1
|
Reiter L, Greffrath J, Zidel B, Ostrowski M, Gommerman J, Madhi SA, Tran R, Martin-Orozco N, Panicker RKG, Cooper C, Pastrak A. Comparable safety and non-inferior immunogenicity of the SARS-CoV-2 mRNA vaccine candidate PTX-COVID19-B and BNT162b2 in a phase 2 randomized, observer-blinded study. Sci Rep 2024; 14:5365. [PMID: 38438427 PMCID: PMC10912344 DOI: 10.1038/s41598-024-55320-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/22/2024] [Indexed: 03/06/2024] Open
Abstract
In the aftermath of the COVID-19 pandemic, the evolution of the SARS-CoV-2 into a seasonal pathogen along with the emergence of new variants, underscores the need for dynamic and adaptable responses, emphasizing the importance of sustained vaccination strategies. This observer-blind, double-dummy, randomized immunobridging phase 2 study (NCT05175742) aimed to compare the immunogenicity induced by two doses of 40 μg PTX-COVID19-B vaccine candidate administered 28 days apart, with the response induced by two doses of 30 µg Pfizer-BioNTech COVID-19 vaccine (BNT162b2), administered 21 days apart, in Nucleocapsid-protein seronegative adults 18-64 years of age. Both vaccines were administrated via intramuscular injection in the deltoid muscle. Two weeks after the second dose, the neutralizing antibody (NAb) geometric mean titer ratio and seroconversion rate met the non-inferiority criteria, successfully achieving the primary immunogenicity endpoints of the study. PTX-COVID19-B demonstrated similar safety and tolerability profile to BNT162b2 vaccine. The lowest NAb response was observed in subjects with low-to-undetectable NAb at baseline or no reported breakthrough infection. Conversely, participants who experienced breakthrough infections during the study exhibited higher NAb titers. This study also shows induction of cell-mediated immune (CMI) responses by PTX-COVID19-B. In conclusion, the vaccine candidate PTX-COVID19-B demonstrated favourable safety profile along with immunogenicity similar to the active comparator BNT162b2 vaccine.
Collapse
Affiliation(s)
- Lawrence Reiter
- Providence Therapeutics Holdings Inc., 120-8832 Blackfoot Trail SE, Calgary, AB, T2J 3J1, Canada
| | - Johann Greffrath
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Bian Zidel
- Malton Medical Center, 6870 Goreway Dr., Mississauga, ON, L4V 1P1, Canada
| | - Mario Ostrowski
- Department of Medicine, Immunology, University of Toronto, Medical Sciences Building, Rm 6271. 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Jennifer Gommerman
- Department of Immunology, Temerty Faculty of Medicine, 1 King's College Circle, Rm. 7233, Toronto, ON, M5S 1A8, Canada
| | - Shabir A Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Richard Tran
- Providence Therapeutics Holdings Inc., 120-8832 Blackfoot Trail SE, Calgary, AB, T2J 3J1, Canada
| | - Natalia Martin-Orozco
- Providence Therapeutics Holdings Inc., 120-8832 Blackfoot Trail SE, Calgary, AB, T2J 3J1, Canada
| | | | - Curtis Cooper
- The Ottawa Hospital Viral Hepatitis Program, Division of Infectious Diseases, Department of Medicine, The Ottawa Hospital, University of Ottawa, 75 Laurier Ave. East, Ottawa, ON, K1N 6N5, Canada
| | - Aleksandra Pastrak
- Providence Therapeutics Holdings Inc., 120-8832 Blackfoot Trail SE, Calgary, AB, T2J 3J1, Canada.
