1
|
Pirolli D, Righino B, Camponeschi C, Ria F, Di Sante G, De Rosa MC. Virtual screening and molecular dynamics simulations provide insight into repurposing drugs against SARS-CoV-2 variants Spike protein/ACE2 interface. Sci Rep 2023; 13:1494. [PMID: 36707679 PMCID: PMC9880937 DOI: 10.1038/s41598-023-28716-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
After over two years of living with Covid-19 and hundreds of million cases worldwide there is still an unmet need to find proper treatments for the novel coronavirus, due also to the rapid mutation of its genome. In this context, a drug repositioning study has been performed, using in silico tools targeting Delta Spike protein/ACE2 interface. To this aim, it has been virtually screened a library composed by 4388 approved drugs through a deep learning-based QSAR model to identify protein-protein interactions modulators for molecular docking against Spike receptor binding domain (RBD). Binding energies of predicted complexes were calculated by Molecular Mechanics/Generalized Born Surface Area from docking and molecular dynamics simulations. Four out of the top twenty ranking compounds showed stable binding modes on Delta Spike RBD and were evaluated also for their effectiveness against Omicron. Among them an antihistaminic drug, fexofenadine, revealed very low binding energy, stable complex, and interesting interactions with Delta Spike RBD. Several antihistaminic drugs were found to exhibit direct antiviral activity against SARS-CoV-2 in vitro, and their mechanisms of action is still debated. This study not only highlights the potential of our computational methodology for a rapid screening of variant-specific drugs, but also represents a further tool for investigating properties and mechanisms of selected drugs.
Collapse
Affiliation(s)
- Davide Pirolli
- Institute of Chemical Sciences and Technologies ''Giulio Natta'' (SCITEC)-CNR, 00168, Rome, Italy
| | - Benedetta Righino
- Institute of Chemical Sciences and Technologies ''Giulio Natta'' (SCITEC)-CNR, 00168, Rome, Italy
| | - Chiara Camponeschi
- Institute of Chemical Sciences and Technologies ''Giulio Natta'' (SCITEC)-CNR, 00168, Rome, Italy
| | - Francesco Ria
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Gabriele Di Sante
- Department of Medicine and Surgery, Section of Human, Clinic and Forensic Anatomy, University of Perugia, 06132, Perugia, Italy
| | - Maria Cristina De Rosa
- Institute of Chemical Sciences and Technologies ''Giulio Natta'' (SCITEC)-CNR, 00168, Rome, Italy.
| |
Collapse
|
2
|
Frommeyer TC, Fursmidt RM, Gilbert MM, Bett ES. The Desire of Medical Students to Integrate Artificial Intelligence Into Medical Education: An Opinion Article. Front Digit Health 2022; 4:831123. [PMID: 35633734 PMCID: PMC9135963 DOI: 10.3389/fdgth.2022.831123] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Timothy C. Frommeyer
- Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| | - Reid M. Fursmidt
- Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| | - Michael M. Gilbert
- Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| | - Ean S. Bett
- Ohio University College of Osteopathic Medicine, Columbus, OH, United States
| |
Collapse
|
3
|
Akinnusi PA, Olubode SO, Salaudeen WA. Molecular binding studies of anthocyanins with multiple antiviral activities against SARS-CoV-2. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2022; 46:102. [PMID: 35431537 PMCID: PMC9006501 DOI: 10.1186/s42269-022-00786-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/30/2022] [Indexed: 05/11/2023]
Abstract
Background The search for ideal drugs with absolute antiviral activity against SARS-CoV-2 is still in place, and attention has been recently drawn to natural products. Several molecular targets have been identified as points of therapeutic intervention. The targets used in this study include SARS-CoV-2 helicase, spike protein, RNA-dependent RNA polymerase, main protease, and human ACE-2. An integrative computer-aided approach, which includes molecular docking, pharmacophore modeling, and pharmacokinetic profiling, was employed to identify anthocyanins with robust multiple antiviral activities against these SARS-CoV-2 targets. Result Four anthocyanins (Delphinidin 3-O-glucosyl-glucoside, Cyanidin 3-O-glucosyl-rutinoside, Cyanidin 3-(p-coumaroyl)-diglucoside-5-glucoside), and Nasunin) with robust multiple inhibitory interactions were identified from a library of 118 anthocyanins using computer-aided techniques. These compounds exhibited very good binding affinity to the protein targets and moderate pharmacokinetic profiles. However, Cyanidin 3-O-glucosyl-rutinoside is reported to be the most suitable drug candidate with multiple antiviral effects against SARS-CoV-2 due to its good binding affinity to all five protein targets engaged in the study. Conclusions The anthocyanins reported in this study exhibit robust binding affinities and strong inhibitory molecular interactions with the target proteins and could be well exploited as potential drug candidates with potent multiple antiviral effects against COVID-19.
Collapse
|
4
|
Abdulaziz L, Elhadi E, Abdallah EA, Alnoor FA, Yousef BA. Antiviral Activity of Approved Antibacterial, Antifungal, Antiprotozoal and Anthelmintic Drugs: Chances for Drug Repurposing for Antiviral Drug Discovery. J Exp Pharmacol 2022; 14:97-115. [PMID: 35299994 PMCID: PMC8922315 DOI: 10.2147/jep.s346006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/28/2022] [Indexed: 11/29/2022] Open
Abstract
Drug repurposing process aims to identify new uses for the existing drugs to overcome traditional de novo drug discovery and development challenges. At the same time, as viral infections became a serious threat to humans and the viral organism itself has a high ability to mutate genetically, and due to serious adverse effects that result from antiviral drugs, there are crucial needs for the discovery of new antiviral drugs, and to identify new antiviral effects for the exciting approved drugs towards different types of viral infections depending on the observed antiviral activity in preclinical studies or clinical findings is one of the approaches to counter the viral infections problems. This narrative review article summarized mainly the published preclinical studies that evaluated the antiviral activity of drugs that are approved and used mainly as antibacterial, antifungal, antiprotozoal, and anthelmintic drugs, and the preclinical studies included the in silico, in vitro, and in vivo findings, additionally some clinical observations were also included while trying to relate them to the preclinical findings. Finally, the structure used for writing about the antiviral activity of the drugs was according to the families of the viruses used in the studies to form a better image for the target of antiviral activity of different drugs in the different kinds of viruses and to relate between the antiviral activity of the drugs against different strains of viruses within the same viral family.
Collapse
Affiliation(s)
- Leena Abdulaziz
- Department of Pharmacology, Faculty of Pharmacy, Omdurman Islamic University, Khartoum, 14415, Sudan
| | - Esraa Elhadi
- Department of Pharmacology, Faculty of Pharmacy, Omdurman Islamic University, Khartoum, 14415, Sudan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Ejlal A Abdallah
- Department of Pharmacology and Pharmacy Practice, Faculty of Pharmacy, Sudan University of Science and Technology, Khartoum, 11111, Sudan
| | - Fadlalbaseer A Alnoor
- Department of Pharmacology, Faculty of Pharmacy, National University, Khartoum, 11111, Sudan
| | - Bashir A Yousef
- Department of Pharmacology, Faculty of Pharmacy, University of Khartoum, Khartoum, 11111, Sudan
- Correspondence: Bashir A Yousef, Department of Pharmacology, Faculty of Pharmacy, University of Khartoum, Al-Qasr Ave, Khartoum, 11111, Sudan, Tel +249 912932418, Fax +249 183780696, Email
| |
Collapse
|
5
|
Son J, Huang S, Zeng Q, Bricker TL, Case JB, Zhou J, Zang R, Liu Z, Chang X, Darling TL, Xu J, Harastani HH, Chen L, Gomez Castro MF, Zhao Y, Kohio HP, Hou G, Fan B, Niu B, Guo R, Rothlauf PW, Bailey AL, Wang X, Shi PY, Martinez ED, Brody SL, Whelan SPJ, Diamond MS, Boon ACM, Li B, Ding S. JIB-04 Has Broad-Spectrum Antiviral Activity and Inhibits SARS-CoV-2 Replication and Coronavirus Pathogenesis. mBio 2022; 13:e0337721. [PMID: 35038906 PMCID: PMC8764536 DOI: 10.1128/mbio.03377-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/09/2021] [Indexed: 01/18/2023] Open
Abstract
Pathogenic coronaviruses are a major threat to global public health. Here, using a recombinant reporter virus-based compound screening approach, we identified small-molecule inhibitors that potently block the replication of severe acute respiratory syndrome virus 2 (SARS-CoV-2). Among them, JIB-04 inhibited SARS-CoV-2 replication in Vero E6 cells with a 50% effective concentration of 695 nM, with a specificity index of greater than 1,000. JIB-04 showed in vitro antiviral activity in multiple cell types, including primary human bronchial epithelial cells, against several DNA and RNA viruses, including porcine coronavirus transmissible gastroenteritis virus. In an in vivo porcine model of coronavirus infection, administration of JIB-04 reduced virus infection and associated tissue pathology, which resulted in improved weight gain and survival. These results highlight the potential utility of JIB-04 as an antiviral agent against SARS-CoV-2 and other viral pathogens. IMPORTANCE The coronavirus disease 2019 (COVID-19), the disease caused by SARS-CoV-2 infection, is an ongoing public health disaster worldwide. Although several vaccines are available as a preventive measure and the FDA approval of an orally bioavailable drug is on the horizon, there remains a need for developing antivirals against SARS-CoV-2 that could work on the early course of infection. By using infectious reporter viruses, we screened small-molecule inhibitors for antiviral activity against SARS-CoV-2. Among the top hits was JIB-04, a compound previously studied for its anticancer activity. Here, we showed that JIB-04 inhibits the replication of SARS-CoV-2 as well as different DNA and RNA viruses. Furthermore, JIB-04 conferred protection in a porcine model of coronavirus infection, although to a lesser extent when given as therapeutic rather than prophylactic doses. Our findings indicate a limited but still promising utility of JIB-04 as an antiviral agent in the combat against COVID-19 and potentially other viral diseases.
