1
|
Darish JR, Kaganer AW, Hanley BJ, Schuler KL, Schwabenlander MD, Wolf TM, Ahmed MS, Rowden GR, Larsen PA, Kobashigawa E, Tewari D, Lichtenberg S, Pedersen JA, Zhang S, Sreevatsan S. Inter-laboratory comparison of real-time quaking-induced conversion (RT-QuIC) for the detection of chronic wasting disease prions in white-tailed deer retropharyngeal lymph nodes. J Vet Diagn Invest 2024:10406387241285165. [PMID: 39397658 DOI: 10.1177/10406387241285165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
The rapid geographic spread of chronic wasting disease (CWD) in white-tailed deer (WTD; Odocoileus virginianus) increases the need for the development and validation of new detection tests. Real-time quaking-induced conversion (RT-QuIC) has emerged as a sensitive tool for CWD prion detection, but federal approval in the United States has been challenged by practical constraints on validation and uncertainty surrounding RT-QuIC robustness between laboratories. To evaluate the effect of inter-laboratory variation on CWD prion detection using RT-QuIC, we conducted a multi-institution comparison on a shared anonymized sample set. We hypothesized that RT-QuIC can accurately and reliably detect the prions that cause CWD in postmortem samples from medial retropharyngeal lymph node (RPLN) tissue despite variation in laboratory protocols. Laboratories from 6 U.S. states (Michigan, Minnesota, Missouri, New York, Pennsylvania, Wisconsin) were enlisted to compare the use of RT-QuIC in determining CWD prion status (positive or negative) among 50 anonymized RPLNs of known prion status. Our sample set included animals of 3 codon 96 WTD genotypes known to affect CWD progression and detection (G96G, G96S, S96S). All 6 laboratories successfully identified the true disease status consistently for all 3 tested codon 96 genotypes. Our results indicate that RT-QuIC is a suitable test for the detection of CWD prions in RPLN tissues in several genotypes of WTD.
Collapse
Affiliation(s)
- Joseph R Darish
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Alyssa W Kaganer
- New York State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Brenda J Hanley
- New York State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Krysten L Schuler
- New York State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Marc D Schwabenlander
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Tiffany M Wolf
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Md Sohel Ahmed
- New York State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Gage R Rowden
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Peter A Larsen
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Estela Kobashigawa
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Deepanker Tewari
- Pennsylvania Veterinary Laboratory, Pennsylvania Animal Diagnostic Laboratory System, Harrisburg, PA, USA
| | - Stuart Lichtenberg
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
- Department of Soil Science, University of Wisconsin, Madison, WI, USA
| | - Joel A Pedersen
- Department of Soil Science, University of Wisconsin, Madison, WI, USA
| | - Shuping Zhang
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Srinand Sreevatsan
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
2
|
Denkers ND, McNulty EE, Kraft CN, Nalls AV, Westrich JA, Hoover EA, Mathiason CK. Temporal Characterization of Prion Shedding in Secreta of White-Tailed Deer in Longitudinal Study of Chronic Wasting Disease, United States. Emerg Infect Dis 2024; 30:2118-2127. [PMID: 39320164 PMCID: PMC11431932 DOI: 10.3201/eid3010.240159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
Chronic wasting disease (CWD) affects cervids in North America, Asia, and Scandinavia. CWD is unique in its efficient spread, partially because of contact with infectious prions shed in secreta. To assess temporal profiles of CWD prion shedding, we collected saliva, urine, and feces from white-tailed deer for 66 months after exposure to low oral doses of CWD-positive brain tissue or saliva. We analyzed prion seeding activity by using modified amyloid amplification assays incorporating iron oxide bead extraction, which improved CWD detection and reduced false positives. CWD prions were detected in feces, urine, and saliva as early as 6 months postinfection. More frequent and consistent shedding was observed in deer homozygous for glycine at prion protein gene codon 96 than in deer expressing alternate genotypes. Our findings demonstrate that improved amplification methods can be used to identify early antemortem CWD prion shedding, which might aid in disease surveillance of cervids.
Collapse
|
3
|
Ernst S, Piestrzyńska-Kajtoch A, Gethmann J, Natonek-Wiśniewska M, Sadeghi B, Polak MP, Keller M, Gavier-Widén D, Moazami-Goudarzi K, Houston F, Groschup MH, Fast C. Prion protein gene (PRNP) variation in German and Danish cervids. Vet Res 2024; 55:98. [PMID: 39095901 PMCID: PMC11297704 DOI: 10.1186/s13567-024-01340-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/31/2024] [Indexed: 08/04/2024] Open
Abstract
The structure of cellular prion proteins encoded by the prion protein gene (PRNP) impacts susceptibility to transmissible spongiform encephalopathies, including chronic wasting disease (CWD) in deer. The recent emergence of CWD in Northern European reindeer (Rangifer tarandus), moose (Alces alces alces) and red deer (Cervus elaphus), in parallel with the outbreak in North America, gives reason to investigate PRNP variation in European deer, to implement risk assessments and adjust CWD management for deer populations under threat. We here report PRNP-sequence data from 911 samples of German red, roe (Capreolus capreolus), sika (Cervus nippon) and fallow deer (Dama dama) as well as additional data from 26 Danish red deer close to the German border and four zoo species not native to Germany. No PRNP sequence variation was observed in roe and fallow deer, as previously described for populations across Europe. In contrast, a broad PRNP variation was detected in red deer, with non-synonymous polymorphisms at codons 98, 226 and 247 as well as synonymous mutations at codons 21, 78, 136 and 185. Moreover, a novel 24 bp deletion within the octapeptide repeat was detected. In summary, 14 genotypes were seen in red deer with significant differences in their geographical distribution and frequencies, including geographical clustering of certain genotypes, suggesting "PRNP-linages" in this species. Based on data from North American CWD and the genotyping results of the European CWD cases, we would predict that large proportions of wild cervids in Europe might be susceptible to CWD once introduced to naive populations.
Collapse
Affiliation(s)
- Sonja Ernst
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Isle of Riems, Germany
| | | | - Jörn Gethmann
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Greifswald, Isle of Riems, Germany
| | | | - Balal Sadeghi
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Isle of Riems, Germany
| | - Miroslaw P Polak
- Department of Virology, National Veterinary Research Institute, Pulawy, Poland
| | - Markus Keller
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Isle of Riems, Germany
| | | | | | - Fiona Houston
- Division of Immunology, The Roslin Institute, Royal Dick School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Isle of Riems, Germany
| | - Christine Fast
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Isle of Riems, Germany.
| |
Collapse
|
4
|
Lambert ZJ, Bian J, Cassmann ED, Greenlee MHW, Greenlee JJ. Scrapie versus Chronic Wasting Disease in White-Tailed Deer. Emerg Infect Dis 2024; 30:1651-1659. [PMID: 39043428 PMCID: PMC11286070 DOI: 10.3201/eid3008.240007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
White-tailed deer are susceptible to scrapie (WTD scrapie) after oronasal inoculation with the classical scrapie agent from sheep. Deer affected by WTD scrapie are difficult to differentiate from deer infected with chronic wasting disease (CWD). To assess the transmissibility of the WTD scrapie agent and tissue phenotypes when further passaged in white-tailed deer, we oronasally inoculated wild-type white-tailed deer with WTD scrapie agent. We found that WTD scrapie and CWD agents were generally similar, although some differences were noted. The greatest differences were seen in bioassays of cervidized mice that exhibited significantly longer survival periods when inoculated with WTD scrapie agent than those inoculated with CWD agent. Our findings establish that white-tailed deer are susceptible to WTD scrapie and that the presence of WTD scrapie agent in the lymphoreticular system suggests the handling of suspected cases should be consistent with current CWD guidelines because environmental shedding may occur.
Collapse
|
5
|
Arifin MI, Hannaoui S, Ng RA, Zeng D, Zemlyankina I, Ahmed-Hassan H, Schatzl HM, Kaczmarczyk L, Jackson WS, Benestad SL, Gilch S. Norwegian moose CWD induces clinical disease and neuroinvasion in gene-targeted mice expressing cervid S138N prion protein. PLoS Pathog 2024; 20:e1012350. [PMID: 38950080 PMCID: PMC11244775 DOI: 10.1371/journal.ppat.1012350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 07/12/2024] [Accepted: 06/18/2024] [Indexed: 07/03/2024] Open
Abstract
Chronic wasting disease (CWD) is a prion disease affecting deer, elk and moose in North America and reindeer, moose and red deer in Northern Europe. Pathogenesis is driven by the accumulation of PrPSc, a pathological form of the host's cellular prion protein (PrPC), in the brain. CWD is contagious among North American cervids and Norwegian reindeer, with prions commonly found in lymphatic tissue. In Nordic moose and red deer CWD appears exclusively in older animals, and prions are confined to the CNS and undetectable in lymphatic tissues, indicating a sporadic origin. We aimed to determine transmissibility, neuroinvasion and lymphotropism of Nordic CWD isolates using gene-targeted mice expressing either wild-type (138SS/226QQ) or S138N (138NN/226QQ) deer PrP. When challenged with North American CWD strains, mice expressing S138N PrP did not develop clinical disease but harbored prion seeding activity in brain and spleen. Here, we infected these models intracerebrally or intraperitoneally with Norwegian moose, red deer and reindeer CWD isolates. The moose isolate was the first CWD type to cause full-blown disease in the 138NN/226QQ model in the first passage, with 100% attack rate and shortened survival times upon second passage. Furthermore, we detected prion seeding activity or PrPSc in brains and spinal cords, but not spleens, of 138NN/226QQ mice inoculated intraperitoneally with the moose isolate, providing evidence of prion neuroinvasion. We also demonstrate, for the first time, that transmissibility of the red deer CWD isolate was restricted to transgenic mice overexpressing elk PrPC (138SS/226EE), identical to the PrP primary structure of the inoculum. Our findings highlight that susceptibility to clinical disease is determined by the conformational compatibility between prion inoculum and host PrP primary structure. Our study indicates that neuroinvasion of Norwegian moose prions can occur without, or only very limited, replication in the spleen, an unprecedented finding for CWD.
Collapse
Affiliation(s)
| | - Samia Hannaoui
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Raychal Ashlyn Ng
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Doris Zeng
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Irina Zemlyankina
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Hanaa Ahmed-Hassan
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
- Zoonoses Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hermann M. Schatzl
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
| | | | | | | | - Sabine Gilch
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
| |
Collapse
|
6
|
Pereira JC, Gonçalves-Anjo N, Orge L, Pires MA, Rocha S, Figueira L, Matos AC, Silva J, Mendonça P, Carvalho P, Tavares P, Lima C, Alves A, Esteves A, Pinto ML, Pires I, Gama A, Sargo R, Silva F, Seixas F, Vieira-Pinto M, Bastos E. Estimating sequence diversity of prion protein gene ( PRNP) in Portuguese populations of two cervid species: red deer and fallow deer. Prion 2023; 17:75-81. [PMID: 36945178 PMCID: PMC10038017 DOI: 10.1080/19336896.2023.2191540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Among the transmissible spongiform encephalopathies (TSEs), chronic wasting disease (CWD) in cervids is now a rising concern in wildlife within Europe, after the detection of the first case in Norway in 2016, in a wild reindeer and until June 2022 a total of 34 cases were described in Norway, Sweden and Finland. The definite diagnosis is post-mortem, performed in target areas of the brain and lymph nodes. Samples are first screened using a rapid test and, if positive, confirmed by immunohistochemistry and Western immunoblotting. The study of the genetics of the prion protein gene, PRNP, has been proved to be a valuable tool for determining the relative susceptibility to TSEs. In the present study, the exon 3 of PRNP gene of 143 samples from red deer (Cervus elaphus) and fallow deer (Dama dama) of Portugal was analysed. Three single nucleotide polymorphisms (SNPs) were found in red deer - codon A136A, codon T98A, codon Q226E - and no sequence variation was detected in fallow deer. The low genetic diversity found in our samples is compatible with previous studies in Europe. The comparison with results from North America suggests that the free-ranging deer from our study may present susceptibility to CWD, although lack of experimental data and the necessity of continuous survey are necessary to evaluate these populations.
