1
|
Althobaity Y, Tildesley MJ. Modelling the impact of non-pharmaceutical interventions on the spread of COVID-19 in Saudi Arabia. Sci Rep 2023; 13:843. [PMID: 36646733 PMCID: PMC9842221 DOI: 10.1038/s41598-022-26468-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/15/2022] [Indexed: 01/18/2023] Open
Abstract
Countries around the world have implemented a series of interventions to contain the pandemic of coronavirus disease (COVID-19), and significant lessons can be drawn from the study of the full transmission dynamics of the disease caused by-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-in the Eastern, Madinah, Makkah, and Riyadh regions of Saudi Arabia, where robust non-pharmaceutical interventions effectively suppressed the local outbreak of this disease. On the basis of 333732 laboratory-confirmed cases, we used mathematical modelling to reconstruct the complete spectrum dynamics of COVID-19 in Saudi Arabia between 2 March and 25 September 2020 over 5 periods characterised by events and interventions. Our model account for asymptomatic and presymptomatic infectiousness, time-varying ascertainable infection rate, and transmission rates. Our results indicate that non-pharmaceutical interventions were effective in containing the epidemic, with reproduction numbers decreasing on average to 0.29 (0.19-0.66) in the Eastern, Madinah, Makkah, and Riyadh region. The chance of resurgence after the lifting of all interventions after 30 consecutive days with no symptomatic cases is also examined and emphasizes the danger presented by largely hidden infections while switching control strategies. These findings have major significance for evaluating methods for maintaining monitoring and interventions to eventually reduce outbreaks of COVID-19 in Saudi Arabia in the future.
Collapse
Affiliation(s)
- Yehya Althobaity
- The Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, UK.
- Department of Mathematics, Taif University, Taif, Kingdom of Saudi Arabia.
| | - Michael J Tildesley
- The Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, UK
| |
Collapse
|
2
|
Moore RE, Rosato C, Maskell S. Refining epidemiological forecasts with simple scoring rules. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20210305. [PMID: 35965461 PMCID: PMC9376716 DOI: 10.1098/rsta.2021.0305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/07/2022] [Indexed: 05/04/2023]
Abstract
Estimates from infectious disease models have constituted a significant part of the scientific evidence used to inform the response to the COVID-19 pandemic in the UK. These estimates can vary strikingly in their bias and variability. Epidemiological forecasts should be consistent with the observations that eventually materialize. We use simple scoring rules to refine the forecasts of a novel statistical model for multisource COVID-19 surveillance data by tuning its smoothness hyperparameter. This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.
Collapse
Affiliation(s)
- Robert E. Moore
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool L69 3GJ, UK
| | - Conor Rosato
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool L69 3GJ, UK
| | - Simon Maskell
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool L69 3GJ, UK
| |
Collapse
|
3
|
Tildesley MJ, Vassall A, Riley S, Jit M, Sandmann F, Hill EM, Thompson RN, Atkins BD, Edmunds J, Dyson L, Keeling MJ. Optimal health and economic impact of non-pharmaceutical intervention measures prior and post vaccination in England: a mathematical modelling study. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211746. [PMID: 35958089 PMCID: PMC9364008 DOI: 10.1098/rsos.211746] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Background. Even with good progress on vaccination, SARS-CoV-2 infections in the UK may continue to impose a high burden of disease and therefore pose substantial challenges for health policy decision makers. Stringent government-mandated physical distancing measures (lockdown) have been demonstrated to be epidemiologically effective, but can have both positive and negative economic consequences. The duration and frequency of any intervention policy could, in theory, be optimized to maximize economic benefits while achieving substantial reductions in disease. Methods. Here, we use a pre-existing SARS-CoV-2 transmission model to assess the health and economic implications of different strengths of control through time in order to identify optimal approaches to non-pharmaceutical intervention stringency in the UK, considering the role of vaccination in reducing the need for future physical distancing measures. The model is calibrated to the COVID-19 epidemic in England and we carry out retrospective analysis of the optimal timing of precautionary breaks in 2020 and the optimal relaxation policy from the January 2021 lockdown, considering the willingness to pay (WTP) for health improvement. Results. We find that the precise timing and intensity of interventions is highly dependent upon the objective of control. As intervention measures are relaxed, we predict a resurgence in cases, but the optimal intervention policy can be established dependent upon the WTP per quality adjusted life year loss avoided. Our results show that establishing an optimal level of control can result in a reduction in net monetary loss of billions of pounds, dependent upon the precise WTP value. Conclusion. It is vital, as the UK emerges from lockdown, but continues to face an on-going pandemic, to accurately establish the overall health and economic costs when making policy decisions. We demonstrate how some of these can be quantified, employing mechanistic infectious disease transmission models to establish optimal levels of control for the ongoing COVID-19 pandemic.