Collapse
Affiliation(s)
- Juhee Son
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Program in Molecular Cell Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Shimeng Huang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation, Base of Ministry of Science and Technology, Nanjing, China
| | - Qiru Zeng
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Traci L. Bricker
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - James Brett Case
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jinzhu Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation, Base of Ministry of Science and Technology, Nanjing, China
| | - Ruochen Zang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xinjian Chang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation, Base of Ministry of Science and Technology, Nanjing, China
| | - Tamarand L. Darling
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jian Xu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Houda H. Harastani
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lu Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | | | - Yongxiang Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation, Base of Ministry of Science and Technology, Nanjing, China
| | - Hinissan P. Kohio
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gaopeng Hou
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation, Base of Ministry of Science and Technology, Nanjing, China
| | - Beibei Niu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation, Base of Ministry of Science and Technology, Nanjing, China
| | - Rongli Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation, Base of Ministry of Science and Technology, Nanjing, China
| | - Paul W. Rothlauf
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Program in Virology, Harvard Medical School, Boston, Massachusetts, USA
| | - Adam L. Bailey
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xin Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Steven L. Brody
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sean P. J. Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael S. Diamond
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Adrianus C. M. Boon
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation, Base of Ministry of Science and Technology, Nanjing, China
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
6
|
Jung O, Tung YT, Sim E, Chen YC, Lee E, Ferrer M, Song MJ. Development of human-derived, three-dimensional respiratory epithelial tissue constructs with perfusable microvasculature on a high-throughput microfluidics screening platform. Biofabrication 2022; 14. [PMID: 35166694 PMCID: PMC10053540 DOI: 10.1088/1758-5090/ac32a5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/22/2021] [Indexed: 11/12/2022]
Abstract
The COVID-19 pandemic has highlighted the need for human respiratory tract-based assay platforms for efficient discovery and development of antivirals and disease-modulating therapeutics. Physiologically relevant tissue models of the lower respiratory tract (LRT), including the respiratory bronchioles and the alveolar sacs, are of high interest because they are the primary site of severe SARS-CoV-2 infection and are most affected during the terminal stage of COVID-19. Current epithelial lung models used to study respiratory viral infections include lung epithelial cells at the air-liquid interface (ALI) with fibroblasts and endothelial cells, but such models do not have a perfusable microvascular network to investigate both viral infectivity and viral infection-induced thrombotic events. Using a high throughput, 64-chip microfluidic plate-based platform, we have developed two novel vascularized, LRT multi-chip models for the alveoli and the small airway. Both models include a perfusable microvascular network consisting of human primary microvascular endothelial cells, fibroblasts and pericytes. The established biofabrication protocols also enable the formation of differentiated lung epithelial layers at the ALI on top of the vascularized tissue bed. We validated the physiologically relevant cellular composition, architecture and perfusion of the vascularized lung tissue models using fluorescence microscopy, flow cytometry, and electrical resistance measurements. These vascularized, perfusable microfluidic lung tissue on high throughput assay platforms will enable the development of respiratory viral infection and disease models for research investigation and drug discovery.
Collapse
Affiliation(s)
- Olive Jung
- 3D Tissue Bioprinting Laboratory, Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States of America.,Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Yen-Ting Tung
- 3D Tissue Bioprinting Laboratory, Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States of America
| | - Esther Sim
- 3D Tissue Bioprinting Laboratory, Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States of America
| | - Yu-Chi Chen
- 3D Tissue Bioprinting Laboratory, Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States of America
| | - Emily Lee
- 3D Tissue Bioprinting Laboratory, Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States of America
| | - Marc Ferrer
- 3D Tissue Bioprinting Laboratory, Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States of America
| | - Min Jae Song
- 3D Tissue Bioprinting Laboratory, Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States of America
| |
Collapse
|
7
|
Gallo V, Giansanti F, Arienzo A, Antonini G. Antiviral properties of whey proteins and their activity against SARS-CoV-2 infection. J Funct Foods 2022; 89:104932. [PMID: 35003332 PMCID: PMC8723829 DOI: 10.1016/j.jff.2022.104932] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/17/2021] [Accepted: 01/02/2022] [Indexed: 12/16/2022] Open
Abstract
Native and chemically modified whey proteins and their peptide derivatives are encountering the interest of nutraceutical and pharmaceutical industries, due to the numerous properties, ranging from antimicrobial to immunological and antitumorigenic, that result in the possibility to employ milk and its protein components in a wide range of treatment and prevention strategies. Importantly, whey proteins were found to exert antiviral actions against different enveloped and non-enveloped viruses. Recently, the scientific community is focusing on these proteins, especially lactoferrin, since in vitro studies have demonstrated that they exert an important antiviral activity also against SARS-CoV-2. Up-to date, several studies are investigating the efficacy of lactoferrin and other whey proteins in vivo. Aim of this review is to shed light on the most relevant findings concerning the antiviral properties of whey proteins and their potential applications in human health, focussing on their application in prevention and treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Valentina Gallo
- Department of Sciences, Roma Tre University, Rome 00146, Italy
| | - Francesco Giansanti
- Interuniversity Consortium INBB - Biostructures and Biosystems National Institute, Rome 00136, Italy
- Department of Health, Life and Environmental Sciences, University of L'Aquila, L'Aquila I-67100, Italy
| | - Alyexandra Arienzo
- Department of Sciences, Roma Tre University, Rome 00146, Italy
- Interuniversity Consortium INBB - Biostructures and Biosystems National Institute, Rome 00136, Italy
| | - Giovanni Antonini
- Department of Sciences, Roma Tre University, Rome 00146, Italy
- Interuniversity Consortium INBB - Biostructures and Biosystems National Institute, Rome 00136, Italy
| |
Collapse
|
8
|
Dastjerdi S, Malikan M, Akgöz B, Civalek Ö, Wiczenbach T, Eremeyev VA. On the deformation and frequency analyses of SARS-CoV-2 at nanoscale. INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE 2022; 170:103604. [PMID: 34728858 PMCID: PMC8554078 DOI: 10.1016/j.ijengsci.2021.103604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/23/2021] [Indexed: 05/07/2023]
Abstract
The SARS-CoV-2 virus, which has emerged as a Covid-19 pandemic, has had the most significant impact on people's health, economy, and lifestyle around the world today. In the present study, the SARS-CoV-2 virus is mechanically simulated to obtain its deformation and natural frequencies. The virus under analysis is modeled on a viscoelastic spherical structure. The theory of shell structures in mechanics is used to derive the governing equations. Whereas the virus has nanometric size, using classical theories may give incorrect results. Consequently, the nonlocal elasticity theory is used to consider the effect of interatomic forces on the results. From the mechanical point of view, if a structure vibrates with a natural frequency specific to it, the resonance phenomenon will occur in that structure, leading to its destruction. Therefore, it is possible that the protein chains of SARS-CoV-2 would be destroyed by vibrating it at natural frequencies. Since the mechanical properties of SARS-CoV-2 are not clearly known due to the new emergence of this virus, deformation and natural frequencies are obtained in a specific interval. Researchers could also use this investigation as a pioneering study to find a non-vaccine treatment solution for the SARS-CoV-2 virus and various viruses, including HIV.
Collapse
Affiliation(s)
- Shahriar Dastjerdi
- Division of Mechanics, Civil Engineering Department, Akdeniz University, Antalya, Turkey
| | - Mohammad Malikan
- Department of Mechanics of Materials and Structures, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
| | - Bekir Akgöz
- Division of Mechanics, Civil Engineering Department, Akdeniz University, Antalya, Turkey
| | - Ömer Civalek
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Tomasz Wiczenbach
- Department of Mechanics of Materials and Structures, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
| | - Victor A Eremeyev
- Department of Mechanics of Materials and Structures, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
- Research and Education Center "Materials" Don State Technical University, Gagarina sq., 1, 344000 Rostov on Don, Russia
- DICAAR, Università degli Studi di Cagliari, Via Marengo, 2, 09123, Cagliari, Italy
| |
Collapse
|
9
|
Artificial Intelligence in Clinical Immunology. Artif Intell Med 2022. [DOI: 10.1007/978-3-030-64573-1_83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Siminea N, Popescu V, Sanchez Martin JA, Florea D, Gavril G, Gheorghe AM, Iţcuş C, Kanhaiya K, Pacioglu O, Popa IL, Trandafir R, Tusa MI, Sidoroff M, Păun M, Czeizler E, Păun A, Petre I. Network analytics for drug repurposing in COVID-19. Brief Bioinform 2021; 23:6447433. [PMID: 34864885 PMCID: PMC8690228 DOI: 10.1093/bib/bbab490] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/06/2021] [Accepted: 10/25/2021] [Indexed: 01/08/2023] Open
Abstract
To better understand the potential of drug repurposing in COVID-19, we analyzed control strategies over essential host factors for SARS-CoV-2 infection. We constructed comprehensive directed protein–protein interaction (PPI) networks integrating the top-ranked host factors, the drug target proteins and directed PPI data. We analyzed the networks to identify drug targets and combinations thereof that offer efficient control over the host factors. We validated our findings against clinical studies data and bioinformatics studies. Our method offers a new insight into the molecular details of the disease and into potentially new therapy targets for it. Our approach for drug repurposing is significant beyond COVID-19 and may be applied also to other diseases.
Collapse
Affiliation(s)
- Nicoleta Siminea
- Bioinformatics, National Institute of Research and Development for Biological Sciences, 296 Splaiul Independenţei, 060031, Romania.,Faculty of Mathematics and Computer Science, University of Bucharest, 14 Academiei, 010014, Romania
| | - Victor Popescu
- Department of Information Technologies, Åbo Akademi University, 3 Tuomiokirkontori, 20500, Finland
| | - Jose Angel Sanchez Martin
- Department of Computer Science, Technical University of Madrid, 7 Calle Ramiro de Maeztu, 28040, Spain
| | - Daniela Florea
- Bioinformatics, National Institute of Research and Development for Biological Sciences, 296 Splaiul Independenţei, 060031, Romania
| | - Georgiana Gavril
- Bioinformatics, National Institute of Research and Development for Biological Sciences, 296 Splaiul Independenţei, 060031, Romania
| | - Ana-Maria Gheorghe
- Bioinformatics, National Institute of Research and Development for Biological Sciences, 296 Splaiul Independenţei, 060031, Romania
| | - Corina Iţcuş
- Bioinformatics, National Institute of Research and Development for Biological Sciences, 296 Splaiul Independenţei, 060031, Romania
| | - Krishna Kanhaiya
- Department of Information Technologies, Åbo Akademi University, 3 Tuomiokirkontori, 20500, Finland
| | - Octavian Pacioglu
- Bioinformatics, National Institute of Research and Development for Biological Sciences, 296 Splaiul Independenţei, 060031, Romania
| | - Ioana Laura Popa
- Bioinformatics, National Institute of Research and Development for Biological Sciences, 296 Splaiul Independenţei, 060031, Romania
| | - Romica Trandafir
- Bioinformatics, National Institute of Research and Development for Biological Sciences, 296 Splaiul Independenţei, 060031, Romania
| | - Maria Iris Tusa
- Bioinformatics, National Institute of Research and Development for Biological Sciences, 296 Splaiul Independenţei, 060031, Romania
| | - Manuela Sidoroff
- Bioinformatics, National Institute of Research and Development for Biological Sciences, 296 Splaiul Independenţei, 060031, Romania
| | - Mihaela Păun
- Bioinformatics, National Institute of Research and Development for Biological Sciences, 296 Splaiul Independenţei, 060031, Romania.,Faculty of Administration and Business, University of Bucharest, 4-12 Regina Elisabeta Boulevard, 030018, Romania
| | - Eugen Czeizler
- Department of Information Technologies, Åbo Akademi University, 3 Tuomiokirkontori, 20500, Finland.,Bioinformatics, National Institute of Research and Development for Biological Sciences, 296 Splaiul Independenţei, 060031, Romania
| | - Andrei Păun
- Bioinformatics, National Institute of Research and Development for Biological Sciences, 296 Splaiul Independenţei, 060031, Romania.,Faculty of Mathematics and Computer Science, University of Bucharest, 14 Academiei, 010014, Romania
| | - Ion Petre
- Department of Mathematics and Statistics, University of Turku, 5 Vesilinnantie, 20014, Finland.,Bioinformatics, National Institute of Research and Development for Biological Sciences, 296 Splaiul Independenţei, 060031, Romania
| |
Collapse
|
11
|
Hu Y, Meng X, Zhang F, Xiang Y, Wang J. The in vitro antiviral activity of lactoferrin against common human coronaviruses and SARS-CoV-2 is mediated by targeting the heparan sulfate co-receptor. Emerg Microbes Infect 2021; 10:317-330. [PMID: 33560940 PMCID: PMC7919907 DOI: 10.1080/22221751.2021.1888660] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 12/21/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is an ongoing pandemic that lacks effective therapeutic interventions. SARS-CoV-2 infects ACE2-expressing cells and gains cell entry through either direct plasma membrane fusion or endocytosis. Recent studies have shown that in addition to ACE2, heparan sulfate proteoglycans (HSPGs) also play an important role in SARS-CoV-2 cell attachment by serving as an attachment factor. Binding of viral spike protein to HSPGs leads to the enrichment of local concentration for the subsequent specific binding with ACE2. We therefore hypothesize that blocking the interactions between viral spike protein and the HSPGs will lead to inhibition of viral replication. In this study, we report our findings of the broad-spectrum antiviral activity and the mechanism of action of lactoferrin (LF) against multiple common human coronaviruses as well as SARS-CoV-2. Our study has shown that LF has broad-spectrum antiviral activity against SARS-CoV-2, HCoV-OC43, HCoV-NL63, and HCoV-229E in cell culture, and bovine lactoferrin (BLF) is more potent than human lactoferrin. Mechanistic studies revealed that BLF binds to HSPGs, thereby blocking viral attachment to the host cell. The antiviral activity of BLF can be antagonized by the HSPG mimetic heparin. Combination therapy experiment showed that the antiviral activity of LF is synergistic with remdesivir in cell culture. Molecular modelling suggests that the N-terminal positively charged region in BLF (residues 17-41) confers the binding to HSPGs. Overall, LF appears to be a promising drug candidate for COVID-19 that warrants further investigation.