| |
Collapse
|
2
|
Hsieh CL, Leist SR, Miller EH, Zhou L, Powers JM, Tse AL, Wang A, West A, Zweigart MR, Schisler JC, Jangra RK, Chandran K, Baric RS, McLellan JS. Prefusion-stabilized SARS-CoV-2 S2-only antigen provides protection against SARS-CoV-2 challenge. Nat Commun 2024; 15:1553. [PMID: 38378768 PMCID: PMC10879192 DOI: 10.1038/s41467-024-45404-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Ever-evolving SARS-CoV-2 variants of concern (VOCs) have diminished the effectiveness of therapeutic antibodies and vaccines. Developing a coronavirus vaccine that offers a greater breadth of protection against current and future VOCs would eliminate the need to reformulate COVID-19 vaccines. Here, we rationally engineer the sequence-conserved S2 subunit of the SARS-CoV-2 spike protein and characterize the resulting S2-only antigens. Structural studies demonstrate that the introduction of interprotomer disulfide bonds can lock S2 in prefusion trimers, although the apex samples a continuum of conformations between open and closed states. Immunization with prefusion-stabilized S2 constructs elicits broadly neutralizing responses against several sarbecoviruses and protects female BALB/c mice from mouse-adapted SARS-CoV-2 lethal challenge and partially protects female BALB/c mice from mouse-adapted SARS-CoV lethal challenge. These engineering and immunogenicity results should inform the development of next-generation pan-coronavirus therapeutics and vaccines.
Collapse
Affiliation(s)
- Ching-Lin Hsieh
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Emily Happy Miller
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Medicine-Infectious Diseases, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ling Zhou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - John M Powers
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alexandra L Tse
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Albert Wang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ande West
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mark R Zweigart
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jonathan C Schisler
- McAllister Heart Institute and Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
3
|
Atyeo CG, Shook LL, Brigida S, De Guzman RM, Demidkin S, Muir C, Akinwunmi B, Baez AM, Sheehan ML, McSweeney E, Burns MD, Nayak R, Kumar MK, Patel CD, Fialkowski A, Cvrk D, Goldfarb IT, Yonker LM, Fasano A, Balazs AB, Elovitz MA, Gray KJ, Alter G, Edlow AG. Maternal immune response and placental antibody transfer after COVID-19 vaccination across trimester and platforms. Nat Commun 2022; 13:3571. [PMID: 35764643 PMCID: PMC9239994 DOI: 10.1038/s41467-022-31169-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 06/07/2022] [Indexed: 01/11/2023] Open
Abstract
The availability of three COVID-19 vaccines in the United States provides an unprecedented opportunity to examine how vaccine platforms and timing of vaccination in pregnancy impact maternal and neonatal immunity. Here, we characterize the antibody profile after Ad26.COV2.S, mRNA-1273 or BNT162b2 vaccination in 158 pregnant individuals and evaluate transplacental antibody transfer by profiling maternal and umbilical cord blood in 175 maternal-neonatal dyads. These analyses reveal lower vaccine-induced functions and Fc receptor-binding after Ad26.COV2.S compared to mRNA vaccination and subtle advantages in titer and function with mRNA-1273 versus BN162b2. mRNA vaccines have higher titers and functions against SARS-CoV-2 variants of concern. First and third trimester vaccination results in enhanced maternal antibody-dependent NK-cell activation, cellular and neutrophil phagocytosis, and complement deposition relative to second trimester. Higher transplacental transfer ratios following first and second trimester vaccination may reflect placental compensation for waning maternal titers. These results provide novel insight into the impact of platform and trimester of vaccination on maternal humoral immune response and transplacental antibody transfer.
