1
|
Salum GM, Abd El Meguid M, Fotouh BE, Dawood RM. Impacts of host factors on susceptibility to SARS-CoV-2 infection and COVID-19 progression. J Immunoassay Immunochem 2024; 45:493-517. [PMID: 39552098 DOI: 10.1080/15321819.2024.2429538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
SARS-CoV-2, identified in Wuhan, China, in December 2019, is the third coronavirus responsible for a global epidemic, following SARS-CoV (2002) and MERS-CoV (2012). Given the recent emergence of COVID-19, comprehensive immunological data are still limited. The susceptibility and severity of SARS-CoV-2 infection are influenced by various host factors, including hormonal changes, genetic variations, inflammatory biomarkers, and behavioral attitudes. Identifying genetic factors contributing to infection severity may accelerate therapeutic development, including drug repurposing, natural extracts, and post-vaccine interventions (Initiative and Covid, 2021). This review discusses the human protein machinery involved in (a) SARS-CoV-2 host receptors, (b) the human immune response, and (c) the impact of demographic and genetic differences on individual risk for COVID-19. This review aims to clarify host factors implicated in SARS-CoV-2 susceptibility and progression, highlighting potential therapeutic targets and supportive treatment strategies.
Collapse
Affiliation(s)
- Ghada M Salum
- Department of Microbial Biotechnology, Genetic Engineering Division, National Research Centre, Giza, Egypt
| | - Mai Abd El Meguid
- Department of Microbial Biotechnology, Genetic Engineering Division, National Research Centre, Giza, Egypt
| | - Basma E Fotouh
- Department of Microbial Biotechnology, Genetic Engineering Division, National Research Centre, Giza, Egypt
| | | |
Collapse
|
2
|
Paiva IM, Damasceno S, Cunha TM. CRISPR Libraries and Whole-Genome Screening to Identify Essential Factors for Viral Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1429:157-172. [PMID: 37486521 DOI: 10.1007/978-3-031-33325-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The CRISPR-Cas9 system has revolutionized genetics and offers a simple and inexpensive way of generating perturbation that results in gene repression, activation, or editing. The advances in this technique make possible the development of CRISPR libraries which consist of a set of sgRNAs to cause perturbations in several genes in the same cell population. The use of libraries raised the CRISPR-Cas9 technique to a genomic scale and provides a powerful approach for identifying previously unknown molecular mechanisms and pathways involved in a specific phenotype or biological process. More specifically, the CRISPRko libraries (set of sgRNAs for gene knockout) and their high-throughput screenings are widely used in research with viral agents, and it was enlarged even more with the COVID-19 pandemic. With this chapter, we aim to point out how this tool helps in understanding virus-host relationships, such as the mechanisms of virus entry into the cell, the essential factors for its replication, and the cellular pathways involved in the response against the pathogen. The chapter also provided some practical considerations for each step of an experimentation using these tools that include choosing the library and screening type, the target cell, the viral strain, the library amplification and guaranteeing its coverage, the strategies for the gene screening pipeline by bioinformatics, and finally, target validation. To conclude, it was presented a table reviewing the last updates in the research for antiviral therapies using CRISPR libraries.
Collapse
Affiliation(s)
- Isadora Marques Paiva
- Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Samara Damasceno
- Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Thiago Mattar Cunha
- Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil.
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
3
|
Li F, Boon ACM, Michelson AP, Foraker RE, Zhan M, Payne PRO. Estrogen hormone is an essential sex factor inhibiting inflammation and immune response in COVID-19. Sci Rep 2022; 12:9462. [PMID: 35676404 PMCID: PMC9175532 DOI: 10.1038/s41598-022-13585-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 05/25/2022] [Indexed: 01/18/2023] Open
Abstract
Although vaccines have been evaluated and approved for SARS-CoV-2 infection prevention, there remains a lack of effective treatments to reduce the mortality of COVID-19 patients already infected with SARS-CoV-2. The global data on COVID-19 showed that men have a higher mortality rate than women. We further observed that the proportion of mortality of females increases starting from around the age of 55 significantly. Thus, sex is an essential factor associated with COVID-19 mortality, and sex related genetic factors could be interesting mechanisms and targets for COVID-19 treatment. However, the associated sex factors and signaling pathways remain unclear. Here, we propose to uncover the potential sex associated factors using systematic and integrative network analysis. The unique results indicated that estrogens, e.g., estrone and estriol, (1) interacting with ESR1/2 receptors, (2) can inhibit SARS-CoV-2 caused inflammation and immune response signaling in host cells; and (3) estrogens are associated with the distinct fatality rates between male and female COVID-19 patients. Specifically, a high level of estradiol protects young female COVID-19 patients, and estrogens drop to an extremely low level in females after about 55 years of age causing the increased fatality rate of women. In conclusion, estrogen, interacting with ESR1/2 receptors, is an essential sex factor that protects COVID-19 patients from death by inhibiting inflammation and immune response caused by SARS-CoV-2 infection. Moreover, medications boosting the down-stream signaling of ESR1/ESR2, or inhibiting the inflammation and immune-associated targets on the signaling network can be potentially effective or synergistic combined with other existing drugs for COVID-19 treatment.
Collapse
Affiliation(s)
- Fuhai Li
- Institute for Informatics (I2), Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
| | - Adrianus C M Boon
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Andrew P Michelson
- Institute for Informatics (I2), Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Pulmonary and Critical Care Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Randi E Foraker
- Institute for Informatics (I2), Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Ming Zhan
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD, USA
| | - Philip R O Payne
- Institute for Informatics (I2), Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| |
Collapse
|
4
|
Štros M, Polanská EV, Hlaváčová T, Skládal P. Progress in Assays of HMGB1 Levels in Human Plasma-The Potential Prognostic Value in COVID-19. Biomolecules 2022; 12:544. [PMID: 35454134 PMCID: PMC9031208 DOI: 10.3390/biom12040544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 12/26/2022] Open
Abstract
Extracellular HMGB1 protein is known to induce inflammatory responses leading to an inflammatory storm. The outbreak of the Severe Acute Respiratory Syndrome COVID-19 due to the SARS-CoV-2 virus has resulted in a huge health concern worldwide. Recent data revealed that plasma/serum HMGB1 levels of patients suffering from inflammation-mediated disorders-such as COVID-19, cancer, and autoimmune disorders-correlate positively with disease severity and vice versa. A late release of HMGB1 in sepsis suggests the existence of a wide therapeutic window for treating sepsis. Rapid and accurate methods for the detection of HMGB1 levels in plasma/serum are, therefore, of great importance for monitoring the occurrence, treatment success, and survival prediction of patients with inflammation-mediated diseases. In this review, we briefly explain the role of HMGB1 in the cell, and particularly the involvement of extracellular HMGB1 (released from the cells) in inflammation-mediated diseases, with an emphasis on COVID-19. The current assays to measure HMGB1 levels in human plasma-Western blotting, ELISA, EMSA, and a new approach based on electrochemical immunosensors, including some of our preliminary results-are presented and thoroughly discussed.
Collapse
Affiliation(s)
- Michal Štros
- Institute of Biophysics of the Czech Academy of Sciences, 61200 Brno, Czech Republic;
| | - Eva Volfová Polanská
- Institute of Biophysics of the Czech Academy of Sciences, 61200 Brno, Czech Republic;
| | - Tereza Hlaváčová
- Department of Biochemistry, Faculty of Science, Masaryk University, 60177 Brno, Czech Republic; (T.H.); (P.S.)
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, 60177 Brno, Czech Republic; (T.H.); (P.S.)
| |
Collapse
|
5
|
Jamehdor S, Pajouhanfar S, Saba S, Uzan G, Teimoori A, Naserian S. Principles and Applications of CRISPR Toolkit in Virus Manipulation, Diagnosis, and Virus-Host Interactions. Cells 2022; 11:999. [PMID: 35326449 PMCID: PMC8946942 DOI: 10.3390/cells11060999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Viruses are one of the most important concerns for human health, and overcoming viral infections is a worldwide challenge. However, researchers have been trying to manipulate viral genomes to overcome various disorders, including cancer, for vaccine development purposes. CRISPR (clustered regularly interspaced short palindromic repeats) is becoming one of the most functional and widely used tools for RNA and DNA manipulation in multiple organisms. This approach has provided an unprecedented opportunity for creating simple, inexpensive, specific, targeted, accurate, and practical manipulations of viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human immunodeficiency virus-1 (HIV-1), and vaccinia virus. Furthermore, this method can be used to make an effective and precise diagnosis of viral infections. Nevertheless, a valid and scientifically designed CRISPR system is critical to make more effective and accurate changes in viruses. In this review, we have focused on the best and the most effective ways to design sgRNA, gene knock-in(s), and gene knock-out(s) for virus-targeted manipulation. Furthermore, we have emphasized the application of CRISPR technology in virus diagnosis and in finding significant genes involved in virus-host interactions.
