1
|
de Sena Rodrigues Júnior R, Antonia Nunes Gomes J, Alberto da Silva Dias G, Fujihara S, Toshimitsu Yoshikawa G, Vilela Lopes Koyama R, Catarina Medeiros Sousa R, Antonio Simões Quaresma J, Thais Fuzii H. T helper type 9 cell response and its role in the neurological clinic of patients with Human T-lymphotropic virus 1. Immunobiology 2023; 228:152740. [PMID: 37657359 DOI: 10.1016/j.imbio.2023.152740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
Human T-lymphotropic virus 1 (HTLV-1) affects 5-10 million individuals worldwide. Most of those infected with this virus remain asymptomatic; however, 0.25%-4% of individuals develop HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), while 2%-4% develop adult T-cell leukemia/lymphoma (ATLL). Understanding the immune response inherent in this infection is extremely important. The role of T helper type 1 (Th1) and Th2 cells in HTLV-1 infection is well known; however, exploring the different subtypes of immune responses is also necessary. The role of Th9 cells in HTLV-1 infection and the mechanisms involved in their interference in the pathophysiological process of HAM/TSP is poorly understood. This study aimed to evaluate the expression profiles of PU.1, interferon regulatory factor 4 (IRF-4), and cytokine interleukin-9 (IL-9) during the induction of peripheral immune response and their role in the HTLV-1-infected patients' neurological symptoms. This analytical cross-sectional study was carried out at the Laboratory of Clinical and Epidemiology of Endemic Diseases and the Laboratory of Immunopathology, both from the Tropical Medicine Center at the Federal University of Pará. Assessment of neurological parameters was performed (gait, Expanded Kurtzke Disability State Scale (EDSS) score, upper and lower limb reflexes, Hoffman's sign, Babinski reflex, and clonus reflex). For Th9 cell analysis, peripheral blood samples were collected from HTLV-1-infected patients; then, the lymphomononuclear cells were separated followed by the isolation of messenger ribonucleic acid (mRNA). Complementary deoxyribonucleic acid (cDNA) synthesis each sample was carried out. The gene expression levels of PU.1, IRF-4, and IL-9 as well as those of constitutive genes (glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and β-actin) were quantified by real-time polymerase chain reaction (qPCR). This study included 81 HTLV-1-infected patients, of whom 47 were asymptomatic, 13 were mono/oligosymptomatic (MOS), and 21 developed HAM/TSP. IL-9 was the least expressed gene among the three studied groups. The MOS group showed the lowest expression levels of PU.1, IRF-4, and IL-9. HAM/TSP patients showed lower IL-9 protein quantification. Negative correlations were found between IL and 9 and EDSS in MOS patients and between PU.1, EDSS, IRF-4, and EDSS in the HAM/TSP group. An association was found between IL and 9 and Babinski reflex in the HAM/TSP group, suggesting that this gene was more highly expressed in patients who did not have this pathological sign. Th9 cells may interfere with the neurological progression of HAM/TSP and act as a protective factor.
Collapse
Affiliation(s)
| | | | | | - Satomi Fujihara
- Institute of Health Sciences, Federal University of Pará, Brazil
| | | | | | | | - Juarez Antonio Simões Quaresma
- Immunopathology Laboratory of Tropical Medicine Center. Federal University of Pará, Brazil; Center of Biological and Health Sciences, Pará State University, Brazil
| | - Hellen Thais Fuzii
- Immunopathology Laboratory of Tropical Medicine Center. Federal University of Pará, Brazil.
| |
Collapse
|
2
|
Joseph J, Premeaux TA, Pinto DO, Rao A, Guha S, Panfil AR, Carey AJ, Ndhlovu LC, Bergmann‐Leitner ES, Jain P. Retroviral b-Zip protein (HBZ) contributes to the release of soluble and exosomal immune checkpoint molecules in the context of neuroinflammation. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e102. [PMID: 37547182 PMCID: PMC10399615 DOI: 10.1002/jex2.102] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/13/2023] [Accepted: 07/01/2023] [Indexed: 08/08/2023]
Abstract
HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a chronic, progressive, neuroinflammatory demyelinating condition of the spinal cord. We have previously shown that aberrant expression and activity of immune checkpoint (ICP) molecules such as PD-1 and PD-L1/PD-L2, negatively associates with the cytolytic potential of T cells in individuals with HAM/TSP. Interestingly, ICPs can exist in a soluble cell-free form and can be carried on extracellular vesicles (EVs) and exosomes (small EVs, <300nm) while maintaining their immunomodulatory activity. Therefore, we investigated the role of soluble and exosomal ICPs in HTLV-1 associated neuroinflammation. For the very first time, we demonstrate a unique elevated presence of several stimulatory (CD27, CD28, 4-1BB) and inhibitory (BTLA, CTLA-4, LAG-3, PD-1, PD-L2) ICP receptors in HAM/TSP sera, and in purified exosomes from a HAM/TSP-derived HTLV-1-producing (OSP2) cells. These ICPs were found to be co-localized with the endosomal sorting complex required for transport (ESCRT) pathway proteins and exhibited functional binding with their respective ligands. Viral proteins and cytokines (primarily IFNγ) were found to be present in purified exosomes. IFNγ exposure enhanced the release of ICP molecules while antiretroviral drugs (Azidothymidine and Lopinavir) significantly inhibited this process. HTLV-1 b-Zip protein (HBZ) has been linked to factors that enhance EV release and concurrent knockdown here led to the reduced expression of ESCRT associated genes (eg. Hrs, Vsp4, Alix, Tsg101) as well as abrogated the release of ICP molecules, suggesting HBZ involvement in this process. Moreso, exosomes from OSP2 cells adversely affected CD8 T-cell functions by dimishing levels of cytokines and cytotoxic factors. Collectively, these findings highlight exosome-mediated immunmodulation of T-cell functions with HBZ and ESCRT pathways as an underlying mechanism in the context of HTLV-1-induced neuroinflammation.