Collapse
Affiliation(s)
- Jorge C Pereira
- Animal and Veterinary Research Centre (CECAV), Vila Real, Portugal
| | - Nuno Gonçalves-Anjo
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Leonor Orge
- Animal and Veterinary Research Centre (CECAV), Vila Real, Portugal
- Pathology Laboratory, UEISPSA, National Institute for Agricultural and Veterinary Research (INIAV), I.P, Oeiras, Portugal
| | - Maria A Pires
- Animal and Veterinary Research Centre (CECAV), Vila Real, Portugal
| | - Sara Rocha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Luís Figueira
- Polytechnic Institute of Castelo Branco (IPCB), Castelo Branco, Portugal
| | - Ana C Matos
- Polytechnic Institute of Castelo Branco (IPCB), Castelo Branco, Portugal
| | - João Silva
- Pathology Laboratory, UEISPSA, National Institute for Agricultural and Veterinary Research (INIAV), I.P, Oeiras, Portugal
| | - Paula Mendonça
- Pathology Laboratory, UEISPSA, National Institute for Agricultural and Veterinary Research (INIAV), I.P, Oeiras, Portugal
| | - Paulo Carvalho
- Pathology Laboratory, UEISPSA, National Institute for Agricultural and Veterinary Research (INIAV), I.P, Oeiras, Portugal
| | - Paula Tavares
- Pathology Laboratory, UEISPSA, National Institute for Agricultural and Veterinary Research (INIAV), I.P, Oeiras, Portugal
| | - Carla Lima
- Pathology Laboratory, UEISPSA, National Institute for Agricultural and Veterinary Research (INIAV), I.P, Oeiras, Portugal
| | - Anabela Alves
- Animal and Veterinary Research Centre (CECAV), Vila Real, Portugal
| | | | - Maria L Pinto
- Animal and Veterinary Research Centre (CECAV), Vila Real, Portugal
| | - Isabel Pires
- Animal and Veterinary Research Centre (CECAV), Vila Real, Portugal
| | - Adelina Gama
- Animal and Veterinary Research Centre (CECAV), Vila Real, Portugal
| | - Roberto Sargo
- Animal and Veterinary Research Centre (CECAV), Vila Real, Portugal
| | - Filipe Silva
- Animal and Veterinary Research Centre (CECAV), Vila Real, Portugal
| | - Fernanda Seixas
- Animal and Veterinary Research Centre (CECAV), Vila Real, Portugal
| | | | - Estela Bastos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
7
|
Bravo-Risi F, Soto P, Benavente R, Nichols TA, Morales R. Dynamics of CWD prion detection in feces and blood from naturally infected white-tailed deer. Sci Rep 2023; 13:20170. [PMID: 37978207 PMCID: PMC10656452 DOI: 10.1038/s41598-023-46929-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
Chronic wasting disease (CWD) is a prion disease affecting cervids. Confirmatory testing of CWD is currently performed postmortem in obex and lymphoid tissues. Extensive evidence demonstrates the presence of infectious prions in feces of CWD-infected deer using in vitro prion-amplification techniques and bioassays. In experimental conditions, this has been achieved as soon as 6-month post-inoculation, suggesting this sample type is a candidate for antemortem diagnosis. In the present study, we optimized the detection of CWD-prions in fecal samples from naturally infected, pre-clinical white-tailed deer by comparing protocols aiming to concentrate CWD-prions with direct spiking of the sample into the PMCA reactions. Results of this screening were compared with similar analyses made in blood. Our data shows that CWD-prion detection in feces using PMCA is best in the absence of sample pre-treatments. We performed a screening of 169 fecal samples, detecting CWD-prions with diagnostic sensitivity and specificity of 54.81% and 98.46%, respectively. In addition, the PMCA seeding activity of 76 fecal samples was compared with that on blood of matched deer. Our findings, demonstrate that CWD-prions in feces and blood are increased at late pre-clinical stages, exhibiting similar detection in both sample types (> 90% sensitivity) when PrP96GG animals are tested. Our findings contribute to understand prion distribution across different biological samples and polymorphic variants in white-tailed deer. This information is also relevant for the current efforts to identify platforms to diagnose CWD.
Collapse
Affiliation(s)
- Francisca Bravo-Risi
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Paulina Soto
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Rebeca Benavente
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Tracy A Nichols
- Veterinary Services Cervid Health Program, United States Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins, CO, USA
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA.
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile.
| |
Collapse
|
8
|
Sola D, Artigas R, Mediano DR, Zaragoza P, Badiola JJ, Martín-Burriel I, Acín C. Novel polymorphisms in the prion protein gene (PRNP) and stability of the resultant prion protein in different horse breeds. Vet Res 2023; 54:94. [PMID: 37848924 PMCID: PMC10583458 DOI: 10.1186/s13567-023-01211-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/22/2023] [Indexed: 10/19/2023] Open
Abstract
Prion diseases are fatal neurodegenerative disorders in which the main pathogenic event is the conversion of the cellular prion protein (PrPC) into an abnormal and misfolded isoform known as PrPSc. Most prion diseases and their susceptibility and pathogenesis are mainly modulated by the PRNP gene that codes for PrP. Mutations and polymorphisms in the PRNP gene can alter PrPC amino acid sequence, leading to a change in transmission efficiency depending on the place where it occurs. Horses are animals that are considered to be highly resistant to prions. Several studies have attempted to identify polymorphisms in the PRNP gene that explain the reason for this high resistance. In this study, we have analysed 207 horses from 20 different breeds, discovering 3 novel PRNP polymorphisms. By using computer programmes such as PolyPhen-2, PROVEAN, PANTHER, Meta-SNP and PredictSNP, we have predicted the possible impact that these new polymorphisms would have on the horse prion protein. In addition, we measured the propensity for amyloid aggregation using AMYCO and analysed the lack of hydrogen bridges that these changes would entail together with their electrostatic potentials using Swiss-PdbViewer software, showing that an increased amyloid propensity could be due to changes at the level of electrostatic potentials.
Collapse
Affiliation(s)
- Diego Sola
- Centro de Encefalopatías Y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragón, 50013, Zaragoza, Spain.
| | - Rody Artigas
- Facultad de Veterinaria, Unidad Académica de Genética Y Mejora Animal, Universidad de La República, Ruta 8 Km18, 13000, Montevideo, Uruguay
| | - Diego R Mediano
- Laboratory of Biochemical Genetics (LAGENBIO), Faculty of Veterinary, Institute for Health Research Aragon (IIS Aragón), AgriFood Institute of Aragon (IA2), University of Zaragoza, Miguel Servet 177, 50013, Zaragoza, Spain
| | - Pilar Zaragoza
- Laboratory of Biochemical Genetics (LAGENBIO), Faculty of Veterinary, Institute for Health Research Aragon (IIS Aragón), AgriFood Institute of Aragon (IA2), University of Zaragoza, Miguel Servet 177, 50013, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, 28029, Madrid, Spain
| | - Juan José Badiola
- Centro de Encefalopatías Y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragón, 50013, Zaragoza, Spain
| | - Inmaculada Martín-Burriel
- Centro de Encefalopatías Y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragón, 50013, Zaragoza, Spain
- Laboratory of Biochemical Genetics (LAGENBIO), Faculty of Veterinary, Institute for Health Research Aragon (IIS Aragón), AgriFood Institute of Aragon (IA2), University of Zaragoza, Miguel Servet 177, 50013, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, 28029, Madrid, Spain
| | - Cristina Acín
- Centro de Encefalopatías Y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, IA2, IIS Aragón, 50013, Zaragoza, Spain
| |
Collapse
|
9
|
Thackray AM, McNulty EE, Nalls AV, Cardova A, Tran L, Telling G, Benestad SL, Gilch S, Mathiason CK, Bujdoso R. Genetic modulation of CWD prion propagation in cervid PrP Drosophila. Biochem J 2023; 480:1485-1501. [PMID: 37747806 PMCID: PMC10586768 DOI: 10.1042/bcj20230247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
Chronic wasting disease is a fatal prion condition of cervids such as deer, elk, moose and reindeer. Secretion and excretion of prion infectivity from North American cervids with this condition causes environmental contamination and subsequent efficient lateral transmission in free-ranging and farmed cervids. Variants of cervid PrP exist that affect host susceptibility to chronic wasting disease. Cervid breeding programmes aimed at increasing the frequency of PrP variants associated with resistance to chronic wasting disease may reduce the burden of this condition in animals and lower the risk of zoonotic disease. This strategy requires a relatively rapid and economically viable model system to characterise and support selection of prion disease-modifying cervid PrP variants. Here, we generated cervid PrP transgenic Drosophila to fulfil this purpose. We have generated Drosophila transgenic for S138 wild type cervid PrP, or the N138 variant associated with resistance to chronic wasting disease. We show that cervid PrP Drosophila accumulate bona fide prion infectivity after exposure to cervid prions. Furthermore, S138 and N138 PrP fly lines are susceptible to cervid prion isolates from either North America or Europe when assessed phenotypically by accelerated loss of locomotor ability or survival, or biochemically by accumulation of prion seeding activity. However, after exposure to European reindeer prions, N138 PrP Drosophila accumulated prion seeding activity with slower kinetics than the S138 fly line. These novel data show that prion susceptibility characteristics of cervid PrP variants are maintained when expressed in Drosophila, which highlights this novel invertebrate host in modelling chronic wasting disease.
Collapse
Affiliation(s)
- Alana M. Thackray
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, U.K
| | - Erin E. McNulty
- Prion Research Center (PRC) and the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, U.S.A
| | - Amy V. Nalls
- Prion Research Center (PRC) and the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, U.S.A
| | - Alzbeta Cardova
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, U.K
| | - Linh Tran
- Department of Biohazard and Pathology, WOAH Reference Laboratory for CWD (SLB), National Veterinary Institute, Postboks 64, 1431 Ås, Norway
| | - Glenn Telling
- Prion Research Center (PRC) and the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, U.S.A
| | - Sylvie L. Benestad
- Department of Biohazard and Pathology, WOAH Reference Laboratory for CWD (SLB), National Veterinary Institute, Postboks 64, 1431 Ås, Norway
| | - Sabine Gilch
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Candace K. Mathiason
- Prion Research Center (PRC) and the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, U.S.A
| | - Raymond Bujdoso
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, U.K
| |
Collapse
|
10
|
Koutsoumanis K, Allende A, Alvarez‐Ordoñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Skandamis P, Suffredini E, Miller MW, Mysterud A, Nöremark M, Simmons M, Tranulis MA, Vaccari G, Viljugrein H, Ortiz‐Pelaez A, Ru G. Monitoring of chronic wasting disease (CWD) (IV). EFSA J 2023; 21:e07936. [PMID: 37077299 PMCID: PMC10107390 DOI: 10.2903/j.efsa.2023.7936] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
The European Commission requested an analysis of the Chronic Wasting Disease (CWD) monitoring programme in Norway, Sweden, Finland, Iceland, Estonia, Latvia, Lithuania and Poland (9 January 2017-28 February 2022). Thirteen cases were detected in reindeer, 15 in moose and 3 in red deer. They showed two phenotypes, distinguished by the presence or absence of detectable disease-associated normal cellular prion protein (PrP) in lymphoreticular tissues. CWD was detected for the first time in Finland, Sweden and in other areas of Norway. In countries where the disease was not detected, the evidence was insufficient to rule out its presence altogether. Where cases were detected, the prevalence was below 1%. The data also suggest that the high-risk target groups for surveillance should be revised, and 'road kill' removed. Data show that, in addition to differences in age and sex, there are differences in the prion protein gene (PRNP) genotypes between positive and negative wild reindeer. A stepwise framework has been proposed with expanded minimum background surveillance to be implemented in European countries with relevant cervid species. Additional surveillance may include ad hoc surveys for four different objectives, specific to countries with/without cases, focusing on parallel testing of obex and lymph nodes from adult cervids in high-risk target groups, sustained over time, using sampling units and a data-driven design prevalence. Criteria for assessing the probability of CWD presence have been outlined, based on the definition of the geographical area, an annual assessment of risk of introduction, sustained minimum background surveillance, training and engagement of stakeholders and a surveillance programme based on data-driven parameters. All positive cases should be genotyped. Sample sizes for negative samples have been proposed to detect and estimate the frequency of PRNP polymorphisms. Double-strand sequencing of the entire PRNP open reading frame should be undertaken for all selected samples, with data collated in a centralised collection system at EU level.
Collapse
|
11
|
Cook M, Hensley-McBain T, Grindeland A. Mouse models of chronic wasting disease: A review. FRONTIERS IN VIROLOGY 2023. [DOI: 10.3389/fviro.2023.1055487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Animal models are essential tools for investigating and understanding complex prion diseases like chronic wasting disease (CWD), an infectious prion disease of cervids (elk, deer, moose, and reindeer). Over the past several decades, numerous mouse models have been generated to aid in the advancement of CWD knowledge and comprehension. These models have facilitated the investigation of pathogenesis, transmission, and potential therapies for CWD. Findings have impacted CWD management and disease outcomes, though much remains unknown, and a cure has yet to be discovered. Studying wildlife for CWD effects is singularly difficult due to the long incubation time, subtle clinical signs at early stages, lack of convenient in-the-field live testing methods, and lack of reproducibility of a controlled laboratory setting. Mouse models in many cases is the first step to understanding the mechanisms of disease in a shortened time frame. Here, we provide a comprehensive review of studies with mouse models in CWD research. We begin by reviewing studies that examined the use of mouse models for bioassays for tissues, bodily fluids, and excreta that spread disease, then address routes of infectivity and infectious load. Next, we delve into studies of genetic factors that influence protein structure. We then move on to immune factors, possible transmission through environmental contamination, and species barriers and differing prion strains. We conclude with studies that make use of cervidized mouse models in the search for therapies for CWD.