Collapse
Affiliation(s)
- Michael J. Tildesley
- The Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
| | - Anna Vassall
- Department of Global Health and Development, London School of Hygiene and Tropical Medicine, 15-17 Tavistock Place, London WC1H 9SH, UK
| | - Steven Riley
- School of Public Health, Imperial College London, London, UK
| | - Mark Jit
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, Keppell Street, London WC1E 7HT, UK
- School of Public Health, University of Hong Kong, Patrick Manson Building, 7 Sassoon Road, Hong Kong SAR, People’s Republic of China
| | - Frank Sandmann
- Statistics, Modelling and Economics Department, National Infection Service, Public Health England, London, UK
- Department of Infectious Disease Epidemiology and NIHR Health Protection Research Unit in Modelling and Health Economics, London School of Hygiene and Tropical Medicine, London, UK
| | - Edward M. Hill
- The Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
| | - Robin N. Thompson
- The Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
| | - Benjamin D. Atkins
- The Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
| | - John Edmunds
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, Keppell Street, London WC1E 7HT, UK
| | - Louise Dyson
- The Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
| | - Matt J. Keeling
- The Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
4
|
Liu W, Guo Z, Abudunaibi B, Ouyang X, Wang D, Yang T, Deng B, Huang J, Zhao B, Su Y, Su C, Chen T. Model-Based Evaluation of Transmissibility and Intervention Measures for a COVID-19 Outbreak in Xiamen City, China. Front Public Health 2022; 10:887146. [PMID: 35910883 PMCID: PMC9326243 DOI: 10.3389/fpubh.2022.887146] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Background In September 2021, there was an outbreak of coronavirus disease 2019 (COVID-19) in Xiamen, China. Various non-pharmacological interventions (NPIs) and pharmacological interventions (PIs) have been implemented to prevent and control the spread of the disease. This study aimed to evaluate the effectiveness of various interventions and to identify priorities for the implementation of prevention and control measures. Methods The data of patients with COVID-19 were collected from 8 to 30 September 2021. A Susceptible-Exposed-Infectious-Recovered (SEIR) dynamics model was developed to fit the data and simulate the effectiveness of interventions (medical treatment, isolation, social distancing, masking, and vaccination) under different scenarios. The effective reproductive number (Reff) was used to assess the transmissibility and transmission risk. Results A total of 236 cases of COVID-19 were reported in Xiamen. The epidemic curve was divided into three phases (Reff = 6.8, 1.5, and 0). Notably, the cumulative number of cases was reduced by 99.67% due to the preventive and control measures implemented by the local government. In the effective containment stage, the number of cases could be reduced to 115 by intensifying the implementation of interventions. The total number of cases (TN) could be reduced by 29.66–95.34% when patients voluntarily visit fever clinics. When only two or three of these measures are implemented, the simulated TN may be greater than the actual number. As four measures were taken simultaneously, the TN may be <100, which is 57.63% less than the actual number. The simultaneous implementation of five interventions could rapidly control the transmission and reduce the number of cases to fewer than 25. Conclusion With the joint efforts of the government and the public, the outbreak was controlled quickly and effectively. Authorities could promptly cut the transmission chain and control the spread of the disease when patients with fever voluntarily went to the hospital. The ultimate effect of controlling the outbreak through only one intervention was not obvious. The combined community control and mask wearing, along with other interventions, could lead to rapid control of the outbreak and ultimately lower the total number of cases. More importantly, this would mitigate the impact of the outbreak on society and socioeconomics.