Collapse
Affiliation(s)
- Caroline G Atyeo
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- PhD Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA, USA
| | - Lydia L Shook
- Department of Obstetrics & Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Sara Brigida
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Rose M De Guzman
- Department of Obstetrics & Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Stepan Demidkin
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Cordelia Muir
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Babatunde Akinwunmi
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Arantxa Medina Baez
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Erin McSweeney
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Madeleine D Burns
- Department of Obstetrics & Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ruhi Nayak
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Maya K Kumar
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chinmay D Patel
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Allison Fialkowski
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, USA
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Dana Cvrk
- Department of Obstetrics & Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ilona T Goldfarb
- Department of Obstetrics & Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lael M Yonker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Michal A Elovitz
- Maternal and Child Health Research Program, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn J Gray
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
| | - Andrea G Edlow
- Department of Obstetrics & Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
4
|
Broad Cross-Reactive IgA and IgG against Human Coronaviruses in Milk Induced by COVID-19 Vaccination and Infection. Vaccines (Basel) 2022; 10:vaccines10060980. [PMID: 35746588 PMCID: PMC9229351 DOI: 10.3390/vaccines10060980] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 12/19/2022] Open
Abstract
It is currently unclear if SARS-CoV-2 infection or mRNA vaccination can also induce IgG and IgA against common human coronaviruses (HCoVs) in lactating parents. Here we prospectively analyzed human milk (HM) and blood samples from lactating parents to measure the temporal patterns of anti-SARS-CoV-2 specific and anti-HCoV cross-reactive IgA and IgG responses. Two cohorts were analyzed: a vaccination cohort (n = 30) who received mRNA-based vaccines for COVID-19 (mRNA-1273 or BNT162b2), and an infection cohort (n = 45) with COVID-19 disease. Longitudinal HM and fingerstick blood samples were collected pre- and post-vaccination or, for infected subjects, at 5 time-points 14–28 days after confirmed diagnosis. The anti-spike(S) and anti-nucleocapsid(N) IgA and IgG antibody levels against SARS-CoV-2 and HCoVs were measured by multiplex immunoassay (mPlex-CoV). We found that vaccination significantly increased the anti-S IgA and IgG levels in HM. In contrast, while IgG levels increased after a second vaccine dose, blood and HM IgA started to decrease. Moreover, HM and blood anti-S IgG levels were significantly correlated, but anti-S IgA levels were not. SARS2 acute infection elicited anti-S IgG and IgA that showed much higher correlations between HM and blood compared to vaccination. Vaccination and infection were able to significantly increase the broadly cross-reactive IgG recognizing HCoVs in HM and blood than the IgA antibodies in HM and blood. In addition, the broader cross-reactivity of IgG in HM versus blood indicates that COVID-19 vaccination and infection might provide passive immunity through HM for the breastfed infants not only against SARS-CoV-2 but also against common cold coronaviruses.
Collapse
|
5
|
WANG G, XIANG Z, WANG W, CHEN Z. Seasonal coronaviruses and SARS-CoV-2: effects of preexisting immunity during the COVID-19 pandemic. J Zhejiang Univ Sci B 2022; 23:451-460. [PMID: 35686525 PMCID: PMC9198228 DOI: 10.1631/jzus.b2200049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Although the coronavirus disease 2019 (COVID-19) epidemic is still ongoing, vaccination rates are rising slowly and related treatments and drugs are being developed. At the same time, there is increasing evidence of preexisting immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in humans, mainly consisting of preexisting antibodies and immune cells (including T cells and B cells). The presence of these antibodies is mainly due to the seasonal prevalence of four common coronavirus types, especially OC43 and HKU1. The accumulated relevant evidence has suggested that the target of antibodies is mainly the S2 subunit of S protein, followed by evolutionary conservative regions such as the nucleocapsid (N) protein. Additionally, preexisting memory T and B cells are also present in the population. Preexisting antibodies can help the body protect against SARS-CoV-2 infection, reduce the severity of COVID-19, and rapidly increase the immune response post-infection. These multiple effects can directly affect disease progression and even the likelihood of death in certain individuals. Besides the positive effects, preexisting immunity may also have negative consequences, such as antibody-dependent enhancement (ADE) and original antigenic sin (OAS), the prevalence of which needs to be further established. In the future, more research should be focused on evaluating the role of preexisting immunity in COVID-19 outcomes, adopting appropriate policies and strategies for fighting the pandemic, and vaccine development that considers preexisting immunity.