Collapse
Affiliation(s)
- Julie Joseph
- Department of Microbiology & ImmunologyDrexel University College of MedicinePhiladelphiaPAUSA
| | - Thomas A. Premeaux
- Weill Cornel Medicine Department of MedicineDivision of Infectious DiseasesNew YorkNYUSA
| | - Daniel O. Pinto
- Immunology Core, Biologics Research and DevelopmentWalter Reed Army Institute of ResearchSilver SpringsMDUSA
- Oak Ridge Institute for Science and EducationOak RidgeTNUSA
| | - Abhishek Rao
- Department of Microbiology & ImmunologyDrexel University College of MedicinePhiladelphiaPAUSA
| | - Shrobona Guha
- Department of Neurobiology and AnatomyDrexel University College of MedicinePhiladelphiaPAUSA
| | - Amanda R. Panfil
- The Ohio State University, College of Veterinary Medicine, Center for Retrovirus ResearchColumbusOhioUSA
| | - Alison J. Carey
- Department of Microbiology & ImmunologyDrexel University College of MedicinePhiladelphiaPAUSA
- Department of PediatricsDrexel University College of MedicinePhiladelphiaPAUSA
| | - Lishomwa C. Ndhlovu
- Weill Cornel Medicine Department of MedicineDivision of Infectious DiseasesNew YorkNYUSA
| | - Elke S. Bergmann‐Leitner
- Immunology Core, Biologics Research and DevelopmentWalter Reed Army Institute of ResearchSilver SpringsMDUSA
| | - Pooja Jain
- Department of Microbiology & ImmunologyDrexel University College of MedicinePhiladelphiaPAUSA
- Department of Neurobiology and AnatomyDrexel University College of MedicinePhiladelphiaPAUSA
| |
Collapse
|
3
|
Islam S, Espitia CM, Persky DO, Carew JS, Nawrocki ST. Targeting JAK/STAT Signaling Antagonizes Resistance to Oncolytic Reovirus Therapy Driven by Prior Infection with HTLV-1 in Models of T-Cell Lymphoma. Viruses 2021; 13:1406. [PMID: 34372612 PMCID: PMC8310324 DOI: 10.3390/v13071406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus that infects at least 10 million people worldwide and is associated with the development of T-cell lymphoma (TCL). The treatment of TCL remains challenging and new treatment options are urgently needed. With the goal of developing a novel therapeutic approach for TCL, we investigated the activity of the clinical formulation of oncolytic reovirus (Reolysin, Pelareorep) in TCL models. Our studies revealed that HTLV-1-negative TCL cells were highly sensitive to Reolysin-induced cell death, but HTLV-1-positive TCL cells were resistant. Consistent with these data, reovirus displayed significant viral accumulation in HTLV-1-negative cells, but failed to efficiently replicate in HTLV-1-positive cells. Transcriptome analyses of HTLV-1-positive vs. negative cells revealed a significant increase in genes associated with retroviral infection including interleukin-13 and signal transducer and activator of transcription 5 (STAT5). To investigate the relationship between HTLV-1 status and sensitivity to Reolysin, we infected HTLV-1-negative cells with HTLV-1. The presence of HTLV-1 resulted in significantly decreased sensitivity to Reolysin. Treatment with the JAK inhibitor ruxolitinib suppressed STAT5 phosphorylation and expression of the key anti-viral response protein MX1 and enhanced the anti-TCL activity of Reolysin in both HTLV-1-positive and negative cells. Our data demonstrate that the inhibition of the JAK/STAT pathway can be used as a novel approach to antagonize the resistance of HTLV-1-positive cells to oncolytic virus therapy.