Collapse
Affiliation(s)
- Weikang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Zhinan Guo
- Xiamen Center for Disease Control and Prevention, Xiamen, China
| | - Buasiyamu Abudunaibi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Xue Ouyang
- Xiamen Center for Disease Control and Prevention, Xiamen, China
| | - Demeng Wang
- Xiamen Center for Disease Control and Prevention, Xiamen, China
| | - Tianlong Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Bin Deng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Jiefeng Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Benhua Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Yanhua Su
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Chenghao Su
- Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, China
- Chenghao Su
| | - Tianmu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
- *Correspondence: Tianmu Chen
| |
Collapse
|
5
|
Dyson L, Hill EM, Moore S, Curran-Sebastian J, Tildesley MJ, Lythgoe KA, House T, Pellis L, Keeling MJ. Possible future waves of SARS-CoV-2 infection generated by variants of concern with a range of characteristics. Nat Commun 2021; 12:5730. [PMID: 34593807 PMCID: PMC8484271 DOI: 10.1038/s41467-021-25915-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/08/2021] [Indexed: 11/09/2022] Open
Abstract
Viral reproduction of SARS-CoV-2 provides opportunities for the acquisition of advantageous mutations, altering viral transmissibility, disease severity, and/or allowing escape from natural or vaccine-derived immunity. We use three mathematical models: a parsimonious deterministic model with homogeneous mixing; an age-structured model; and a stochastic importation model to investigate the effect of potential variants of concern (VOCs). Calibrating to the situation in England in May 2021, we find epidemiological trajectories for putative VOCs are wide-ranging and dependent on their transmissibility, immune escape capability, and the introduction timing of a postulated VOC-targeted vaccine. We demonstrate that a VOC with a substantial transmission advantage over resident variants, or with immune escape properties, can generate a wave of infections and hospitalisations comparable to the winter 2020-2021 wave. Moreover, a variant that is less transmissible, but shows partial immune-escape could provoke a wave of infection that would not be revealed until control measures are further relaxed.
Collapse
Affiliation(s)
- Louise Dyson
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, United Kingdom.
- Joint Universities Pandemic and Epidemiological Research, .
| | - Edward M Hill
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, United Kingdom
- Joint Universities Pandemic and Epidemiological Research
| | - Sam Moore
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, United Kingdom
- Joint Universities Pandemic and Epidemiological Research
| | - Jacob Curran-Sebastian
- Joint Universities Pandemic and Epidemiological Research
- Department of Mathematics, University of Manchester, Manchester, United Kingdom
| | - Michael J Tildesley
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, United Kingdom
- Joint Universities Pandemic and Epidemiological Research
| | - Katrina A Lythgoe
- Big Data Institute, Old Road Campus, University of Oxford, Oxford, United Kingdom
| | - Thomas House
- Joint Universities Pandemic and Epidemiological Research
- Department of Mathematics, University of Manchester, Manchester, United Kingdom
- IBM Research, Hartree Centre, Daresbury, United Kingdom
- The Alan Turing Institute for Data Science and Artificial Intelligence, London, United Kingdom
| | - Lorenzo Pellis
- Joint Universities Pandemic and Epidemiological Research
- Department of Mathematics, University of Manchester, Manchester, United Kingdom
- The Alan Turing Institute for Data Science and Artificial Intelligence, London, United Kingdom
| | - Matt J Keeling
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, United Kingdom
- Joint Universities Pandemic and Epidemiological Research
| |
Collapse
|
6
|
Enright J, Hill EM, Stage HB, Bolton KJ, Nixon EJ, Fairbanks EL, Tang ML, Brooks-Pollock E, Dyson L, Budd CJ, Hoyle RB, Schewe L, Gog JR, Tildesley MJ. SARS-CoV-2 infection in UK university students: lessons from September-December 2020 and modelling insights for future student return. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210310. [PMID: 34386249 PMCID: PMC8334840 DOI: 10.1098/rsos.210310] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/16/2021] [Indexed: 06/06/2023]
Abstract
In this paper, we present work on SARS-CoV-2 transmission in UK higher education settings using multiple approaches to assess the extent of university outbreaks, how much those outbreaks may have led to spillover in the community, and the expected effects of control measures. Firstly, we found that the distribution of outbreaks in universities in late 2020 was consistent with the expected importation of infection from arriving students. Considering outbreaks at one university, larger halls of residence posed higher risks for transmission. The dynamics of transmission from university outbreaks to wider communities is complex, and while sometimes spillover does occur, occasionally even large outbreaks do not give any detectable signal of spillover to the local population. Secondly, we explored proposed control measures for reopening and keeping open universities. We found the proposal of staggering the return of students to university residence is of limited value in terms of reducing transmission. We show that student adherence to testing and self-isolation is likely to be much more important for reducing transmission during term time. Finally, we explored strategies for testing students in the context of a more transmissible variant and found that frequent testing would be necessary to prevent a major outbreak.