Collapse
Affiliation(s)
- Saleh Jamehdor
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan 989155432609, Iran;
| | - Sara Pajouhanfar
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Sadaf Saba
- Center for Molecular Medicine & Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Georges Uzan
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, 94800 Villejuif, France;
- Paris-Saclay University, 94800 Villejuif, France
| | - Ali Teimoori
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan 6517838738, Iran
| | - Sina Naserian
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, 94800 Villejuif, France;
- Paris-Saclay University, 94800 Villejuif, France
- CellMedEx, 94100 Saint Maur Des Fossés, France
| |
Collapse
|
6
|
Zahoránszky-Kőhalmi G, Siramshetty VB, Kumar P, Gurumurthy M, Grillo B, Mathew B, Metaxatos D, Backus M, Mierzwa T, Simon R, Grishagin I, Brovold L, Mathé EA, Hall MD, Michael SG, Godfrey AG, Mestres J, Jensen LJ, Oprea TI. A Workflow of Integrated Resources to Catalyze Network Pharmacology Driven COVID-19 Research. J Chem Inf Model 2022; 62:718-729. [PMID: 35057621 PMCID: PMC10790216 DOI: 10.1021/acs.jcim.1c00431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the event of an outbreak due to an emerging pathogen, time is of the essence to contain or to mitigate the spread of the disease. Drug repositioning is one of the strategies that has the potential to deliver therapeutics relatively quickly. The SARS-CoV-2 pandemic has shown that integrating critical data resources to drive drug-repositioning studies, involving host-host, host-pathogen, and drug-target interactions, remains a time-consuming effort that translates to a delay in the development and delivery of a life-saving therapy. Here, we describe a workflow we designed for a semiautomated integration of rapidly emerging data sets that can be generally adopted in a broad network pharmacology research setting. The workflow was used to construct a COVID-19 focused multimodal network that integrates 487 host-pathogen, 63 278 host-host protein, and 1221 drug-target interactions. The resultant Neo4j graph database named "Neo4COVID19" is made publicly accessible via a web interface and via API calls based on the Bolt protocol. Details for accessing the database are provided on a landing page (https://neo4covid19.ncats.io/). We believe that our Neo4COVID19 database will be a valuable asset to the research community and will catalyze the discovery of therapeutics to fight COVID-19.
Collapse
Affiliation(s)
| | - Vishal B. Siramshetty
- National Center for Advancing Translational Sciences, Rockville, 9800 Medical Center Dr., MD 20850, USA
| | - Praveen Kumar
- Department of Internal Medicine, University of New Mexico School of Medicine, 1 University of New Mexico, Albuquerque, NM 87131, USA
- Department of Computer Science, University of New Mexico, 1 University of New Mexico Albuquerque, NM 87131, USA
| | - Manideep Gurumurthy
- National Center for Advancing Translational Sciences, Rockville, 9800 Medical Center Dr., MD 20850, USA
| | - Busola Grillo
- National Center for Advancing Translational Sciences, Rockville, 9800 Medical Center Dr., MD 20850, USA
| | - Biju Mathew
- National Center for Advancing Translational Sciences, Rockville, 9800 Medical Center Dr., MD 20850, USA
| | - Dimitrios Metaxatos
- National Center for Advancing Translational Sciences, Rockville, 9800 Medical Center Dr., MD 20850, USA
| | - Mark Backus
- National Center for Advancing Translational Sciences, Rockville, 9800 Medical Center Dr., MD 20850, USA
| | - Tim Mierzwa
- National Center for Advancing Translational Sciences, Rockville, 9800 Medical Center Dr., MD 20850, USA
| | - Reid Simon
- National Center for Advancing Translational Sciences, Rockville, 9800 Medical Center Dr., MD 20850, USA
| | - Ivan Grishagin
- National Center for Advancing Translational Sciences, Rockville, 9800 Medical Center Dr., MD 20850, USA
- Rancho BioSciences LLC., 16955 Via Del Campo Suite 200, San Diego, CA 92127, USA
| | - Laura Brovold
- Rancho BioSciences LLC., 16955 Via Del Campo Suite 200, San Diego, CA 92127, USA
| | - Ewy A. Mathé
- National Center for Advancing Translational Sciences, Rockville, 9800 Medical Center Dr., MD 20850, USA
| | - Matthew D. Hall
- National Center for Advancing Translational Sciences, Rockville, 9800 Medical Center Dr., MD 20850, USA
| | - Samuel G. Michael
- National Center for Advancing Translational Sciences, Rockville, 9800 Medical Center Dr., MD 20850, USA
| | - Alexander G. Godfrey
- National Center for Advancing Translational Sciences, Rockville, 9800 Medical Center Dr., MD 20850, USA
| | - Jordi Mestres
- Research Group on Systems Pharmacology, Research Program on Biomedical Informatics (GRIB), IMIM Hospital del Mar Medical Research Institute and University Pompeu Fabra, Doctor Aiguader 88, 08003 Barcelona, Catalonia, Spain
| | - Lars J. Jensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences,University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Tudor I. Oprea
- Department of Internal Medicine, University of New Mexico School of Medicine, 1 University of New Mexico, Albuquerque, NM 87131, USA
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences,University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
- UNM Comprehensive Cancer Center, 1201 Camino de Salud NE, Albuquerque, NM 87102, USA
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Box 480, 40530 Gothenburg, Sweden
| |
Collapse
|
7
|
Paparo L, Maglio MA, Cortese M, Bruno C, Capasso M, Punzo E, Ferrucci V, Lasorsa VA, Viscardi M, Fusco G, Cerino P, Romano A, Troncone R, Zollo M. A New Butyrate Releaser Exerts a Protective Action against SARS-CoV-2 Infection in Human Intestine. Molecules 2022; 27:862. [PMID: 35164139 PMCID: PMC8838168 DOI: 10.3390/molecules27030862] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/12/2022] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
Butyrate is a major gut microbiome metabolite that regulates several defense mechanisms against infectious diseases. Alterations in the gut microbiome, leading to reduced butyrate production, have been reported in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. A new butyrate releaser, useful for all the known applications of butyrate, presenting physiochemical characteristics suitable for easy oral administration, (N-(1-carbamoyl-2-phenyl-ethyl) butyramide (FBA), has been recently developed. We investigated the protective action of FBA against SARS-CoV-2 infection in the human small intestine and enterocytes. Relevant aspects of SARS-CoV-2 infection were assessed: infectivity, host functional receptor angiotensin-converting enzyme-2 (ACE2), transmembrane protease serine 2 (TMPRSS2), neuropilin-1 (NRP1), pro-inflammatory cytokines expression, genes involved in the antiviral response and the activation of Nf-kB nuclear factor (erythroid-derived 2-like) 2 (Nfr2) pathways. We found that FBA positively modulates the crucial aspects of the infection in small intestinal biopsies and human enterocytes, reducing the expression of ACE2, TMPRSS2 and NRP1, pro-inflammatory cytokines interleukin (IL)-15, monocyte chemoattractant protein-1 (MCP-1) and TNF-α, and regulating several genes involved in antiviral pathways. FBA was also able to reduce the number of SARS-CoV-2-infected cells, and ACE2, TMPRSS2 and NRP1 expression. Lastly, through the inhibition of Nf-kB and the up-regulation of Nfr2, it was also able to reduce the expression of pro-inflammatory cytokines IL-15, MCP-1 and TNF-α in human enterocytes. The new butyrate releaser, FBA, exerts a preventive action against SARS-CoV-2 infection. It could be considered as an innovative strategy to limit COVID-19.
Collapse
Affiliation(s)
- Lorella Paparo
- Dipartimento di Scienze Mediche Translazionali, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.A.M.); (M.C.); (C.B.); (E.P.); (R.T.)
- CEINGE—Advanced Biotechnologies s.c.ar.l., Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.C.); (V.F.); (V.A.L.); (A.R.); (M.Z.)
| | - Maria Antonia Maglio
- Dipartimento di Scienze Mediche Translazionali, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.A.M.); (M.C.); (C.B.); (E.P.); (R.T.)
| | - Maddalena Cortese
- Dipartimento di Scienze Mediche Translazionali, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.A.M.); (M.C.); (C.B.); (E.P.); (R.T.)
- CEINGE—Advanced Biotechnologies s.c.ar.l., Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.C.); (V.F.); (V.A.L.); (A.R.); (M.Z.)
| | - Cristina Bruno
- Dipartimento di Scienze Mediche Translazionali, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.A.M.); (M.C.); (C.B.); (E.P.); (R.T.)
- CEINGE—Advanced Biotechnologies s.c.ar.l., Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.C.); (V.F.); (V.A.L.); (A.R.); (M.Z.)
| | - Mario Capasso
- CEINGE—Advanced Biotechnologies s.c.ar.l., Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.C.); (V.F.); (V.A.L.); (A.R.); (M.Z.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy
| | - Erika Punzo
- Dipartimento di Scienze Mediche Translazionali, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.A.M.); (M.C.); (C.B.); (E.P.); (R.T.)
