1
|
Friedrich M. Newly discovered harvestmen relict eyes eyeing for their functions. Bioessays 2025; 47:e2400194. [PMID: 39543788 DOI: 10.1002/bies.202400194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/20/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
Most chelicerates operate the world with two kinds of visual organs, the median and lateral eyes of the arthropod ground plan. In harvestmen (Opiliones), however, members of the small and withdrawn suborder Cyphophthalmi lack eyes except for two genera with lateral eyes. In the other suborders (Eupnoi, Dyspnoi, and Laniatores), lateral eyes are absent but median eyes pronounced. To resolve the phylogenetic history of these contrasting trait states and the taxonomic position of a four-eyed harvestmen fossil, visual system development was recently studied in the daddy longleg Phalangium opilio (Eupnoi). This effort uncovered not only a highly regressed and internalized pair of lateral eyes but also a similarly cryptic pair of additional median eyes. After recounting the evo-devo discovery journey of uncompromising harvestmen taxonomists, this review explores comparative evidence that the enigmatic P. opilio relict eyes might serve the multichannel zeitgeber system of the biological clock.
Collapse
Affiliation(s)
- Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
- Department of Ophthalmological, Visual, and Anatomical Sciences, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
2
|
Soffers JH, Beck E, Sytkowski DJ, Maughan ME, Devasi D, Zhu Y, Wilson B, David Chen YC, Erclik T, Truman JW, Skeath JB, Lacin H. A library of lineage-specific driver lines connects developing neuronal circuits to behavior in the Drosophila Ventral Nerve Cord. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.27.625713. [PMID: 39651218 PMCID: PMC11623677 DOI: 10.1101/2024.11.27.625713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Understanding the developmental changes in neuronal lineages is crucial to elucidate how they assemble into functional neural networks. Studies investigating nervous system development in model systems have focused on only on a few regions of the central nervous system due to the limited availability of genetic drivers that target specific neuronal lineages throughout development and adult life. This has hindered our understanding of how distinct neuronal lineages interconnect to form neuronal circuits during development. Here, we present a split-GAL4 library composed of genetic driver lines, which we generated via editing the genomic locus of lineage-specific transcription factors and demonstrate that we can use this library to specifically target most individual neuronal hemilineages in the Drosophila ventral nerve cord (VNC) throughout development and into adulthood. Using these genetic driver lines, we found striking morphological changes in neuronal processes within a lineage during metamorphosis. We also demonstrated how neurochemical features of neuronal classes can be quickly assessed. Lastly, we documented behaviors elicited in response to optogenetic activation of individual neuronal lineages and generated a comprehensive lineage-behavior map of the entire fly VNC. Looking forward, this lineage-specific split-GAL4 driver library will provide the genetic tools needed to address the questions emerging from the analysis of the recent VNC connectome and transcriptome datasets.
Collapse
|
3
|
Calabrese RL, Marder E. Degenerate neuronal and circuit mechanisms important for generating rhythmic motor patterns. Physiol Rev 2025; 105:95-135. [PMID: 39453990 DOI: 10.1152/physrev.00003.2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 10/27/2024] Open
Abstract
In 1996, we published a review article (Marder E, Calabrese RL. Physiol Rev 76: 687-717, 1996) describing the state of knowledge about the structure and function of the central pattern-generating circuits important for producing rhythmic behaviors. Although many of the core questions persist, much has changed since 1996. Here, we focus on newer studies that reveal ambiguities that complicate understanding circuit dynamics, despite the enormous technical advances of the recent past. In particular, we highlight recent studies of animal-to-animal variability and our understanding that circuit rhythmicity may be supported by multiple state-dependent mechanisms within the same animal and that robustness and resilience in the face of perturbation may depend critically on the presence of modulators and degenerate circuit mechanisms. Additionally, we highlight the use of computational models to ask whether there are generalizable principles about circuit motifs that can be found across rhythmic motor systems in different animal species.