Collapse
Affiliation(s)
- Shariful Islam
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724, USA; (S.I.); (C.M.E.); (J.S.C.)
| | - Claudia M. Espitia
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724, USA; (S.I.); (C.M.E.); (J.S.C.)
| | - Daniel O. Persky
- Division of Hematology and Oncology, Department of Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724, USA;
| | - Jennifer S. Carew
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724, USA; (S.I.); (C.M.E.); (J.S.C.)
| | - Steffan T. Nawrocki
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724, USA; (S.I.); (C.M.E.); (J.S.C.)
| |
Collapse
|
4
|
Mohanty S, Harhaj EW. Mechanisms of Oncogenesis by HTLV-1 Tax. Pathogens 2020; 9:E543. [PMID: 32645846 PMCID: PMC7399876 DOI: 10.3390/pathogens9070543] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 01/23/2023] Open
Abstract
The human T-cell lymphotropic virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia/lymphoma (ATLL), a neoplasm of CD4+CD25+ T cells that occurs in 2-5% of infected individuals after decades of asymptomatic latent infection. Multiple HTLV-1-encoded regulatory proteins, including Tax and HTLV-1 basic leucine zipper factor (HBZ), play key roles in viral persistence and latency. The HTLV-1 Tax oncoprotein interacts with a plethora of host cellular proteins to regulate viral gene expression and also promote the aberrant activation of signaling pathways such as NF-κB to drive clonal proliferation and survival of T cells bearing the HTLV-1 provirus. Tax undergoes various post-translational modifications such as phosphorylation and ubiquitination that regulate its function and subcellular localization. Tax shuttles in different subcellular compartments for the activation of anti-apoptotic genes and deregulates the cell cycle with the induction of DNA damage for the accumulation of genomic instability that can result in cellular immortalization and malignant transformation. However, Tax is highly immunogenic and therefore HTLV-1 has evolved numerous strategies to tightly regulate Tax expression while maintaining the pool of anti-apoptotic genes through HBZ. In this review, we summarize the key findings on the oncogenic mechanisms used by Tax that set the stage for the development of ATLL, and the strategies used by HTLV-1 to tightly regulate Tax expression for immune evasion and viral persistence.
Collapse
Affiliation(s)
| | - Edward W. Harhaj
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA;
| |
Collapse
|
5
|
Futsch N, Prates G, Mahieux R, Casseb J, Dutartre H. Cytokine Networks Dysregulation during HTLV-1 Infection and Associated Diseases. Viruses 2018; 10:v10120691. [PMID: 30563084 PMCID: PMC6315340 DOI: 10.3390/v10120691] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/19/2018] [Accepted: 11/30/2018] [Indexed: 12/22/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of a neural chronic inflammation, called HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and of a malignant lymphoproliferation, called the adult T-cell leukemia/lymphoma (ATLL). The mechanisms through which the HTLV-1 induces these diseases are still unclear, but they might rely on immune alterations. HAM/TSP is associated with an impaired production of pro-inflammatory cytokines and chemokines, such as IFN-γ, TNF-α, CXCL9, or CXCL10. ATLL is associated with high levels of IL-10 and TGF-β. These immunosuppressive cytokines could promote a protumoral micro-environment. Moreover, HTLV-1 infection impairs the IFN-I production and signaling, and favors the IL-2, IL-4, and IL-6 expression. This contributes both to immune escape and to infected cells proliferation. Here, we review the landscape of cytokine dysregulations induced by HTLV-1 infection and the role of these cytokines in the HTLV-1-associated diseases progression.
Collapse
Affiliation(s)
- Nicolas Futsch
- Équipe Oncogenèse Rétrovirale, Equipe Labellisée «FRM», CIRI-Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, Inserm U1111, CNRS UMR5308, Labex Ecofect, ENS Lyon, F-69007 Lyon, France.
| | - Gabriela Prates
- Institute of Tropical Medicine of São Paulo, São Paulo, SP 05403-000, Brazil.
- Laboratory of Dermatology and Immunodeficiencies, Department of Dermatology, University of São Paulo Medical School, São Paulo, SP 01246-100, Brazil.
| | - Renaud Mahieux
- Équipe Oncogenèse Rétrovirale, Equipe Labellisée «FRM», CIRI-Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, Inserm U1111, CNRS UMR5308, Labex Ecofect, ENS Lyon, F-69007 Lyon, France.
| | - Jorge Casseb
- Institute of Tropical Medicine of São Paulo, São Paulo, SP 05403-000, Brazil.
- Laboratory of Dermatology and Immunodeficiencies, Department of Dermatology, University of São Paulo Medical School, São Paulo, SP 01246-100, Brazil.
| | - Hélène Dutartre
- Équipe Oncogenèse Rétrovirale, Equipe Labellisée «FRM», CIRI-Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, Inserm U1111, CNRS UMR5308, Labex Ecofect, ENS Lyon, F-69007 Lyon, France.