Collapse
Affiliation(s)
- Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Xiangzhi Meng
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Fushun Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yan Xiang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
12
|
Fighting COVID-19 with Artificial Intelligence. Methods Mol Biol 2021. [PMID: 34731465 DOI: 10.1007/978-1-0716-1787-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
The development of vaccines for the treatment of COVID-19 is paving the way for new hope. Despite this, the risk of the virus mutating into a vaccine-resistant variant still persists. As a result, the demand of efficacious drugs to treat COVID-19 is still pertinent. To this end, scientists continue to identify and repurpose marketed drugs for this new disease. Many of these drugs are currently undergoing clinical trials and, so far, only one has been officially approved by FDA. Drug repurposing is a much faster route to the clinic than standard drug development of novel molecules, nevertheless in a pandemic this process is still not fast enough to halt the spread of the virus. Artificial intelligence has already played a large part in hastening the drug discovery process, not only by facilitating the selection of potential drug candidates but also in monitoring the pandemic and enabling faster diagnosis of patients. In this chapter, we focus on the impact and challenges that artificial intelligence has demonstrated thus far with respect to drug repurposing of therapeutics for the treatment of COVID-19.
Collapse
|
13
|
Mslati H, Gentile F, Perez C, Cherkasov A. Comprehensive Consensus Analysis of SARS-CoV-2 Drug Repurposing Campaigns. J Chem Inf Model 2021; 61:3771-3788. [PMID: 34313439 PMCID: PMC8340583 DOI: 10.1021/acs.jcim.1c00384] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 01/18/2023]
Abstract
The current COVID-19 pandemic has elicited extensive repurposing efforts (both small and large scale) to rapidly identify COVID-19 treatments among approved drugs. Herein, we provide a literature review of large-scale SARS-CoV-2 antiviral drug repurposing efforts and highlight a marked lack of consistent potency reporting. This variability indicates the importance of standardizing best practices-including the use of relevant cell lines, viral isolates, and validated screening protocols. We further surveyed available biochemical and virtual screening studies against SARS-CoV-2 targets (Spike, ACE2, RdRp, PLpro, and Mpro) and discuss repurposing candidates exhibiting consistent activity across diverse, triaging assays and predictive models. Moreover, we examine repurposed drugs and their efficacy against COVID-19 and the outcomes of representative repurposed drugs in clinical trials. Finally, we propose a drug repurposing pipeline to encourage the implementation of standard methods to fast-track the discovery of candidates and to ensure reproducible results.
Collapse
Affiliation(s)
- Hazem Mslati
- Vancouver Prostate Centre, University of
British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6,
Canada
| | - Francesco Gentile
- Vancouver Prostate Centre, University of
British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6,
Canada
| | - Carl Perez
- Vancouver Prostate Centre, University of
British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6,
Canada
| | - Artem Cherkasov
- Vancouver Prostate Centre, University of
British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6,
Canada
| |
Collapse
|
14
|
Gawriljuk VO, Zin PPK, Puhl AC, Zorn KM, Foil DH, Lane TR, Hurst B, Tavella TA, Costa FTM, Lakshmanane P, Bernatchez J, Godoy AS, Oliva G, Siqueira-Neto JL, Madrid PB, Ekins S. Machine Learning Models Identify Inhibitors of SARS-CoV-2. J Chem Inf Model 2021; 61:4224-4235. [PMID: 34387990 DOI: 10.1021/acs.jcim.1c00683] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
With the rapidly evolving SARS-CoV-2 variants of concern, there is an urgent need for the discovery of further treatments for the coronavirus disease (COVID-19). Drug repurposing is one of the most rapid strategies for addressing this need, and numerous compounds have already been selected for in vitro testing by several groups. These have led to a growing database of molecules with in vitro activity against the virus. Machine learning models can assist drug discovery through prediction of the best compounds based on previously published data. Herein, we have implemented several machine learning methods to develop predictive models from recent SARS-CoV-2 in vitro inhibition data and used them to prioritize additional FDA-approved compounds for in vitro testing selected from our in-house compound library. From the compounds predicted with a Bayesian machine learning model, lumefantrine, an antimalarial was selected for testing and showed limited antiviral activity in cell-based assays while demonstrating binding (Kd 259 nM) to the spike protein using microscale thermophoresis. Several other compounds which we prioritized have since been tested by others and were also found to be active in vitro. This combined machine learning and in vitro testing approach can be expanded to virtually screen available molecules with predicted activity against SARS-CoV-2 reference WIV04 strain and circulating variants of concern. In the process of this work, we have created multiple iterations of machine learning models that can be used as a prioritization tool for SARS-CoV-2 antiviral drug discovery programs. The very latest model for SARS-CoV-2 with over 500 compounds is now freely available at www.assaycentral.org.
Collapse
Affiliation(s)
- Victor O Gawriljuk
- São Carlos Institute of Physics, University of São Paulo, Av. João Dagnone, 1100-Santa Angelina, São Carlos, São Paulo 13563-120, Brazil
| | - Phyo Phyo Kyaw Zin
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Ana C Puhl
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Kimberley M Zorn
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Daniel H Foil
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Thomas R Lane
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Brett Hurst
- Institute for Antiviral Research, Utah State University, Logan, Utah 84322-5600, United States.,Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah 84322-4815, United States
| | - Tatyana Almeida Tavella
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Fabio Trindade Maranhão Costa
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Premkumar Lakshmanane
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill North Carolina 27599, United States
| | - Jean Bernatchez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, San Diego, California 92093, United States
| | - Andre S Godoy
- São Carlos Institute of Physics, University of São Paulo, Av. João Dagnone, 1100-Santa Angelina, São Carlos, São Paulo 13563-120, Brazil
| | - Glaucius Oliva
- São Carlos Institute of Physics, University of São Paulo, Av. João Dagnone, 1100-Santa Angelina, São Carlos, São Paulo 13563-120, Brazil
| | - Jair L Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, San Diego, California 92093, United States
| | - Peter B Madrid
- SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025, United States
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|
15
|
Rietdijk J, Tampere M, Pettke A, Georgiev P, Lapins M, Warpman-Berglund U, Spjuth O, Puumalainen MR, Carreras-Puigvert J. A phenomics approach for antiviral drug discovery. BMC Biol 2021; 19:156. [PMID: 34334126 PMCID: PMC8325993 DOI: 10.1186/s12915-021-01086-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The emergence and continued global spread of the current COVID-19 pandemic has highlighted the need for methods to identify novel or repurposed therapeutic drugs in a fast and effective way. Despite the availability of methods for the discovery of antiviral drugs, the majority tend to focus on the effects of such drugs on a given virus, its constituent proteins, or enzymatic activity, often neglecting the consequences on host cells. This may lead to partial assessment of the efficacy of the tested anti-viral compounds, as potential toxicity impacting the overall physiology of host cells may mask the effects of both viral infection and drug candidates. Here we present a method able to assess the general health of host cells based on morphological profiling, for untargeted phenotypic drug screening against viral infections. RESULTS We combine Cell Painting with antibody-based detection of viral infection in a single assay. We designed an image analysis pipeline for segmentation and classification of virus-infected and non-infected cells, followed by extraction of morphological properties. We show that this methodology can successfully capture virus-induced phenotypic signatures of MRC-5 human lung fibroblasts infected with human coronavirus 229E (CoV-229E). Moreover, we demonstrate that our method can be used in phenotypic drug screening using a panel of nine host- and virus-targeting antivirals. Treatment with effective antiviral compounds reversed the morphological profile of the host cells towards a non-infected state. CONCLUSIONS The phenomics approach presented here, which makes use of a modified Cell Painting protocol by incorporating an anti-virus antibody stain, can be used for the unbiased morphological profiling of virus infection on host cells. The method can identify antiviral reference compounds, as well as novel antivirals, demonstrating its suitability to be implemented as a strategy for antiviral drug repurposing and drug discovery.
Collapse
Affiliation(s)
- Jonne Rietdijk
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Box 591, SE-751 24, Uppsala, Sweden
| | - Marianna Tampere
- Department of Oncology and Pathology and Science for Life Laboratory, Karolinska Institutet, SE-171 76, Stockholm, Sweden
- National Veterinary Institute, SE-756 51, Uppsala, Sweden
| | - Aleksandra Pettke
- Department of Oncology and Pathology and Science for Life Laboratory, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Polina Georgiev
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Box 591, SE-751 24, Uppsala, Sweden
| | - Maris Lapins
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Box 591, SE-751 24, Uppsala, Sweden
| | - Ulrika Warpman-Berglund
- Department of Oncology and Pathology and Science for Life Laboratory, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Ola Spjuth
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Box 591, SE-751 24, Uppsala, Sweden
| | - Marjo-Riitta Puumalainen
- Department of Oncology and Pathology and Science for Life Laboratory, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Jordi Carreras-Puigvert
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Box 591, SE-751 24, Uppsala, Sweden.
| |
Collapse
|
16
|
Chen KG, Park K, Spence JR. Studying SARS-CoV-2 infectivity and therapeutic responses with complex organoids. Nat Cell Biol 2021; 23:822-833. [PMID: 34341531 PMCID: PMC8355201 DOI: 10.1038/s41556-021-00721-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 06/22/2021] [Indexed: 12/15/2022]
Abstract
Clinical management of patients with severe complications of COVID-19 has been hindered by a lack of effective drugs and a failure to capture the extensive heterogeneity of the disease with conventional methods. Here we review the emerging roles of complex organoids in the study of SARS-CoV-2 infection, modelling of COVID-19 disease pathology and in drug, antibody and vaccine development. We discuss opportunities for COVID-19 research and remaining challenges in the application of organoids.