Collapse
Affiliation(s)
| | - Eve Marder
- Brandeis University, Waltham, Massachusetts, United States
| |
Collapse
|
4
|
Savoy A, Anderson KL, Gogola JV. The songbird connectome (OSCINE-NET.ORG): structure-function organization beyond the canonical vocal control network. BMC Neurosci 2024; 25:79. [PMID: 39731002 DOI: 10.1186/s12868-024-00919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/12/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Understanding the neural basis of behavior requires insight into how different brain systems coordinate with each other. Existing connectomes for various species have highlighted brain systems essential to various aspects of behavior, yet their application to complex learned behaviors remains limited. Research on vocal learning in songbirds has extensively focused on the vocal control network, though recent work implicates a variety of circuits in contributing to important aspects of vocal behavior. Thus, a more comprehensive understanding of brain-wide connectivity is essential to further assess the totality of circuitry underlying this complex learned behavior. RESULTS We present the Oscine Structural Connectome for Investigating NEural NETwork ORGanization (OSCINE-NET.ORG), the first interactive mesoscale connectome for any vocal learner. This comprehensive digital map includes all known connectivity data, covering major brain superstructures and functional networks. Our analysis reveals that the songbird brain exhibits small-world properties, with highly connected communities functionally designated as motor, visual, associative, vocal, social, and auditory. Moreover, there is a small set of significant connections across these communities, including from social and auditory sub-communities to vocal sub-communities, which highlight ethologically relevant facets of vocal learning and production. Notably, the vocal community contains the majority of the canonical vocal control network, as well as a variety of other nodes that are highly interconnected with it, meriting further evaluation for their inclusion in this network. A subset of nodes forms a "rich broker club," highly connected across the brain and forming a small circuit amongst themselves, indicating they may play a key role in information transfer broadly. Collectively, their bidirectional connectivity with multiple communities indicates they may act as liaisons across multiple functional circuits for a variety of complex behaviors. CONCLUSIONS OSCINE-NET.ORG offers unprecedented access to detailed songbird connectivity data, promoting insight into the neural circuits underlying complex behaviors. This data emphasizes the importance of brain-wide integration in vocal learning, facilitating a potential reevaluation of the canonical vocal control network. Furthermore, we computationally identify a small, previously unidentified circuit-one which may play an impactful role in brain-wide coordination of multiple complex behaviors.
Collapse
Affiliation(s)
- Andrew Savoy
- Department of Psychology, Integrative Neuroscience Program, University of Chicago, 5848 S University Ave, Chicago, IL, 60637, USA.
| | - Katherine L Anderson
- Department of Molecular, Cellular, and Developmental Biology, The City University of New York Graduate Center, 365 5th Ave, New York, NY, 10016, USA.
- Department of Biology, The City College of the City University of New York, 160 Convent Ave, New York, NY, 10031, USA.
| | - Joseph V Gogola
- Department of Medicine, The University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA.
| |
Collapse
|
5
|
Lee SYJ, Dallmann CJ, Cook A, Tuthill JC, Agrawal S. Divergent neural circuits for proprioceptive and exteroceptive sensing of the Drosophila leg. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590808. [PMID: 38712128 PMCID: PMC11071415 DOI: 10.1101/2024.04.23.590808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Somatosensory neurons provide the nervous system with information about mechanical forces originating inside and outside the body. Here, we use connectomics from electron microscopy to reconstruct and analyze neural circuits downstream of the largest somatosensory organ in the Drosophila leg, the femoral chordotonal organ (FeCO). The FeCO has been proposed to support both proprioceptive sensing of the fly's femur-tibia joint and exteroceptive sensing of substrate vibrations, but it was unknown which sensory neurons and central circuits contribute to each of these functions. We found that different subtypes of FeCO sensory neurons feed into distinct proprioceptive and exteroceptive pathways. Position- and movement-encoding FeCO neurons connect to local leg motor control circuits in the ventral nerve cord (VNC), indicating a proprioceptive function. In contrast, signals from the vibration-encoding FeCO neurons are integrated across legs and transmitted to mechanosensory regions in the brain, indicating an exteroceptive function. Overall, our analyses reveal the structure of specialized circuits for processing proprioceptive and exteroceptive signals from the fly leg. These findings are consistent with a growing body of work in invertebrate and vertebrate species demonstrating the existence of specialized limb mechanosensory pathways for sensing external vibrations.