Collapse
Affiliation(s)
- Gang WANG
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310003, China
| | - Ze XIANG
- Zhejiang University School of Medicine, Hangzhou310003, China
| | - Wei WANG
- Jiangsu Institute of Parasitic Diseases, Wuxi214064, China
| | - Zhi CHEN
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310003, China,Zhi CHEN,
| |
Collapse
|
6
|
Mehta S, Zhang J. Liquid-liquid phase separation drives cellular function and dysfunction in cancer. Nat Rev Cancer 2022; 22:239-252. [PMID: 35149762 PMCID: PMC10036213 DOI: 10.1038/s41568-022-00444-7] [Citation(s) in RCA: 171] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 12/11/2022]
Abstract
Cancer is a disease of uncontrollably reproducing cells. It is governed by biochemical pathways that have escaped the regulatory bounds of normal homeostatic balance. This balance is maintained through precise spatiotemporal regulation of these pathways. The formation of biomolecular condensates via liquid-liquid phase separation (LLPS) has recently emerged as a widespread mechanism underlying the spatiotemporal coordination of biological activities in cells. Biomolecular condensates are widely observed to directly regulate key cellular processes involved in cancer cell pathology, and the dysregulation of LLPS is increasingly implicated as a previously hidden driver of oncogenic activity. In this Perspective, we discuss how LLPS shapes the biochemical landscape of cancer cells.
Collapse
Affiliation(s)
- Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Dispinseri S, Marzinotto I, Brigatti C, Pirillo MF, Tolazzi M, Bazzigaluppi E, Canitano A, Borghi M, Gallinaro A, Caccia R, Vercesi R, McKay PF, Ciceri F, Piemonti L, Negri D, Cinque P, Cara A, Scarlatti G, Lampasona V. Seasonal Betacoronavirus Antibodies' Expansion Post-BNT161b2 Vaccination Associates with Reduced SARS-CoV-2 VoC Neutralization. J Clin Immunol 2022; 42:448-458. [PMID: 35000058 PMCID: PMC8742681 DOI: 10.1007/s10875-021-01190-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/28/2021] [Indexed: 01/21/2023]
Abstract
SARS-CoV-2 vaccination is known to induce antibodies that recognize also variants of concerns (VoCs) of the virus. However, epidemiological and laboratory evidences indicate that these antibodies have a reduced neutralization ability against VoCs. We studied binding and neutralizing antibodies against the Spike protein domains and subunits of the Wuhan-Hu-1 virus and its alpha, beta, delta VoCs and of seasonal betacoronaviruses (HKU1 and OC43) in a cohort of 31 health care workers prospectively followed post-vaccination with BNT162b2-Comirnaty. The study of sequential samples collected up to 64 days post-vaccination showed that serological assays measuring IgG against Wuhan-Hu-1 antigens were a poor proxy for VoC neutralization. In addition, in subjects who had asymptomatic or mild COVID-19 prior to vaccination, the loss of nAbs following disease could be rapid and accompanied by post-vaccination antibody levels similar to those of naïve vaccinees. Interestingly, in health care workers naïve for SARS-CoV-2 infection, vaccination induced a rapid and transient reactivation of pre-existing seasonal coronaviruses IgG responses that was associated with a subsequent reduced ability to neutralize alpha and beta VoCs.
Collapse
Affiliation(s)
- Stefania Dispinseri
- Viral Evolution and Transmission Unit, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Ilaria Marzinotto
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Cristina Brigatti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Maria Franca Pirillo
- National Center for Global Health, Istituto Superiore Di Sanità, 00161, Rome, Italy
| | - Monica Tolazzi
- Viral Evolution and Transmission Unit, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Elena Bazzigaluppi
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Andrea Canitano
- National Center for Global Health, Istituto Superiore Di Sanità, 00161, Rome, Italy
| | - Martina Borghi
- Department of Infectious Diseases, Istituto Superiore Di Sanità, 00161, Rome, Italy
| | - Alessandra Gallinaro
- National Center for Global Health, Istituto Superiore Di Sanità, 00161, Rome, Italy
| | - Roberta Caccia
- Unit of Infectious Diseases, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Riccardo Vercesi
- Unit of Infectious Diseases, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Paul F McKay
- Department of Infectious Disease, Imperial College, London, UK
| | - Fabio Ciceri
- School of Medicine and Surgery, Università Vita-Salute San Raffaele, 20132, Milan, Italy
- Hematology and Bone Marrow Transplantation Unit, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
- School of Medicine and Surgery, Università Vita-Salute San Raffaele, 20132, Milan, Italy
| | - Donatella Negri
- Department of Infectious Diseases, Istituto Superiore Di Sanità, 00161, Rome, Italy
| | - Paola Cinque
- Unit of Infectious Diseases, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Andrea Cara
- National Center for Global Health, Istituto Superiore Di Sanità, 00161, Rome, Italy
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, IRCCS Ospedale San Raffaele, 20132, Milan, Italy.