- CEINGE—Advanced Biotechnologies s.c.ar.l., Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.C.); (V.F.); (V.A.L.); (A.R.); (M.Z.)
| | - Veronica Ferrucci
- CEINGE—Advanced Biotechnologies s.c.ar.l., Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.C.); (V.F.); (V.A.L.); (A.R.); (M.Z.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy
| | - Vito Alessandro Lasorsa
- CEINGE—Advanced Biotechnologies s.c.ar.l., Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.C.); (V.F.); (V.A.L.); (A.R.); (M.Z.)
| | - Maurizio Viscardi
- DAI Medicina di Laboratorio e Trasfusionale, AOU Azienda Ospedaliera, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.V.); (G.F.); (P.C.)
| | - Giovanna Fusco
- DAI Medicina di Laboratorio e Trasfusionale, AOU Azienda Ospedaliera, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.V.); (G.F.); (P.C.)
| | - Pellegrino Cerino
- DAI Medicina di Laboratorio e Trasfusionale, AOU Azienda Ospedaliera, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.V.); (G.F.); (P.C.)
| | - Alessia Romano
- CEINGE—Advanced Biotechnologies s.c.ar.l., Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.C.); (V.F.); (V.A.L.); (A.R.); (M.Z.)
| | - Riccardo Troncone
- Dipartimento di Scienze Mediche Translazionali, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.A.M.); (M.C.); (C.B.); (E.P.); (R.T.)
| | - Massimo Zollo
- CEINGE—Advanced Biotechnologies s.c.ar.l., Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.C.); (V.F.); (V.A.L.); (A.R.); (M.Z.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy
- DAI Medicina di Laboratorio e Trasfusionale, AOU Azienda Ospedaliera, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.V.); (G.F.); (P.C.)
| |
Collapse
|
8
|
Law JN, Akers K, Tasnina N, Santina CMD, Deutsch S, Kshirsagar M, Klein-Seetharaman J, Crovella M, Rajagopalan P, Kasif S, Murali TM. Interpretable network propagation with application to expanding the repertoire of human proteins that interact with SARS-CoV-2. Gigascience 2021; 10:giab082. [PMID: 34966926 PMCID: PMC8716363 DOI: 10.1093/gigascience/giab082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/21/2021] [Accepted: 11/28/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Network propagation has been widely used for nearly 20 years to predict gene functions and phenotypes. Despite the popularity of this approach, little attention has been paid to the question of provenance tracing in this context, e.g., determining how much any experimental observation in the input contributes to the score of every prediction. RESULTS We design a network propagation framework with 2 novel components and apply it to predict human proteins that directly or indirectly interact with SARS-CoV-2 proteins. First, we trace the provenance of each prediction to its experimentally validated sources, which in our case are human proteins experimentally determined to interact with viral proteins. Second, we design a technique that helps to reduce the manual adjustment of parameters by users. We find that for every top-ranking prediction, the highest contribution to its score arises from a direct neighbor in a human protein-protein interaction network. We further analyze these results to develop functional insights on SARS-CoV-2 that expand on known biology such as the connection between endoplasmic reticulum stress, HSPA5, and anti-clotting agents. CONCLUSIONS We examine how our provenance-tracing method can be generalized to a broad class of network-based algorithms. We provide a useful resource for the SARS-CoV-2 community that implicates many previously undocumented proteins with putative functional relationships to viral infection. This resource includes potential drugs that can be opportunistically repositioned to target these proteins. We also discuss how our overall framework can be extended to other, newly emerging viruses.
Collapse
Affiliation(s)
- Jeffrey N Law
- Interdisciplinary Ph.D. Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Kyle Akers
- Interdisciplinary Ph.D. Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Nure Tasnina
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA
| | | | - Shay Deutsch
- Department of Mathematics, University of California, Los Angeles, CA 90095, USA
| | | | | | - Mark Crovella
- Department of Computer Science, Boston University, Boston, MA 02215, USA
| | | | - Simon Kasif
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - T M Murali
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
9
|
van Weperen VYH, Vos MA, Ajijola OA. Autonomic modulation of ventricular electrical activity: recent developments and clinical implications. Clin Auton Res 2021; 31:659-676. [PMID: 34591191 PMCID: PMC8629778 DOI: 10.1007/s10286-021-00823-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE This review aimed to provide a complete overview of the current stance and recent developments in antiarrhythmic neuromodulatory interventions, focusing on lifethreatening vetricular arrhythmias. METHODS Both preclinical studies and clinical studies were assessed to highlight the gaps in knowledge that remain to be answered and the necessary steps required to properly translate these strategies to the clinical setting. RESULTS Cardiac autonomic imbalance, characterized by chronic sympathoexcitation and parasympathetic withdrawal, destabilizes cardiac electrophysiology and promotes ventricular arrhythmogenesis. Therefore, neuromodulatory interventions that target the sympatho-vagal imbalance have emerged as promising antiarrhythmic strategies. These strategies are aimed at different parts of the cardiac neuraxis and directly or indirectly restore cardiac autonomic tone. These interventions include pharmacological blockade of sympathetic neurotransmitters and neuropeptides, cardiac sympathetic denervation, thoracic epidural anesthesia, and spinal cord and vagal nerve stimulation. CONCLUSION Neuromodulatory strategies have repeatedly been demonstrated to be highly effective and very promising anti-arrhythmic therapies. Nevertheless, there is still much room to gain in our understanding of neurocardiac physiology, refining the current neuromodulatory strategic options and elucidating the chronic effects of many of these strategic options.
Collapse
Affiliation(s)
- Valerie Y H van Weperen
- Department of Medical Physiology, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Center, UCLA Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, University of California, 100 Medical Plaza, Suite 660, Westwood Blvd, Los Angeles, CA, 90095-1679, USA
| | - Marc A Vos
- Department of Medical Physiology, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Center, UCLA Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, University of California, 100 Medical Plaza, Suite 660, Westwood Blvd, Los Angeles, CA, 90095-1679, USA.
| |
Collapse
|
10
|
MotieGhader H, Safavi E, Rezapour A, Amoodizaj FF, Iranifam RA. Drug repurposing for coronavirus (SARS-CoV-2) based on gene co-expression network analysis. Sci Rep 2021; 11:21872. [PMID: 34750486 PMCID: PMC8576023 DOI: 10.1038/s41598-021-01410-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome (SARS) is a highly contagious viral respiratory illness. This illness is spurred on by a coronavirus known as SARS-associated coronavirus (SARS-CoV). SARS was first detected in Asia in late February 2003. The genome of this virus is very similar to the SARS-CoV-2. Therefore, the study of SARS-CoV disease and the identification of effective drugs to treat this disease can be new clues for the treatment of SARS-Cov-2. This study aimed to discover novel potential drugs for SARS-CoV disease in order to treating SARS-Cov-2 disease based on a novel systems biology approach. To this end, gene co-expression network analysis was applied. First, the gene co-expression network was reconstructed for 1441 genes, and then two gene modules were discovered as significant modules. Next, a list of miRNAs and transcription factors that target gene co-expression modules' genes were gathered from the valid databases, and two sub-networks formed of transcription factors and miRNAs were established. Afterward, the list of the drugs targeting obtained sub-networks' genes was retrieved from the DGIDb database, and two drug-gene and drug-TF interaction networks were reconstructed. Finally, after conducting different network analyses, we proposed five drugs, including FLUOROURACIL, CISPLATIN, SIROLIMUS, CYCLOPHOSPHAMIDE, and METHYLDOPA, as candidate drugs for SARS-CoV-2 coronavirus treatment. Moreover, ten miRNAs including miR-193b, miR-192, miR-215, miR-34a, miR-16, miR-16, miR-92a, miR-30a, miR-7, and miR-26b were found to be significant miRNAs in treating SARS-CoV-2 coronavirus.
Collapse
Affiliation(s)
- Habib MotieGhader
- Department of Basic Sciences, Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Esmaeil Safavi
- Department of Basic Sciences, Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
- Department of Basic Sciences, Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Ali Rezapour
- Department of Animal Science, Faculty of Agriculture, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Fatemeh Firouzi Amoodizaj
- Department of Basic Sciences, Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Roya Asl Iranifam
- Department of Basic Sciences, Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
11
|
Tan LY, Komarasamy TV, RMT Balasubramaniam V. Hyperinflammatory Immune Response and COVID-19: A Double Edged Sword. Front Immunol 2021; 12:742941. [PMID: 34659238 PMCID: PMC8515020 DOI: 10.3389/fimmu.2021.742941] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/10/2021] [Indexed: 12/14/2022] Open
Abstract
The coronavirus disease-19 (COVID-19) elicited by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused devastating health, economic and social impact worldwide. Its clinical spectrum ranges from asymptomatic to respiratory failure and multi-organ failure or death. The pathogenesis of SARS-CoV-2 infection is attributed to a complex interplay between virus and host immune response. It involves activation of multiple inflammatory pathways leading to hyperinflammation and cytokine storm, resulting in tissue damage, acute respiratory distress syndrome (ARDS) and multi-organ failure. Accumulating evidence has raised concern over the long-term health effects of COVID-19. Importantly, the neuroinvasive potential of SARS-CoV-2 may have devastating consequences in the brain. This review provides a conceptual framework on how the virus tricks the host immune system to induce infection and cause severe disease. We also explore the key differences between mild and severe COVID-19 and its short- and long-term effects, particularly on the human brain.