Collapse
|
12
|
Fameli AF, Edson J, Banfield JE, Rosenberry CS, Walter WD. Variability in prion protein genotypes by spatial unit to inform susceptibility to chronic wasting disease. Prion 2022; 16:254-264. [PMID: 36104983 PMCID: PMC9481152 DOI: 10.1080/19336896.2022.2117535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chronic wasting disease (CWD) is a fatal encephalopathy affecting North American cervids. Certain alleles in a host's prion protein gene are responsible for reduced susceptibility to CWD. We assessed for the first time variability in the prion protein gene of elk (Cervus canadensis) present in Pennsylvania, United States of America, a reintroduced population for which CWD cases have never been reported. We sequenced the prion protein gene (PRNP) of 565 elk samples collected over 7 years (2014-2020) and found two polymorphic sites (codon 21 and codon 132). The allele associated with reduced susceptibility to CWD is present in the population, and there was no evidence of deviations from Hardy-Weinberg equilibrium in any of our sampling years (p-values between 0.14 and 1), consistent with the lack of selective pressure on the PRNP. The less susceptible genotypes were found in a frequency similar to the ones reported for elk populations in the states of Wyoming and South Dakota before CWD was detected. We calculated the proportion of less susceptible genotypes in each hunt zone in Pennsylvania as a proxy for their vulnerability to the establishment of CWD, and interpolated these results to obtain a surface representing expected proportion of the less susceptible genotypes across the area. Based on this analysis, hunt zones located in the southern part of our study area have a low proportion of less susceptible genotypes, which is discouraging for elk persistence in Pennsylvania given that these hunt zones are adjacent to the deer Disease Management Area 3, where CWD has been present since 2014.
Collapse
Affiliation(s)
- Alberto F. Fameli
- Pennsylvania Cooperative Fish and Wildlife Research Unit, The Pennsylvania State University, University Park, PA, USA,CONTACT Alberto F. Fameli Pennsylvania Cooperative Fish and Wildlife Research Unit, The Pennsylvania State University, University Park, PA16802, USA
| | - Jessie Edson
- Pennsylvania Cooperative Fish and Wildlife Research Unit, The Pennsylvania State University, University Park, PA, USA
| | - Jeremiah E. Banfield
- Pennsylvania Game Commission, Bureau of Wildlife Management, 2001 Elmerton Avenue,Harrisburg, PA, USA
| | - Christopher S. Rosenberry
- Pennsylvania Game Commission, Bureau of Wildlife Management, 2001 Elmerton Avenue,Harrisburg, PA, USA
| | - W. David Walter
- U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, 403 Forest Resources Building, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
13
|
Kim YC, Won SY, Jeong BH. No association of prion protein gene ( PRNP) polymorphisms with susceptibility to the pandemic 2009 swine flu. Mol Cell Toxicol 2022; 19:1-5. [PMID: 36408482 PMCID: PMC9660098 DOI: 10.1007/s13273-022-00318-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Background The pandemic 2009 swine flu is a highly infectious respiratory disorder caused by H1N1 influenza A viruses. A recent study reported that knockout of the prion protein gene (PRNP) induced susceptibility and lethality in influenza A virus-infected mice. Objective Thus, we examined the association between genetic variations of the PRNP gene and susceptibility to pandemic 2009 swine flu. Results We did not find an association between PRNP polymorphisms and susceptibility to pandemic 2009 swine flu. Conclusions To the best of our knowledge, this was the first evaluation of the association between PRNP polymorphisms and vulnerability to pandemic 2009 swine flu.
Collapse
Affiliation(s)
- Yong-Chan Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, 820-120, Hana-Ro, Iksan, Jeonbuk 54531 Republic of Korea
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Jeonbuk 54896 Republic of Korea
| | - Sae-Young Won
- Korea Zoonosis Research Institute, Jeonbuk National University, 820-120, Hana-Ro, Iksan, Jeonbuk 54531 Republic of Korea
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Jeonbuk 54896 Republic of Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, 820-120, Hana-Ro, Iksan, Jeonbuk 54531 Republic of Korea
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Jeonbuk 54896 Republic of Korea
| |
Collapse
|
14
|
Tewari D, Fasnacht M, Ritzman M, Livengood J, Bower J, Lehmkuhl A, Nichols T, Hamberg A, Brightbill K, Henderson D. Detection of chronic wasting disease in feces and recto-anal mucosal associated lymphoid tissues with RT-QuIC in a naturally infected farmed white-tailed deer herd. Front Vet Sci 2022; 9:959555. [PMID: 36176702 PMCID: PMC9513346 DOI: 10.3389/fvets.2022.959555] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/18/2022] [Indexed: 11/15/2022] Open
Abstract
Chronic wasting disease (CWD) is an infectious prion disease affecting the cervids, including white-tailed deer (WTD) (Odocoileus virginianus). CWD is typically diagnosed postmortem in farmed cervids by immunohistochemistry (IHC). Amplification-based detection methods are newer generation tests currently being evaluated to improve the detection of prion disease. In addition to improving sensitivity, antemortem detection by amplification assays is a focus for improving disease control and management. In this study, we evaluate the use of real-time quaking-induced conversion (RT-QuIC) to detect CWD in fecal and recto-anal mucosal-associated lymphoid tissue (RAMALT) samples from naturally infected farmed WTD herds at postmortem. We successfully detected the presence of CWD prions in WTD RAMALT with a specificity of 100% and a sensitivity of 85.7% (n = 71) and in feces with a specificity of 100% and a sensitivity of 60% (n = 69), utilizing RT-QuIC on samples collected postmortem. Seeding activity detected in RAMALT (15.3 ± 4.2%, n = 18) was much stronger than in feces (44.4 ± 4.2%, n = 15), as measured by cycle threshold (Ct) and rise in relative fluorescence in samples collected from the same WTD. Prion detection in the RAMALT (94.7%) and feces (70.5%) was highest when both obex and retropharyngeal lymph nodes (RPLNs) were positive for CWD via IHC. In the study group, we were also able to test prion protein gene variants and associated disease susceptibility. A majority of tested WTD were the CWD genotype (96 GG) and also harbored the highest percentage of positive animals (43.7%). The second highest population of WTD was the genotype 96 GS and had a CWD positivity rate of 37.5%. Each of these groups showed no difference in RAMALT or fecal detection of CWD.
Collapse
Affiliation(s)
- Deepanker Tewari
- Pennsylvania Veterinary Laboratory, Harrisburg, PA, United States
- *Correspondence: Deepanker Tewari
| | - Melinda Fasnacht
- Pennsylvania Veterinary Laboratory, Harrisburg, PA, United States
| | - Margaret Ritzman
- Pennsylvania Veterinary Laboratory, Harrisburg, PA, United States
| | - Julia Livengood
- Pennsylvania Veterinary Laboratory, Harrisburg, PA, United States
| | - Jessica Bower
- Pennsylvania Veterinary Laboratory, Harrisburg, PA, United States
| | - Aaron Lehmkuhl
- United States Department of Agriculture, APHIS, Veterinary Services, National Veterinary Services Laboratories, Ames, IA, United States
| | - Tracy Nichols
- Veterinary Services Cervid Health Program, United States Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins, CO, United States
| | - Alex Hamberg
- Bureau of Animal Health, Pennsylvania Department of Agriculture, Harrisburg, PA, United States
| | - Kevin Brightbill
- Bureau of Animal Health, Pennsylvania Department of Agriculture, Harrisburg, PA, United States
| | | |
Collapse
|
15
|
Nikolić L, Ferracin C, Legname G. Recent advances in cellular models for discovering prion disease therapeutics. Expert Opin Drug Discov 2022; 17:985-996. [PMID: 35983689 DOI: 10.1080/17460441.2022.2113773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Prion diseases are a group of rare and lethal rapidly progressive neurodegenerative diseases arising due to conversion of the physiological cellular prion protein into its pathological counterparts, denoted as "prions". These agents are resistant to inactivation by standard decontamination procedures and can be transmitted between individuals, consequently driving the irreversible brain damage typical of the diseases. AREAS COVERED Since its infancy, prion research has mainly depended on animal models for untangling the pathogenesis of the disease as well as for the drug development studies. With the advent of prion-infected cell lines, relevant animal models have been complemented by a variety of cell-based models presenting a much faster, ethically acceptable alternative. EXPERT OPINION To date, there are still either no effective prophylactic regimens or therapies for human prion diseases. Therefore, there is an urgent need for more relevant cellular models that best approximate in vivo models. Each cellular model presented and discussed in detail in this review has its own benefits and limitations. Once embarking in a drug screening campaign for the identification of molecules that could interfere with prion conversion and replication, one should carefully consider the ideal cellular model.
Collapse
Affiliation(s)
- Lea Nikolić
- PhD Student in Functional and Structural Genomics, Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy,
| | - Chiara Ferracin
- PhD Student in Functional and Structural Genomics, Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Giuseppe Legname
- D.Phil., Full Professor of Biochemistry, Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| |
Collapse
|
16
|
Transmission, Strain Diversity, and Zoonotic Potential of Chronic Wasting Disease. Viruses 2022; 14:v14071390. [PMID: 35891371 PMCID: PMC9316268 DOI: 10.3390/v14071390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/11/2022] [Accepted: 06/12/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic wasting disease (CWD) is a prion disease affecting several species of captive and free-ranging cervids. In the past few decades, CWD has been spreading uncontrollably, mostly in North America, resulting in a high increase of CWD incidence but also a substantially higher number of geographical regions affected. The massive increase in CWD poses risks at several levels, including contamination of the environment, transmission to animals cohabiting with cervids, and more importantly, a putative transmission to humans. In this review, I will describe the mechanisms and routes responsible for the efficient transmission of CWD, the strain diversity of natural CWD, its spillover and zoonotic potential and strategies to minimize the CWD threat.
Collapse
|
17
|
Silva CJ. Chronic Wasting Disease (CWD) in Cervids and the Consequences of a Mutable Protein Conformation. ACS OMEGA 2022; 7:12474-12492. [PMID: 35465121 PMCID: PMC9022204 DOI: 10.1021/acsomega.2c00155] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/18/2022] [Indexed: 05/15/2023]
Abstract
Chronic wasting disease (CWD) is a prion disease of cervids (deer, elk, moose, etc.). It spreads readily from CWD-contaminated environments and among wild cervids. As of 2022, North American CWD has been found in 29 states, four Canadian provinces and South Korea. The Scandinavian form of CWD originated independently. Prions propagate their pathology by inducing a natively expressed prion protein (PrPC) to adopt the prion conformation (PrPSc). PrPC and PrPSc differ solely in their conformation. Like other prion diseases, transmissible CWD prions can arise spontaneously. The CWD prions can respond to selection pressures resulting in the emergence of new strain phenotypes. Annually, 11.5 million Americans hunt and harvest nearly 6 million deer, indicating that CWD is a potential threat to an important American food source. No tested CWD strain has been shown to be zoonotic. However, this may not be true for emerging strains. Should a zoonotic CWD strain emerge, it could adversely impact the hunting economy and game meat consumers.
Collapse
Affiliation(s)
- Christopher J. Silva
- Produce Safety & Microbiology
Research Unit, Western Regional Research Center, Agricultural Research
Service, United States Department of Agriculture, Albany, California 94710, United States of America
| |
Collapse
|
18
|
Moore SJ, Carlson CM, Schneider JR, Johnson CJ, Greenlee JJ. Increased Attack Rates and Decreased Incubation Periods in Raccoons with Chronic Wasting Disease Passaged through Meadow Voles. Emerg Infect Dis 2022; 28:793-801. [PMID: 35318913 PMCID: PMC8962881 DOI: 10.3201/eid2804.210271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Chronic wasting disease (CWD) is a naturally-occurring neurodegenerative disease of cervids. Raccoons (Procyon lotor) and meadow voles (Microtus pennsylvanicus) have previously been shown to be susceptible to the CWD agent. To investigate the potential for transmission of the agent of CWD from white-tailed deer to voles and subsequently to raccoons, we intracranially inoculated raccoons with brain homogenate from a CWD-affected white-tailed deer (CWDWtd) or derivatives of this isolate after it had been passaged through voles 1 or 5 times. We found that passage of the CWDWtd isolate through voles led to a change in the biologic behavior of the CWD agent, including increased attack rates and decreased incubation periods in raccoons. A better understanding of the dynamics of cross-species transmission of CWD prions can provide insights into how these infectious proteins evolve in new hosts.
Collapse
|
19
|
Ketz AC, Robinson SJ, Johnson CJ, Samuel MD. Pathogen‐mediated selection and management implications for white‐tailed deer exposed to chronic wasting disease. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Alison C. Ketz
- Wisconsin Cooperative Research Unit Department of Forest and Wildlife Ecology University of Wisconsin Madison WI USA
| | - Stacie J. Robinson
- NOAA Hawaiian Monk Seal Research Program Pacific Islands Fisheries Science Center Honolulu HI USA
| | - Chad J. Johnson
- Medical Microbiology and Immunology University of Wisconsin Madison WI USA
| | - Michael D. Samuel
- Department of Forest and Wildlife Ecology University of Wisconsin Madison WI USA
| |
Collapse
|
20
|
Ott-Conn CN, Blanchong JA, Larson WA. Prion protein polymorphisms in Michigan white-tailed deer ( Odocoileus virginianus). Prion 2021; 15:183-190. [PMID: 34751633 PMCID: PMC8583003 DOI: 10.1080/19336896.2021.1990628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Chronic Wasting Disease (CWD), a well-described transmissible spongiform encephalopathy of the Cervidae family, is associated with the aggregation of an abnormal isoform (PrPCWD) of the naturally occurring host prion protein (PrPC). Variations in the PrP gene (PRNP) have been associated with CWD rate of infection and disease progression. We analysed 568 free-ranging white-tailed deer (Odocoileus virginianus) from 9 CWD-positive Michigan counties for PRNP polymorphisms. Sampling included 185 CWD-positive, 332 CWD non-detected, and an additional 51 CWD non-detected paired to CWD-positives by sex, age, and harvest location. We found 12 polymorphic sites of which 5 were non-synonymous and resulted in a change in amino acid composition. Thirteen haplotypes were predicted, of which 11 have previously been described. Using logistic regression, consistent with other studies, we found haplotypes C (OR = 0.488, 95% CI = 0.321–0.730, P < 0.001) and F (OR = 0.122, 95% CI = 0.007–0.612, P < 0.05) and diplotype BC (OR = 0.340, 95% CI = 0.154–0.709, P < 0.01) were less likely to be found in deer infected with CWD. As has also been documented in other studies, the presence of a serine at amino acid 96 was less likely to be found in deer infected with CWD (P < 0.001, OR = 0.360 and 95% CI = 0.227–0.556). Identification of PRNP polymorphisms associated with reduced vulnerability to CWD in Michigan deer and their spatial distribution can help managers design surveillance programmesand identify and prioritize areas for CWD management.