Collapse
Affiliation(s)
- Kevin G Chen
- NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Kyeyoon Park
- NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jason R Spence
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
17
|
Tummino TA, Rezelj VV, Fischer B, Fischer A, O'Meara MJ, Monel B, Vallet T, White KM, Zhang Z, Alon A, Schadt H, O'Donnell HR, Lyu J, Rosales R, McGovern BL, Rathnasinghe R, Jangra S, Schotsaert M, Galarneau JR, Krogan NJ, Urban L, Shokat KM, Kruse AC, García-Sastre A, Schwartz O, Moretti F, Vignuzzi M, Pognan F, Shoichet BK. Drug-induced phospholipidosis confounds drug repurposing for SARS-CoV-2. Science 2021; 373:541-547. [PMID: 34326236 PMCID: PMC8501941 DOI: 10.1126/science.abi4708] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/15/2021] [Indexed: 01/16/2023]
Abstract
Repurposing drugs as treatments for COVID-19, the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has drawn much attention. Beginning with sigma receptor ligands and expanding to other drugs from screening in the field, we became concerned that phospholipidosis was a shared mechanism underlying the antiviral activity of many repurposed drugs. For all of the 23 cationic amphiphilic drugs we tested, including hydroxychloroquine, azithromycin, amiodarone, and four others already in clinical trials, phospholipidosis was monotonically correlated with antiviral efficacy. Conversely, drugs active against the same targets that did not induce phospholipidosis were not antiviral. Phospholipidosis depends on the physicochemical properties of drugs and does not reflect specific target-based activities-rather, it may be considered a toxic confound in early drug discovery. Early detection of phospholipidosis could eliminate these artifacts, enabling a focus on molecules with therapeutic potential.
Collapse
Affiliation(s)
- Tia A Tummino
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, CA, USA
- Graduate Program in Pharmaceutical Sciences and Pharmacogenomics, UCSF, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, CA, USA
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
| | - Veronica V Rezelj
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, 75724 Paris, Cedex 15, France
| | - Benoit Fischer
- Novartis Institutes for BioMedical Research, Preclinical Safety, Basel, Switzerland
| | - Audrey Fischer
- Novartis Institutes for BioMedical Research, Preclinical Safety, Basel, Switzerland
| | - Matthew J O'Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Blandine Monel
- Institut Pasteur, Virus and Immunity Unit, CNRS UMR 3569, 75724 Paris, Cedex 15, France
| | - Thomas Vallet
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, 75724 Paris, Cedex 15, France
| | - Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ziyang Zhang
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, CA, USA
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA, USA
- Howard Hughes Medical Institute, UCSF, San Francisco, CA, USA
| | - Assaf Alon
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Heiko Schadt
- Novartis Institutes for BioMedical Research, Preclinical Safety, Basel, Switzerland
| | - Henry R O'Donnell
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Jiankun Lyu
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, CA, USA
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
| | - Romel Rosales
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Briana L McGovern
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raveen Rathnasinghe
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sonia Jangra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-René Galarneau
- Novartis Institutes for BioMedical Research, Preclinical Safety, Cambridge, MA, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, CA, USA
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Laszlo Urban
- Novartis Institutes for BioMedical Research, Preclinical Safety, Cambridge, MA, USA
| | - Kevan M Shokat
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, CA, USA
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA, USA
- Howard Hughes Medical Institute, UCSF, San Francisco, CA, USA
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olivier Schwartz
- Institut Pasteur, Virus and Immunity Unit, CNRS UMR 3569, 75724 Paris, Cedex 15, France
| | - Francesca Moretti
- Novartis Institutes for BioMedical Research, Preclinical Safety, Basel, Switzerland.
| | - Marco Vignuzzi
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, 75724 Paris, Cedex 15, France.
| | - Francois Pognan
- Novartis Institutes for BioMedical Research, Preclinical Safety, Basel, Switzerland.
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, CA, USA.
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, CA, USA
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
| |
Collapse
|
18
|
Loas G, Le Corre P. Update on Functional Inhibitors of Acid Sphingomyelinase (FIASMAs) in SARS-CoV-2 Infection. Pharmaceuticals (Basel) 2021; 14:691. [PMID: 34358117 PMCID: PMC8308787 DOI: 10.3390/ph14070691] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022] Open
Abstract
The SARS-CoV-2 outbreak is characterized by the need of the search for curative drugs for treatment. In this paper, we present an update of knowledge about the interest of the functional inhibitors of acid sphingomyelinase (FIASMAs) in SARS-CoV-2 infection. Forty-nine FIASMAs have been suggested in the treatment of SARS-CoV-2 infection using in silico, in vitro or in vivo studies. Further studies using large-sized, randomized and double-blinded controlled clinical trials are needed to evaluate FIASMAs in SARS-CoV-2 infection as off-label therapy.
Collapse
Affiliation(s)
- Gwenolé Loas
- Department of Psychiatry, Hôpital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
- Research Unit (ULB 266), Hôpital Erasme, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Pascal Le Corre
- Pôle Pharmacie, Service Hospitalo-Universitaire de Pharmacie, CHU de Rennes, 35033 Rennes, France;
- Irset (Institut de Recherche en Santé, Environnement et Travail)-Inserm UMR 1085, University of Rennes, CHU Rennes, INSERM, EHESP, 35000 Rennes, France
- Laboratoire de Biopharmacie et Pharmacie Clinique, Faculté de Pharmacie, Université de Rennes 1, 35043 Rennes, France
| |
Collapse
|
19
|
Sampaio NG, Chauveau L, Hertzog J, Bridgeman A, Fowler G, Moonen JP, Dupont M, Russell RA, Noerenberg M, Rehwinkel J. The RNA sensor MDA5 detects SARS-CoV-2 infection. Sci Rep 2021; 11:13638. [PMID: 34211037 PMCID: PMC8249624 DOI: 10.1038/s41598-021-92940-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/16/2021] [Indexed: 02/08/2023] Open
Abstract
Human cells respond to infection by SARS-CoV-2, the virus that causes COVID-19, by producing cytokines including type I and III interferons (IFNs) and proinflammatory factors such as IL6 and TNF. IFNs can limit SARS-CoV-2 replication but cytokine imbalance contributes to severe COVID-19. We studied how cells detect SARS-CoV-2 infection. We report that the cytosolic RNA sensor MDA5 was required for type I and III IFN induction in the lung cancer cell line Calu-3 upon SARS-CoV-2 infection. Type I and III IFN induction further required MAVS and IRF3. In contrast, induction of IL6 and TNF was independent of the MDA5-MAVS-IRF3 axis in this setting. We further found that SARS-CoV-2 infection inhibited the ability of cells to respond to IFNs. In sum, we identified MDA5 as a cellular sensor for SARS-CoV-2 infection that induced type I and III IFNs.
Collapse
Affiliation(s)
- Natalia G Sampaio
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Lise Chauveau
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Jonny Hertzog
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Anne Bridgeman
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Gerissa Fowler
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Jurgen P Moonen
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Maeva Dupont
- The Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Rebecca A Russell
- The Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | | | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| |
Collapse
|
20
|
Sherman EJ, Mirabelli C, Tang VT, Khan TG, Kennedy AA, Graham SE, Willer CJ, Tai AW, Sexton JZ, Wobus CE, Emmer BT. Identification of ACE2 modifiers by CRISPR screening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.06.10.447768. [PMID: 34127970 PMCID: PMC8202422 DOI: 10.1101/2021.06.10.447768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
SARS-CoV-2 infection is initiated by binding of the viral spike protein to its receptor, ACE2, on the surface of host cells. ACE2 expression is heterogeneous both in vivo and in immortalized cell lines, but the molecular pathways that govern ACE2 expression remain unclear. We now report high-throughput CRISPR screens for functional modifiers of ACE2 surface abundance. We identified 35 genes whose disruption was associated with a change in the surface abundance of ACE2 in HuH7 cells. Enriched among these ACE2 regulators were established transcription factors, epigenetic regulators, and functional networks. We further characterized individual cell lines with disruption of SMAD4, EP300, PIAS1 , or BAMBI and found these genes to regulate ACE2 at the mRNA level and to influence cellular susceptibility to SARS-CoV-2 infection. Collectively, our findings clarify the host factors involved in SARS-CoV-2 entry and suggest potential targets for therapeutic development.
Collapse
|
21
|
Mathez G, Cagno V. Viruses Like Sugars: How to Assess Glycan Involvement in Viral Attachment. Microorganisms 2021; 9:1238. [PMID: 34200288 PMCID: PMC8230229 DOI: 10.3390/microorganisms9061238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
The first step of viral infection requires interaction with the host cell. Before finding the specific receptor that triggers entry, the majority of viruses interact with the glycocalyx. Identifying the carbohydrates that are specifically recognized by different viruses is important both for assessing the cellular tropism and for identifying new antiviral targets. Advances in the tools available for studying glycan-protein interactions have made it possible to identify them more rapidly; however, it is important to recognize the limitations of these methods in order to draw relevant conclusions. Here, we review different techniques: genetic screening, glycan arrays, enzymatic and pharmacological approaches, and surface plasmon resonance. We then detail the glycan interactions of enterovirus D68 and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), highlighting the aspects that need further clarification.
Collapse
Affiliation(s)
| | - Valeria Cagno
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland;
| |
Collapse
|
22
|
Son J, Huang S, Zeng Q, Bricker TL, Case JB, Zhou J, Zang R, Liu Z, Chang X, Harastani HH, Chen L, Castro MFG, Zhao Y, Kohio HP, Hou G, Fan B, Niu B, Guo R, Rothlauf PW, Bailey AL, Wang X, Shi PY, Martinez ED, Whelan SP, Diamond MS, Boon AC, Li B, Ding S. JIB-04 has broad-spectrum antiviral activity and inhibits SARS-CoV-2 replication and coronavirus pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.09.24.312165. [PMID: 32995798 PMCID: PMC7523209 DOI: 10.1101/2020.09.24.312165] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pathogenic coronaviruses represent a major threat to global public health. Here, using a recombinant reporter virus-based compound screening approach, we identified several small-molecule inhibitors that potently block the replication of the newly emerged severe acute respiratory syndrome virus 2 (SARS-CoV-2). Among them, JIB-04 inhibited SARS-CoV-2 replication in Vero E6 cells with an EC50 of 695 nM, with a specificity index of greater than 1,000. JIB-04 showed in vitro antiviral activity in multiple cell types against several DNA and RNA viruses, including porcine coronavirus transmissible gastroenteritis virus. In an in vivo porcine model of coronavirus infection, administration of JIB-04 reduced virus infection and associated tissue pathology, which resulted in improved weight gain and survival. These results highlight the potential utility of JIB-04 as an antiviral agent against SARS-CoV-2 and other viral pathogens.