| | - Vito Lampasona
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20132, Milan, Italy.
| |
Collapse
|
8
|
Crowley AR, Natarajan H, Hederman AP, Bobak CA, Weiner JA, Wieland-Alter W, Lee J, Bloch EM, Tobian AAR, Redd AD, Blankson JN, Wolf D, Goetghebuer T, Marchant A, Connor RI, Wright PF, Ackerman ME. Boosting of cross-reactive antibodies to endemic coronaviruses by SARS-CoV-2 infection but not vaccination with stabilized spike. eLife 2022; 11:e75228. [PMID: 35289271 PMCID: PMC8923670 DOI: 10.7554/elife.75228] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Preexisting antibodies to endemic coronaviruses (CoV) that cross-react with SARS-CoV-2 have the potential to influence the antibody response to COVID-19 vaccination and infection for better or worse. In this observational study of mucosal and systemic humoral immunity in acutely infected, convalescent, and vaccinated subjects, we tested for cross-reactivity against endemic CoV spike (S) protein at subdomain resolution. Elevated responses, particularly to the β-CoV OC43, were observed in all natural infection cohorts tested and were correlated with the response to SARS-CoV-2. The kinetics of this response and isotypes involved suggest that infection boosts preexisting antibody lineages raised against prior endemic CoV exposure that cross-react. While further research is needed to discern whether this recalled response is desirable or detrimental, the boosted antibodies principally targeted the better-conserved S2 subdomain of the viral spike and were not associated with neutralization activity. In contrast, vaccination with a stabilized spike mRNA vaccine did not robustly boost cross-reactive antibodies, suggesting differing antigenicity and immunogenicity. In sum, this study provides evidence that antibodies targeting endemic CoV are robustly boosted in response to SARS-CoV-2 infection but not to vaccination with stabilized S, and that depending on conformation or other factors, the S2 subdomain of the spike protein triggers a rapidly recalled, IgG-dominated response that lacks neutralization activity.
Collapse
Affiliation(s)
- Andrew R Crowley
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth CollegeHanoverUnited States
| | - Harini Natarajan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth CollegeHanoverUnited States
| | | | - Carly A Bobak
- Biomedical Data Science, Dartmouth CollegeHanoverUnited States
| | - Joshua A Weiner
- Thayer School of Engineering, Dartmouth CollegeHanoverUnited States
| | - Wendy Wieland-Alter
- Department of Pediatrics, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical CenterLebanonUnited States
| | - Jiwon Lee
- Thayer School of Engineering, Dartmouth CollegeHanoverUnited States
| | - Evan M Bloch
- Department of Pathology, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Aaron AR Tobian
- Department of Pathology, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Andrew D Redd
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of MedicineBaltimoreUnited States
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Joel N Blankson
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Dana Wolf
- Hadassah University Medical CenterJerusalemIsrael
| | - Tessa Goetghebuer
- Institute for Medical Immunology, Université libre de BruxellesCharleroiBelgium
- Pediatric Department, CHU St PierreBrusselsBelgium
| | - Arnaud Marchant
- Institute for Medical Immunology, Université libre de BruxellesCharleroiBelgium
| | - Ruth I Connor
- Department of Pediatrics, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical CenterLebanonUnited States
| | - Peter F Wright
- Department of Pediatrics, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical CenterLebanonUnited States
| | - Margaret E Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth CollegeHanoverUnited States
- Thayer School of Engineering, Dartmouth CollegeHanoverUnited States
- Biomedical Data Science, Dartmouth CollegeHanoverUnited States
| |
Collapse
|
9
|