Collapse
Affiliation(s)
- Jessica Enright
- School of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK
| | - Edward M. Hill
- The Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
- Joint UNIversities Pandemic and Epidemiological Research, UK https://maths.org/juniper/
| | - Helena B. Stage
- Joint UNIversities Pandemic and Epidemiological Research, UK https://maths.org/juniper/
- Department of Mathematics, The University of Manchester, Oxford Road, Manchester, UK
| | - Kirsty J. Bolton
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, UK
| | - Emily J. Nixon
- Joint UNIversities Pandemic and Epidemiological Research, UK https://maths.org/juniper/
- Veterinary Public Health, Bristol Veterinary School, University of Bristol, Bristol, UK
| | - Emma L. Fairbanks
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, UK
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, UK
| | - Maria L. Tang
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, UK
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
| | - Ellen Brooks-Pollock
- Joint UNIversities Pandemic and Epidemiological Research, UK https://maths.org/juniper/
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
| | - Louise Dyson
- The Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
- Joint UNIversities Pandemic and Epidemiological Research, UK https://maths.org/juniper/
| | - Chris J. Budd
- School of Mathematical Sciences, University of Bath, Claverton Down, Bath, UK
| | - Rebecca B. Hoyle
- School of Mathematical Sciences, University of Southampton, Southampton, UK
| | - Lars Schewe
- University of Edinburgh, School of Mathematics, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, UK
| | - Julia R. Gog
- Joint UNIversities Pandemic and Epidemiological Research, UK https://maths.org/juniper/
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
| | - Michael J. Tildesley
- The Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
- Joint UNIversities Pandemic and Epidemiological Research, UK https://maths.org/juniper/
| |
Collapse
|
7
|
Sherratt K, Abbott S, Meakin SR, Hellewell J, Munday JD, Bosse N, Jit M, Funk S. Exploring surveillance data biases when estimating the reproduction number: with insights into subpopulation transmission of COVID-19 in England. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200283. [PMID: 34053260 PMCID: PMC8165604 DOI: 10.1098/rstb.2020.0283] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 12/22/2022] Open
Abstract
The time-varying reproduction number (Rt: the average number of secondary infections caused by each infected person) may be used to assess changes in transmission potential during an epidemic. While new infections are not usually observed directly, they can be estimated from data. However, data may be delayed and potentially biased. We investigated the sensitivity of Rt estimates to different data sources representing COVID-19 in England, and we explored how this sensitivity could track epidemic dynamics in population sub-groups. We sourced public data on test-positive cases, hospital admissions and deaths with confirmed COVID-19 in seven regions of England over March through August 2020. We estimated Rt using a model that mapped unobserved infections to each data source. We then compared differences in Rt with the demographic and social context of surveillance data over time. Our estimates of transmission potential varied for each data source, with the relative inconsistency of estimates varying across regions and over time. Rt estimates based on hospital admissions and deaths were more spatio-temporally synchronous than when compared to estimates from all test positives. We found these differences may be linked to biased representations of subpopulations in each data source. These included spatially clustered testing, and where outbreaks in hospitals, care homes, and young age groups reflected the link between age and severity of the disease. We highlight that policy makers could better target interventions by considering the source populations of Rt estimates. Further work should clarify the best way to combine and interpret Rt estimates from different data sources based on the desired use. This article is part of the theme issue 'Modelling that shaped the early COVID-19 pandemic response in the UK'.