Collapse
Affiliation(s)
- Juhee Son
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Program in Molecular Cell Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Shimeng Huang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qiru Zeng
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Traci L. Bricker
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - James Brett Case
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Jinzhu Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ruochen Zang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xinjian Chang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Houda H. Harastani
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Lu Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | | | - Yongxiang Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hinissan P. Kohio
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gaopeng Hou
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Beibei Niu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rongli Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Paul W. Rothlauf
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Program in Virology, Harvard Medical School, Boston, MA, USA
| | - Adam L. Bailey
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xin Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston TX, USA
| | | | - Sean P.J. Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael S. Diamond
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Adrianus C.M. Boon
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
23
|
Shamim K, Xu M, Hu X, Lee EM, Lu X, Huang R, Shah P, Xu X, Chen CZ, Shen M, Guo H, Chen L, Itkin Z, Eastman RT, Shinn P, Klumpp-Thomas C, Michael S, Simeonov A, Lo DC, Ming GL, Song H, Tang H, Zheng W, Huang W. Application of niclosamide and analogs as small molecule inhibitors of Zika virus and SARS-CoV-2 infection. Bioorg Med Chem Lett 2021; 40:127906. [PMID: 33689873 PMCID: PMC7936759 DOI: 10.1016/j.bmcl.2021.127906] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 12/12/2022]
Abstract
Zika virus has emerged as a potential threat to human health globally. A previous drug repurposing screen identified the approved anthelminthic drug niclosamide as a small molecule inhibitor of Zika virus infection. However, as antihelminthic drugs are generally designed to have low absorption when dosed orally, the very limited bioavailability of niclosamide will likely hinder its potential direct repurposing as an antiviral medication. Here, we conducted SAR studies focusing on the anilide and salicylic acid regions of niclosamide to improve physicochemical properties such as microsomal metabolic stability, permeability and solubility. We found that the 5-bromo substitution in the salicylic acid region retains potency while providing better drug-like properties. Other modifications in the anilide region with 2'-OMe and 2'-H substitutions were also advantageous. We found that the 4'-NO2 substituent can be replaced with a 4'-CN or 4'-CF3 substituents. Together, these modifications provide a basis for optimizing the structure of niclosamide to improve systemic exposure for application of niclosamide analogs as drug lead candidates for treating Zika and other viral infections. Indeed, key analogs were also able to rescue cells from the cytopathic effect of SARS-CoV-2 infection, indicating relevance for therapeutic strategies targeting the COVID-19 pandemic.
Collapse
Affiliation(s)
- Khalida Shamim
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA.
| | - Miao Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Emily M Lee
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA; Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Xiao Lu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Pranav Shah
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Xin Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Catherine Z Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Hui Guo
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Lu Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Zina Itkin
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Richard T Eastman
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Paul Shinn
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Carleen Klumpp-Thomas
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Sam Michael
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Donald C Lo
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Wenwei Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA.
| |
Collapse
|
24
|
Zarkoob H, Allué-Guardia A, Chen YC, Jung O, Garcia-Vilanova A, Song MJ, Park JG, Oladunni F, Miller J, Tung YT, Kosik I, Schultz D, Yewdell J, Torrelles JB, Martinez-Sobrido L, Cherry S, Ferrer M, Lee EM. Modeling SARS-CoV-2 and Influenza Infections and Antiviral Treatments in Human Lung Epithelial Tissue Equivalents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.05.11.443693. [PMID: 34013274 PMCID: PMC8132232 DOI: 10.1101/2021.05.11.443693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the third coronavirus in less than 20 years to spillover from an animal reservoir and cause severe disease in humans. High impact respiratory viruses such as pathogenic beta-coronaviruses and influenza viruses, as well as other emerging respiratory viruses, pose an ongoing global health threat to humans. There is a critical need for physiologically relevant, robust and ready to use, in vitro cellular assay platforms to rapidly model the infectivity of emerging respiratory viruses and discover and develop new antiviral treatments. Here, we validate in vitro human alveolar and tracheobronchial tissue equivalents and assess their usefulness as in vitro assay platforms in the context of live SARS-CoV-2 and influenza A virus infections. We establish the cellular complexity of two distinct tracheobronchial and alveolar epithelial air liquid interface (ALI) tissue models, describe SARS-CoV-2 and influenza virus infectivity rates and patterns in these ALI tissues, the viral-induced cytokine production as it relates to tissue-specific disease, and demonstrate the pharmacologically validity of these lung epithelium models as antiviral drug screening assay platforms.
Collapse
Affiliation(s)
- Hoda Zarkoob
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| | - Anna Allué-Guardia
- Host-Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX
| | - Yu-Chi Chen
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| | - Olive Jung
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
- Biomedical Ultrasonics & Biotherapy Laboratory, Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Headington, UK
| | - Andreu Garcia-Vilanova
- Host-Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX
| | - Min Jae Song
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| | - Jun-Gyu Park
- Host-Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX
| | - Fatai Oladunni
- Host-Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX
| | - Jesse Miller
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA
| | - Yen-Ting Tung
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| | - Ivan Kosik
- National Institute for Allergies and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - David Schultz
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA
- High Throughput Screening Core, University of Pennsylvania, Philadelphia, PA
| | - Jonathan Yewdell
- National Institute for Allergies and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Jordi B. Torrelles
- Host-Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX
| | - Luis Martinez-Sobrido
- Host-Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX
| | - Sara Cherry
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA
| | - Marc Ferrer
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| | - Emily M. Lee
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| |
Collapse
|
25
|
Giani AM, Chen S. Human pluripotent stem cell-based organoids and cell platforms for modelling SARS-CoV-2 infection and drug discovery. Stem Cell Res 2021; 53:102207. [PMID: 33677394 PMCID: PMC7979422 DOI: 10.1016/j.scr.2021.102207] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/16/2021] [Accepted: 01/24/2021] [Indexed: 02/07/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) global pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected over 200 countries and territories worldwide and resulted in more than 2.5 million deaths. In a pressing search for treatments and vaccines, research models based on human stem cells are emerging as crucial tools to investigate SARS-CoV-2 infection mechanisms and cellular responses across different tissues. Here, we provide an overview of the variety of human pluripotent stem cell-based platforms adopted in SARS-CoV-2 research, comprising monolayer cultures and organoids, which model the multitude of affected tissues in vitro. We highlight the strengths of these platforms, including their application to assess both the susceptible cell types and the pathogenesis of SARS-CoV-2. We describe their use to identify drug candidates for further investigation in addition to discussing their limitations in fully recapitulating COVID-19 pathophysiology. Overall, stem cell models are facilitating the understanding of SARS-CoV-2 and prove to be versatile platforms for studying infections.
Collapse
Affiliation(s)
- Alice Maria Giani
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY 10065, USA.
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY 10065, USA.
| |
Collapse
|
26
|
Singh N, Villoutreix BO. Resources and computational strategies to advance small molecule SARS-CoV-2 discovery: Lessons from the pandemic and preparing for future health crises. Comput Struct Biotechnol J 2021; 19:2537-2548. [PMID: 33936562 PMCID: PMC8074526 DOI: 10.1016/j.csbj.2021.04.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 12/11/2022] Open
Abstract
There is an urgent need to identify new therapies that prevent SARS-CoV-2 infection and improve the outcome of COVID-19 patients. This pandemic has thus spurred intensive research in most scientific areas and in a short period of time, several vaccines have been developed. But, while the race to find vaccines for COVID-19 has dominated the headlines, other types of therapeutic agents are being developed. In this mini-review, we report several databases and online tools that could assist the discovery of anti-SARS-CoV-2 small chemical compounds and peptides. We then give examples of studies that combined in silico and in vitro screening, either for drug repositioning purposes or to search for novel bioactive compounds. Finally, we question the overall lack of discussion and plan observed in academic research in many countries during this crisis and suggest that there is room for improvement.
Collapse
Affiliation(s)
- Natesh Singh
- Université de Paris, Inserm UMR 1141 NeuroDiderot, Robert-Debré Hospital, 75019 Paris, France
| | - Bruno O. Villoutreix
- Université de Paris, Inserm UMR 1141 NeuroDiderot, Robert-Debré Hospital, 75019 Paris, France
| |
Collapse
|
27
|
Mattar EH, Elrashdy F, Almehdar HA, Uversky VN, Redwan EM. Natural resources to control COVID-19: could lactoferrin amend SARS-CoV-2 infectivity? PeerJ 2021; 9:e11303. [PMID: 33954061 PMCID: PMC8052957 DOI: 10.7717/peerj.11303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022] Open
Abstract
The world population is still facing the second wave of the COVID-19 pandemic. Such a challenge requires complicated tools to control, namely vaccines, effective cures, and complementary agents. Here we present one candidate for the role of an effective cure and/or complementary agent: lactoferrin. It is the cross-talking mediator between many organs/cellular systems in the body. It serves as a physiological, immunological, and anti-microbial barrier, and acts as a regulator molecule. Furthermore, lactoferrin has receptors on most tissues cells, and is a rich source for bioactive peptides, particularly in the digestive system. In the past months, in vitro and in vivo evidence has accumulated regarding lactoferrin's ability to control SARS-CoV-2 infectivity in different indicated scenarios. Also, lactoferrin or whey milk (of human or other mammal's origin) is a cheap, easily available, and safe agent, the use of which can produce promising results. Pharmaceutical and/or food supplementary formulas of lactoferrin could be particularly effective in controlling the gastrointestinal COVID-19-associated symptoms and could limit the fecal-oral viral infection transmission, through mechanisms that mimic that of norovirus infection control by lactoferrin via induction of intestinal innate immunity. This natural avenue may be effective not only in symptomatic patients, but could also be more helpful in asymptomatic patients as a main or adjuvant treatment.
Collapse
Affiliation(s)
- Ehab H. Mattar
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fatma Elrashdy
- Department of Endemic Medicine and Hepatogastroenterology, Cairo University, Cairo, Egypt
| | - Hussein A. Almehdar
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vladimir N. Uversky
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, United States
| | - Elrashdy M. Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
28
|
Tummino TA, Rezelj VV, Fischer B, Fischer A, O'Meara MJ, Monel B, Vallet T, Zhang Z, Alon A, O'Donnell HR, Lyu J, Schadt H, White KM, Krogan NJ, Urban L, Shokat KM, Kruse AC, García-Sastre A, Schwartz O, Moretti F, Vignuzzi M, Pognan F, Shoichet BK. Phospholipidosis is a shared mechanism underlying the in vitro antiviral activity of many repurposed drugs against SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.23.436648. [PMID: 33791693 PMCID: PMC8010720 DOI: 10.1101/2021.03.23.436648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Repurposing drugs as treatments for COVID-19 has drawn much attention. A common strategy has been to screen for established drugs, typically developed for other indications, that are antiviral in cells or organisms. Intriguingly, most of the drugs that have emerged from these campaigns, though diverse in structure, share a common physical property: cationic amphiphilicity. Provoked by the similarity of these repurposed drugs to those inducing phospholipidosis, a well-known drug side effect, we investigated phospholipidosis as a mechanism for antiviral activity. We tested 23 cationic amphiphilic drugs-including those from phenotypic screens and others that we ourselves had found-for induction of phospholipidosis in cell culture. We found that most of the repurposed drugs, which included hydroxychloroquine, azithromycin, amiodarone, and four others that have already progressed to clinical trials, induced phospholipidosis in the same concentration range as their antiviral activity; indeed, there was a strong monotonic correlation between antiviral efficacy and the magnitude of the phospholipidosis. Conversely, drugs active against the same targets that did not induce phospholipidosis were not antiviral. Phospholipidosis depends on the gross physical properties of drugs, and does not reflect specific target-based activities, rather it may be considered a confound in early drug discovery. Understanding its role in infection, and detecting its effects rapidly, will allow the community to better distinguish between drugs and lead compounds that more directly impact COVID-19 from the large proportion of molecules that manifest this confounding effect, saving much time, effort and cost.