| |
Collapse
|
6
|
Naito T, Yasunaga JI, Mitobe Y, Shirai K, Sejima H, Ushirogawa H, Tanaka Y, Nakamura T, Hanada K, Fujii M, Matsuoka M, Saito M. Distinct gene expression signatures induced by viral transactivators of different HTLV-1 subgroups that confer a different risk of HAM/TSP. Retrovirology 2018; 15:72. [PMID: 30400920 PMCID: PMC6219256 DOI: 10.1186/s12977-018-0454-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022] Open
Abstract
Background Among human T cell leukemia virus type 1 (HTLV-1)-infected individuals, there is an association between HTLV-1 tax subgroups (subgroup-A or subgroup-B) and the risk of HAM/TSP in the Japanese population. To investigate the role of HTLV-1 subgroups in viral pathogenesis, we studied the functional difference in the subgroup-specific viral transcriptional regulators Tax and HBZ using microarray analysis, reporter gene assays, and evaluation of viral-host protein–protein interaction. Results (1) Transcriptional changes in Jurkat Tet-On human T-cells that express each subgroup of Tax or HBZ protein under the control of an inducible promoter revealed different target gene profiles; (2) the number of differentially regulated genes induced by HBZ was 2–3 times higher than that induced by Tax; (3) Tax and HBZ induced the expression of different classes of non-coding RNAs (ncRNAs); (4) the chemokine CXCL10, which has been proposed as a prognostic biomarker for HAM/TSP, was more efficiently induced by subgroup-A Tax (Tax-A) than subgroup-B Tax (Tax-B), in vitro as well as in unmanipulated (ex vivo) PBMCs obtained from HAM/TSP patients; (5) reporter gene assays indicated that although transient Tax expression in an HTLV-1-negative human T-cell line activated the CXCL10 gene promoter through the NF-κB pathway, there was no difference in the ability of each subgroup of Tax to activate the CXCL10 promoter; however, (6) chromatin immunoprecipitation assays showed that the ternary complex containing Tax-A is more efficiently recruited onto the promoter region of CXCL10, which contains two NF-κB binding sites, than that containing Tax-B. Conclusions Our results indicate that different HTLV-1 subgroups are characterized by different patterns of host gene expression. Differential expression of pathogenesis-related genes by subgroup-specific Tax or HBZ may be associated with the onset of HAM/TSP. Electronic supplementary material The online version of this article (10.1186/s12977-018-0454-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tadasuke Naito
- Department of Microbiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Jun-Ichirou Yasunaga
- Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yuichi Mitobe
- Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Kazumasa Shirai
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Fukuoka, Japan
| | - Hiroe Sejima
- Department of Microbiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Hiroshi Ushirogawa
- Department of Microbiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Yuetsu Tanaka
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Tatsufumi Nakamura
- Department of Social Work, Faculty of Human and Social Studies, Nagasaki International University, 2825-7 Huis Ten Bosch Machi, Sasebo, Nagasaki, 859-3298, Japan
| | - Kousuke Hanada
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Fukuoka, Japan
| | - Masahiro Fujii
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masao Matsuoka
- Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Department of Hematology, Rheumatology and Infectious Disease, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Mineki Saito
- Department of Microbiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan.
| |
Collapse
|
7
|
NFAT1-regulated IL6 signalling contributes to aggressive phenotypes of glioma. Cell Commun Signal 2017; 15:54. [PMID: 29258522 PMCID: PMC5735798 DOI: 10.1186/s12964-017-0210-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023] Open
Abstract
Background We previously demonstrated that the local immune status correlated with the glioma prognosis. Interleukin-6 (IL6) was identified as an important local immune-related risk marker related to unfavourable prognosis. In this study, we further investigated the role and regulation of IL6 signalling in glioma. Methods The expression and prognostic value of IL6 and the IL6 receptor (IL6R) were explored in The Cancer Genome Atlas (TCGA) and REMBRANDT databases and clinical samples. Functional effects of genetic knockdown and overexpression of IL6R or IL6 stimulation were examined in vitro and in tumours in vivo. The effects of the nuclear factor of activated T cells-1 (NFAT1) on the promoter activities of IL6R and IL6 were also examined. Results High IL6- and IL6R-expression were significantly associated with mesenchymal subtype and IDH-wildtype gliomas, and were predictors of poor survival. Knockdown of IL6R decreased cell proliferation, invasion and neurosphere formation in vitro, and inhibited tumorigenesis in vivo. IL6R overexpression or IL6 stimulation enhanced the invasion and growth of glioma cells. TCGA database searching revealed that IL6- and IL6R-expression were correlated with that of NFAT1. In glioma cells, NFAT1 enhanced the promoter activities of IL6R and IL6, and upregulated the expression of both IL6R and IL6. Conclusion NFAT1-regulated IL6 signalling contributes to aggressive phenotypes of gliomas, emphasizing the role of immunomodulatory factors in glioma malignant progression. Electronic supplementary material The online version of this article (10.1186/s12964-017-0210-1) contains supplementary material, which is available to authorized users.