Collapse
Affiliation(s)
- Katharine Sherratt
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Sam Abbott
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Sophie R. Meakin
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Joel Hellewell
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - James D. Munday
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Nikos Bosse
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - CMMID COVID-19 Working Group
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Mark Jit
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Sebastian Funk
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
8
|
Keeling MJ, Hill EM, Gorsich EE, Penman B, Guyver-Fletcher G, Holmes A, Leng T, McKimm H, Tamborrino M, Dyson L, Tildesley MJ. Predictions of COVID-19 dynamics in the UK: Short-term forecasting and analysis of potential exit strategies. PLoS Comput Biol 2021; 17:e1008619. [PMID: 33481773 PMCID: PMC7857604 DOI: 10.1371/journal.pcbi.1008619] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 02/03/2021] [Accepted: 12/08/2020] [Indexed: 01/08/2023] Open
Abstract
Efforts to suppress transmission of SARS-CoV-2 in the UK have seen non-pharmaceutical interventions being invoked. The most severe measures to date include all restaurants, pubs and cafes being ordered to close on 20th March, followed by a "stay at home" order on the 23rd March and the closure of all non-essential retail outlets for an indefinite period. Government agencies are presently analysing how best to develop an exit strategy from these measures and to determine how the epidemic may progress once measures are lifted. Mathematical models are currently providing short and long term forecasts regarding the future course of the COVID-19 outbreak in the UK to support evidence-based policymaking. We present a deterministic, age-structured transmission model that uses real-time data on confirmed cases requiring hospital care and mortality to provide up-to-date predictions on epidemic spread in ten regions of the UK. The model captures a range of age-dependent heterogeneities, reduced transmission from asymptomatic infections and produces a good fit to the key epidemic features over time. We simulated a suite of scenarios to assess the impact of differing approaches to relaxing social distancing measures from 7th May 2020 on the estimated number of patients requiring inpatient and critical care treatment, and deaths. With regard to future epidemic outcomes, we investigated the impact of reducing compliance, ongoing shielding of elder age groups, reapplying stringent social distancing measures using region based triggers and the role of asymptomatic transmission. We find that significant relaxation of social distancing measures from 7th May onwards can lead to a rapid resurgence of COVID-19 disease and the health system being quickly overwhelmed by a sizeable, second epidemic wave. In all considered age-shielding based strategies, we projected serious demand on critical care resources during the course of the pandemic. The reintroduction and release of strict measures on a regional basis, based on ICU bed occupancy, results in a long epidemic tail, until the second half of 2021, but ensures that the health service is protected by reintroducing social distancing measures for all individuals in a region when required. Our work confirms the effectiveness of stringent non-pharmaceutical measures in March 2020 to suppress the epidemic. It also provides strong evidence to support the need for a cautious, measured approach to relaxation of lockdown measures, to protect the most vulnerable members of society and support the health service through subduing demand on hospital beds, in particular bed occupancy in intensive care units.
Collapse
Affiliation(s)
- Matt J. Keeling
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, United Kingdom
| | - Edward M. Hill
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, United Kingdom
| | - Erin E. Gorsich
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, United Kingdom
| | - Bridget Penman
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, United Kingdom
| | - Glen Guyver-Fletcher
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, United Kingdom
- Midlands Integrative Biosciences Training Partnership, School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Alex Holmes
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, United Kingdom
- Mathematics for Real World Systems Centre for Doctoral Training, Mathematics Institute, University of Warwick, Coventry, United Kingdom
| | - Trystan Leng
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, United Kingdom
- Mathematics for Real World Systems Centre for Doctoral Training, Mathematics Institute, University of Warwick, Coventry, United Kingdom
| | - Hector McKimm
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, United Kingdom
- Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Massimiliano Tamborrino
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, United Kingdom
- Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Louise Dyson
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, United Kingdom
| | - Michael J. Tildesley
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, United Kingdom
| |
Collapse
|