Collapse
Affiliation(s)
- Li Yin Tan
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
- Greenslopes Private Hospital, Greenslopes, QLD, Australia
| | - Thamil Vaani Komarasamy
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Vinod RMT Balasubramaniam
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
12
|
Sanders DW, Jumper CC, Ackerman PJ, Bracha D, Donlic A, Kim H, Kenney D, Castello-Serrano I, Suzuki S, Tamura T, Tavares AH, Saeed M, Holehouse AS, Ploss A, Levental I, Douam F, Padera RF, Levy BD, Brangwynne CP. SARS-CoV-2 requires cholesterol for viral entry and pathological syncytia formation. eLife 2021; 10:e65962. [PMID: 33890572 PMCID: PMC8104966 DOI: 10.7554/elife.65962] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/01/2021] [Indexed: 12/27/2022] Open
Abstract
Many enveloped viruses induce multinucleated cells (syncytia), reflective of membrane fusion events caused by the same machinery that underlies viral entry. These syncytia are thought to facilitate replication and evasion of the host immune response. Here, we report that co-culture of human cells expressing the receptor ACE2 with cells expressing SARS-CoV-2 spike, results in synapse-like intercellular contacts that initiate cell-cell fusion, producing syncytia resembling those we identify in lungs of COVID-19 patients. To assess the mechanism of spike/ACE2-driven membrane fusion, we developed a microscopy-based, cell-cell fusion assay to screen ~6000 drugs and >30 spike variants. Together with quantitative cell biology approaches, the screen reveals an essential role for biophysical aspects of the membrane, particularly cholesterol-rich regions, in spike-mediated fusion, which extends to replication-competent SARS-CoV-2 isolates. Our findings potentially provide a molecular basis for positive outcomes reported in COVID-19 patients taking statins and suggest new strategies for therapeutics targeting the membrane of SARS-CoV-2 and other fusogenic viruses.
Collapse
Affiliation(s)
- David W Sanders
- Department of Chemical and Biological Engineering, Princeton University, Princeton, United States
| | - Chanelle C Jumper
- Department of Chemical and Biological Engineering, Princeton University, Princeton, United States
| | - Paul J Ackerman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, United States
| | - Dan Bracha
- Department of Chemical and Biological Engineering, Princeton University, Princeton, United States
| | - Anita Donlic
- Department of Chemical and Biological Engineering, Princeton University, Princeton, United States
| | - Hahn Kim
- Princeton University Small Molecule Screening Center, Princeton University, Princeton, United States
- Department of Chemistry, Princeton University, Princeton, United States
| | - Devin Kenney
- Department of Microbiology, Boston University School of Medicine, Boston, United States
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, United States
| | - Ivan Castello-Serrano
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
| | - Saori Suzuki
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Tomokazu Tamura
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Alexander H Tavares
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, United States
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| | - Mohsan Saeed
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, United States
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, United States
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
| | - Florian Douam
- Department of Microbiology, Boston University School of Medicine, Boston, United States
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, United States
| | - Robert F Padera
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, United States
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, United States
- Howard Hughes Medical Institute, Princeton, United States
| |
Collapse
|
13
|
Jamalkhah M, Asaadi Y, Azangou-Khyavy M, Khanali J, Soleimani M, Kiani J, Arefian E. MSC-derived exosomes carrying a cocktail of exogenous interfering RNAs an unprecedented therapy in era of COVID-19 outbreak. J Transl Med 2021; 19:164. [PMID: 33888147 PMCID: PMC8061879 DOI: 10.1186/s12967-021-02840-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/16/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The onset of the SARS-CoV-2 pandemic has resulted in ever-increasing casualties worldwide, and after 15 months, standard therapeutic regimens are yet to be discovered. MAIN BODY Due to the regenerative and immunomodulatory function of MSCs, they can serve as a suitable therapeutic option in alleviating major COVID-19 complications like acute respiratory distress syndrome. However, the superior properties of their cognate exosomes as a cell-free product make them preferable in the clinic. Herein, we discuss the current clinical status of these novel therapeutic strategies in COVID-19 treatment. We then delve into the potential of interfering RNAs incorporation as COVID-19 gene therapy and introduce targets involved in SARS-CoV-2 pathogenesis. Further, we present miRNAs and siRNAs candidates with promising results in targeting the mentioned targets. CONCLUSION Finally, we present a therapeutic platform of mesenchymal stem cell-derived exosomes equipped with exogenous iRNAs, that can be employed as a novel therapeutic modality in COVID-19 management aiming to prevent further viral spread within the lung, hinder the virus life cycle and pathogenesis such as immune suppression, and ultimately, enhance the antiviral immune response.
Collapse
Affiliation(s)
- Monire Jamalkhah
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Yasaman Asaadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | | | - Javad Khanali
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
14
|
Lamers MM, Mykytyn AZ, Breugem TI, Wang Y, Wu DC, Riesebosch S, van den Doel PB, Schipper D, Bestebroer T, Wu NC, Haagmans BL. Human airway cells prevent SARS-CoV-2 multibasic cleavage site cell culture adaptation. eLife 2021; 10:66815. [PMID: 33835028 PMCID: PMC8131099 DOI: 10.7554/elife.66815] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
Virus propagation methods generally use transformed cell lines to grow viruses from clinical specimens, which may force viruses to rapidly adapt to cell culture conditions, a process facilitated by high viral mutation rates. Upon propagation in VeroE6 cells, SARS-CoV-2 may mutate or delete the multibasic cleavage site (MBCS) in the spike protein. Previously, we showed that the MBCS facilitates serine protease-mediated entry into human airway cells (Mykytyn et al., 2021). Here, we report that propagating SARS-CoV-2 on the human airway cell line Calu-3 – that expresses serine proteases – prevents cell culture adaptations in the MBCS and directly adjacent to the MBCS (S686G). Similar results were obtained using a human airway organoid-based culture system for SARS-CoV-2 propagation. Thus, in-depth knowledge on the biology of a virus can be used to establish methods to prevent cell culture adaptation.
Collapse
Affiliation(s)
- Mart M Lamers
- Viroscience Department, Erasmus Medical Center, Rotterdam, Netherlands
| | - Anna Z Mykytyn
- Viroscience Department, Erasmus Medical Center, Rotterdam, Netherlands
| | - Tim I Breugem
- Viroscience Department, Erasmus Medical Center, Rotterdam, Netherlands
| | - Yiquan Wang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Douglas C Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Samra Riesebosch
- Viroscience Department, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Debby Schipper
- Viroscience Department, Erasmus Medical Center, Rotterdam, Netherlands
| | - Theo Bestebroer
- Viroscience Department, Erasmus Medical Center, Rotterdam, Netherlands
| | - Nicholas C Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, United States
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Bart L Haagmans
- Viroscience Department, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
15
|
Pairo-Castineira E, Clohisey S, Klaric L, Bretherick AD, Rawlik K, Pasko D, Walker S, Parkinson N, Fourman MH, Russell CD, Furniss J, Richmond A, Gountouna E, Wrobel N, Harrison D, Wang B, Wu Y, Meynert A, Griffiths F, Oosthuyzen W, Kousathanas A, Moutsianas L, Yang Z, Zhai R, Zheng C, Grimes G, Beale R, Millar J, Shih B, Keating S, Zechner M, Haley C, Porteous DJ, Hayward C, Yang J, Knight J, Summers C, Shankar-Hari M, Klenerman P, Turtle L, Ho A, Moore SC, Hinds C, Horby P, Nichol A, Maslove D, Ling L, McAuley D, Montgomery H, Walsh T, Pereira AC, Renieri A, Shen X, Ponting CP, Fawkes A, Tenesa A, Caulfield M, Scott R, Rowan K, Murphy L, Openshaw PJM, Semple MG, Law A, Vitart V, Wilson JF, Baillie JK. Genetic mechanisms of critical illness in COVID-19. Nature 2021; 591:92-98. [PMID: 33307546 DOI: 10.1038/s41586-020-03065-y] [Citation(s) in RCA: 873] [Impact Index Per Article: 218.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 × 10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice.
