis of respiratory enterovirus infections: Use of PCR and molecular identification for a best approach of the main circulating strains during 2008]. PATHOLOGIE-BIOLOGIE 2011; 59:113-21. [PMID: 20828940 PMCID: PMC7126958 DOI: 10.1016/j.patbio.2010.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 07/29/2010] [Indexed: 11/26/2022]
Abstract
UNLABELLED The PCR assays are currently used in diagnosis of enterovirus (EV) meningitis. Nevertheless, the use of molecular diagnosis of EV should be investigated in respiratory tract infections (RTI). OBJECTIVES To perform enterovirus molecular diagnostic tools, PCR and genotyping, in nasal samples for diagnostic and epidemiologic purposes. METHODS During 2008, 3612 nasal specimen (NS) were studied by IFD and MRC5 culture. Next, we realised successively viral isolation on HuH7 culture (for NS negative by IFD assay) and a duplex PCR enterovirus-rhinovirus for the 816 HuH7 positive supernatants. Furthermore, 327 NS collected from neonates were systematically tested by a real-time RT-PCR. This assay was used in routine for EV diagnosis setting in cerebrospinal fluid. Enterovirus genotyping was then performed for the 68 positive supernatants. RESULTS Thirty-five NS (0.97%) were positive for EV by culture (MRC5). A combination of both PCR assays, PEVRV and PEV, allowed an additional identification of 41 EV, eight EV-RV and 12 RV, increasing the number of positive to 96 NS (2.6%). Among the neonates, 32 NS (11.3%) were positive for EV by PEV. Of the 98 NS tested by the two PCR assays (PEV and PEVRV), 27 were positive and we detected 10 EV, five EV-RV and 12 RV. From January to December 2008, the circulation of EV showed the usual peak in June-July when a small outbreak of aseptic meningitis occurred and an additional autumnal peak corresponding to respiratory tract infections. Five main serotypes were isolated: 19 EV68 (29.7%), 12 CB3 (18.7%), nine E3 (14,1%), six CA9 (9.4%) and six CB1 (9.4%); the 19 EV68 were isolated in October-November and 17/19 (89.5%) of positive patients were hospitalised for severe respiratory diseases. CONCLUSION The use of molecular screening techniques (PCR assays and genotyping) on nasal samples collected from patients with respiratory infections allowed a prospective, effective and precise identification of circulating strains.
Collapse
Affiliation(s)
- J Petitjean-Lecherbonnier
- Laboratoire de virologie humaine et moléculaire, CHU de Caen, avenue Georges-Clémenceau, 14033 Caen, France.
| | | | | | | | | | | |
Collapse
|
50
|
Zhou F, Kong F, Wang B, McPhie K, Gilbert GL, Dwyer DE. Molecular characterization of enterovirus 71 and coxsackievirus A16 using the 5′ untranslated region and VP1 region. J Med Microbiol 2011; 60:349-358. [DOI: 10.1099/jmm.0.025056-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) are members of the species Human enterovirus
A, and are both major and independent aetiological agents of hand-foot-and-mouth disease. The human enterovirus (HEV) 5′ untranslated region (UTR) is fundamentally important for efficient virus replication and for virulence, whilst the VP1 region correlates well with antigenic typing by neutralization, and can be used for virus identification and evolutionary studies. A comparison was undertaken of the 5′UTR and VP1 nucleotide sequences of five EV71 clinical isolates and 10 CVA16 clinical isolates from one laboratory with the 5′UTR and VP1 sequences of 104 EV71 strains and 45 CVA16 strains available in GenBank. The genetic relationships were analysed using standard phylogenetic methods. The EV71 phylogenetic analysis showed that the VP1 sequences were clustered into three genogroups, A, B and C, with genogroups B and C further divided into five subgenogroups, B1–B5 and C1–C5, respectively. All EV71 strains were clustered similarly in the 5′UTR and VP1 trees, except for one Taiwanese strain, which demonstrated different clustering in the two trees, suggesting a recombination event in the phylogeny. The CVA16 phylogenetic analysis showed that the VP1 sequences were clustered into two genogroups, A and B, with genogroup B further divided into B1 (B1a and B1b), B2 and a possible B3; and that a similar pattern and grouping of all strains were displayed in the 5′UTR tree. This study demonstrated that comparing the two regions provides evidence of epidemiological linkage of HEV-A strains, and that mutation in the two regions plays a vital role in the evolution of these viruses. The combination of molecular typing and phylogenetic sequence analysis will be beneficial in both individual patient diagnosis and public health measures.
Collapse
Affiliation(s)
- Fei Zhou
- The University of Sydney, New South Wales, Australia
- Centre for Infectious Diseases and Microbiology (CIDM), Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Westmead, New South Wales, Australia
| | - Fanrong Kong
- Centre for Infectious Diseases and Microbiology (CIDM), Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Westmead, New South Wales, Australia
| | - Bin Wang
- Retroviral Genetics Laboratory, Centre for Virus Research, Westmead Millennium Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Kenneth McPhie
- Centre for Infectious Diseases and Microbiology (CIDM), Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Westmead, New South Wales, Australia
| | - Gwendolyn L. Gilbert
- The University of Sydney, New South Wales, Australia
- Centre for Infectious Diseases and Microbiology (CIDM), Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Westmead, New South Wales, Australia
| | - Dominic E. Dwyer
- The University of Sydney, New South Wales, Australia
- Centre for Infectious Diseases and Microbiology (CIDM), Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|