Wang J, Young BE, Li D, Seppo AE, Zhou Q, Wiltse A, Nowak-Wegrzyn A, Murphy K, Widrick K, Diaz N, Cruz-Vasquez J, Järvinen KM, Zand MS. Broad Cross-reactive IgA and IgG Against Human Coronaviruses in Milk Induced by COVID-19 Vaccination and Infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.03.13.22272281. [PMID: 35313594 PMCID: PMC8936120 DOI: 10.1101/2022.03.13.22272281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
UNLABELLED It is currently unclear if SARS-CoV-2 infection or mRNA vaccination can also induce IgG and IgA against common human coronaviruses (HCoVs) in lactating parents. Here we prospectively analyzed human milk (HM) and blood samples from lactating parents to measure the temporal patterns of anti-SARS-CoV-2 specific and anti-HCoV cross-reactive IgA and IgG responses. Two cohorts were analyzed: a vaccination cohort (n=30) who received mRNA-based vaccines for COVID-19 (mRNA-1273 or BNT162b2), and an infection cohort (n=45) with COVID-19 disease. Longitudinal HM and fingerstick blood samples were collected pre- and post-vaccination or, for infected subjects, at 5 time-points 14 - 28 days after confirmed diagnosis. The anti-spike(S) and antinucleocapsid(N) IgA and IgG antibody levels against SARS-CoV-2 and HCoVs were measured by multiplex immunoassay (mPlex-CoV). We found that vaccination significantly increased the anti-S IgA and IgG levels in HM. In contrast, while IgG levels increased after a second vaccine dose, blood and HM IgA started to decrease. Moreover, HM and blood anti-S IgG levels were significantly correlated, but anti-S IgA levels were not. SARS2 acute infection elicited anti-S IgG and IgA that showed much higher correlations between HM and blood compared to vaccination. Vaccination and infection were able to significantly increase the broadly cross-reactive IgG recognizing HCoVs in HM and blood than the IgA antibodies in HM and blood. In addition, the broader cross-reactivity of IgG in HM versus blood indicates that COVID-19 vaccination and infection might provide passive immunity through HM for the breastfed infants not only against SARS-CoV-2 but also against common cold coronaviruses. IMPORTANCE It is unknown if COVID-19 mRNA vaccination and infection in lactating mothers results in cross-reactive antibodies against other common human coronaviruses. Our study demonstrates that mRNA vaccination and COVID-19 infection increase anti-spike SARS-CoV-2 IgA and IgG in both blood and milk. IgA and IgG antibody concentrations in milk were more tightly correlated with concentrations in blood after infection compared to mRNA vaccination. Notably, both infection and vaccination resulted in increased IgG against common seasonal β -coronaviruses. This suggests that SARS-CoV-2 vaccination or infection in a lactating parent may result in passive immunity against SARS-CoV-2 and seasonal coronaviruses for the recipient infant.
Collapse
|
10
|
Brintnell E, Gupta M, Anderson DW. Phylogenetic and Ancestral Sequence Reconstruction of SARS-CoV-2 Reveals Latent Capacity to Bind Human ACE2 Receptor. J Mol Evol 2021; 89:656-664. [PMID: 34739551 PMCID: PMC8570237 DOI: 10.1007/s00239-021-10034-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/26/2021] [Indexed: 01/05/2023]
Abstract
SARS-CoV-2 is a unique event, having emerged suddenly as a highly infectious viral pathogen for human populations. Previous phylogenetic analyses show its closest known evolutionary relative to be a virus detected in bats (RaTG13), with a common assumption that SARS-CoV-2 evolved from a zoonotic ancestor via recent genetic changes (likely in the Spike protein receptor-binding domain or RBD) that enabled it to infect humans. We used detailed phylogenetic analysis, ancestral sequence reconstruction, and in situ molecular dynamics simulations to examine the Spike-RBD's functional evolution, finding that the common ancestral virus with RaTG13, dating to no later than 2013, possessed high binding affinity to the human ACE2 receptor. This suggests that SARS-CoV-2 likely possessed a latent capacity to bind to human cellular targets (though this may not have been sufficient for successful infection) and emphasizes the importance of expanding efforts to catalog and monitor viruses circulating in both human and non-human populations.