Collapse
Affiliation(s)
- Caitlin N Ott-Conn
- Michigan Department of Natural Resources, Wildlife Disease Laboratory, Lansing, USA
| | - Julie A Blanchong
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA, USA
| | - Wes A Larson
- National Oceanographic and Atmospheric Administration, National Marine Fisheries Service, Alaska Fisheries Science Center, Juneau, AK, USA
| |
Collapse
|
21
|
Baecklund TM, Donaldson ME, Hueffer K, Kyle CJ. Genetic structure of immunologically associated candidate genes suggests arctic rabies variants exert differential selection in arctic fox populations. PLoS One 2021; 16:e0258975. [PMID: 34714859 PMCID: PMC8555846 DOI: 10.1371/journal.pone.0258975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/10/2021] [Indexed: 11/24/2022] Open
Abstract
Patterns of local adaptation can emerge in response to the selective pressures diseases exert on host populations as reflected in increased frequencies of respective, advantageous genotypes. Elucidating patterns of local adaptation enhance our understanding of mechanisms of disease spread and the capacity for species to adapt in context of rapidly changing environments such as the Arctic. Arctic rabies is a lethal disease that largely persists in northern climates and overlaps with the distribution of its natural host, arctic fox. Arctic fox populations display little neutral genetic structure across their North American range, whereas phylogenetically unique arctic rabies variants are restricted in their geographic distributions. It remains unknown if arctic rabies variants impose differential selection upon host populations, nor what role different rabies variants play in the maintenance and spread of this disease. Using a targeted, genotyping-by-sequencing assay, we assessed correlations of arctic fox immunogenetic variation with arctic rabies variants to gain further insight into the epidemiology of this disease. Corroborating past research, we found no neutral genetic structure between sampled regions, but did find moderate immunogenetic structuring between foxes predominated by different arctic rabies variants. FST outliers associated with host immunogenetic structure included SNPs within interleukin and Toll-like receptor coding regions (IL12B, IL5, TLR3 and NFKB1); genes known to mediate host responses to rabies. While these data do not necessarily reflect causation, nor a direct link to arctic rabies, the contrasting genetic structure of immunologically associated candidate genes with neutral loci is suggestive of differential selection and patterns of local adaptation in this system. These data are somewhat unexpected given the long-lived nature and dispersal capacities of arctic fox; traits expected to undermine local adaptation. Overall, these data contribute to our understanding of the co-evolutionary relationships between arctic rabies and their primary host and provide data relevant to the management of this disease.
Collapse
Affiliation(s)
- Tristan M. Baecklund
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
- * E-mail:
| | - Michael E. Donaldson
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | - Karsten Hueffer
- Department of Veterinary Medicine, University of Alaska Fairbanks, Fairbanks, AK, United States of America
| | - Christopher J. Kyle
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
- Forensic Science Department, Trent University, Peterborough, ON, Canada
- Natural Resources DNA Profiling & Forensic Centre, Trent University, Peterborough, ON, Canada
| |
Collapse
|
22
|
Ishida Y, Tian T, Brandt AL, Kelly AC, Shelton P, Roca AL, Novakofski J, Mateus-Pinilla NE. Association of chronic wasting disease susceptibility with prion protein variation in white-tailed deer ( Odocoileus virginianus). Prion 2021; 14:214-225. [PMID: 32835598 PMCID: PMC7518741 DOI: 10.1080/19336896.2020.1805288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chronic wasting disease (CWD) is caused by prions, infectious proteinaceous particles, PrPCWD. We sequenced the PRNP gene of 2,899 white-tailed deer (WTD) from Illinois and southern Wisconsin, finding 38 haplotypes. Haplotypes A, B, D, E, G and 10 others encoded Q95G96S100N103A123Q226, designated ‘PrP variant A.’ Haplotype C and five other haplotypes encoded PrP ‘variant C’ (Q95S96S100N103A123Q226). Haplotype F and three other haplotypes encoded PrP ‘variant F’ (H95G96S100N103A123Q226). The association of CWD with encoded PrP variants was examined in 2,537 tested WTD from counties with CWD. Relative to PrP variant A, CWD susceptibility was lower in deer with PrP variant C (OR = 0.26, p < 0.001), and even lower in deer with PrP variant F (OR = 0.10, p < 0.0001). Susceptibility to CWD was highest in deer with both chromosomes encoding PrP variant A, lower with one copy encoding PrP variant A (OR = 0.25, p < 0.0001) and lowest in deer without PrP variant A (OR = 0.07, p < 0.0001). There appeared to be incomplete dominance for haplotypes encoding PrP variant C in reducing CWD susceptibility. Deer with both chromosomes encoding PrP variant F (FF) or one encoding PrP variant C and the other F (CF) were all CWD negative. Our results suggest that an increased population frequency of PrP variants C or F and a reduced frequency of PrP variant A may reduce the risk of CWD infection. Understanding the population and geographic distribution of PRNP polymorphisms may be a useful tool in CWD management.
Collapse
Affiliation(s)
- Yasuko Ishida
- Department of Animal Sciences, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Ting Tian
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois at Urbana-Champaign , Champaign, IL, USA.,School of Mathematics, Sun Yat-sen University , Guangzhou, People's Republic of China
| | - Adam L Brandt
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois at Urbana-Champaign , Champaign, IL, USA.,Division of Natural Sciences, St. Norbert College , De Pere, WI, USA
| | - Amy C Kelly
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois at Urbana-Champaign , Champaign, IL, USA.,Bayer U.S. - Crop Sciences Biotechnology Genomics and Data Science, BB4929-A , Chesterfield, MO, USA
| | - Paul Shelton
- Illinois Department of Natural Resources, Division of Wildlife Resources , Springfield, IL, USA
| | - Alfred L Roca
- Department of Animal Sciences, University of Illinois at Urbana-Champaign , Urbana, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Jan Novakofski
- Department of Animal Sciences, University of Illinois at Urbana-Champaign , Urbana, IL, USA.,Illinois Natural History Survey-Prairie Research Institute, University of Illinois at Urbana-Champaign , Champaign, IL, USA
| | - Nohra E Mateus-Pinilla
- Department of Animal Sciences, University of Illinois at Urbana-Champaign , Urbana, IL, USA.,Illinois Natural History Survey-Prairie Research Institute, University of Illinois at Urbana-Champaign , Champaign, IL, USA
| |
Collapse
|
23
|
Chafin TK, Douglas MR, Martin BT, Zbinden ZD, Middaugh CR, Ballard JR, Gray MC, Don White, Douglas ME. Age structuring and spatial heterogeneity in prion protein gene ( PRNP) polymorphism in white-tailed deer. Prion 2021; 14:238-248. [PMID: 33078661 PMCID: PMC7575228 DOI: 10.1080/19336896.2020.1832947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Chronic-wasting disease (CWD) is a prion-derived fatal neurodegenerative disease that has affected wild cervid populations on a global scale. Susceptibility has been linked unambiguously to several amino acid variants within the prion protein gene (PRNP). Quantifying their distribution across landscapes can provide critical information for agencies attempting to adaptively manage CWD. Here we attempt to further define management implications of PRNP polymorphism by quantifying the contemporary geographic distribution (i.e., phylogeography) of PRNP variants in hunter-harvested white-tailed deer (WTD; Odocoileus virginianus, N = 1433) distributed across Arkansas (USA), including a focal spot for CWD since detection of the disease in February 2016. Of these, PRNP variants associated with the well-characterized 96S non-synonymous substitution showed a significant increase in relative frequency among older CWD-positive cohorts. We interpreted this pattern as reflective of a longer life expectancy for 96S genotypes in a CWD-endemic region, suggesting either decreased probabilities of infection or reduced disease progression. Other variants showing statistical signatures of potential increased susceptibility, however, seemingly reflect an artefact of population structure. We also showed marked heterogeneity across the landscape in the prevalence of ‘reduced susceptibility’ genotypes. This may indicate, in turn, that differences in disease susceptibility among WTD in Arkansas are an innate, population-level characteristic that is detectable through phylogeographic analysis.
Collapse
Affiliation(s)
- Tyler K Chafin
- Department of Biological Sciences, University of Arkansas , Fayetteville, AR, USA
| | - Marlis R Douglas
- Department of Biological Sciences, University of Arkansas , Fayetteville, AR, USA
| | - Bradley T Martin
- Department of Biological Sciences, University of Arkansas , Fayetteville, AR, USA
| | - Zachery D Zbinden
- Department of Biological Sciences, University of Arkansas , Fayetteville, AR, USA
| | - Christopher R Middaugh
- Arkansas Game and Fish Commission, Research, Evaluation, and Compliance Division , Little Rock, AR, USA
| | - Jennifer R Ballard
- Arkansas Game and Fish Commission, Research, Evaluation, and Compliance Division , Little Rock, AR, USA
| | - M Cory Gray
- Arkansas Game and Fish Commission, Research, Evaluation, and Compliance Division , Little Rock, AR, USA
| | - Don White
- University of Arkansas Agricultural Experiment Station , Monticello, AR, USA
| | - Michael E Douglas
- Department of Biological Sciences, University of Arkansas , Fayetteville, AR, USA
| |
Collapse
|
24
|
Roh IS, Kim YC, Kim HJ, Won SY, Jeong MJ, Hwang JY, Kang HE, Sohn HJ, Jeong BH. Polymorphisms of the prion-related protein gene are strongly associated with cervids' susceptibility to chronic wasting disease. Vet Rec 2021; 190:e940. [PMID: 34562285 DOI: 10.1002/vetr.940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 07/28/2021] [Accepted: 08/28/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Chronic wasting disease (CWD) is a cervid prion disease that is caused by abnormal prion protein (PrPSc ). Recent studies have reported that prion family genes showed a strong association with the susceptibility of several types of prion diseases. To date, an association study of the prion-related protein gene (PRNT) has not been performed in any type of cervid prion disease. METHODS In the present study, we investigated PRNT polymorphisms in large deer, including 235 elk, 257 red deer and 150 sika deer. We compared genotype, allele and haplotype frequencies of PRNT polymorphisms between CWD-negative animals and CWD-positive animals to find an association of PRNT polymorphisms with the susceptibility of CWD. RESULTS We found a total of five novel single nucleotide polymorphisms (SNPs) in the cervid PRNT gene. Interestingly, we observed significantly different distributions of genotypes and allele frequencies of three PRNT SNPs, including c.108C>T, c.159+30C>T and c.159+32A>C, between CWD-negative and CWD-positive red deer. In addition, significant differences of two haplotype frequencies in red deer were found between the CWD-negative and CWD-positive groups. However, the association identified in the red deer was not found in elk and sika deer. CONCLUSION To the best of our knowledge, this report is the first to describe the strong association of PRNT SNPs with the susceptibility of CWD.
Collapse
Affiliation(s)
- In-Soon Roh
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Yong-Chan Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea.,Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Republic of Korea
| | - Hyo-Jin Kim
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Sae-Young Won
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea.,Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Republic of Korea
| | - Min-Ju Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea.,Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Republic of Korea
| | - Ji-Yong Hwang
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Hae-Eun Kang
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Hyun-Joo Sohn
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea.,Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
25
|
Bravo-Risi F, Soto P, Eckland T, Dittmar R, Ramírez S, Catumbela CSG, Soto C, Lockwood M, Nichols T, Morales R. Detection of CWD prions in naturally infected white-tailed deer fetuses and gestational tissues by PMCA. Sci Rep 2021; 11:18385. [PMID: 34526562 PMCID: PMC8443553 DOI: 10.1038/s41598-021-97737-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/30/2021] [Indexed: 11/09/2022] Open
Abstract
Chronic wasting disease (CWD) is a prevalent prion disease affecting cervids. CWD is thought to be transmitted through direct animal contact or by indirect exposure to contaminated environmental fomites. Other mechanisms of propagation such as vertical and maternal transmissions have also been suggested using naturally and experimentally infected animals. Here, we describe the detection of CWD prions in naturally-infected, farmed white-tailed deer (WTD) fetal tissues using the Protein Misfolding Cyclic Amplification (PMCA) technique. Prion seeding activity was identified in a variety of gestational and fetal tissues. Future studies should demonstrate if prions present in fetuses are at sufficient quantities to cause CWD after birth. This data confirms previous findings in other animal species and furthers vertical transmission as a relevant mechanism of CWD dissemination.