Collapse
|
8
|
Mohr CF, Gross C, Bros M, Reske-Kunz AB, Biesinger B, Thoma-Kress AK. Regulation of the tumor marker Fascin by the viral oncoprotein Tax of human T-cell leukemia virus type 1 (HTLV-1) depends on promoter activation and on a promoter-independent mechanism. Virology 2015; 485:481-91. [PMID: 26363219 DOI: 10.1016/j.virol.2015.08.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 06/24/2015] [Accepted: 08/24/2015] [Indexed: 01/16/2023]
Abstract
Adult T-cell leukemia/lymphoma is a highly infiltrative neoplasia of CD4(+) T-lymphocytes that occurs in about 5% of carriers infected with the deltaretrovirus human T-cell leukemia virus type 1 (HTLV-1). The viral oncoprotein Tax perturbs cellular signaling pathways leading to upregulation of host cell factors, amongst them the actin-bundling protein Fascin, an invasion marker of several types of cancer. However, transcriptional regulation of Fascin by Tax is poorly understood. In this study, we identified a triple mode of transcriptional induction of Fascin by Tax, which requires (1) NF-κB-dependent promoter activation, (2) a Tax-responsive region in the Fascin promoter, and (3) a promoter-independent mechanism sensitive to the Src family kinase inhibitor PP2. Thus, Tax regulates Fascin by a multitude of signals. Beyond, using Tax-expressing and virus-transformed lymphocytes as a model system, our study is the first to identify the invasion marker Fascin as a novel target of PP2, an inhibitor of metastasis.
Collapse
Affiliation(s)
- Caroline F Mohr
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Christine Gross
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Matthias Bros
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany.
| | - Angelika B Reske-Kunz
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany.
| | - Brigitte Biesinger
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Andrea K Thoma-Kress
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
9
|
Roediger B, Kyle R, Tay SS, Mitchell AJ, Bolton HA, Guy TV, Tan SY, Forbes-Blom E, Tong PL, Köller Y, Shklovskaya E, Iwashima M, McCoy KD, Le Gros G, Fazekas de St Groth B, Weninger W. IL-2 is a critical regulator of group 2 innate lymphoid cell function during pulmonary inflammation. J Allergy Clin Immunol 2015; 136:1653-1663.e7. [PMID: 26025126 DOI: 10.1016/j.jaci.2015.03.043] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/07/2015] [Accepted: 03/20/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Group 2 innate lymphoid cells (ILC2) have been implicated in the pathogenesis of allergic lung diseases. However, the upstream signals that regulate ILC2 function during pulmonary inflammation remain poorly understood. ILC2s have been shown to respond to exogenous IL-2, but the importance of endogenous IL-2 in ILC2 function in vivo remains unclear. OBJECTIVE We sought to understand the role of IL-2 in the regulation of ILC2 function in the lung. METHODS We used histology, flow cytometry, immunohistochemistry, ELISA, and quantitative PCR with knockout and reporter mice to dissect pulmonary ILC2 function in vivo. We examined the role of ILC2s in eosinophilic crystalline pneumonia, an idiopathic type 2 inflammatory lung condition of mice, and the effect of IL-2 deficiency on this disease. We determined the effect of IL-2 administration on pulmonary ILC2 numbers and function in mice in the steady state and after challenge with IL-33. RESULTS We discovered an unexpected role for innate cell-derived IL-2 as a major cofactor of ILC2 function during pulmonary inflammation. Specifically, we found that IL-2 was essential for the development of eosinophilic crystalline pneumonia, a type 2 disease characterized by increased numbers of activated ILC2s. We show that IL-2 signaling serves 2 distinct functions in lung ILC2s, namely promoting cell survival/proliferation and serving as a cofactor for the production of type 2 cytokines. We further demonstrate that group 3 innate lymphoid cells are an innate immune source of IL-2 in the lung. CONCLUSION Innate cell-derived IL-2 is a critical cofactor in regulating ILC2 function in pulmonary type 2 pathology.
Collapse
Affiliation(s)
- Ben Roediger
- Centenary Institute, Newtown, Australia; Discipline of Dermatology, Sydney Medical School, University of Sydney, Sydney, Australia.
| | - Ryan Kyle
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Szun S Tay
- Centenary Institute, Newtown, Australia; Discipline of Dermatology, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Andrew J Mitchell
- Centenary Institute, Newtown, Australia; Discipline of Dermatology, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Holly A Bolton
- Centenary Institute, Newtown, Australia; Discipline of Dermatology, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Thomas V Guy
- Centenary Institute, Newtown, Australia; Discipline of Dermatology, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Sioh-Yang Tan
- Centenary Institute, Newtown, Australia; Discipline of Dermatology, Sydney Medical School, University of Sydney, Sydney, Australia
| | | | - Philip L Tong
- Centenary Institute, Newtown, Australia; Discipline of Dermatology, Sydney Medical School, University of Sydney, Sydney, Australia; Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Yasmin Köller
- Maurice Müller Laboratories, Universitätsklinik für Viszerale Chirurgie und Medizin (UVCM), University of Bern, Bern, Switzerland
| | - Elena Shklovskaya
- Centenary Institute, Newtown, Australia; Discipline of Dermatology, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Makio Iwashima
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Ill; Department of Thoracic and Cardiovascular Surgery, Loyola University Chicago, Maywood, Ill
| | - Kathy D McCoy
- Maurice Müller Laboratories, Universitätsklinik für Viszerale Chirurgie und Medizin (UVCM), University of Bern, Bern, Switzerland
| | - Graham Le Gros
- Malaghan Institute of Medical Research, Wellington, New Zealand; Victoria University of Wellington, Wellington, New Zealand
| | - Barbara Fazekas de St Groth
- Centenary Institute, Newtown, Australia; Discipline of Dermatology, Sydney Medical School, University of Sydney, Sydney, Australia.