Collapse
Affiliation(s)
- Su-Yee J. Lee
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Chris J. Dallmann
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
- Department of Neurobiology and Genetics, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Andrew Cook
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - John C. Tuthill
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Sweta Agrawal
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
- School of Neuroscience, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
6
|
Francés R, Rabah Y, Preat T, Plaçais PY. Diverting glial glycolytic flux towards neurons is a memory-relevant role of Drosophila CRH-like signalling. Nat Commun 2024; 15:10467. [PMID: 39622834 PMCID: PMC11612226 DOI: 10.1038/s41467-024-54778-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024] Open
Abstract
An essential role of glial cells is to comply with the large and fluctuating energy needs of neurons. Metabolic adaptation is integral to the acute stress response, suggesting that glial cells could be major, yet overlooked, targets of stress hormones. Here we show that Dh44 neuropeptide, Drosophila homologue of mammalian corticotropin-releasing hormone (CRH), acts as an experience-dependent metabolic switch for glycolytic output in glia. Dh44 released by dopamine neurons limits glial fatty acid synthesis and build-up of lipid stores. Although basally active, this hormonal axis is acutely stimulated following learning of a danger-predictive cue. This results in transient suppression of glial anabolic use of pyruvate, sparing it for memory-relevant energy supply to neurons. Diverting pyruvate destination may dampen the need to upregulate glial glycolysis in response to increased neuronal demand. Although beneficial for the energy efficiency of memory formation, this mechanism reveals an ongoing competition between neuronal fuelling and glial anabolism.
Collapse
Affiliation(s)
- Raquel Francés
- Energy & Memory, Brain Plasticity (UMR 8249), CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Yasmine Rabah
- Energy & Memory, Brain Plasticity (UMR 8249), CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Thomas Preat
- Energy & Memory, Brain Plasticity (UMR 8249), CNRS, ESPCI Paris, PSL Research University, Paris, France.
| | - Pierre-Yves Plaçais
- Energy & Memory, Brain Plasticity (UMR 8249), CNRS, ESPCI Paris, PSL Research University, Paris, France.
| |
Collapse
|
7
|
Tao L, Ayambem D, Barranca VJ, Bhandawat V. Neurons Underlying Aggression-Like Actions That Are Shared by Both Males and Females in Drosophila. J Neurosci 2024; 44:e0142242024. [PMID: 39317475 PMCID: PMC11529818 DOI: 10.1523/jneurosci.0142-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024] Open
Abstract
Aggression involves both sexually monomorphic and dimorphic actions. How the brain implements these two types of actions is poorly understood. We found that in Drosophila melanogaster, a set of neurons, which we call CL062, previously shown to mediate male aggression also mediate female aggression. These neurons elicit aggression acutely and without the presence of a target. Although the same set of actions is elicited in males and females, the overall behavior is sexually dimorphic. The CL062 neurons do not express fruitless, a gene required for sexual dimorphism in flies, and expressed by most other neurons important for controlling fly aggression. Connectomic analysis in a female electron microscopy dataset suggests that these neurons have limited connections with fruitless expressing neurons that have been shown to be important for aggression and signal to different descending neurons. Thus, CL062 is part of a monomorphic circuit for aggression that functions parallel to the known dimorphic circuits.
Collapse
Affiliation(s)
- Liangyu Tao
- School of Biomedical Engineering and Health Sciences, Drexel University, Philadelphia, Pennsylvania 19104
| | | | | | - Vikas Bhandawat
- School of Biomedical Engineering and Health Sciences, Drexel University, Philadelphia, Pennsylvania 19104
| |
Collapse
|
8
|
Fisher JD, Crown AM, Sorkaç A, Martinez-Machado S, Snell NJ, Vishwanath N, Monje S, Vo A, Wu AH, Moșneanu RA, Okoro AM, Savaş D, Nkera B, Iturralde P, Kumari A, Chou-Freed C, Hartmann GG, Talay M, Barnea G. Convergent olfactory circuits for courtship in Drosophila revealed by ds-Tango. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619891. [PMID: 39484479 PMCID: PMC11527207 DOI: 10.1101/2024.10.23.619891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Animals exhibit sex-specific behaviors that are governed by sexually dimorphic circuits. One such behavior in male Drosophila melanogaster, courtship, is regulated by various sensory modalities, including olfaction. Here, we reveal how sexually dimorphic olfactory pathways in male flies converge at the third-order, onto lateral horn output neurons, to regulate courtship. To achieve this, we developed ds-Tango, a modified version of the monosynaptic tracing and manipulation tool trans-Tango. In ds-Tango, two distinct configurations of trans-Tango are positioned in series, thus providing selective genetic access not only to the monosynaptic partners of starter neurons but also to their disynaptic connections. Using ds-Tango, we identified a node of convergence for three sexually dimorphic olfactory pathways. Silencing this node results in deficits in sex recognition of potential partners. Our results identify lateral horn output neurons required for proper courtship behavior in male flies and establish ds-Tango as a tool for disynaptic circuit tracing.