Collapse
Affiliation(s)
- Francisca Bravo-Risi
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St. MSB 7.128, Houston, TX, 77030, USA
| | - Paulina Soto
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St. MSB 7.128, Houston, TX, 77030, USA
| | - Thomas Eckland
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St. MSB 7.128, Houston, TX, 77030, USA
| | | | - Santiago Ramírez
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St. MSB 7.128, Houston, TX, 77030, USA
| | - Celso S G Catumbela
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St. MSB 7.128, Houston, TX, 77030, USA
| | - Claudio Soto
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St. MSB 7.128, Houston, TX, 77030, USA
| | | | - Tracy Nichols
- United States Department of Agriculture, Animal Plant Health Inspection Service, Veterinary Services, Fort Collins, CO, 80526, USA
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St. MSB 7.128, Houston, TX, 77030, USA. .,Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile.
| |
Collapse
|
26
|
Perrin-Stowe TIN, Ishida Y, Terrill EE, Hamlin BC, Penfold L, Cusack LM, Novakofski J, Mateus-Pinilla NE, Roca AL. Prion Protein Gene (PRNP) Sequences Suggest Differing Vulnerability to Chronic Wasting Disease for Florida Key Deer (Odocoileus virginianus clavium) and Columbian White-Tailed Deer (O. v. leucurus). J Hered 2021; 111:564-572. [PMID: 32945850 DOI: 10.1093/jhered/esaa040] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/16/2020] [Indexed: 11/13/2022] Open
Abstract
Chronic wasting disease (CWD) is a fatal, highly transmissible spongiform encephalopathy caused by an infectious prion protein. CWD is spreading across North American cervids. Studies of the prion protein gene (PRNP) in white-tailed deer (WTD; Odocoileus virginianus) have identified non-synonymous substitutions associated with reduced CWD frequency. Because CWD is spreading rapidly geographically, it may impact cervids of conservation concern. Here, we examined the genetic vulnerability to CWD of 2 subspecies of WTD: the endangered Florida Key deer (O. v. clavium) and the threatened Columbian WTD (O. v. leucurus). In Key deer (n = 48), we identified 3 haplotypes formed by 5 polymorphisms, of which 2 were non-synonymous. The polymorphism c.574G>A, unique to Key deer (29 of 96 chromosomes), encodes a non-synonymous substitution from valine to isoleucine at codon 192. In 91 of 96 chromosomes, Key deer carried c.286G>A (G96S), previously associated with substantially reduced susceptibility to CWD. Key deer may be less genetically susceptible to CWD than many mainland WTD populations. In Columbian WTD (n = 13), 2 haplotypes separated by one synonymous substitution (c.438C>T) were identified. All of the Columbian WTD carried alleles that in other mainland populations are associated with relatively high susceptibility to CWD. While larger sampling is needed, future management plans should consider that Columbian WTD are likely to be genetically more vulnerable to CWD than many other WTD populations. Finally, we suggest that genetic vulnerability to CWD be assessed by sequencing PRNP across other endangered cervids, both wild and in captive breeding facilities.
Collapse
Affiliation(s)
- Tolulope I N Perrin-Stowe
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL.,School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Yasuko Ishida
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Emily E Terrill
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Brian C Hamlin
- United States Fish and Wildlife Service Office of Law Enforcement National Fish and Wildlife Forensic Laboratory, Ashland, OR
| | - Linda Penfold
- South-East Zoo Alliance for Reproduction and Conservation, Yulee, FL
| | - Lara M Cusack
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Naples, FL
| | - Jan Novakofski
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Nohra E Mateus-Pinilla
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL.,Illinois Natural History Survey-Prairie Research Institute, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Alfred L Roca
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
27
|
Selective Breeding for Disease-Resistant PRNP Variants to Manage Chronic Wasting Disease in Farmed Whitetail Deer. Genes (Basel) 2021; 12:genes12091396. [PMID: 34573378 PMCID: PMC8471411 DOI: 10.3390/genes12091396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 01/18/2023] Open
Abstract
Chronic wasting disease (CWD) is a fatal transmissible spongiform encephalopathy (TSE) of cervids caused by a misfolded variant of the normal cellular prion protein, and it is closely related to sheep scrapie. Variations in a host's prion gene, PRNP, and its primary protein structure dramatically affect susceptibility to specific prion disorders, and breeding for PRNP variants that prevent scrapie infection has led to steep declines in the disease in North American and European sheep. While resistant alleles have been identified in cervids, a PRNP variant that completely prevents CWD has not yet been identified. Thus, control of the disease in farmed herds traditionally relies on quarantine and depopulation. In CWD-endemic areas, depopulation of private herds becomes challenging to justify, leading to opportunities to manage the disease in situ. We developed a selective breeding program for farmed white-tailed deer in a high-prevalence CWD-endemic area which focused on reducing frequencies of highly susceptible PRNP variants and introducing animals with less susceptible variants. With the use of newly developed primers, we found that breeding followed predictable Mendelian inheritance, and early data support our project's utility in reducing CWD prevalence. This project represents a novel approach to CWD management, with future efforts building on these findings.
Collapse
|
28
|
Bartz JC. Environmental and host factors that contribute to prion strain evolution. Acta Neuropathol 2021; 142:5-16. [PMID: 33899132 PMCID: PMC8932343 DOI: 10.1007/s00401-021-02310-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 02/08/2023]
Abstract
Prions are novel pathogens that are composed entirely of PrPSc, the self-templating conformation of the host prion protein, PrPC. Prion strains are operationally defined as a heritable phenotype of disease that are encoded by strain-specific conformations of PrPSc. The factors that influence the relative distribution of strains in a population are only beginning to be understood. For prions with an infectious etiology, environmental factors, such as strain-specific binding to surfaces and resistance to weathering, can influence which strains are available for transmission to a naïve host. Strain-specific differences in efficiency of infection by natural routes of infection can also select for prion strains. The host amino acid sequence of PrPC has the greatest effect on dictating the repertoire of prion strains. The relative abundance of PrPC, post-translational modifications of PrPC and cellular co-factors involved in prion conversion can also provide conditions that favor the prevalence of a subset of prion strains. Additionally, prion strains can interfere with each other, influencing the emergence of a dominant strain. Overall, both environmental and host factors may influence the repertoire and distribution of strains within a population.
Collapse
Affiliation(s)
- Jason C Bartz
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA.
| |
Collapse
|
29
|
Tewari D, Steward D, Fasnacht M, Livengood J. Detection by real-time quaking-induced conversion (RT-QuIC), ELISA, and IHC of chronic wasting disease prion in lymph nodes from Pennsylvania white-tailed deer with specific PRNP genotypes. J Vet Diagn Invest 2021; 33:943-948. [PMID: 34078193 DOI: 10.1177/10406387211021411] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Chronic wasting disease (CWD) is a prion-mediated, transmissible disease of cervids, including deer (Odocoileus spp.), which is characterized by spongiform encephalopathy and death of the prion-infected animals. Official surveillance in the United States using immunohistochemistry (IHC) and ELISA entails the laborious collection of lymphoid and/or brainstem tissue after death. New, highly sensitive prion detection methods, such as real-time quaking-induced conversion (RT-QuIC), have shown promise in detecting abnormal prions from both antemortem and postmortem specimens. We compared RT-QuIC with ELISA and IHC for CWD detection utilizing deer retropharyngeal lymph node (RLN) tissues in a diagnostic laboratory setting. The RLNs were collected postmortem from hunter-harvested animals. RT-QuIC showed 100% sensitivity and specificity for 50 deer RLN (35 positive by both IHC and ELISA, 15 negative) included in our study. All deer were also genotyped for PRNP polymorphism. Most deer were homozygous at codons 95, 96, 116, and 226 (QQ/GG/AA/QQ genotype, with frequency 0.86), which are the codons implicated in disease susceptibility. Heterozygosity was noticed in Pennsylvania deer, albeit at a very low frequency, for codons 95GS (0.06) and 96QH (0.08), but deer with these genotypes were still found to be CWD prion-infected.
Collapse
Affiliation(s)
- Deepanker Tewari
- Pennsylvania Veterinary Laboratory, Pennsylvania Department of Agriculture-Bureau of Animal Health and Diagnostics, Harrisburg, PA, USA
| | - David Steward
- Pennsylvania Veterinary Laboratory, Pennsylvania Department of Agriculture-Bureau of Animal Health and Diagnostics, Harrisburg, PA, USA
| | - Melinda Fasnacht
- Pennsylvania Veterinary Laboratory, Pennsylvania Department of Agriculture-Bureau of Animal Health and Diagnostics, Harrisburg, PA, USA
| | - Julia Livengood
- Pennsylvania Veterinary Laboratory, Pennsylvania Department of Agriculture-Bureau of Animal Health and Diagnostics, Harrisburg, PA, USA
| |
Collapse
|
30
|
Haworth SE, Nituch L, Northrup JM, Shafer ABA. Characterizing the demographic history and prion protein variation to infer susceptibility to chronic wasting disease in a naïve population of white-tailed deer ( Odocoileus virginianus). Evol Appl 2021; 14:1528-1539. [PMID: 34178102 PMCID: PMC8210793 DOI: 10.1111/eva.13214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/12/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
Assessments of the adaptive potential in natural populations are essential for understanding and predicting responses to environmental stressors like climate change and infectious disease. Species face a range of stressors in human-dominated landscapes, often with contrasting effects. White-tailed deer (Odocoileus virginianus; deer) are expanding in the northern part of their range following decreasing winter severity and increasing forage availability. Chronic wasting disease (CWD), a prion disease affecting deer, is likewise expanding and represents a major threat to deer and other cervids. We obtained tissue samples from free-ranging deer across their native range in Ontario, Canada, which has yet to detect CWD in wild populations. We used high-throughput sequencing to assess neutral genomic variation and variation in the prion protein gene (PRNP) that is partly responsible for the protein misfolding when deer contract CWD. Neutral variation revealed a high number of rare alleles and no population structure, and demographic models suggested a rapid historical population expansion. Allele frequencies of PRNP variants associated with CWD susceptibility and disease progression were evenly distributed across the landscape and consistent with deer populations not infected with CWD. We estimated the selection coefficient of CWD, with simulations showing an observable and rapid shift in PRNP allele frequencies that coincides with the start of a novel CWD outbreak. Sustained surveillance of genomic and PRNP variation can be a useful tool for guiding management practices, which is especially important for CWD-free regions where deer are managed for ecological and economic benefits.
Collapse
Affiliation(s)
- Sarah E. Haworth
- Environmental and Life Sciences Graduate ProgramTrent UniversityPeterboroughONCanada
| | - Larissa Nituch
- Wildlife Research and Monitoring SectionOntario Ministry of Natural Resources and ForestryTrent UniversityPeterboroughONCanada
| | - Joseph M. Northrup
- Environmental and Life Sciences Graduate ProgramTrent UniversityPeterboroughONCanada
- Wildlife Research and Monitoring SectionOntario Ministry of Natural Resources and ForestryTrent UniversityPeterboroughONCanada
| | - Aaron B. A. Shafer
- Environmental and Life Sciences Graduate ProgramTrent UniversityPeterboroughONCanada
- Department of ForensicsTrent UniversityPeterboroughONCanada
| |
Collapse
|
31
|
Pérez-González J, Carranza J, Martínez R, Benítez-Medina JM. Host Genetic Diversity and Infectious Diseases. Focus on Wild Boar, Red Deer and Tuberculosis. Animals (Basel) 2021; 11:1630. [PMID: 34072907 PMCID: PMC8229303 DOI: 10.3390/ani11061630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/19/2021] [Accepted: 05/28/2021] [Indexed: 12/16/2022] Open
Abstract
Host genetic diversity tends to limit disease spread in nature and buffers populations against epidemics. Genetic diversity in wildlife is expected to receive increasing attention in contexts related to disease transmission and human health. Ungulates such as wild boar (Sus scrofa) and red deer (Cervus elaphus) are important zoonotic hosts that can be precursors to disease emergence and spread in humans. Tuberculosis is a zoonotic disease with relevant consequences and can present high prevalence in wild boar and red deer populations. Here, we review studies on the genetic diversity of ungulates and determine to what extent these studies consider its importance on the spread of disease. This assessment also focused on wild boar, red deer, and tuberculosis. We found a disconnection between studies treating genetic diversity and those dealing with infectious diseases. Contrarily, genetic diversity studies in ungulates are mainly concerned with conservation. Despite the existing disconnection between studies on genetic diversity and studies on disease emergence and spread, the knowledge gathered in each discipline can be applied to the other. The bidirectional applications are illustrated in wild boar and red deer populations from Spain, where TB is an important threat for wildlife, livestock, and humans.