Collapse
Affiliation(s)
- Erola Pairo-Castineira
- Roslin Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Sara Clohisey
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Lucija Klaric
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Andrew D Bretherick
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Konrad Rawlik
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | | | | | - Nick Parkinson
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | | | - Clark D Russell
- Roslin Institute, University of Edinburgh, Edinburgh, UK
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - James Furniss
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Anne Richmond
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Elvina Gountouna
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Nicola Wrobel
- Edinburgh Clinical Research Facility, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - David Harrison
- Intensive Care National Audit & Research Centre, London, UK
| | - Bo Wang
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Yang Wu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Alison Meynert
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | | | | | | | | | - Zhijian Yang
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ranran Zhai
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chenqing Zheng
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Graeme Grimes
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | | | | | - Barbara Shih
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Sean Keating
- Intensive Care Unit, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Marie Zechner
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Chris Haley
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Jian Yang
- School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Julian Knight
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Manu Shankar-Hari
- Department of Intensive Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London, UK
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Paul Klenerman
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Lance Turtle
- NIHR Health Protection Research Unit for Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Antonia Ho
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Shona C Moore
- NIHR Health Protection Research Unit for Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Charles Hinds
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Peter Horby
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Alistair Nichol
- Clinical Research Centre at St Vincent's University Hospital, University College Dublin, Dublin, Ireland
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Victoria, Australia
- Intensive Care Unit, Alfred Hospital, Melbourne, Victoria, Australia
| | - David Maslove
- Department of Critical Care Medicine, Queen's University and Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - Lowell Ling
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Danny McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
- Department of Intensive Care Medicine, Royal Victoria Hospital, Belfast, UK
| | - Hugh Montgomery
- UCL Centre for Human Health and Performance, University College London, London, UK
| | - Timothy Walsh
- Intensive Care Unit, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Alexandre C Pereira
- Faculty of Medicine, University of São Paulo, São Paulo, Brazil
- Heart Institute, University of São Paulo, São Paulo, Brazil
| | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Xia Shen
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, Edinburgh, UK
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Chris P Ponting
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Angie Fawkes
- Edinburgh Clinical Research Facility, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Albert Tenesa
- Roslin Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, Edinburgh, UK
| | - Mark Caulfield
- Genomics England, London, UK
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Richard Scott
- Genomics England, London, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Kathy Rowan
- Intensive Care National Audit & Research Centre, London, UK
| | - Lee Murphy
- Edinburgh Clinical Research Facility, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Peter J M Openshaw
- National Heart and Lung Institute, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust London, London, UK
| | - Malcolm G Semple
- NIHR Health Protection Research Unit for Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Respiratory Medicine, Alder Hey Children's Hospital, Institute in The Park, University of Liverpool, Liverpool, UK
| | - Andrew Law
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Veronique Vitart
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - James F Wilson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, Edinburgh, UK
| | - J Kenneth Baillie
- Roslin Institute, University of Edinburgh, Edinburgh, UK.
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK.
- Intensive Care Unit, Royal Infirmary of Edinburgh, Edinburgh, UK.
| |
Collapse
|
16
|
Wang S, Qiu Z, Hou Y, Deng X, Xu W, Zheng T, Wu P, Xie S, Bian W, Zhang C, Sun Z, Liu K, Shan C, Lin A, Jiang S, Xie Y, Zhou Q, Lu L, Huang J, Li X. AXL is a candidate receptor for SARS-CoV-2 that promotes infection of pulmonary and bronchial epithelial cells. Cell Res 2021; 31:126-140. [PMID: 33420426 PMCID: PMC7791157 DOI: 10.1038/s41422-020-00460-y] [Citation(s) in RCA: 338] [Impact Index Per Article: 84.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
The current coronavirus disease 2019 (COVID-19) pandemic presents a global public health challenge. The viral pathogen responsible, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), binds to the host receptor ACE2 through its spike (S) glycoprotein, which mediates membrane fusion and viral entry. Although the role of ACE2 as a receptor for SARS-CoV-2 is clear, studies have shown that ACE2 expression is extremely low in various human tissues, especially in the respiratory tract. Thus, other host receptors and/or co-receptors that promote the entry of SARS-CoV-2 into cells of the respiratory system may exist. In this study, we found that the tyrosine-protein kinase receptor UFO (AXL) specifically interacts with the N-terminal domain of SARS-CoV-2 S. Using both a SARS-CoV-2 virus pseudotype and authentic SARS-CoV-2, we found that overexpression of AXL in HEK293T cells promotes SARS-CoV-2 entry as efficiently as overexpression of ACE2, while knocking out AXL significantly reduces SARS-CoV-2 infection in H1299 pulmonary cells and in human primary lung epithelial cells. Soluble human recombinant AXL blocks SARS-CoV-2 infection in cells expressing high levels of AXL. The AXL expression level is well correlated with SARS-CoV-2 S level in bronchoalveolar lavage fluid cells from COVID-19 patients. Taken together, our findings suggest that AXL is a novel candidate receptor for SARS-CoV-2 which may play an important role in promoting viral infection of the human respiratory system and indicate that it is a potential target for future clinical intervention strategies.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Zongyang Qiu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Yingnan Hou
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Xiya Deng
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Biosafety Level 3 Laboratory, Fudan University, Shanghai, 200032, China
| | - Tingting Zheng
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Peihan Wu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Shaofang Xie
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Weixiang Bian
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Chong Zhang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Zewei Sun
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Kunpeng Liu
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, State Key Laboratory of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Chao Shan
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, State Key Laboratory of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Aifu Lin
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Biosafety Level 3 Laboratory, Fudan University, Shanghai, 200032, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Biosafety Level 3 Laboratory, Fudan University, Shanghai, 200032, China
| | - Qiang Zhou
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Biosafety Level 3 Laboratory, Fudan University, Shanghai, 200032, China.
| | - Jing Huang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China.
| | - Xu Li
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China.
| |
Collapse
|
17
|
Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P, Jensen LJ, von Mering C. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 2021; 49:D605-D612. [PMID: 33237311 PMCID: PMC7779004 DOI: 10.1093/nar/gkaa1074] [Citation(s) in RCA: 4243] [Impact Index Per Article: 1060.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/20/2020] [Accepted: 11/23/2020] [Indexed: 12/19/2022] Open
Abstract
Cellular life depends on a complex web of functional associations between biomolecules. Among these associations, protein–protein interactions are particularly important due to their versatility, specificity and adaptability. The STRING database aims to integrate all known and predicted associations between proteins, including both physical interactions as well as functional associations. To achieve this, STRING collects and scores evidence from a number of sources: (i) automated text mining of the scientific literature, (ii) databases of interaction experiments and annotated complexes/pathways, (iii) computational interaction predictions from co-expression and from conserved genomic context and (iv) systematic transfers of interaction evidence from one organism to another. STRING aims for wide coverage; the upcoming version 11.5 of the resource will contain more than 14 000 organisms. In this update paper, we describe changes to the text-mining system, a new scoring-mode for physical interactions, as well as extensive user interface features for customizing, extending and sharing protein networks. In addition, we describe how to query STRING with genome-wide, experimental data, including the automated detection of enriched functionalities and potential biases in the user's query data. The STRING resource is available online, at https://string-db.org/.
Collapse
Affiliation(s)
- Damian Szklarczyk
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland
| | - Annika L Gable
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland
| | - Katerina C Nastou
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - David Lyon
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland
| | - Rebecca Kirsch
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Sampo Pyysalo
- TurkuNLP Group, Department of Future Technologies, University of Turku, 20014 Turun Yliopisto, Finland
| | - Nadezhda T Doncheva
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Marc Legeay
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Tao Fang
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Max Delbrück Centre for Molecular Medicine, 13125 Berlin, Germany.,Department of Bioinformatics, Biozentrum, University of Würzburg, 97074 Würzburg, Germany
| | - Lars J Jensen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Christian von Mering
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
18
|
Mykytyn AZ, Breugem TI, Riesebosch S, Schipper D, van den Doel PB, Rottier RJ, Lamers MM, Haagmans BL. SARS-CoV-2 entry into human airway organoids is serine protease-mediated and facilitated by the multibasic cleavage site. eLife 2021; 10:e64508. [PMID: 33393462 PMCID: PMC7806259 DOI: 10.7554/elife.64508] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/31/2020] [Indexed: 01/19/2023] Open
Abstract
Coronavirus entry is mediated by the spike protein that binds the receptor and mediates fusion after cleavage by host proteases. The proteases that mediate entry differ between cell lines, and it is currently unclear which proteases are relevant in vivo. A remarkable feature of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike is the presence of a multibasic cleavage site (MBCS), which is absent in the SARS-CoV spike. Here, we report that the SARS-CoV-2 spike MBCS increases infectivity on human airway organoids (hAOs). Compared with SARS-CoV, SARS-CoV-2 entered faster into Calu-3 cells and, more frequently, formed syncytia in hAOs. Moreover, the MBCS increased entry speed and plasma membrane serine protease usage relative to cathepsin-mediated endosomal entry. Blocking serine proteases, but not cathepsins, effectively inhibited SARS-CoV-2 entry and replication in hAOs. Our findings demonstrate that SARS-CoV-2 enters relevant airway cells using serine proteases, and suggest that the MBCS is an adaptation to this viral entry strategy.