| | - Wolfgang Weninger
- Centenary Institute, Newtown, Australia; Discipline of Dermatology, Sydney Medical School, University of Sydney, Sydney, Australia; Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, Australia.
| |
Collapse
|
10
|
Yun HM, Kim JA, Hwang CJ, Jin P, Baek MK, Lee JM, Hong JE, Lee SM, Han SB, Oh KW, Choi DY, Yoon DY, Hong JT. Neuroinflammatory and Amyloidogenic Activities of IL-32β in Alzheimer's Disease. Mol Neurobiol 2014; 52:341-52. [PMID: 25159479 DOI: 10.1007/s12035-014-8860-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/11/2014] [Indexed: 12/21/2022]
Abstract
Interleukin (IL)-32β can act as either pro-inflammatory or anti-inflammatory cytokines with being dependent on the status of disease development. Herein, we investigated whether IL-32β overexpression changes cytokine levels and affects amyloid-beta (Aβ)-induced pro-inflammation in the brain. IL-32β transgenic (Tg) mice and non-Tg mice were intracerebroventricularly infused with Aβ1-42 once a day for 14 days, and then cognitive function was assessed by the Morris water maze test and passive avoidance test. Our data showed that IL-32β Tg mice increased memory impairment, glia activation, amyloidogenesis, and neuroinflammation. The expression of glial fibrillary acid protein (GFAP), Iba1, and β-secretase 1 (BACE1) in the cortex and hippocampus was much higher in the Aβ1-42-infused IL-32β Tg mice brain. The activation of signal transducer and activator of transcription 3 (STAT3) and nuclear factor-kappa B (NF-κB) was much higher in Aβ1-42-infused IL-32β Tg mice brain. We also found that cytokines including IP-10, GM-CSF, JE, IL-13, and interferone-inducible T cell α chemoattractant (I-TAC) were elevated in Aβ1-42-infused IL-32β Tg mice brain. These results suggest that IL-32β could activate NF-κB and STAT3, and thus affect neuroinflammation as well as amyloidogenesis, leading to worsening memory impairment.
Collapse
Affiliation(s)
- Hyung-Mun Yun
- College of Pharmacy, Medical Research Center, Chungbuk National University, 12 Gaesin-dong, Heungduk-gu, Cheongju, Chungbuk, 361-763, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Doyle MC, Tremblay S, Dumais N. 15-Deoxy-Δ(12,14)-prostaglandin J2 inhibits IL-13 production in T cells via an NF-κB-dependent mechanism. Biochem Biophys Res Commun 2013; 431:472-7. [PMID: 23333326 DOI: 10.1016/j.bbrc.2013.01.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 01/09/2013] [Indexed: 11/18/2022]
Abstract
Interleukin (IL)-13 is a cytokine produced by activated CD4(+) T cells that plays a critical role in promoting allergic responses and tumor cell growth. The 15-deoxy-Δ(12,14)-prostaglandin J(2) (15d-PGJ(2)) is a natural ligand for the nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-γ), a known regulator of anti-inflammatory activities. We determined the effects of 15d-PGJ(2) on IL-13 expression in the Jurkat E6.1 T-cell line and in peripheral blood mononuclear cells. Semi-quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay revealed that treatment of activated T cells with 15d-PGJ(2) significantly decreased IL-13 mRNA transcription and secretion, respectively. This inhibition by 15d-PGJ(2) was independent of PPAR-γ since treatment with GW9662, an irreversible antagonist of the nuclear receptor, produced no effect. Our data also revealed the involvement of nuclear factor-κB in mediating 15d-PGJ(2)-dependent down regulation of IL-13 expression. Collectively, these results demonstrate the potential of 15d-PGJ(2) in attenuating expression and production of IL-13 in activated T cells.
Collapse
Affiliation(s)
- Marie-Christine Doyle
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke (QC), Canada J1K 2R1
| | | | | |
Collapse
|
12
|
Currer R, Van Duyne R, Jaworski E, Guendel I, Sampey G, Das R, Narayanan A, Kashanchi F. HTLV tax: a fascinating multifunctional co-regulator of viral and cellular pathways. Front Microbiol 2012; 3:406. [PMID: 23226145 PMCID: PMC3510432 DOI: 10.3389/fmicb.2012.00406] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 11/12/2012] [Indexed: 12/18/2022] Open
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) has been identified as the causative agent of adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The virus infects between 15 and 20 million people worldwide of which approximately 2-5% develop ATL. The past 35 years of research have yielded significant insight into the pathogenesis of HTLV-1, including the molecular characterization of Tax, the viral transactivator, and oncoprotein. In spite of these efforts, the mechanisms of oncogenesis of this pleiotropic protein remain to be fully elucidated. In this review, we illustrate the multiple oncogenic roles of Tax by summarizing a recent body of literature that refines our understanding of cellular transformation. A focused range of topics are discussed in this review including Tax-mediated regulation of the viral promoter and other cellular pathways, particularly the connection of the NF-κB pathway to both post-translational modifications (PTMs) of Tax and subcellular localization. Specifically, recent research on polyubiquitination of Tax as it relates to the activation of the IkappaB kinase (IKK) complex is highlighted. Regulation of the cell cycle and DNA damage responses due to Tax are also discussed, including Tax interaction with minichromosome maintenance proteins and the role of Tax in chromatin remodeling. The recent identification of HTLV-3 has amplified the importance of the characterization of emerging viral pathogens. The challenge of the molecular determination of pathogenicity and malignant disease of this virus lies in the comparison of the viral transactivators of HTLV-1, -2, and -3 in terms of transformation and immortalization. Consequently, differences between the three proteins are currently being studied to determine what factors are required for the differences in tumorogenesis.