Collapse
Affiliation(s)
- Javier Pérez-González
- Biology and Ethology Unit, Veterinary Faculty, University of Extremadura, 10003 Cáceres, Spain
| | - Juan Carranza
- Wildlife Research Unit (UIRCP), University of Córdoba, 14071 Córdoba, Spain;
| | - Remigio Martínez
- Infectious Pathology Unit, Veterinary Faculty, University of Extremadura, 10003 Cáceres, Spain; (R.M.); (J.M.B.-M.)
| | - José Manuel Benítez-Medina
- Infectious Pathology Unit, Veterinary Faculty, University of Extremadura, 10003 Cáceres, Spain; (R.M.); (J.M.B.-M.)
| |
Collapse
|
32
|
Otero A, Duque Velásquez C, Aiken J, McKenzie D. White-tailed deer S96 prion protein does not support stable in vitro propagation of most common CWD strains. Sci Rep 2021; 11:11193. [PMID: 34045540 PMCID: PMC8160261 DOI: 10.1038/s41598-021-90606-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/12/2021] [Indexed: 11/23/2022] Open
Abstract
PrPC variation at residue 96 (G/S) plays an important role in the epidemiology of chronic wasting disease (CWD) in exposed white-tailed deer populations. In vivo studies have demonstrated the protective effect of serine at codon 96, which hinders the propagation of common CWD strains when expressed in homozygosis and increases the survival period of S96/wt heterozygous deer after challenge with CWD. Previous in vitro studies of the transmission barrier suggested that following a single amplification step, wt and S96 PrPC were equally susceptible to misfolding when seeded with various CWD prions. When we performed serial prion amplification in vitro using S96-PrPC, we observed a reduction in the efficiency of propagation with the Wisc-1 or CWD2 strains, suggesting these strains cannot stably template their conformations on this PrPC once the primary sequence has changed after the first round of replication. Our data shows the S96-PrPC polymorphism is detrimental to prion conversion of some CWD strains. These data suggests that deer homozygous for S96-PrPC may not sustain prion transmission as compared to a deer expressing G96-PrPC.
Collapse
Affiliation(s)
- Alicia Otero
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - Camilo Duque Velásquez
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - Judd Aiken
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.,Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Debbie McKenzie
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada. .,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
33
|
Buchholz MJ, Wright EA, Grisham BA, Bradley RD, Arsuffi TL, Conway WC. Characterization of the prion protein gene in axis deer ( Axis axis) and implications for susceptibility to chronic wasting disease. Prion 2021; 15:44-52. [PMID: 33834939 PMCID: PMC8043172 DOI: 10.1080/19336896.2021.1910177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Axis deer (Axis axis) occur both in captivity and free-ranging populations in portions of North America, but to-date, no data exist pertaining to the species’ susceptibility to CWD. We sequenced the prion protein gene (PRNP) from axis deer. We then compared axis deer PrPC sequences and amino acid polymorphisms to those of CWD susceptible species. A single PRNP allele with no evidence of intraspecies variation was identified in axis deer that indicates axis deer PRNP is most similar to North American elk (Cervus canadensis) PRNP. Therefore, axis deer may be susceptible to CWD. We recommend proactively increasing CWD surveillance for axis deer, particularly where CWD has been detected and axis deer are sympatric with native North American CWD susceptible species.
Collapse
Affiliation(s)
- Matthew J Buchholz
- Department of Natural Resources Management, Texas Tech University,Lubbock, TX USA
| | - Emily A Wright
- Department of Biological Sciences, Texas Tech University, Lubbock, TX USA
| | - Blake A Grisham
- Department of Natural Resources Management, Texas Tech University,Lubbock, TX USA
| | - Robert D Bradley
- Department of Biological Sciences, Texas Tech University, Lubbock, TX USA.,Natural Science Research Laboratory, Museum of Texas Tech University, Lubbock, TX USA
| | - Thomas L Arsuffi
- Llano River Field Station, Texas Tech University, Junction, TX USA
| | - Warren C Conway
- Department of Natural Resources Management, Texas Tech University,Lubbock, TX USA
| |
Collapse
|
34
|
Baecklund TM, Morrison J, Donaldson ME, Hueffer K, Kyle CJ. The role of a mechanistic host in maintaining arctic rabies variant distributions: Assessment of functional genetic diversity in Alaskan red fox (Vulpes vulpes). PLoS One 2021; 16:e0249176. [PMID: 33831031 PMCID: PMC8031376 DOI: 10.1371/journal.pone.0249176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 03/12/2021] [Indexed: 11/18/2022] Open
Abstract
Populations are exposed to different types and strains of pathogens across heterogeneous landscapes, where local interactions between host and pathogen may present reciprocal selective forces leading to correlated patterns of spatial genetic structure. Understanding these coevolutionary patterns provides insight into mechanisms of disease spread and maintenance. Arctic rabies (AR) is a lethal disease with viral variants that occupy distinct geographic distributions across North America and Europe. Red fox (Vulpes vulpes) are a highly susceptible AR host, whose range overlaps both geographically distinct AR strains and regions where AR is absent. It is unclear if genetic structure exists among red fox populations relative to the presence/absence of AR or the spatial distribution of AR variants. Acquiring these data may enhance our understanding of the role of red fox in AR maintenance/spread and inform disease control strategies. Using a genotyping-by-sequencing assay targeting 116 genomic regions of immunogenetic relevance, we screened for sequence variation among red fox populations from Alaska and an outgroup from Ontario, including areas with different AR variants, and regions where the disease was absent. Presumed neutral SNP data from the assay found negligible levels of neutral genetic structure among Alaskan populations. The immunogenetically-associated data identified 30 outlier SNPs supporting weak to moderate genetic structure between regions with and without AR in Alaska. The outliers included SNPs with the potential to cause missense mutations within several toll-like receptor genes that have been associated with AR outcome. In contrast, there was a lack of genetic structure between regions with different AR variants. Combined, we interpret these data to suggest red fox populations respond differently to the presence of AR, but not AR variants. This research increases our understanding of AR dynamics in the Arctic, where host/disease patterns are undergoing flux in a rapidly changing Arctic landscape, including the continued northward expansion of red fox into regions previously predominated by the arctic fox (Vulpes lagopus).
Collapse
Affiliation(s)
- Tristan M. Baecklund
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
- * E-mail:
| | - Jaycee Morrison
- Forensic Science Undergraduate Program, Trent University, Peterborough, Ontario, Canada
| | - Michael E. Donaldson
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | - Karsten Hueffer
- Department of Veterinary Medicine, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
| | - Christopher J. Kyle
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
- Forensic Science Department, Trent University, Peterborough, Ontario, Canada
- Natural Resources DNA Profiling & Forensic Centre, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
35
|
Nelson SL, Taylor SA, Reuter JD. An isolated white-tailed deer ( Odocoileus virginianus) population on St. John, US Virgin Islands shows low inbreeding and comparable heterozygosity to other larger populations. Ecol Evol 2021; 11:2775-2781. [PMID: 33767835 PMCID: PMC7981213 DOI: 10.1002/ece3.7230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 11/13/2022] Open
Abstract
This is the first study to document the genetic diversity of the white-tailed deer population on St. John, US Virgin Islands. The island population was founded by a small number of animals, has very limited hunting or predation, and recently experienced a reduction in size following an extended drought in 2015. DNA samples were collected from hair from 23 anesthetized adult deer (13 males, 10 females) ranging in age from 1 to 8 years (3.36 ± 1.9 years) and also from fecal DNA samples, for a total of 42 individuals analyzed for genetic diversity. The St. John deer data set averaged 4.19 alleles per marker and demonstrates the second lowest number of alleles (A) when compared to other populations of Odocoileus virginianus (4.19). Heterozygosity was similar to the other studies (0.54) with little evidence of inbreeding. To explain the level of heterozygosity and level of inbreeding within the St. John population, three hypotheses are proposed, including the effect of intrinsic biological traits within the population, a recent infusion of highly heterogeneous loci from North American populations, and a consistent level of immigration from a nearby island. Additional work is needed to further understand the genetic history of the St. John and regional deer populations.
Collapse
Affiliation(s)
- Suzanne L. Nelson
- Department of Integrative PhysiologyUniversity of Colorado BoulderBoulderCOUSA
| | - Scott A. Taylor
- Department of Ecology and Evolutionary BiologyUniversity of Colorado BoulderBoulderCOUSA
| | - Jon D. Reuter
- Office of Animal ResourcesDepartment of Psychology and NeuroscienceUniversity of Colorado BoulderBoulderCOUSA
| |
Collapse
|
36
|
Arifin MI, Hannaoui S, Chang SC, Thapa S, Schatzl HM, Gilch S. Cervid Prion Protein Polymorphisms: Role in Chronic Wasting Disease Pathogenesis. Int J Mol Sci 2021; 22:ijms22052271. [PMID: 33668798 PMCID: PMC7956812 DOI: 10.3390/ijms22052271] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic wasting disease (CWD) is a prion disease found in both free-ranging and farmed cervids. Susceptibility of these animals to CWD is governed by various exogenous and endogenous factors. Past studies have demonstrated that polymorphisms within the prion protein (PrP) sequence itself affect an animal's susceptibility to CWD. PrP polymorphisms can modulate CWD pathogenesis in two ways: the ability of the endogenous prion protein (PrPC) to convert into infectious prions (PrPSc) or it can give rise to novel prion strains. In vivo studies in susceptible cervids, complemented by studies in transgenic mice expressing the corresponding cervid PrP sequence, show that each polymorphism has distinct effects on both PrPC and PrPSc. It is not entirely clear how these polymorphisms are responsible for these effects, but in vitro studies suggest they play a role in modifying PrP epitopes crucial for PrPC to PrPSc conversion and determining PrPC stability. PrP polymorphisms are unique to one or two cervid species and most confer a certain degree of reduced susceptibility to CWD. However, to date, there are no reports of polymorphic cervid PrP alleles providing absolute resistance to CWD. Studies on polymorphisms have focused on those found in CWD-endemic areas, with the hope that understanding the role of an animal's genetics in CWD can help to predict, contain, or prevent transmission of CWD.
Collapse
Affiliation(s)
- Maria Immaculata Arifin
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Samia Hannaoui
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sheng Chun Chang
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Simrika Thapa
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Hermann M. Schatzl
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sabine Gilch
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Correspondence:
| |
Collapse
|
37
|
Cullingham CI, Peery RM, Dao A, McKenzie DI, Coltman DW. Predicting the spread-risk potential of chronic wasting disease to sympatric ungulate species. Prion 2020; 14:56-66. [PMID: 32008428 PMCID: PMC7009333 DOI: 10.1080/19336896.2020.1720486] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 02/08/2023] Open
Abstract
Wildlife disease incidence is increasing, resulting in negative impacts on the economy, biodiversity, and potentially human health. Chronic wasting disease (CWD) is a fatal, transmissible spongiform encephalopathy of cervids (wild and captive) which continues to spread geographically resulting in exposure to potential new host species. The disease agent (PrPCWD) is a misfolded conformer of the cellular prion protein (PrPC). In Canada, the disease is endemic in Alberta and Saskatchewan, affecting mule and white-tail deer, with lesser impact on elk and moose. As the disease continues to expand, additional wild ungulate species including bison, bighorn sheep, mountain goat, and pronghorn antelope may be exposed. To better understand the species-barrier, we reviewed the current literature on taxa naturally or experimentally exposed to CWD to identify susceptible and resistant species. We created a phylogeny of these taxa using cytochrome B and found that CWD susceptibility followed the species phylogeny. Using this phylogeny we estimated the probability of CWD susceptibility for wild ungulate species. We then compared PrPC amino acid polymorphisms among these species to identify which sites segregated between susceptible and resistant species. We identified sites that were significantly associated with susceptibility, but they were not fully discriminating. Finally, we sequenced Prnp from 578 wild ungulates to further evaluate their potential susceptibility. Together, these data suggest the host-range for CWD will potentially include pronghorn, mountain goat and bighorn sheep, but bison are likely to be more resistant. These findings highlight the need for monitoring potentially susceptible species as CWD continues to expand.
Collapse
Affiliation(s)
- Catherine I. Cullingham
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Rhiannon M. Peery
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Anh Dao
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Debbie I. McKenzie
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - David W. Coltman
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
38
|
Kramm C, Soto P, Nichols TA, Morales R. Chronic wasting disease (CWD) prion detection in blood from pre-symptomatic white-tailed deer harboring PRNP polymorphic variants. Sci Rep 2020; 10:19763. [PMID: 33188252 PMCID: PMC7666123 DOI: 10.1038/s41598-020-75681-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic wasting disease (CWD) is a prionopathy affecting wild and farmed cervids. This disease is endemic in North America and has been recently identified in Europe. Ante-mortem CWD tests of pre-clinical cervids may be an important tool in helping control the spread of this disease. Unfortunately, current CWD diagnostic methods are not suitable for non-tissue type samples. We reported that CWD prions can be detected in blood of pre-clinical CWD-infected white-tailed deer (WTD) with high sensitivity and specificity using the Protein Misfolding Cyclic Amplification (PMCA) assay. However, that report only included animals homozygous for codon 96G, the most common polymorphic version of the prion protein within this animal species. Here, we report CWD prion detection using blood of naturally infected WTD coding one or two copies of the PrP-96S polymorphic variant. Our results, from a blinded screening, show 100% specificity and ~ 58% sensitivity for animals harboring one 96S codon, regardless of their stage within the pre-clinical phase. Detection efficiency for PrP-96S homozygous animals was substantially lower, suggesting that this allele affect peripheral prion replication/tropism. These results provide additional information on the influence of codon 96 polymorphisms and the ability of PMCA to detect CWD in the blood of pre-clinical WTD.