Collapse
Affiliation(s)
- Tia A Tummino
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, CA, USA
- Graduate Program in Pharmaceutical Sciences and Pharmacogenomics, UCSF, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, CA, USA
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
| | - Veronica V Rezelj
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, 75724 Paris, Cedex 15, France
| | - Benoit Fischer
- Novartis Institutes for BioMedical Research, Preclinical Safety, Basel, Switzerland
| | - Audrey Fischer
- Novartis Institutes for BioMedical Research, Preclinical Safety, Basel, Switzerland
| | - Matthew J O'Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Blandine Monel
- Institut Pasteur, Virus and Immunity Unit, CNRS UMR 3569, 75724 Paris, Cedex 15, France
| | - Thomas Vallet
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, 75724 Paris, Cedex 15, France
| | - Ziyang Zhang
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, CA, USA
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA, USA
- Howard Hughes Medical Institute, UCSF, San Francisco, CA, USA
| | - Assaf Alon
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Henry R O'Donnell
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Jiankun Lyu
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, CA, USA
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
| | - Heiko Schadt
- Novartis Institutes for BioMedical Research, Preclinical Safety, Basel, Switzerland
| | - Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, CA, USA
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Laszlo Urban
- Novartis Institutes for BioMedical Research, Preclinical Safety, Cambridge, MA, USA
| | - Kevan M Shokat
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, CA, USA
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA, USA
- Howard Hughes Medical Institute, UCSF, San Francisco, CA, USA
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olivier Schwartz
- Institut Pasteur, Virus and Immunity Unit, CNRS UMR 3569, 75724 Paris, Cedex 15, France
| | - Francesca Moretti
- Novartis Institutes for BioMedical Research, Preclinical Safety, Basel, Switzerland
| | - Marco Vignuzzi
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, 75724 Paris, Cedex 15, France
| | - Francois Pognan
- Novartis Institutes for BioMedical Research, Preclinical Safety, Basel, Switzerland
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, CA, USA
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
| |
Collapse
|
29
|
Puhl AC, Fritch EJ, Lane TR, Tse LV, Yount BL, Sacramento CQ, Fintelman-Rodrigues N, Tavella TA, Maranhão Costa FT, Weston S, Logue J, Frieman M, Premkumar L, Pearce KH, Hurst BL, Andrade CH, Levi JA, Johnson NJ, Kisthardt SC, Scholle F, Souza TML, Moorman NJ, Baric RS, Madrid PB, Ekins S. Repurposing the Ebola and Marburg Virus Inhibitors Tilorone, Quinacrine, and Pyronaridine: In Vitro Activity against SARS-CoV-2 and Potential Mechanisms. ACS OMEGA 2021; 6:7454-7468. [PMID: 33778258 PMCID: PMC7992063 DOI: 10.1021/acsomega.0c05996] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/02/2021] [Indexed: 05/11/2023]
Abstract
Severe acute respiratory coronavirus 2 (SARS-CoV-2) is a newly identified virus that has resulted in over 2.5 million deaths globally and over 116 million cases globally in March, 2021. Small-molecule inhibitors that reverse disease severity have proven difficult to discover. One of the key approaches that has been widely applied in an effort to speed up the translation of drugs is drug repurposing. A few drugs have shown in vitro activity against Ebola viruses and demonstrated activity against SARS-CoV-2 in vivo. Most notably, the RNA polymerase targeting remdesivir demonstrated activity in vitro and efficacy in the early stage of the disease in humans. Testing other small-molecule drugs that are active against Ebola viruses (EBOVs) would appear a reasonable strategy to evaluate their potential for SARS-CoV-2. We have previously repurposed pyronaridine, tilorone, and quinacrine (from malaria, influenza, and antiprotozoal uses, respectively) as inhibitors of Ebola and Marburg viruses in vitro in HeLa cells and mouse-adapted EBOV in mice in vivo. We have now tested these three drugs in various cell lines (VeroE6, Vero76, Caco-2, Calu-3, A549-ACE2, HUH-7, and monocytes) infected with SARS-CoV-2 as well as other viruses (including MHV and HCoV 229E). The compilation of these results indicated considerable variability in antiviral activity observed across cell lines. We found that tilorone and pyronaridine inhibited the virus replication in A549-ACE2 cells with IC50 values of 180 nM and IC50 198 nM, respectively. We used microscale thermophoresis to test the binding of these molecules to the spike protein, and tilorone and pyronaridine bind to the spike receptor binding domain protein with K d values of 339 and 647 nM, respectively. Human Cmax for pyronaridine and quinacrine is greater than the IC50 observed in A549-ACE2 cells. We also provide novel insights into the mechanism of these compounds which is likely lysosomotropic.
Collapse
Affiliation(s)
- Ana C. Puhl
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Ethan J. Fritch
- Department
of Microbiology and Immunology, University
of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Thomas R. Lane
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Longping V. Tse
- Department
of Epidemiology, University of North Carolina
School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Boyd L. Yount
- Department
of Epidemiology, University of North Carolina
School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Carolina Q. Sacramento
- Laboratório
de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
- Centro
De Desenvolvimento Tecnológico Em Saúde (CDTS), Fiocruz, Rio de
Janeiro 21040-900, Brazil
| | - Natalia Fintelman-Rodrigues
- Laboratório
de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
- Centro
De Desenvolvimento Tecnológico Em Saúde (CDTS), Fiocruz, Rio de
Janeiro 21040-900, Brazil
| | - Tatyana Almeida Tavella
- Laboratory
of Tropical Diseases—Prof. Dr. Luiz Jacinto da Silva, Department
of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, São Paulo 13083-970, Brazil
| | - Fabio Trindade Maranhão Costa
- Laboratory
of Tropical Diseases—Prof. Dr. Luiz Jacinto da Silva, Department
of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, São Paulo 13083-970, Brazil
| | - Stuart Weston
- Department
of Microbiology and Immunology, University
of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - James Logue
- Department
of Microbiology and Immunology, University
of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Matthew Frieman
- Department
of Microbiology and Immunology, University
of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Lakshmanane Premkumar
- Department
of Microbiology and Immunology, University
of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Kenneth H. Pearce
- Center
for Integrative Chemical Biology and Drug Discovery, Chemical Biology
and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- UNC
Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina 27599, United States
| | - Brett L. Hurst
- Institute
for Antiviral Research, Utah State University, Logan, Utah 84322, United States
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah 84322, United States
| | - Carolina Horta Andrade
- Laboratory
of Tropical Diseases—Prof. Dr. Luiz Jacinto da Silva, Department
of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, São Paulo 13083-970, Brazil
- LabMol—Laboratory of Molecular Modeling
and Drug Design, Faculdade
de Farmácia, Universidade Federal
de Goiás, Goiânia,
GO 74605-170, Brazil
| | - James A. Levi
- Department of Biological Sciences, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - Nicole J. Johnson
- Department of Biological Sciences, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - Samantha C. Kisthardt
- Department of Biological Sciences, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - Frank Scholle
- Department of Biological Sciences, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - Thiago Moreno L. Souza
- Laboratório
de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
- Centro
De Desenvolvimento Tecnológico Em Saúde (CDTS), Fiocruz, Rio de
Janeiro 21040-900, Brazil
| | - Nathaniel John Moorman
- Department
of Microbiology and Immunology, University
of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
- Center
for Integrative Chemical Biology and Drug Discovery, Chemical Biology
and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Rapidly Emerging Antiviral Drug Discovery
Initiative, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Ralph S. Baric
- Department
of Microbiology and Immunology, University
of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
- Department
of Epidemiology, University of North Carolina
School of Medicine, Chapel Hill, North Carolina 27599, United States
- Rapidly Emerging Antiviral Drug Discovery
Initiative, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Peter B. Madrid
- SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025, United States
| | - Sean Ekins
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|
30
|
Guedes IA, Costa LSC, Dos Santos KB, Karl ALM, Rocha GK, Teixeira IM, Galheigo MM, Medeiros V, Krempser E, Custódio FL, Barbosa HJC, Nicolás MF, Dardenne LE. Drug design and repurposing with DockThor-VS web server focusing on SARS-CoV-2 therapeutic targets and their non-synonym variants. Sci Rep 2021; 11:5543. [PMID: 33692377 PMCID: PMC7946942 DOI: 10.1038/s41598-021-84700-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/16/2021] [Indexed: 02/07/2023] Open
Abstract
The COVID-19 caused by the SARS-CoV-2 virus was declared a pandemic disease in March 2020 by the World Health Organization (WHO). Structure-Based Drug Design strategies based on docking methodologies have been widely used for both new drug development and drug repurposing to find effective treatments against this disease. In this work, we present the developments implemented in the DockThor-VS web server to provide a virtual screening (VS) platform with curated structures of potential therapeutic targets from SARS-CoV-2 incorporating genetic information regarding relevant non-synonymous variations. The web server facilitates repurposing VS experiments providing curated libraries of currently available drugs on the market. At present, DockThor-VS provides ready-for-docking 3D structures for wild type and selected mutations for Nsp3 (papain-like, PLpro domain), Nsp5 (Mpro, 3CLpro), Nsp12 (RdRp), Nsp15 (NendoU), N protein, and Spike. We performed VS experiments of FDA-approved drugs considering the therapeutic targets available at the web server to assess the impact of considering different structures and mutations to identify possible new treatments of SARS-CoV-2 infections. The DockThor-VS is freely available at www.dockthor.lncc.br .
Collapse
Affiliation(s)
- Isabella A Guedes
- Grupo de Modelagem Molecular em Sistemas Biológicos (GMMSB), National Laboratory for Scientific Computing - LNCC, Petrópolis, RJ, Brazil
| | - Leon S C Costa
- Grupo de Modelagem Molecular em Sistemas Biológicos (GMMSB), National Laboratory for Scientific Computing - LNCC, Petrópolis, RJ, Brazil
| | - Karina B Dos Santos
- Grupo de Modelagem Molecular em Sistemas Biológicos (GMMSB), National Laboratory for Scientific Computing - LNCC, Petrópolis, RJ, Brazil
| | - Ana L M Karl
- Grupo de Modelagem Molecular em Sistemas Biológicos (GMMSB), National Laboratory for Scientific Computing - LNCC, Petrópolis, RJ, Brazil
| | | | - Iury M Teixeira
- Grupo de Modelagem Molecular em Sistemas Biológicos (GMMSB), National Laboratory for Scientific Computing - LNCC, Petrópolis, RJ, Brazil
| | - Marcelo M Galheigo
- Grupo de Modelagem Molecular em Sistemas Biológicos (GMMSB), National Laboratory for Scientific Computing - LNCC, Petrópolis, RJ, Brazil
| | - Vivian Medeiros
- Grupo de Modelagem Molecular em Sistemas Biológicos (GMMSB), National Laboratory for Scientific Computing - LNCC, Petrópolis, RJ, Brazil
| | | | - Fábio L Custódio
- Grupo de Modelagem Molecular em Sistemas Biológicos (GMMSB), National Laboratory for Scientific Computing - LNCC, Petrópolis, RJ, Brazil
| | - Helio J C Barbosa
- Grupo de Modelagem Molecular em Sistemas Biológicos (GMMSB), National Laboratory for Scientific Computing - LNCC, Petrópolis, RJ, Brazil
| | - Marisa F Nicolás
- Laboratório de Bioinformática (Labinfo), National Laboratory for Scientific Computing - LNCC, Petrópolis, RJ, Brazil.
| | - Laurent E Dardenne
- Grupo de Modelagem Molecular em Sistemas Biológicos (GMMSB), National Laboratory for Scientific Computing - LNCC, Petrópolis, RJ, Brazil.
| |
Collapse
|
31
|
Brink LR, Chichlowski M, Pastor N, Thimmasandra Narayanappa A, Shah N. In the Age of Viral Pandemic, Can Ingredients Inspired by Human Milk and Infant Nutrition Be Repurposed to Support the Immune System? Nutrients 2021; 13:870. [PMID: 33800961 PMCID: PMC7999376 DOI: 10.3390/nu13030870] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022] Open
Abstract
In 2020, with the advent of a pandemic touching all aspects of global life, there is a renewed interest in nutrition solutions to support the immune system. Infants are vulnerable to infection and breastfeeding has been demonstrated to provide protection. As such, human milk is a great model for sources of functional nutrition ingredients, which may play direct roles in protection against viral diseases. This review aims to summarize the literature around human milk (lactoferrin, milk fat globule membrane, osteopontin, glycerol monolaurate and human milk oligosaccharides) and infant nutrition (polyunsaturated fatty acids, probiotics and postbiotics) inspired ingredients for support against viral infections and the immune system more broadly. We believe that the application of these ingredients can span across all life stages and thus apply to both pediatric and adult nutrition. We highlight the opportunities for further research in this field to help provide tangible nutrition solutions to support one's immune system and fight against infections.