Collapse
Affiliation(s)
- Anna Z Mykytyn
- Viroscience Department, Erasmus University Medical CenterRotterdamNetherlands
| | - Tim I Breugem
- Viroscience Department, Erasmus University Medical CenterRotterdamNetherlands
| | - Samra Riesebosch
- Viroscience Department, Erasmus University Medical CenterRotterdamNetherlands
| | - Debby Schipper
- Viroscience Department, Erasmus University Medical CenterRotterdamNetherlands
| | | | - Robbert J Rottier
- Department of Pediatric Surgery, Erasmus University Medical Center - Sophia Children's HospitalRotterdamNetherlands
| | - Mart M Lamers
- Viroscience Department, Erasmus University Medical CenterRotterdamNetherlands
| | - Bart L Haagmans
- Viroscience Department, Erasmus University Medical CenterRotterdamNetherlands
| |
Collapse
|
19
|
Oughtred R, Rust J, Chang C, Breitkreutz B, Stark C, Willems A, Boucher L, Leung G, Kolas N, Zhang F, Dolma S, Coulombe‐Huntington J, Chatr‐aryamontri A, Dolinski K, Tyers M. The BioGRID database: A comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci 2021; 30:187-200. [PMID: 33070389 PMCID: PMC7737760 DOI: 10.1002/pro.3978] [Citation(s) in RCA: 789] [Impact Index Per Article: 197.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
The BioGRID (Biological General Repository for Interaction Datasets, thebiogrid.org) is an open-access database resource that houses manually curated protein and genetic interactions from multiple species including yeast, worm, fly, mouse, and human. The ~1.93 million curated interactions in BioGRID can be used to build complex networks to facilitate biomedical discoveries, particularly as related to human health and disease. All BioGRID content is curated from primary experimental evidence in the biomedical literature, and includes both focused low-throughput studies and large high-throughput datasets. BioGRID also captures protein post-translational modifications and protein or gene interactions with bioactive small molecules including many known drugs. A built-in network visualization tool combines all annotations and allows users to generate network graphs of protein, genetic and chemical interactions. In addition to general curation across species, BioGRID undertakes themed curation projects in specific aspects of cellular regulation, for example the ubiquitin-proteasome system, as well as specific disease areas, such as for the SARS-CoV-2 virus that causes COVID-19 severe acute respiratory syndrome. A recent extension of BioGRID, named the Open Repository of CRISPR Screens (ORCS, orcs.thebiogrid.org), captures single mutant phenotypes and genetic interactions from published high throughput genome-wide CRISPR/Cas9-based genetic screens. BioGRID-ORCS contains datasets for over 1,042 CRISPR screens carried out to date in human, mouse and fly cell lines. The biomedical research community can freely access all BioGRID data through the web interface, standardized file downloads, or via model organism databases and partner meta-databases.
Collapse
Affiliation(s)
- Rose Oughtred
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNew JerseyUSA
| | - Jennifer Rust
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNew JerseyUSA
| | - Christie Chang
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNew JerseyUSA
| | | | - Chris Stark
- The Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoOntarioCanada
| | - Andrew Willems
- The Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoOntarioCanada
| | - Lorrie Boucher
- The Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoOntarioCanada
| | - Genie Leung
- The Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoOntarioCanada
| | - Nadine Kolas
- The Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoOntarioCanada
| | - Frederick Zhang
- Arthur and Sonia Labatt Brain Tumor Research Center and Developmental and Stem Cell BiologyThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Sonam Dolma
- Arthur and Sonia Labatt Brain Tumor Research Center and Developmental and Stem Cell BiologyThe Hospital for Sick ChildrenTorontoOntarioCanada
| | | | | | - Kara Dolinski
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNew JerseyUSA
| | - Mike Tyers
- The Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoOntarioCanada
- Institute for Research in Immunology and CancerUniversité de MontréalQuebecCanada
| |
Collapse
|
20
|
Parkinson N, Rodgers N, Head Fourman M, Wang B, Zechner M, Swets MC, Millar JE, Law A, Russell CD, Baillie JK, Clohisey S. Dynamic data-driven meta-analysis for prioritisation of host genes implicated in COVID-19. Sci Rep 2020; 10:22303. [PMID: 33339864 PMCID: PMC7749145 DOI: 10.1038/s41598-020-79033-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022] Open
Abstract
The increasing body of literature describing the role of host factors in COVID-19 pathogenesis demonstrates the need to combine diverse, multi-omic data to evaluate and substantiate the most robust evidence and inform development of therapies. Here we present a dynamic ranking of host genes implicated in human betacoronavirus infection (SARS-CoV-2, SARS-CoV, MERS-CoV, seasonal coronaviruses). We conducted an extensive systematic review of experiments identifying potential host factors. Gene lists from diverse sources were integrated using Meta-Analysis by Information Content (MAIC). This previously described algorithm uses data-driven gene list weightings to produce a comprehensive ranked list of implicated host genes. From 32 datasets, the top ranked gene was PPIA, encoding cyclophilin A, a druggable target using cyclosporine. Other highly-ranked genes included proposed prognostic factors (CXCL10, CD4, CD3E) and investigational therapeutic targets (IL1A) for COVID-19. Gene rankings also inform the interpretation of COVID-19 GWAS results, implicating FYCO1 over other nearby genes in a disease-associated locus on chromosome 3. Researchers can search and review the gene rankings and the contribution of different experimental methods to gene rank at https://baillielab.net/maic/covid19 . As new data are published we will regularly update the list of genes as a resource to inform and prioritise future studies.
Collapse
Affiliation(s)
- Nicholas Parkinson
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
| | - Natasha Rodgers
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
| | - Max Head Fourman
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
| | - Bo Wang
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
| | - Marie Zechner
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
| | - Maaike C Swets
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Jonathan E Millar
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
| | - Andy Law
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
| | - Clark D Russell
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
- University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh, UK
| | - J Kenneth Baillie
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK.
| | - Sara Clohisey
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK.
| |
Collapse
|
21
|
Yuan S, Peng L, Park JJ, Hu Y, Devarkar SC, Dong MB, Shen Q, Wu S, Chen S, Lomakin IB, Xiong Y. Nonstructural Protein 1 of SARS-CoV-2 Is a Potent Pathogenicity Factor Redirecting Host Protein Synthesis Machinery toward Viral RNA. Mol Cell 2020. [PMID: 33188728 DOI: 10.1101/2020.08.09.243451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The causative virus of the COVID-19 pandemic, SARS-CoV-2, uses its nonstructural protein 1 (Nsp1) to suppress cellular, but not viral, protein synthesis through yet unknown mechanisms. We show here that among all viral proteins, Nsp1 has the largest impact on host viability in the cells of human lung origin. Differential expression analysis of mRNA-seq data revealed that Nsp1 broadly alters the cellular transcriptome. Our cryo-EM structure of the Nsp1-40S ribosome complex shows that Nsp1 inhibits translation by plugging the mRNA entry channel of the 40S. We also determined the structure of the 48S preinitiation complex formed by Nsp1, 40S, and the cricket paralysis virus internal ribosome entry site (IRES) RNA, which shows that it is nonfunctional because of the incorrect position of the mRNA 3' region. Our results elucidate the mechanism of host translation inhibition by SARS-CoV-2 and advance understanding of the impacts from a major pathogenicity factor of SARS-CoV-2.
Collapse
MESH Headings
- Animals
- COVID-19/genetics
- COVID-19/metabolism
- COVID-19/pathology
- Chlorocebus aethiops
- Cryoelectron Microscopy
- Humans
- Protein Biosynthesis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Ribosome Subunits, Small, Eukaryotic/genetics
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Ribosome Subunits, Small, Eukaryotic/ultrastructure
- Ribosome Subunits, Small, Eukaryotic/virology
- SARS-CoV-2/genetics
- SARS-CoV-2/metabolism
- SARS-CoV-2/pathogenicity
- SARS-CoV-2/ultrastructure
- Vero Cells
- Viral Nonstructural Proteins/genetics
- Viral Nonstructural Proteins/metabolism
Collapse
Affiliation(s)
- Shuai Yuan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Lei Peng
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Jonathan J Park
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Yingxia Hu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Swapnil C Devarkar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Matthew B Dong
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Qi Shen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Shenping Wu
- Department of Pharmacology, Yale University, West Haven, CT 06516, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA.
| | - Ivan B Lomakin
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
22
|
Porto EM, Komor AC, Slaymaker IM, Yeo GW. Base editing: advances and therapeutic opportunities. Nat Rev Drug Discov 2020; 19:839-859. [PMID: 33077937 PMCID: PMC7721651 DOI: 10.1038/s41573-020-0084-6] [Citation(s) in RCA: 244] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2020] [Indexed: 12/19/2022]
Abstract
Base editing - the introduction of single-nucleotide variants (SNVs) into DNA or RNA in living cells - is one of the most recent advances in the field of genome editing. As around half of known pathogenic genetic variants are due to SNVs, base editing holds great potential for the treatment of numerous genetic diseases, through either temporary RNA or permanent DNA base alterations. Recent advances in the specificity, efficiency, precision and delivery of DNA and RNA base editors are revealing exciting therapeutic opportunities for these technologies. We expect the correction of single point mutations will be a major focus of future precision medicine.