Collapse
Affiliation(s)
- Carlos Kramm
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Facultad de Medicina, Universidad de Los Andes, Las Condes, Av. San Carlos de Apoquindo 2200, Santiago, Chile
| | - Paulina Soto
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Tracy A Nichols
- United States Department of Agriculture, Animal Plant Health Inspection Service, Veterinary Services, Fort Collins, CO, 80526, USA
| | - Rodrigo Morales
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- CIBQA, Universidad Bernardo O'Higgins, Santiago, Chile.
| |
Collapse
|
39
|
Zink RM, Najar N, Vázquez-Miranda H, Buchanan BL, Loy D, Brodersen BW. Geographic variation in the PRNP gene and its promoter, and their relationship to chronic wasting disease in North American deer. Prion 2020; 14:185-192. [PMID: 32715865 PMCID: PMC7518737 DOI: 10.1080/19336896.2020.1796250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PRNP genotypes, number of octarepeats (PHGGGWGQ) and indels in the PRNP promoter can influence the progression of prion disease in mammals. We found no relationship between presence of promoter indels in white-tailed deer and mule deer from Nebraska and CWD presence. White-tailed deer with the 95 H allele and G20D mule deer were more likely to be CWD-free, but unlike other studies white-tailed deer with the 96S allele(s) were equally likely to be CWD-free. We provide the first information on PRNP genotypes and indels in the promoter for Key deer (all homozygous 96SS) and Coues deer (lacked 95 H and 96S alleles, but possessed a uniquely high frequency of 103 T). All deer surveyed were homozygous for three tandem octarepeats.
Collapse
Affiliation(s)
- Robert M Zink
- School of Natural Resources, University of Nebraska-Lincoln , Lincoln, NE, USA.,School of Biological Sciences, University of Nebraska-Lincoln , Lincoln, NE, USA.,Nebraska State Museum, University of Nebraska-Lincoln , Lincoln, NE, USA
| | - Nadje Najar
- School of Natural Resources, University of Nebraska-Lincoln , Lincoln, NE, USA
| | - Hernán Vázquez-Miranda
- School of Natural Resources, University of Nebraska-Lincoln , Lincoln, NE, USA.,Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México , Ciudad de México, CP, Mexico
| | | | - Duan Loy
- Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln , Lincoln, NE, USA
| | - Bruce W Brodersen
- Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln , Lincoln, NE, USA
| |
Collapse
|
40
|
Henderson DM, Denkers ND, Hoover CE, McNulty EE, Cooper SK, Bracchi LA, Mathiason CK, Hoover EA. Progression of chronic wasting disease in white-tailed deer analyzed by serial biopsy RT-QuIC and immunohistochemistry. PLoS One 2020; 15:e0228327. [PMID: 32059005 PMCID: PMC7021286 DOI: 10.1371/journal.pone.0228327] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/10/2020] [Indexed: 11/18/2022] Open
Abstract
Chronic wasting disease (CWD) continues to spread or be recognized in the United States, Canada, and Europe. CWD is diagnosed by demonstration of the causative misfolded prion protein (PrPCWD) in either brain or lymphoid tissue using immunodetection methods, with immunohistochemistry (IHC) recognized as the gold standard. In recent years, in vitro amplification assays have been developed that can detect CWD prion seeding activity in tissues, excreta, and body fluids of affected cervids. These methods potentially offer earlier and more facile detection of CWD, both pre- and post-mortem. Here we provide a longitudinal profile of CWD infection progression, as assessed by both real-time quaking-induced conversion (RT-QuIC) and IHC on serial biopsies of mucosal lymphoid tissues of white-tailed deer orally exposed to low doses of CWD prions. We report that detection of CWD infection by RT-QuIC preceded that by IHC in both tonsil and recto-anal lymphoid tissue (RAMALT) in 14 of 19 deer (74%). Of the 322 biopsy samples collected in post-exposure longitudinal monitoring, positive RT-QuIC results were obtained for 146 samples, 91 of which (62%) were concurrently also IHC-positive. The lower frequency of IHC positivity was manifest most in the earlier post-exposure periods and in biopsies in which lymphoid follicles were not detected. For all deer in which RT-QuIC seeding activity was detected in a tonsil or RAMALT biopsy, PrPCWD was subsequently or concurrently detected by IHC. Overall, this study (a) provides a longitudinal profile of CWD infection in deer after low yet infectious oral prion exposure; (b) illustrates the value of RT-QuIC for sensitive detection of CWD; and (c) demonstrates an ultimate high degree of correlation between RT-QuIC and IHC positivity as CWD infection progresses.
Collapse
Affiliation(s)
- Davin M Henderson
- Department of Microbiology, Immunology, and Pathology, Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United states of America
| | - Nathaniel D Denkers
- Department of Microbiology, Immunology, and Pathology, Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United states of America
| | - Clare E Hoover
- Department of Microbiology, Immunology, and Pathology, Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United states of America
| | - Erin E McNulty
- Department of Microbiology, Immunology, and Pathology, Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United states of America
| | - Sarah K Cooper
- Department of Microbiology, Immunology, and Pathology, Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United states of America
| | - Lauren A Bracchi
- Department of Microbiology, Immunology, and Pathology, Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United states of America
| | - Candace K Mathiason
- Department of Microbiology, Immunology, and Pathology, Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United states of America
| | - Edward A Hoover
- Department of Microbiology, Immunology, and Pathology, Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United states of America
| |
Collapse
|
41
|
Hwang S, Greenlee JJ, Nicholson EM. Role of donor genotype in RT-QuIC seeding activity of chronic wasting disease prions using human and bank vole substrates. PLoS One 2020; 15:e0227487. [PMID: 31910440 PMCID: PMC6946595 DOI: 10.1371/journal.pone.0227487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/19/2019] [Indexed: 01/11/2023] Open
Abstract
Chronic wasting disease is a transmissible spongiform encephalopathy of cervids. This fatal neurodegenerative disease is caused by misfolding of the cellular prion protein (PrPC) to pathogenic conformers (PrPSc), and the pathogenic forms accumulate in the brain and other tissues. Real-time Quaking Induced Conversion (RT-QuIC) can be used for the detection of prions and for prion strain discrimination in a variety of biological tissues from humans and animals. In this study, we evaluated how either PrPSc from cervids of different genotypes or PrPSc from different sources of CWD influence the fibril formation of recombinant bank vole (BV) or human prion proteins using RT-QuIC. We found that reaction mixtures seeded with PrPSc from different genotypes of white-tailed deer or reindeer brains have similar conversion efficiency with both substrates. Also, we observed similar results when assays were seeded with different sources of CWD. Thus, we conclude that the genotypes of all sources of CWD used in this study do not influence the level of conversion of PrPC to PrPSc.
Collapse
Affiliation(s)
- Soyoun Hwang
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, Iowa, United States of America
| | - Justin J. Greenlee
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, Iowa, United States of America
| | - Eric M. Nicholson
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
42
|
Silva CJ, Erickson-Beltran ML, Duque Velásquez C, Aiken JM, McKenzie D. A General Mass Spectrometry-Based Method of Quantitating Prion Polymorphisms from Heterozygous Chronic Wasting Disease-Infected Cervids. Anal Chem 2019; 92:1276-1284. [PMID: 31815434 DOI: 10.1021/acs.analchem.9b04449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chronic wasting disease (CWD) is the only prion disease naturally transmitted among farmed and free-ranging cervids (deer, elk, moose, etc.). These diseases are always fatal and have long asymptomatic incubation periods. By 2019, CWD-infected cervids had been detected in 26 states, three Canadian provinces, South Korea, Norway, Finland, and Sweden. Prions (PrPSc) replicate by inducing a normal cellular prion protein (PrPC) to adopt the prion conformation. This prion templated conformational conversion is influenced by PrPC polymorphisms. Cervid PrPC contains at least 20 different polymorphic sites. By using chymotrypsin, trypsin, or trypsin followed by chymotrypsin to digest denatured cervid PrP, 19 peptides suitable for multiple reaction monitoring (MRM)-based analysis and spanning positions 30-51, 61-112, and 114-231 of cervid PrP were identified. Ten of these peptides span polymorphism-containing regions of cervid PrP. The other nine contain no polymorphisms, so they can be used as internal standards. Calibration curves relating the area ratios of MRM signals from polymorphism-containing peptides to appropriate internal standard peptides were linear and had excellent correlation coefficients. Samples from heterozygous (G96/S96) white-tailed deer orally dosed with CWD from homozygous (G96/G96) deer were analyzed. The G96 polymorphism comprised 75 ± 5% of the total PrP from the G96/S96 heterozygotes. Heterozygous animals facilitate conversion of different PrPC polymorphisms into PrPSc. This approach can be used to quantitate the relative amounts of the polymorphisms present in other animal species and even humans.
Collapse
Affiliation(s)
- Christopher J Silva
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, United States Department of Agriculture , Agricultural Research Service , 800 Buchanan Street , Albany , California 94710 , United States of America
| | - Melissa L Erickson-Beltran
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, United States Department of Agriculture , Agricultural Research Service , 800 Buchanan Street , Albany , California 94710 , United States of America
| | - Camilo Duque Velásquez
- University of Alberta , Centre for Prions and Protein Folding Diseases , 114 Brain and Aging Research Building , Edmonton , Alberta T6G 2M8 , Canada
| | - Judd M Aiken
- University of Alberta , Centre for Prions and Protein Folding Diseases , 114 Brain and Aging Research Building , Edmonton , Alberta T6G 2M8 , Canada
| | - Debbie McKenzie
- University of Alberta , Centre for Prions and Protein Folding Diseases , 114 Brain and Aging Research Building , Edmonton , Alberta T6G 2M8 , Canada
| |
Collapse
|
43
|
Güere ME, Våge J, Tharaldsen H, Benestad SL, Vikøren T, Madslien K, Hopp P, Rolandsen CM, Røed KH, Tranulis MA. Chronic wasting disease associated with prion protein gene ( PRNP) variation in Norwegian wild reindeer ( Rangifer tarandus). Prion 2019; 14:1-10. [PMID: 31852336 PMCID: PMC6959294 DOI: 10.1080/19336896.2019.1702446] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The emergence of CWD in Europe in 2016 and the first natural infection in wild reindeer warranted disease management. This led to the testing of 2424 hunted or culled reindeer during 2016–2018, from the infected subpopulation in the Nordfjella mountain range in Southern Norway. To identify any association between PRNP variation and CWD susceptibility, we characterized the open reading frame of the PRNP gene in 19 CWD positive reindeer and in 101 age category- and sex-matched CWD negative controls. Seven variant positions were identified: 6 single nucleotide variants (SNVs) and a 24 base pair (bp) deletion located between nucleotide position 238 and 272, encoding four instead of five octapeptide repeats. With a single exception, all variant positions but one were predicted to be non-synonymous. The synonymous SNV and the deletion are novel in reindeer. Various combinations of the non-synonymous variant positions resulted in the identification of five PRNP alleles (A-E) that structured into 14 genotypes. We identified an increased CWD risk in reindeer carrying two copies of the most common allele, A, coding for serine in position 225 (Ser225) and in those carrying allele A together with the 24 bp deletion.
Collapse
Affiliation(s)
- Mariella E Güere
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Jørn Våge
- Norwegian Veterinary Institute, Oslo, Norway
| | - Helene Tharaldsen
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | | | | | | | - Petter Hopp
- Norwegian Veterinary Institute, Oslo, Norway
| | | | - Knut H Røed
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Michael A Tranulis
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
44
|
Bistaffa E, Vuong TT, Cazzaniga FA, Tran L, Salzano G, Legname G, Giaccone G, Benestad SL, Moda F. Use of different RT-QuIC substrates for detecting CWD prions in the brain of Norwegian cervids. Sci Rep 2019; 9:18595. [PMID: 31819115 PMCID: PMC6901582 DOI: 10.1038/s41598-019-55078-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic wasting disease (CWD) is a highly contagious prion disease affecting captive and free-ranging cervid populations. CWD has been detected in United States, Canada, South Korea and, most recently, in Europe (Norway, Finland and Sweden). Animals with CWD release infectious prions in the environment through saliva, urine and feces sustaining disease spreading between cervids but also potentially to other non-cervids ruminants (e.g. sheep, goats and cattle). In the light of these considerations and due to CWD unknown zoonotic potential, it is of utmost importance to follow specific surveillance programs useful to minimize disease spreading and transmission. The European community has already in place specific surveillance measures, but the traditional diagnostic tests performed on nervous or lymphoid tissues lack sensitivity. We have optimized a Real-Time Quaking-Induced Conversion (RT-QuIC) assay for detecting CWD prions with high sensitivity and specificity to try to overcome this problem. In this work, we show that bank vole prion protein (PrP) is an excellent substrate for RT-QuIC reactions, enabling the detection of trace-amounts of CWD prions, regardless of prion strain and cervid species. Beside supporting the traditional diagnostic tests, this technology could be exploited for detecting prions in peripheral tissues from live animals, possibly even at preclinical stages of the disease.