Collapse
Affiliation(s)
- Lauren R. Brink
- Medical and Scientific Affairs, Nutrition, Reckitt Benckiser, Evansville, IN 47721, USA; (M.C.); (N.P.)
| | - Maciej Chichlowski
- Medical and Scientific Affairs, Nutrition, Reckitt Benckiser, Evansville, IN 47721, USA; (M.C.); (N.P.)
| | - Nitida Pastor
- Medical and Scientific Affairs, Nutrition, Reckitt Benckiser, Evansville, IN 47721, USA; (M.C.); (N.P.)
| | | | - Neil Shah
- Medical and Scientific Affairs, Nutrition, Reckitt Benckiser, Slough SL1 3UH, UK;
- University College London, Great Ormond Street, London WC1N 3JH, UK
| |
Collapse
|
32
|
Xing J, Paithankar S, Liu K, Uhl K, Li X, Ko M, Kim S, Haskins J, Chen B. Published Anti-SARS-CoV-2 In Vitro Hits Share Common Mechanisms of Action that Synergize with Antivirals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.04.433931. [PMID: 33688643 PMCID: PMC7941614 DOI: 10.1101/2021.03.04.433931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The global efforts in the past few months have led to the discovery of around 200 drug repurposing candidates for COVID-19. Although most of them only exhibited moderate anti- SARS-CoV-2 activity, gaining more insights into their mechanisms of action could facilitate a better understanding of infection and the development of therapeutics. Leveraging large-scale drug-induced gene expression profiles, we found 36% of the active compounds regulate genes related to cholesterol homeostasis and microtubule cytoskeleton organization. The expression change upon drug treatment was further experimentally confirmed in human lung primary small airway. Following bioinformatics analysis on COVID-19 patient data revealed that these genes are associated with COVID-19 patient severity. The expression level of these genes also has predicted power on anti-SARS-CoV-2 efficacy in vitro, which led to the discovery of monensin as an inhibitor of SARS-CoV-2 replication in Vero-E6 cells. The final survey of recent drug- combination data indicated that drugs co-targeting cholesterol homeostasis and microtubule cytoskeleton organization processes more likely present a synergistic effect with antivirals. Therefore, potential therapeutics should be centered around combinations of targeting these processes and viral proteins.
Collapse
Affiliation(s)
- Jing Xing
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, Michigan, USA
| | - Shreya Paithankar
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, Michigan, USA
| | - Ke Liu
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, Michigan, USA
| | - Katie Uhl
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, Michigan, USA
| | - Xiaopeng Li
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, Michigan, USA
| | - Meehyun Ko
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam, South Korea
| | - Seungtaek Kim
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam, South Korea
| | - Jeremy Haskins
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, Michigan, USA
| | - Bin Chen
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, Michigan, USA
- Department of Pharmacology and Toxicology, Michigan State University, Grand Rapids, Michigan, USA
| |
Collapse
|
33
|
Ochoa TJ, Vogel HJ. Lactoferrin extends its reach into South America. Biochem Cell Biol 2021; 99:v-vii. [PMID: 33617378 DOI: 10.1139/bcb-2021-0025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Theresa J Ochoa
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
34
|
Pandamooz S, Jurek B, Meinung CP, Baharvand Z, Shahem-Abadi AS, Haerteis S, Miyan JA, Downing J, Dianatpour M, Borhani-Haghighi A, Salehi MS. Experimental Models of SARS-CoV-2 Infection: Possible Platforms to Study COVID-19 Pathogenesis and Potential Treatments. Annu Rev Pharmacol Toxicol 2021; 62:25-53. [PMID: 33606962 DOI: 10.1146/annurev-pharmtox-121120-012309] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In December 2019, a novel coronavirus crossed species barriers to infect humans and was effectively transmitted from person to person, leading including vaccines and antiviral drugs that could prevent or limit the burden or transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global health priority. It is thus of utmost importance to assess possible therapeutic strategies against SARS-CoV-2 using experimental models that recapitulate aspects of the human disease. Here, we review available models currently being developed and used to study SARS-CoV-2 infection and highlight their application to screen potential therapeutic approaches, including repurposed antiviral drugs and vaccines. Each identified model provides a valuable insight into SARS-CoV-2 cellular tropism, replication kinetics, and cell damage that could ultimately enhance understanding of SARS-CoV-2 pathogenesis and protective immunity. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran;
| | - Benjamin Jurek
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg 93053, Germany
| | - Carl-Philipp Meinung
- Department of Molecular and Behavioural Neurobiology, University of Regensburg, Regensburg 93053, Germany
| | - Zahra Baharvand
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Silke Haerteis
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg 93053, Germany
| | - Jaleel A Miyan
- Faculty of Biology, Medicine & Health, Division of Neuroscience & Experimental Psychology, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - James Downing
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Liverpool L2 2QP, United Kingdom
| | - Mehdi Dianatpour
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran;
| | | | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran;
| |
Collapse
|
35
|
Raghuvanshi R, Bharate SB. Recent Developments in the Use of Kinase Inhibitors for Management of Viral Infections. J Med Chem 2021; 65:893-921. [PMID: 33539089 DOI: 10.1021/acs.jmedchem.0c01467] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Kinases are a group of therapeutic targets involved in the progression of numerous diseases, including cancer, rheumatoid arthritis, Alzheimer's disease, and viral infections. The majority of approved antiviral agents are inhibitors of virus-specific targets that are encoded by individual viruses. These inhibitors are narrow-spectrum agents that can cause resistance development. Viruses are dependent on host cellular proteins, including kinases, for progression of their life-cycle. Thus, targeting kinases is an important therapeutic approach to discovering broad-spectrum antiviral agents. As there are a large number of FDA approved kinase inhibitors for various indications, their repurposing for viral infections is an attractive and time-sparing strategy. Many kinase inhibitors, including baricitinib, ruxolitinib, imatinib, tofacitinib, pacritinib, zanubrutinib, and ibrutinib, are under clinical investigation for COVID-19. Herein, we discuss FDA approved kinase inhibitors, along with a repertoire of clinical/preclinical stage kinase inhibitors that possess antiviral activity or are useful in the management of viral infections.
Collapse
Affiliation(s)
- Rinky Raghuvanshi
- Medicinal Chemistry Division,CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| | - Sandip B Bharate
- Medicinal Chemistry Division,CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
36
|
The role of chemical biology in the fight against SARS-CoV-2. Biochem J 2021; 478:157-177. [PMID: 33439990 DOI: 10.1042/bcj20200514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 01/18/2023]
Abstract
Since late 2019, biomedical labs all over the world have been struggling to cope with the 'new normal' and to find ways in which they can contribute to the fight against COVID-19. In this unique situation where a biomedical issue dominates people's lives and the news cycle, chemical biology has a great deal to contribute. This review will describe the importance of science at the chemistry/biology interface to both understand and combat the SARS-CoV-2 pandemic.
Collapse
|
37
|
Liu Y, Hur J, Chan WKB, Wang Z, Xie J, Sun D, Handelman S, Sexton J, Yu H, He Y. Ontological modeling and analysis of experimentally or clinically verified drugs against coronavirus infection. Sci Data 2021; 8:16. [PMID: 33441564 PMCID: PMC7806933 DOI: 10.1038/s41597-021-00799-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/14/2020] [Indexed: 12/25/2022] Open
Abstract
Our systematic literature collection and annotation identified 106 chemical drugs and 31 antibodies effective against the infection of at least one human coronavirus (including SARS-CoV, SAR-CoV-2, and MERS-CoV) in vitro or in vivo in an experimental or clinical setting. A total of 163 drug protein targets were identified, and 125 biological processes involving the drug targets were significantly enriched based on a Gene Ontology (GO) enrichment analysis. The Coronavirus Infectious Disease Ontology (CIDO) was used as an ontological platform to represent the anti-coronaviral drugs, chemical compounds, drug targets, biological processes, viruses, and the relations among these entities. In addition to new term generation, CIDO also adopted various terms from existing ontologies and developed new relations and axioms to semantically represent our annotated knowledge. The CIDO knowledgebase was systematically analyzed for scientific insights. To support rational drug design, a "Host-coronavirus interaction (HCI) checkpoint cocktail" strategy was proposed to interrupt the important checkpoints in the dynamic HCI network, and ontologies would greatly support the design process with interoperable knowledge representation and reasoning.
Collapse
Affiliation(s)
- Yingtong Liu
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Junguk Hur
- University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA
| | - Wallace K B Chan
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Zhigang Wang
- Department of Biomedical Engineering, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Jiangan Xie
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Samuel Handelman
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- U-M Center for Drug Repurposing, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jonathan Sexton
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- U-M Center for Drug Repurposing, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hong Yu
- Department of Respiratory and Critical Care Medicine, Guizhou Province People's Hospital and NHC Key Laboratory of Immunological Diseases, People's Hospital of Guizhou University, Guiyang, Guizhou, 550002, China
- Department of Basic Medicine, Guizhou University Medical College, Guiyang, Guizhou, 550025, China
| | - Yongqun He
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
38
|
Syeda HB, Syed M, Sexton KW, Syed S, Begum S, Syed F, Prior F, Yu F. Role of Machine Learning Techniques to Tackle the COVID-19 Crisis: Systematic Review. JMIR Med Inform 2021; 9:e23811. [PMID: 33326405 PMCID: PMC7806275 DOI: 10.2196/23811] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/27/2020] [Accepted: 11/15/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND SARS-CoV-2, the novel coronavirus responsible for COVID-19, has caused havoc worldwide, with patients presenting a spectrum of complications that have pushed health care experts to explore new technological solutions and treatment plans. Artificial Intelligence (AI)-based technologies have played a substantial role in solving complex problems, and several organizations have been swift to adopt and customize these technologies in response to the challenges posed by the COVID-19 pandemic. OBJECTIVE The objective of this study was to conduct a systematic review of the literature on the role of AI as a comprehensive and decisive technology to fight the COVID-19 crisis in the fields of epidemiology, diagnosis, and disease progression. METHODS A systematic search of PubMed, Web of Science, and CINAHL databases was performed according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines to identify all potentially relevant studies published and made available online between December 1, 2019, and June 27, 2020. The search syntax was built using keywords specific to COVID-19 and AI. RESULTS The search strategy resulted in 419 articles published and made available online during the aforementioned period. Of these, 130 publications were selected for further analyses. These publications were classified into 3 themes based on AI applications employed to combat the COVID-19 crisis: Computational Epidemiology, Early Detection and Diagnosis, and Disease Progression. Of the 130 studies, 71 (54.6%) focused on predicting the COVID-19 outbreak, the impact of containment policies, and potential drug discoveries, which were classified under the Computational Epidemiology theme. Next, 40 of 130 (30.8%) studies that applied AI techniques to detect COVID-19 by using patients' radiological images or laboratory test results were classified under the Early Detection and Diagnosis theme. Finally, 19 of the 130 studies (14.6%) that focused on predicting disease progression, outcomes (ie, recovery and mortality), length of hospital stay, and number of days spent in the intensive care unit for patients with COVID-19 were classified under the Disease Progression theme. CONCLUSIONS In this systematic review, we assembled studies in the current COVID-19 literature that utilized AI-based methods to provide insights into different COVID-19 themes. Our findings highlight important variables, data types, and available COVID-19 resources that can assist in facilitating clinical and translational research.