Collapse
Affiliation(s)
- Erin Brintnell
- Bachelor of Health Sciences Program, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Mehul Gupta
- Bachelor of Health Sciences Program, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
| | - Dave W Anderson
- Bachelor of Health Sciences Program, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada.
| |
Collapse
|
11
|
Dong Y, Dai T, Wang B, Zhang L, Zeng LH, Huang J, Yan H, Zhang L, Zhou F. The way of SARS-CoV-2 vaccine development: success and challenges. Signal Transduct Target Ther 2021; 6:387. [PMID: 34753918 PMCID: PMC8575680 DOI: 10.1038/s41392-021-00796-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/10/2021] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). To halt the pandemic, multiple SARS-CoV-2 vaccines have been developed and several have been allowed for emergency use and rollout worldwide. With novel SARS-CoV-2 variants emerging and circulating widely, whether the original vaccines that were designed based on the wild-type SARS-CoV-2 were effective against these variants has been a contentious discussion. Moreover, some studies revealed the long-term changes of immune responses post SARS-CoV-2 infection or vaccination and the factors that might impact the vaccine-induced immunity. Thus, in this review, we have summarized the influence of mutational hotspots on the vaccine efficacy and characteristics of variants of interest and concern. We have also discussed the reasons that might result in discrepancies in the efficacy of different vaccines estimated in different trials. Furthermore, we provided an overview of the duration of immune responses after natural infection or vaccination and shed light on the factors that may affect the immunity induced by the vaccines, such as special disease conditions, sex, and pre-existing immunity, with the aim of aiding in combating COVID-19 and distributing SARS-CoV-2 vaccines under the prevalence of diverse SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Yetian Dong
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, Zhejiang, China
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, China
| | - Tong Dai
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
| | - Bin Wang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lei Zhang
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, China
| | - Ling-Hui Zeng
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, Zhejiang, China
| | - Jun Huang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Haiyan Yan
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, Zhejiang, China
| | - Long Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
12
|
Ehara H. Detailed Analysis of Immune Tolerance Mechanisms to SARS-CoV-2 in Children Is Needed. Front Pediatr 2021; 9:652838. [PMID: 34796148 PMCID: PMC8594572 DOI: 10.3389/fped.2021.652838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hiroshi Ehara
- Pediatrics and Primary Care, Ehara Clinic, Tokyo, Japan
| |
Collapse
|
13
|
Crowley AR, Natarajan H, Hederman AP, Bobak CA, Weiner JA, Wieland-Alter W, Lee J, Bloch EM, Tobian AA, Redd AD, Blankson JN, Wolf D, Goetghebuer T, Marchant A, Connor RI, Wright PF, Ackerman ME. Boosting of Cross-Reactive Antibodies to Endemic Coronaviruses by SARS-CoV-2 Infection but not Vaccination with Stabilized Spike. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.10.27.21265574. [PMID: 34729565 PMCID: PMC8562549 DOI: 10.1101/2021.10.27.21265574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pre-existing antibodies to endemic coronaviruses (CoV) that cross-react with SARS-CoV-2 have the potential to influence the antibody response to COVID-19 vaccination and infection for better or worse. In this observational study of mucosal and systemic humoral immunity in acutely infected, convalescent, and vaccinated subjects, we tested for cross reactivity against endemic CoV spike (S) protein at subdomain resolution. Elevated responses, particularly to the β-CoV OC43, were observed in all natural infection cohorts tested and were correlated with the response to SARS-CoV-2. The kinetics of this response and isotypes involved suggest that infection boosts preexisting antibody lineages raised against prior endemic CoV exposure that cross react. While further research is needed to discern whether this recalled response is desirable or detrimental, the boosted antibodies principally targeted the better conserved S2 subdomain of the viral spike and were not associated with neutralization activity. In contrast, vaccination with a stabilized spike mRNA vaccine did not robustly boost cross-reactive antibodies, suggesting differing antigenicity and immunogenicity. In sum, this study provides evidence that antibodies targeting endemic CoV are robustly boosted in response to SARS-CoV-2 infection but not to vaccination with stabilized S, and that depending on conformation or other factors, the S2 subdomain of the spike protein triggers a rapidly recalled, IgG-dominated response that lacks neutralization activity.