Collapse
Affiliation(s)
- Robert Currer
- National Center for Biodefense and Infectious Diseases, George Mason University Manassas, VA, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Guo L, Junttila IS, Paul WE. Cytokine-induced cytokine production by conventional and innate lymphoid cells. Trends Immunol 2012; 33:598-606. [PMID: 22959641 DOI: 10.1016/j.it.2012.07.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/30/2012] [Accepted: 07/30/2012] [Indexed: 01/13/2023]
Abstract
Innate immune and differentiated T cells produce signature cytokines in response to cytokine stimulation. Optimal production requires stimulation by an NF-κB inducer, most commonly an interleukin (IL)-1 family member, and a STAT activator. Usually, there is linkage between the IL-1 family member, the activated STAT and the cytokines produced: IFNγ producers respond to the IL-1 family member, IL-18 and IL-12, a STAT4 activator; IL-13 producers respond to IL-33 (although for ILC2 cells this may be replaced by IL-25) and STAT5 activators; for cells producing IL-17A or IL-22, the combination is IL-1 and a STAT3 inducer. Cytokine-induced cytokine production may have broad significance in orchestrating innate responses to distinct infectious agents and in maintaining inflammatory responses after elimination of the inciting antigen.
Collapse
Affiliation(s)
- Liying Guo
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
14
|
n-3 Fatty acids inhibit transcription of human IL-13: implications for development of T helper type 2 immune responses. Br J Nutr 2012; 109:990-1000. [PMID: 22849952 DOI: 10.1017/s0007114512002917] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Fish oil supplementation during pregnancy has been associated with lower levels of cord blood IL-13, suggesting that the administration of n-3 fatty acids may attenuate the development of allergic disease. The present study aimed to investigate the mechanism by which n-3 fatty acid administration influences the production of IL-13. Pregnant BALB/c mice were fed nutritionally complete high-fat diets (15 %, w/w) with an n-3 fatty acid-enriched (DHA 1 %, w/w) or control diet (0 % DHA) immediately following delivery. Pups were exposed during suckling and weaned to the maternal diet for the remainder of the study. The production of IL-13, IL-4, IL-10 and interferon-γ from the splenocytes of ovalbumin (ova)-sensitised animals was assessed following in vitro ova stimulation or unstimulated conditions. Human T helper type 2 (Th2) cells were mitogen-stimulated in the presence or absence of DHA (10 μM) and assessed for IL-13 and IL-4 expression using intracellular flow cytometry. The influence on transcriptional activation was studied using a human IL-13 promoter reporter construct and electromobility shift assay. Ova-activated splenocytes from DHA-fed mice produced less IL-13 (57.2 (se 21.7) pg/ml) and IL-4 (7.33 (SE 3.4) pg/ml) compared with cells from the animals fed the control diet (161.5 (SE 45.0), P< 0.05; 33.2 (SE 11.8), P< 0.05). In vitro, DHA inhibited the expression of IL-13 protein from human Th2 cells as well as transcriptional activation and binding of the transcription factors cyclic AMP response element binding and activating transcription factor 2 to the human IL-13 promoter. These data indicate the potential of n-3 fatty acids to attenuate IL-13 expression, and suggest that they may subsequently reduce allergic sensitisation and the development of allergic disease.
Collapse
|
15
|
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia/lymphoma (ATL), whereas the highly related HTLV-2 is not associated with ATL or other cancers. In addition to ATL leukemogenesis, studies of the HTLV viruses also provide an exceptional model for understanding basic pathogenic mechanisms of virus-host interactions and human oncogenesis. Accumulating evidence suggests that the viral regulatory protein Tax and host inflammatory transcription factor NF-κB are largely responsible for the different pathogenic potentials of HTLV-1 and HTLV-2. Here, we discuss the molecular mechanisms of HTLV-1 oncogenic pathogenesis with a focus on the interplay between the Tax oncoprotein and NF-κB pro-oncogenic signaling. We also outline some of the most intriguing and outstanding questions in the fields of HTLV and NF-κB. Answers to those questions will greatly advance our understanding of ATL leukemogenesis and other NF-κB-associated tumorigenesis and will help us design personalized cancer therapies.