Collapse
Affiliation(s)
- Hafsa Bareen Syeda
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Mahanazuddin Syed
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Kevin Wayne Sexton
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Health Policy and Management, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Shorabuddin Syed
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Salma Begum
- Department of Information Technology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Farhanuddin Syed
- College of Medicine, Shadan Institute of Medical Sciences, Hyderabad, India
| | - Fred Prior
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Feliciano Yu
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
39
|
Artificial Intelligence in Clinical Immunology. Artif Intell Med 2021. [DOI: 10.1007/978-3-030-58080-3_83-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Puhl AC, Fritch EJ, Lane TR, Tse LV, Yount BL, Sacramento CQ, Tavella TA, Costa FTM, Weston S, Logue J, Frieman M, Premkumar L, Pearce KH, Hurst BL, Andrade CH, Levi JA, Johnson NJ, Kisthardt SC, Scholle F, Souza TML, Moorman NJ, Baric RS, Madrid P, Ekins S. Repurposing the Ebola and Marburg Virus Inhibitors Tilorone, Quinacrine and Pyronaridine: In vitro Activity Against SARS-CoV-2 and Potential Mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.12.01.407361. [PMID: 33299990 PMCID: PMC7724658 DOI: 10.1101/2020.12.01.407361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SARS-CoV-2 is a newly identified virus that has resulted in over 1.3 M deaths globally and over 59 M cases globally to date. Small molecule inhibitors that reverse disease severity have proven difficult to discover. One of the key approaches that has been widely applied in an effort to speed up the translation of drugs is drug repurposing. A few drugs have shown in vitro activity against Ebola virus and demonstrated activity against SARS-CoV-2 in vivo . Most notably the RNA polymerase targeting remdesivir demonstrated activity in vitro and efficacy in the early stage of the disease in humans. Testing other small molecule drugs that are active against Ebola virus would seem a reasonable strategy to evaluate their potential for SARS-CoV-2. We have previously repurposed pyronaridine, tilorone and quinacrine (from malaria, influenza, and antiprotozoal uses, respectively) as inhibitors of Ebola and Marburg virus in vitro in HeLa cells and of mouse adapted Ebola virus in mouse in vivo . We have now tested these three drugs in various cell lines (VeroE6, Vero76, Caco-2, Calu-3, A549-ACE2, HUH-7 and monocytes) infected with SARS-CoV-2 as well as other viruses (including MHV and HCoV 229E). The compilation of these results indicated considerable variability in antiviral activity observed across cell lines. We found that tilorone and pyronaridine inhibited the virus replication in A549-ACE2 cells with IC 50 values of 180 nM and IC 50 198 nM, respectively. We have also tested them in a pseudovirus assay and used microscale thermophoresis to test the binding of these molecules to the spike protein. They bind to spike RBD protein with K d values of 339 nM and 647 nM, respectively. Human C max for pyronaridine and quinacrine is greater than the IC 50 hence justifying in vivo evaluation. We also provide novel insights into their mechanism which is likely lysosomotropic.
Collapse
Affiliation(s)
- Ana C. Puhl
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| | - Ethan James Fritch
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
| | - Thomas R. Lane
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| | - Longping V. Tse
- Department of Epidemiology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
| | - Boyd L. Yount
- Department of Epidemiology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
| | - Carol Queiroz Sacramento
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- Centro De Desenvolvimento Tecnológico Em Saúde (CDTS), Fiocruz, Rio de Janeiro, Brasil
| | - Tatyana Almeida Tavella
- Laboratory of Tropical Diseases - Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Fabio Trindade Maranhão Costa
- Laboratory of Tropical Diseases - Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Stuart Weston
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - James Logue
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Matthew Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
| | - Kenneth H. Pearce
- Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina 27599, USA
| | - Brett L. Hurst
- Institute for Antiviral Research, Utah State University, Logan, UT, USA
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Carolina Horta Andrade
- Laboratory of Tropical Diseases - Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, SP, Brazil
- LabMol - Laboratory of Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, 74605-170, Brazil
| | - James A. Levi
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Nicole J. Johnson
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Samantha C. Kisthardt
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Frank Scholle
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Thiago Moreno L. Souza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- Centro De Desenvolvimento Tecnológico Em Saúde (CDTS), Fiocruz, Rio de Janeiro, Brasil
| | - Nathaniel John Moorman
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
- Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Rapidly Emerging Antiviral Drug Discovery Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ralph S. Baric
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
- Department of Epidemiology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
- Rapidly Emerging Antiviral Drug Discovery Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Peter Madrid
- SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| |
Collapse
|
41
|
Vela JM. Repurposing Sigma-1 Receptor Ligands for COVID-19 Therapy? Front Pharmacol 2020; 11:582310. [PMID: 33364957 PMCID: PMC7751758 DOI: 10.3389/fphar.2020.582310] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/30/2020] [Indexed: 12/27/2022] Open
Abstract
Outbreaks of emerging infections, such as COVID-19 pandemic especially, confront health professionals with the unique challenge of treating patients. With no time to discover new drugs, repurposing of approved drugs or in clinical development is likely the only solution. Replication of coronaviruses (CoVs) occurs in a modified membranous compartment derived from the endoplasmic reticulum (ER), causes host cell ER stress and activates pathways to facilitate adaptation of the host cell machinery to viral needs. Accordingly, modulation of ER remodeling and ER stress response might be pivotal in elucidating CoV-host interactions and provide a rationale for new therapeutic, host-based antiviral approaches. The sigma-1 receptor (Sig-1R) is a ligand-operated, ER membrane-bound chaperone that acts as an upstream modulator of ER stress and thus a candidate host protein for host-based repurposing approaches to treat COVID-19 patients. Sig-1R ligands are frequently identified in in vitro drug repurposing screens aiming to identify antiviral compounds against CoVs, including severe acute respiratory syndrome CoV-2 (SARS-CoV-2). Sig-1R regulates key mechanisms of the adaptive host cell stress response and takes part in early steps of viral replication. It is enriched in lipid rafts and detergent-resistant ER membranes, where it colocalizes with viral replicase proteins. Indeed, the non-structural SARS-CoV-2 protein Nsp6 interacts with Sig-1R. The activity of Sig-1R ligands against COVID-19 remains to be specifically assessed in clinical trials. This review provides a rationale for targeting Sig-1R as a host-based drug repurposing approach to treat COVID-19 patients. Evidence gained using Sig-1R ligands in unbiased in vitro antiviral drug screens and the potential mechanisms underlying the modulatory effect of Sig-1R on the host cell response are discussed. Targeting Sig-1R is not expected to reduce dramatically established viral replication, but it might interfere with early steps of virus-induced host cell reprogramming, aid to slow down the course of infection, prevent the aggravation of the disease and/or allow a time window to mature a protective immune response. Sig-1R-based medicines could provide benefit not only as early intervention, preventive but also as adjuvant therapy.
Collapse
Affiliation(s)
- José Miguel Vela
- Drug Discovery and Preclinical Development, ESTEVE Pharmaceuticals, Barcelona, Spain
| |
Collapse
|
42
|
Tzou PL, Tao K, Nouhin J, Rhee SY, Hu BD, Pai S, Parkin N, Shafer RW. Coronavirus Antiviral Research Database (CoV-RDB): An Online Database Designed to Facilitate Comparisons between Candidate Anti-Coronavirus Compounds. Viruses 2020; 12:E1006. [PMID: 32916958 PMCID: PMC7551675 DOI: 10.3390/v12091006] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/29/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND To prioritize the development of antiviral compounds, it is necessary to compare their relative preclinical activity and clinical efficacy. METHODS We reviewed in vitro, animal model, and clinical studies of candidate anti-coronavirus compounds and placed extracted data in an online relational database. RESULTS As of August 2020, the Coronavirus Antiviral Research Database (CoV-RDB; covdb.stanford.edu) contained over 2800 cell culture, entry assay, and biochemical experiments, 259 animal model studies, and 73 clinical studies from over 400 published papers. SARS-CoV-2, SARS-CoV, and MERS-CoV account for 85% of the data. Approximately 75% of experiments involved compounds with known or likely mechanisms of action, including monoclonal antibodies and receptor binding inhibitors (21%), viral protease inhibitors (17%), miscellaneous host-acting inhibitors (10%), polymerase inhibitors (9%), interferons (7%), fusion inhibitors (5%), and host protease inhibitors (5%). Of 975 compounds with known or likely mechanism, 135 (14%) are licensed in the U.S. for other indications, 197 (20%) are licensed outside the U.S. or are in human trials, and 595 (61%) are pre-clinical investigational compounds. CONCLUSION CoV-RDB facilitates comparisons between different candidate antiviral compounds, thereby helping scientists, clinical investigators, public health officials, and funding agencies prioritize the most promising compounds and repurposed drugs for further development.
Collapse
Affiliation(s)
- Philip L. Tzou
- Division of Infectious Diseases, Stanford University School of Medicine, Stanford, CA 94305, USA; (K.T.); (J.N.); (S.-Y.R.)
| | - Kaiming Tao
- Division of Infectious Diseases, Stanford University School of Medicine, Stanford, CA 94305, USA; (K.T.); (J.N.); (S.-Y.R.)
| | - Janin Nouhin
- Division of Infectious Diseases, Stanford University School of Medicine, Stanford, CA 94305, USA; (K.T.); (J.N.); (S.-Y.R.)
| | - Soo-Yon Rhee
- Division of Infectious Diseases, Stanford University School of Medicine, Stanford, CA 94305, USA; (K.T.); (J.N.); (S.-Y.R.)
| | - Benjamin D. Hu
- Undergraduate School of Humanities and Sciences, Stanford University, Stanford, CA 94305, USA;
| | - Shruti Pai
- Undergraduate Studies, University of California, Berkeley, CA 94720, USA;
| | - Neil Parkin
- Data First Consulting Inc., Sebastopol, CA 95472, USA;
| | - Robert W. Shafer
- Division of Infectious Diseases, Stanford University School of Medicine, Stanford, CA 94305, USA; (K.T.); (J.N.); (S.-Y.R.)
| |
Collapse
|