Collapse
Affiliation(s)
- Elizabeth M Porto
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Alexis C Komor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| | - Ian M Slaymaker
- Synthetic Biology Department, Beam Therapeutics, Cambridge, MA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Biomedical Sciences and Bioinformatics and Systems Biology Graduate Programs, University of California, San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
23
|
Wu M, Chen Y, Xia H, Wang C, Tan CY, Cai X, Liu Y, Ji F, Xiong P, Liu R, Guan Y, Duan Y, Kuang D, Xu S, Cai H, Xia Q, Yang D, Wang MW, Chiu IM, Cheng C, Ahern PP, Liu L, Wang G, Surana NK, Xia T, Kasper DL. Transcriptional and proteomic insights into the host response in fatal COVID-19 cases. Proc Natl Acad Sci U S A 2020; 117:28336-28343. [PMID: 33082228 PMCID: PMC7668053 DOI: 10.1073/pnas.2018030117] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), the global pandemic caused by SARS-CoV-2, has resulted thus far in greater than 933,000 deaths worldwide; yet disease pathogenesis remains unclear. Clinical and immunological features of patients with COVID-19 have highlighted a potential role for changes in immune activity in regulating disease severity. However, little is known about the responses in human lung tissue, the primary site of infection. Here we show that pathways related to neutrophil activation and pulmonary fibrosis are among the major up-regulated transcriptional signatures in lung tissue obtained from patients who died of COVID-19 in Wuhan, China. Strikingly, the viral burden was low in all samples, which suggests that the patient deaths may be related to the host response rather than an active fulminant infection. Examination of the colonic transcriptome of these patients suggested that SARS-CoV-2 impacted host responses even at a site with no obvious pathogenesis. Further proteomics analysis validated our transcriptome findings and identified several key proteins, such as the SARS-CoV-2 entry-associated protease cathepsins B and L and the inflammatory response modulator S100A8/A9, that are highly expressed in fatal cases, revealing potential drug targets for COVID-19.
Collapse
Affiliation(s)
- Meng Wu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Yaobing Chen
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China
| | - Han Xia
- Department of Research and Development, Hugobiotech Co., Ltd., 100000 Beijing, P. R. China
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, 710049 Xi'an, P.R. China
| | - Changli Wang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China
| | - Chin Yee Tan
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Xunhui Cai
- Institute of Artificial Intelligence, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China
| | - Yufeng Liu
- Institute of Artificial Intelligence, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China
| | - Fenghu Ji
- Institute of Artificial Intelligence, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China
| | - Peng Xiong
- Institute of Artificial Intelligence, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China
| | - Ran Liu
- Department of Research and Development, Hugobiotech Co., Ltd., 100000 Beijing, P. R. China
| | - Yuanlin Guan
- Department of Research and Development, Hugobiotech Co., Ltd., 100000 Beijing, P. R. China
| | - Yaqi Duan
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China
| | - Dong Kuang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China
| | - Sanpeng Xu
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China
| | - Hanghang Cai
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China
| | - Qin Xia
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, P. R. China
| | - Dehua Yang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203 Shanghai, P. R. China
| | - Ming-Wei Wang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203 Shanghai, P. R. China
| | - Isaac M Chiu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Philip P Ahern
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195
| | - Liang Liu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, P. R. China;
| | - Guoping Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China;
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China
| | - Neeraj K Surana
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710;
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710
| | - Tian Xia
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China;
- Institute of Artificial Intelligence, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China
| | - Dennis L Kasper
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
24
|
Zahoránszky-Kőhalmi G, Siramshetty VB, Kumar P, Gurumurthy M, Grillo B, Mathew B, Metaxatos D, Backus M, Mierzwa T, Simon R, Grishagin I, Brovold L, Mathé EA, Hall MD, Michael SG, Godfrey AG, Mestres J, Jensen LJ, Oprea TI. A Workflow of Integrated Resources to Catalyze Network Pharmacology Driven COVID-19 Research. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.11.04.369041. [PMID: 33173863 PMCID: PMC7654851 DOI: 10.1101/2020.11.04.369041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
MOTIVATION In the event of an outbreak due to an emerging pathogen, time is of the essence to contain or to mitigate the spread of the disease. Drug repositioning is one of the strategies that has the potential to deliver therapeutics relatively quickly. The SARS-CoV-2 pandemic has shown that integrating critical data resources to drive drug-repositioning studies, involving host-host, hostpathogen and drug-target interactions, remains a time-consuming effort that translates to a delay in the development and delivery of a life-saving therapy. RESULTS Here, we describe a workflow we designed for a semi-automated integration of rapidly emerging datasets that can be generally adopted in a broad network pharmacology research setting. The workflow was used to construct a COVID-19 focused multimodal network that integrates 487 host-pathogen, 74,805 host-host protein and 1,265 drug-target interactions. The resultant Neo4j graph database named "Neo4COVID19" is accessible via a web interface and via API calls based on the Bolt protocol. We believe that our Neo4COVID19 database will be a valuable asset to the research community and will catalyze the discovery of therapeutics to fight COVID-19. AVAILABILITY https://neo4covid19.ncats.io.
Collapse
Affiliation(s)
| | | | - Praveen Kumar
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
- Department of Computer Science, University of New Mexico, Albuquerque, New Mexico, USA
| | | | - Busola Grillo
- National Center for Advancing Translational Sciences, Rockville, MD, USA
| | - Biju Mathew
- National Center for Advancing Translational Sciences, Rockville, MD, USA
| | | | - Mark Backus
- National Center for Advancing Translational Sciences, Rockville, MD, USA
| | - Tim Mierzwa
- National Center for Advancing Translational Sciences, Rockville, MD, USA
| | - Reid Simon
- National Center for Advancing Translational Sciences, Rockville, MD, USA
| | - Ivan Grishagin
- National Center for Advancing Translational Sciences, Rockville, MD, USA
- Rancho BioSciences LLC., San Diego, CA USA
| | | | - Ewy A. Mathé
- National Center for Advancing Translational Sciences, Rockville, MD, USA
| | - Matthew D. Hall
- National Center for Advancing Translational Sciences, Rockville, MD, USA
| | - Samuel G. Michael
- National Center for Advancing Translational Sciences, Rockville, MD, USA
| | | | - Jordi Mestres
- Research Group on Systems Pharmacology, Research Program on Biomedical Informatics (GRIB), IMIM Hospital del Mar Medical Research Institute and University Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Lars J. Jensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tudor I. Oprea
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- UNM Comprehensive Cancer Center, Albuquerque, NM, USA
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
25
|
Chen DY, Khan N, Close BJ, Goel RK, Blum B, Tavares AH, Kenney D, Conway HL, Ewoldt JK, Kapell S, Chitalia VC, Crossland NA, Chen CS, Kotton DN, Baker SC, Connor JH, Douam F, Emili A, Saeed M. SARS-CoV-2 desensitizes host cells to interferon through inhibition of the JAK-STAT pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 33140044 DOI: 10.1101/2020.10.27.358259] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SARS-CoV-2 can infect multiple organs, including lung, intestine, kidney, heart, liver, and brain. The molecular details of how the virus navigates through diverse cellular environments and establishes replication are poorly defined. Here, we performed global proteomic analysis of the virus-host interface in a newly established panel of phenotypically diverse, SARS-CoV-2-infectable human cell lines representing different body organs. This revealed universal inhibition of interferon signaling across cell types following SARS-CoV-2 infection. We performed systematic analyses of the JAK-STAT pathway in a broad range of cellular systems, including immortalized cell lines and primary-like cardiomyocytes, and found that several pathway components were targeted by SARS-CoV-2 leading to cellular desensitization to interferon. These findings indicate that the suppression of interferon signaling is a mechanism widely used by SARS-CoV-2 in diverse tissues to evade antiviral innate immunity, and that targeting the viral mediators of immune evasion may help block virus replication in patients with COVID-19.
Collapse
|
26
|
Krey K, Babnis AW, Pichlmair A. System-Based Approaches to Delineate the Antiviral Innate Immune Landscape. Viruses 2020; 12:E1196. [PMID: 33096788 PMCID: PMC7589202 DOI: 10.3390/v12101196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Viruses pose substantial challenges for society, economy, healthcare systems, and research. Their distinctive pathologies are based on specific interactions with cellular factors. In order to develop new antiviral treatments, it is of central importance to understand how viruses interact with their host and how infected cells react to the virus on a molecular level. Invading viruses are commonly sensed by components of the innate immune system, which is composed of a highly effective yet complex network of proteins that, in most cases, mediate efficient virus inhibition. Central to this process is the activity of interferons and other cytokines that coordinate the antiviral response. So far, numerous methods have been used to identify how viruses interact with cellular processes and revealed that the innate immune response is highly complex and involves interferon-stimulated genes and their binding partners as functional factors. Novel approaches and careful experimental design, combined with large-scale, high-throughput methods and cutting-edge analysis pipelines, have to be utilized to delineate the antiviral innate immune landscape at a global level. In this review, we describe different currently used screening approaches, how they contributed to our knowledge on virus-host interactions, and essential considerations that have to be taken into account when planning such experiments.
Collapse
Affiliation(s)
- Karsten Krey
- School of Medicine, Institute of Virology, Technical University of Munich, 81675 Munich, Germany; (K.K.); (A.W.B.)
| | - Aleksandra W. Babnis
- School of Medicine, Institute of Virology, Technical University of Munich, 81675 Munich, Germany; (K.K.); (A.W.B.)
| | - Andreas Pichlmair
- School of Medicine, Institute of Virology, Technical University of Munich, 81675 Munich, Germany; (K.K.); (A.W.B.)