Collapse
Affiliation(s)
- Edoardo Bistaffa
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milano, Italy
| | | | - Federico Angelo Cazzaniga
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milano, Italy
| | - Linh Tran
- Norwegian Veterinary Institute, Oslo, Norway
| | - Giulia Salzano
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Laboratory of Prion Biology, Department of Neuroscience, Trieste, Italy
| | - Giuseppe Legname
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Laboratory of Prion Biology, Department of Neuroscience, Trieste, Italy
| | - Giorgio Giaccone
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milano, Italy
| | | | - Fabio Moda
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milano, Italy.
| |
Collapse
|
45
|
Haley NJ, Merrett K, Buros Stein A, Simpson D, Carlson A, Mitchell G, Staskevicius A, Nichols T, Lehmkuhl AD, Thomsen BV. Estimating relative CWD susceptibility and disease progression in farmed white-tailed deer with rare PRNP alleles. PLoS One 2019; 14:e0224342. [PMID: 31790424 PMCID: PMC6886763 DOI: 10.1371/journal.pone.0224342] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022] Open
Abstract
Chronic wasting disease is a prion disease affecting both free-ranging and farmed cervids in North America and Scandinavia. A range of cervid species have been found to be susceptible, each with variations in the gene for the normal prion protein, PRNP, reportedly influencing both disease susceptibility and progression in the respective hosts. Despite the finding of several different PRNP alleles in white-tailed deer, the majority of past research has focused on two of the more common alleles identified-the 96G and 96S alleles. In the present study, we evaluate both infection status and disease stage in nearly 2100 farmed deer depopulated in the United States and Canada, including 714 CWD-positive deer and correlate our findings with PRNP genotype, including the more rare 95H, 116G, and 226K alleles. We found significant differences in either likelihood of being found infected or disease stage (and in many cases both) at the time of depopulation in all genotypes present, relative to the most common 96GG genotype. Despite high prevalence in many of the herds examined, infection was not found in several of the reported genotypes. These findings suggest that additional research is necessary to more properly define the role that these genotypes may play in managing CWD in both farmed and free-ranging white-tailed deer, with consideration for factors including relative fitness levels, incubation periods, and the kinetics of shedding in animals with these rare genotypes.
Collapse
Affiliation(s)
- Nicholas J. Haley
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, Arizona
| | - Kahla Merrett
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, Arizona
| | - Amy Buros Stein
- Office of Research and Sponsored Programs, Midwestern University, Glendale, Arizona
| | - Dennis Simpson
- Simpson Whitetails Genetic Testing, Belleville, Michigan
| | - Andrew Carlson
- Simpson Whitetails Genetic Testing, Belleville, Michigan
| | - Gordon Mitchell
- National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency, Ottawa Laboratory-Fallowfield, Ottawa, Ontario, Canada
| | - Antanas Staskevicius
- National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency, Ottawa Laboratory-Fallowfield, Ottawa, Ontario, Canada
| | - Tracy Nichols
- United States Department of Agriculture, APHIS, Veterinary Services, Cervid Health Program, Fort Collins, Colorado, United States of America
| | - Aaron D. Lehmkuhl
- United States Department of Agriculture, APHIS, Veterinary Services, National Veterinary Services Laboratories, Ames, Iowa, United States of America
| | - Bruce V. Thomsen
- United States Department of Agriculture, APHIS, Veterinary Services, National Veterinary Services Laboratories, Ames, Iowa, United States of America
- United States Department of Agriculture, APHIS, Veterinary Services, Center for Veterinary Biologics, Ames, Iowa, United States of America
| |
Collapse
|
46
|
Geographic Distribution of Chronic Wasting Disease Resistant Alleles in Nebraska, with Comments on the Evolution of Resistance. JOURNAL OF FISH AND WILDLIFE MANAGEMENT 2019. [DOI: 10.3996/012019-jfwm-002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Abstract
Infectious diseases create major challenges for wildlife management. In particular, prion diseases are fatal and incurable, leaving managers with limited options. In cervids, chronic wasting disease (CWD) can decimate captive and wild populations by affecting neural tissue leading to body control loss, decay, and ultimately death resulting in ecological and economic consequences. Partial protection against CWD results from some genotypes at the prion (PRNP) locus encoding PrP proteins that are less likely to misfold and build up to fatal levels in the central nervous system. Although multiple studies have documented the association between CWD susceptibility and genotypes, little is known about the distribution of resistant genotypes across the natural landscape, and whether population pockets of protection in exist in particular regions. We surveyed the genetic variability and distribution of resistant alleles and genotypes of the PRNP locus across Nebraska in deer collected in 2017, where mule deer (Odocoileus hemionus) and white-tailed (O. virginianus) deer ranges meet on the North American Great Plains. We found that CWD-resistant alleles occur throughout the state in low frequencies, and our data suggest little evidence of geographic structure for the PRNP locus. In Nebraska, there is a lower frequency of the most common resistance allele (S96) compared with white-tailed deer in other parts of the Midwest. The frequency of resistant alleles (F225) was lower in mule deer. The low but widespread frequency of resistance alleles suggests that each species could be susceptible to CWD spread. Continued monitoring would be useful to determine if the frequency of resistant alleles increases in areas with increasing CWD rates. Three synonymous fixed genotypes at the PRNP locus allowed detection of hybrids between mule deer and white-tailed deer, although we found none, suggesting that CWD is not spread between species via hybridization. We also compare the PRNP genotypes of scrapie-resistant sheep with those of deer, and suggest that a single base-pair mutation at the PRNP locus could provide resistance in deer.
Collapse
|
47
|
Rivera NA, Brandt AL, Novakofski JE, Mateus-Pinilla NE. Chronic Wasting Disease In Cervids: Prevalence, Impact And Management Strategies. VETERINARY MEDICINE (AUCKLAND, N.Z.) 2019; 10:123-139. [PMID: 31632898 PMCID: PMC6778748 DOI: 10.2147/vmrr.s197404] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/10/2019] [Indexed: 11/23/2022]
Abstract
Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSE) that affects members of the cervidae family. The infectious agent is a misfolded isoform (PrPSC) of the host prion protein (PrPC). The replication of PrPSC initiates a cascade of developmental changes that spread from cell to cell, individual to individual, and that for some TSEs, has crossed the species barrier. CWD can be transmitted horizontally and vertically, and it is the only TSE that affects free-ranging wildlife. While other TSEs are under control and even declining, infection rates of CWD continue to grow and the disease distribution continues to expand in North America and around the world. Since the first reported case in 1967, CWD has spread infecting captive and free-ranging cervids in 26 states in the US, 3 Canadian provinces, 3 European countries and has been found in captive cervids in South Korea. CWD causes considerable ecologic, economic and sociologic impact, as this is a 100% fatal highly contagious infectious disease, with no treatment or cure available. Because some TSEs have crossed the species barrier, the zoonotic potential of CWD is a concern for human health and continues to be investigated. Here we review the characteristics of the CWD prion protein, mechanisms of transmission and the role of genetics. We discuss the characteristics that contribute to prevalence and distribution. We also discuss the impact of CWD and review the management strategies that have been used to prevent and control the spread of CWD.
Collapse
Affiliation(s)
- Nelda A Rivera
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Adam L Brandt
- Division of Natural Sciences, St. Norbert College, De Pere, WI, USA
| | - Jan E Novakofski
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Nohra E Mateus-Pinilla
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
48
|
Abstract
Mammalian prion diseases are a group of neurodegenerative conditions caused by infection of the central nervous system with proteinaceous agents called prions, including sporadic, variant, and iatrogenic Creutzfeldt-Jakob disease; kuru; inherited prion disease; sheep scrapie; bovine spongiform encephalopathy; and chronic wasting disease. Prions are composed of misfolded and multimeric forms of the normal cellular prion protein (PrP). Prion diseases require host expression of the prion protein gene (PRNP) and a range of other cellular functions to support their propagation and toxicity. Inherited forms of prion disease are caused by mutation of PRNP, whereas acquired and sporadically occurring mammalian prion diseases are controlled by powerful genetic risk and modifying factors. Whereas some PrP amino acid variants cause the disease, others confer protection, dramatically altered incubation times, or changes in the clinical phenotype. Multiple mechanisms, including interference with homotypic protein interactions and the selection of the permissible prion strains in a host, play a role. Several non-PRNP factors have now been uncovered that provide insights into pathways of disease susceptibility or neurotoxicity.
Collapse
Affiliation(s)
- Simon Mead
- Medical Research Council Prion Unit at UCL, Institute of Prion Diseases, University College London, London W1W 7FF, United Kingdom;
| | - Sarah Lloyd
- Medical Research Council Prion Unit at UCL, Institute of Prion Diseases, University College London, London W1W 7FF, United Kingdom;
| | - John Collinge
- Medical Research Council Prion Unit at UCL, Institute of Prion Diseases, University College London, London W1W 7FF, United Kingdom;
| |
Collapse
|
49
|
Walia R, Ho CC, Lee C, Gilch S, Schatzl HM. Gene-edited murine cell lines for propagation of chronic wasting disease prions. Sci Rep 2019; 9:11151. [PMID: 31371793 PMCID: PMC6673760 DOI: 10.1038/s41598-019-47629-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/18/2019] [Indexed: 01/28/2023] Open
Abstract
Prions cause fatal infectious neurodegenerative diseases in humans and animals. Cell culture models are essential for studying the molecular biology of prion propagation. Defining such culture models is mostly a random process, includes extensive subcloning, and for many prion diseases few or no models exist. One example is chronic wasting disease (CWD), a highly contagious prion disease of cervids. To extend the range of cell models propagating CWD prions, we gene-edited mouse cell lines known to efficiently propagate murine prions. Endogenous prion protein (PrP) was ablated in CAD5 and MEF cells, using CRISPR-Cas9 editing. PrP knock-out cells were reconstituted with mouse, bank vole and cervid PrP genes by lentiviral transduction. Reconstituted cells expressing mouse PrP provided proof-of-concept for re-established prion infection. Bank voles are considered universal receptors for prions from a variety of species. Bank vole PrP reconstituted cells propagated mouse prions and cervid prions, even without subcloning for highly susceptible cells. Cells reconstituted with cervid PrP and infected with CWD prions tested positive in prion conversion assay, whereas non-reconstituted cells were negative. This novel cell culture platform which is easily adjustable and allows testing of polymorphic alleles will provide important new insights into the biology of CWD prions.
Collapse
Affiliation(s)
- Rupali Walia
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada.,Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
| | - Cheng Ching Ho
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada.,Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
| | - Chi Lee
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada.,Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
| | - Sabine Gilch
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada.,Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
| | - Hermann M Schatzl
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada. .,Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada.
| |
Collapse
|
50
|
Robinson AL, Williamson H, Güere ME, Tharaldsen H, Baker K, Smith SL, Pérez-Espona S, Krojerová-Prokešová J, Pemberton JM, Goldmann W, Houston F. Variation in the prion protein gene (PRNP) sequence of wild deer in Great Britain and mainland Europe. Vet Res 2019; 50:59. [PMID: 31366372 PMCID: PMC6668158 DOI: 10.1186/s13567-019-0675-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/05/2019] [Indexed: 01/01/2023] Open
Abstract
Susceptibility to prion diseases is largely determined by the sequence of the prion protein gene (PRNP), which encodes the prion protein (PrP). The recent emergence of chronic wasting disease (CWD) in Europe has highlighted the need to investigate PRNP gene diversity in European deer species, to better predict their susceptibility to CWD. Here we report a large genetic survey of six British deer species, including red (Cervus elaphus), sika (Cervus nippon), roe (Capreolus capreolus), fallow (Dama dama), muntjac (Muntiacus reevesii), and Chinese water deer (Hydropotes inermis), which establishes PRNP haplotype and genotype frequencies. Two smaller data sets from red deer in Norway and the Czech Republic are also included for comparison. Overall red deer show the most PRNP variation, with non-synonymous/coding polymorphisms at codons 98, 168, 226 and 247, which vary markedly in frequency between different regions. Polymorphisms P168S and I247L were only found in Scottish and Czech populations, respectively. T98A was found in all populations except Norway and the south of England. Significant regional differences in genotype frequencies were observed within both British and European red deer populations. Other deer species showed less variation, particularly roe and fallow deer, in which identical PRNP gene sequences were found in all individuals analysed. Based on comparison with PRNP sequences of North American cervids affected by CWD and limited experimental challenge data, these results suggest that a high proportion of wild deer in Great Britain may be susceptible to CWD.
Collapse
Affiliation(s)
- Amy L Robinson
- Division of Infection and Immunity, The Roslin Institute and The Royal Dick School of Veterinary Studies, University of Edinburgh, Midlothian, EH259RG, UK.
| | - Helen Williamson
- Division of Infection and Immunity, The Roslin Institute and The Royal Dick School of Veterinary Studies, University of Edinburgh, Midlothian, EH259RG, UK
| | - Mariella E Güere
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Oslo, Norway
| | - Helene Tharaldsen
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Oslo, Norway
| | - Karis Baker
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Stephanie L Smith
- The Royal Dick School of Veterinary Studies, University of Edinburgh, Midlothian, EH259RG, UK
| | - Sílvia Pérez-Espona
- Division of Infection and Immunity, The Roslin Institute and The Royal Dick School of Veterinary Studies, University of Edinburgh, Midlothian, EH259RG, UK.,The Royal Dick School of Veterinary Studies, University of Edinburgh, Midlothian, EH259RG, UK
| | - Jarmila Krojerová-Prokešová
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Květná 8, 603 65, Brno, Czech Republic.,Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic
| | - Josephine M Pemberton
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Wilfred Goldmann
- Division of Infection and Immunity, The Roslin Institute and The Royal Dick School of Veterinary Studies, University of Edinburgh, Midlothian, EH259RG, UK
| | - Fiona Houston
- Division of Infection and Immunity, The Roslin Institute and The Royal Dick School of Veterinary Studies, University of Edinburgh, Midlothian, EH259RG, UK
| |
Collapse
|