Collapse
|
16
|
Kozuka T, Sugita M, Shetzline S, Gewirtz AM, Nakata Y. c-Myb and GATA-3 cooperatively regulate IL-13 expression via conserved GATA-3 response element and recruit mixed lineage leukemia (MLL) for histone modification of the IL-13 locus. THE JOURNAL OF IMMUNOLOGY 2011; 187:5974-82. [PMID: 22039304 DOI: 10.4049/jimmunol.1100550] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The c-Myb and GATA-3 transcription factors play important roles in T cell development. We recently reported that c-Myb, GATA-3, and Menin form a core transcription complex that regulates GATA-3 expression and ultimately Th2 cell development in human peripheral blood T cells. However, c-Myb roles for Th2 cytokine expression were not demonstrated. In this article, we report that c-Myb and GATA-3 cooperatively play an essential role in IL-13 expression though direct binding to a conserved GATA-3 response element (CGRE), an enhancer for IL-13 expression. c-Myb and GATA-3 were shown to activate the CGRE-IL-13 promoter by ∼160-fold, and mutation of the canonical Myb binding site completely abrogated CGRE enhancer activity. In contrast, mutation of the GATA binding site partially decreased CGRE enhancer activity. GATA-3 did not bind to CGRE when c-myb expression was silenced. c-Myb, GATA-3, Menin, and mixed lineage leukemia (MLL) bound to CGRE in human primary CD4(+) effector/memory cells. Moreover, c-myb silencing significantly decreased both methylation of histone H3K4 and acetylation of histone H3K9 at the IL-13 locus in CD4(+) effector/memory cells. Therefore, in addition to the strong enhancer effect for the transcription of IL-13, the c-Myb/GATA-3 complex recruits MLL to the CGRE for histone modification of the IL-13 locus during the differentiation of memory Th2 cells.
Collapse
Affiliation(s)
- Teruhiko Kozuka
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
17
|
Cell surface markers in HTLV-1 pathogenesis. Viruses 2011; 3:1439-59. [PMID: 21994790 PMCID: PMC3185802 DOI: 10.3390/v3081439] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 07/25/2011] [Accepted: 08/08/2011] [Indexed: 12/19/2022] Open
Abstract
The phenotype of HTLV-1-transformed CD4+ T lymphocytes largely depends on defined viral effector molecules such as the viral oncoprotein Tax. In this review, we exemplify the expression pattern of characteristic lineage markers, costimulatory receptors and ligands of the tumor necrosis factor superfamily, cytokine receptors, and adhesion molecules on HTLV-1-transformed cells. These molecules may provide survival signals for the transformed cells. Expression of characteristic surface markers might therefore contribute to persistence of HTLV-1-transformed lymphocytes and to the development of HTLV-1-associated disease.
Collapse
|
18
|
Human T Lymphotropic Virus Type 1 (HTLV-1): Molecular Biology and Oncogenesis. Viruses 2010; 2:2037-2077. [PMID: 21994719 PMCID: PMC3185741 DOI: 10.3390/v2092037] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 08/25/2010] [Accepted: 09/15/2010] [Indexed: 12/13/2022] Open
Abstract
Human T lymphotropic viruses (HTLVs) are complex deltaretroviruses that do not contain a proto-oncogene in their genome, yet are capable of transforming primary T lymphocytes both in vitro and in vivo. There are four known strains of HTLV including HTLV type 1 (HTLV-1), HTLV-2, HTLV-3 and HTLV-4. HTLV-1 is primarily associated with adult T cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-2 is rarely pathogenic and is sporadically associated with neurological disorders. There have been no diseases associated with HTLV-3 or HTLV-4 to date. Due to the difference in the disease manifestation between HTLV-1 and HTLV-2, a clear understanding of their individual pathobiologies and the role of various viral proteins in transformation should provide insights into better prognosis and prevention strategies. In this review, we aim to summarize the data accumulated so far in the transformation and pathogenesis of HTLV-1, focusing on the viral Tax and HBZ and citing appropriate comparisons to HTLV-2.
Collapse
|
19
|
Distinct functions of HTLV-1 Tax1 from HTLV-2 Tax2 contribute key roles to viral pathogenesis. Retrovirology 2009; 6:117. [PMID: 20017952 PMCID: PMC2806368 DOI: 10.1186/1742-4690-6-117] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 12/17/2009] [Indexed: 12/17/2022] Open
Abstract
While the human T-cell leukemia virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia/lymphoma (ATL), to date, its close relative HTLV-2 is not associated with ATL or other types of malignancies. Accumulating evidence shows that HTLV-1 Tax1 and HTLV-2 Tax2 have many shared activities, but the two proteins have a limited number of significantly distinct activities, and these distinctions appear to play key roles in HTLV-1 specific pathogenesis. In this review, we summarize the functions of Tax1 associated with cell survival, cell proliferation, persistent infection as well as pathogenesis. We emphasize special attention to distinctions between Tax1 and Tax2.
Collapse
|