- German Center for Infection Research (DZIF), Munich Partner Site, 80538 Munich, Germany
| |
Collapse
|
27
|
Mast FD, Navare AT, van der Sloot AM, Coulombe-Huntington J, Rout MP, Baliga NS, Kaushansky A, Chait BT, Aderem A, Rice CM, Sali A, Tyers M, Aitchison JD. Crippling life support for SARS-CoV-2 and other viruses through synthetic lethality. J Cell Biol 2020; 219:e202006159. [PMID: 32785687 PMCID: PMC7659715 DOI: 10.1083/jcb.202006159] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
With the rapid global spread of SARS-CoV-2, we have become acutely aware of the inadequacies of our ability to respond to viral epidemics. Although disrupting the viral life cycle is critical for limiting viral spread and disease, it has proven challenging to develop targeted and selective therapeutics. Synthetic lethality offers a promising but largely unexploited strategy against infectious viral disease; as viruses infect cells, they abnormally alter the cell state, unwittingly exposing new vulnerabilities in the infected cell. Therefore, we propose that effective therapies can be developed to selectively target the virally reconfigured host cell networks that accompany altered cellular states to cripple the host cell that has been converted into a virus factory, thus disrupting the viral life cycle.
Collapse
Affiliation(s)
- Fred D. Mast
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA
| | - Arti T. Navare
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA
| | - Almer M. van der Sloot
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada
| | | | - Michael P. Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY
| | | | - Alexis Kaushansky
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Brian T. Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY
| | - Alan Aderem
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada
| | - John D. Aitchison
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
- Department of Biochemistry, University of Washington, Seattle, WA
| |
Collapse
|
28
|
Chen JS, Alfajaro MM, Wei J, Chow RD, Filler RB, Eisenbarth SC, Wilen CB. Cyclooxgenase-2 is induced by SARS-CoV-2 infection but does not affect viral entry or replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.09.24.312769. [PMID: 32995789 PMCID: PMC7523115 DOI: 10.1101/2020.09.24.312769] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Identifying drugs that regulate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and its symptoms has been a pressing area of investigation during the coronavirus disease 2019 (COVID-19) pandemic. Nonsteroidal anti-inflammatory drugs (NSAIDs), which are frequently used for the relief of pain and inflammation, could modulate both SARS-CoV-2 infection and the host response to the virus. NSAIDs inhibit the enzymes cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2), which mediate the production of prostaglandins (PGs). PGE2, one of the most abundant PGs, has diverse biological roles in homeostasis and inflammatory responses. Previous studies have shown that NSAID treatment or inhibition of PGE2 receptor signaling leads to upregulation of angiotensin-converting enzyme 2 (ACE2), the cell entry receptor for SARS-CoV-2, thus raising concerns that NSAIDs could increase susceptibility to infection. COX/PGE2 signaling has also been shown to regulate the replication of many viruses, but it is not yet known whether it plays a role in SARS-CoV-2 replication. The purpose of this study was to dissect the effect of NSAIDs on COVID-19 in terms of SARS-CoV-2 entry and replication. We found that SARS-CoV-2 infection induced COX-2 upregulation in diverse human cell culture and mouse systems. However, suppression of COX-2/PGE2 signaling by two commonly used NSAIDs, ibuprofen and meloxicam, had no effect on ACE2 expression, viral entry, or viral replication. Our findings suggest that COX-2 signaling driven by SARS-CoV-2 may instead play a role in regulating the lung inflammation and injury observed in COVID-19 patients.
Collapse
Affiliation(s)
- Jennifer S. Chen
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Mia Madel Alfajaro
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jin Wei
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ryan D. Chow
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Renata B. Filler
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Stephanie C. Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Craig B. Wilen
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
29
|
Wang R, Simoneau CR, Kulsuptrakul J, Bouhaddou M, Travisano K, Hayashi JM, Carlson-Stevermer J, Oki J, Holden K, Krogan NJ, Ott M, Puschnik AS. Functional genomic screens identify human host factors for SARS-CoV-2 and common cold coronaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.09.24.312298. [PMID: 32995787 PMCID: PMC7523113 DOI: 10.1101/2020.09.24.312298] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Coronaviridae are a family of viruses that causes disease in humans ranging from mild respiratory infection to potentially lethal acute respiratory distress syndrome. Finding host factors that are common to multiple coronaviruses could facilitate the development of therapies to combat current and future coronavirus pandemics. Here, we conducted parallel genome-wide CRISPR screens in cells infected by SARS-CoV-2 as well as two seasonally circulating common cold coronaviruses, OC43 and 229E. This approach correctly identified the distinct viral entry factors ACE2 (for SARS-CoV-2), aminopeptidase N (for 229E) and glycosaminoglycans (for OC43). Additionally, we discovered phosphatidylinositol phosphate biosynthesis and cholesterol homeostasis as critical host pathways supporting infection by all three coronaviruses. By contrast, the lysosomal protein TMEM106B appeared unique to SARS-CoV-2 infection. Pharmacological inhibition of phosphatidylinositol phosphate biosynthesis and cholesterol homeostasis reduced replication of all three coronaviruses. These findings offer important insights for the understanding of the coronavirus life cycle as well as the potential development of host-directed therapies.
Collapse
Affiliation(s)
- Ruofan Wang
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | | | | | - Mehdi Bouhaddou
- Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | | | | | | | | | | | - Nevan J. Krogan
- Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Melanie Ott
- Gladstone Institutes, San Francisco, CA 94158, USA
| | | |
Collapse
|
30
|
Ochsner SA, Pillich RT, McKenna NJ. Consensus transcriptional regulatory networks of coronavirus-infected human cells. Sci Data 2020; 7:314. [PMID: 32963239 PMCID: PMC7509801 DOI: 10.1038/s41597-020-00628-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/05/2020] [Indexed: 02/08/2023] Open
Abstract
Establishing consensus around the transcriptional interface between coronavirus (CoV) infection and human cellular signaling pathways can catalyze the development of novel anti-CoV therapeutics. Here, we used publicly archived transcriptomic datasets to compute consensus regulatory signatures, or consensomes, that rank human genes based on their rates of differential expression in MERS-CoV (MERS), SARS-CoV-1 (SARS1) and SARS-CoV-2 (SARS2)-infected cells. Validating the CoV consensomes, we show that high confidence transcriptional targets (HCTs) of MERS, SARS1 and SARS2 infection intersect with HCTs of signaling pathway nodes with known roles in CoV infection. Among a series of novel use cases, we gather evidence for hypotheses that SARS2 infection efficiently represses E2F family HCTs encoding key drivers of DNA replication and the cell cycle; that progesterone receptor signaling antagonizes SARS2-induced inflammatory signaling in the airway epithelium; and that SARS2 HCTs are enriched for genes involved in epithelial to mesenchymal transition. The CoV infection consensomes and HCT intersection analyses are freely accessible through the Signaling Pathways Project knowledgebase, and as Cytoscape-style networks in the Network Data Exchange repository.
Collapse
Affiliation(s)
- Scott A Ochsner
- The Signaling Pathways Project and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rudolf T Pillich
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Neil J McKenna
- The Signaling Pathways Project and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
31
|
Affiliation(s)
- Fangfang Lu
- OxImmuno Literature Initiative, University of Oxford, Oxford, UK.
| | - Michael Tellier
- OxImmuno Literature Initiative, University of Oxford, Oxford, UK.
| |
Collapse
|
32
|
Ochsner SA, Pillich RT, McKenna NJ. Consensus transcriptional regulatory networks of coronavirus-infected human cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.04.24.059527. [PMID: 32511379 PMCID: PMC7263508 DOI: 10.1101/2020.04.24.059527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Establishing consensus around the transcriptional interface between coronavirus (CoV) infection and human cellular signaling pathways can catalyze the development of novel anti-CoV therapeutics. Here, we used publicly archived transcriptomic datasets to compute consensus regulatory signatures, or consensomes, that rank human genes based on their rates of differential expression in MERS-CoV (MERS), SARS-CoV-1 (SARS1) and SARS-CoV-2 (SARS2)-infected cells. Validating the CoV consensomes, we show that high confidence transcriptional targets (HCTs) of CoV infection intersect with HCTs of signaling pathway nodes with known roles in CoV infection. Among a series of novel use cases, we gather evidence for hypotheses that SARS2 infection efficiently represses E2F family target genes encoding key drivers of DNA replication and the cell cycle; that progesterone receptor signaling antagonizes SARS2-induced inflammatory signaling in the airway epithelium; and that SARS2 HCTs are enriched for genes involved in epithelial to mesenchymal transition. The CoV infection consensomes and HCT intersection analyses are freely accessible through the Signaling Pathways Project knowledgebase, and as Cytoscape-style networks in the Network Data Exchange repository.
Collapse
Affiliation(s)
- Scott A Ochsner
- The Signaling Pathways Project and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Rudolf T Pillich
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Neil J McKenna
- The Signaling Pathways Project and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|