Collapse
Affiliation(s)
- Andrew R. Crowley
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, USA
| | - Harini Natarajan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, USA
| | | | - Carly A. Bobak
- Biomedical Data Science, Dartmouth College, Hanover, NH, USA
| | - Joshua A. Weiner
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Wendy Wieland-Alter
- Department of Pediatrics, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Jiwon Lee
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Evan M. Bloch
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Aaron A.R. Tobian
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Andrew D. Redd
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joel N. Blankson
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Dana Wolf
- Hadassah University Medical Center, Jerusalem, Israel
| | - Tessa Goetghebuer
- Institute for Medical Immunology, Université libre de Bruxelles, Charleroi, Belgium
- Pediatric Department, CHU St Pierre, Brussels, Belgium
| | - Arnaud Marchant
- Institute for Medical Immunology, Université libre de Bruxelles, Charleroi, Belgium
| | - Ruth I. Connor
- Department of Pediatrics, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Peter F. Wright
- Department of Pediatrics, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Margaret E. Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- Biomedical Data Science, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
14
|
LaSalle TJ, Gonye ALK, Freeman SS, Kaplonek P, Gushterova I, Kays KR, Manakongtreecheep K, Tantivit J, Rojas-Lopez M, Russo BC, Sharma N, Thomas MF, Lavin-Parsons KM, Lilly BM, Mckaig BN, Charland NC, Khanna HK, Lodenstein CL, Margolin JD, Blaum EM, Lirofonis PB, Sonny A, Bhattacharyya RP, Parry BA, Goldberg MB, Alter G, Filbin MR, Villani AC, Hacohen N, Sade-Feldman M. Longitudinal characterization of circulating neutrophils uncovers distinct phenotypes associated with disease severity in hospitalized COVID-19 patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34642692 DOI: 10.1101/2021.10.04.463121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Multiple studies have identified an association between neutrophils and COVID-19 disease severity; however, the mechanistic basis of this association remains incompletely understood. Here we collected 781 longitudinal blood samples from 306 hospitalized COVID-19 + patients, 78 COVID-19 âˆ' acute respiratory distress syndrome patients, and 8 healthy controls, and performed bulk RNA-sequencing of enriched neutrophils, plasma proteomics, cfDNA measurements and high throughput antibody profiling assays to investigate the relationship between neutrophil states and disease severity or death. We identified dynamic switches between six distinct neutrophil subtypes using non-negative matrix factorization (NMF) clustering. At days 3 and 7 post-hospitalization, patients with severe disease had an enrichment of a granulocytic myeloid derived suppressor cell-like state gene expression signature, while non-severe patients with resolved disease were enriched for a progenitor-like immature neutrophil state signature. Severe disease was associated with gene sets related to neutrophil degranulation, neutrophil extracellular trap (NET) signatures, distinct metabolic signatures, and enhanced neutrophil activation and generation of reactive oxygen species (ROS). We found that the majority of patients had a transient interferon-stimulated gene signature upon presentation to the emergency department (ED) defined here as Day 0, regardless of disease severity, which persisted only in patients who subsequently died. Humoral responses were identified as potential drivers of neutrophil effector functions, as enhanced antibody-dependent neutrophil phagocytosis and reduced NETosis was associated with elevated SARS-CoV-2-specific IgG1-to-IgA1 ratios in plasma of severe patients who survived. In vitro experiments confirmed that while patient-derived IgG antibodies mostly drove neutrophil phagocytosis and ROS production in healthy donor neutrophils, patient-derived IgA antibodies induced a predominant NETosis response. Overall, our study demonstrates neutrophil dysregulation in severe COVID-19 and a potential role for IgA-dominant responses in driving neutrophil effector functions in severe disease and mortality.
Collapse
|