Collapse
Affiliation(s)
- John D. Fisher
- These authors contributed equally
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Nanite Inc., Boston, MA, USA
| | - Anthony M. Crown
- These authors contributed equally
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Altar Sorkaç
- These authors contributed equally
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Sasha Martinez-Machado
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Department of Neurology, Rhode Island Hospital, Providence, RI, USA
| | - Nathaniel J. Snell
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Nanite Inc., Boston, MA, USA
| | - Neel Vishwanath
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Department of Plastic and Reconstructive Surgery, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Silas Monje
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: The Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - An Vo
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Department of Cognitive and Psychological Sciences, Brown University, Providence, RI, USA
| | - Annie H. Wu
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Rareș A. Moșneanu
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Angel M. Okoro
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Doruk Savaş
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Bahati Nkera
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Pablo Iturralde
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Aastha Kumari
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Cambria Chou-Freed
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Department of Department of Cell and Tissue Biology, UCSF, San Francisco, CA, USA
| | - Griffin G. Hartmann
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Cancer Biology Program, Stanford University, Stanford, CA, USA
| | - Mustafa Talay
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA,, USA
| | - Gilad Barnea
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| |
Collapse
|
9
|
Gür B, Ramirez L, Cornean J, Thurn F, Molina-Obando S, Ramos-Traslosheros G, Silies M. Neural pathways and computations that achieve stable contrast processing tuned to natural scenes. Nat Commun 2024; 15:8580. [PMID: 39362859 PMCID: PMC11450186 DOI: 10.1038/s41467-024-52724-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
Natural scenes are highly dynamic, challenging the reliability of visual processing. Yet, humans and many animals perform accurate visual behaviors, whereas computer vision devices struggle with rapidly changing background luminance. How does animal vision achieve this? Here, we reveal the algorithms and mechanisms of rapid luminance gain control in Drosophila, resulting in stable visual processing. We identify specific transmedullary neurons as the site of luminance gain control, which pass this property to direction-selective cells. The circuitry further involves wide-field neurons, matching computational predictions that local spatial pooling drive optimal contrast processing in natural scenes when light conditions change rapidly. Experiments and theory argue that a spatially pooled luminance signal achieves luminance gain control via divisive normalization. This process relies on shunting inhibition using the glutamate-gated chloride channel GluClα. Our work describes how the fly robustly processes visual information in dynamically changing natural scenes, a common challenge of all visual systems.
Collapse
Affiliation(s)
- Burak Gür
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University Mainz, Mainz, Germany
- The Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | - Luisa Ramirez
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Jacqueline Cornean
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Freya Thurn
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Sebastian Molina-Obando
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Giordano Ramos-Traslosheros
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University Mainz, Mainz, Germany
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Marion Silies
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
10
|
Lappalainen JK, Tschopp FD, Prakhya S, McGill M, Nern A, Shinomiya K, Takemura SY, Gruntman E, Macke JH, Turaga SC. Connectome-constrained networks predict neural activity across the fly visual system. Nature 2024; 634:1132-1140. [PMID: 39261740 PMCID: PMC11525180 DOI: 10.1038/s41586-024-07939-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/09/2024] [Indexed: 09/13/2024]
Abstract
We can now measure the connectivity of every neuron in a neural circuit1-9, but we cannot measure other biological details, including the dynamical characteristics of each neuron. The degree to which measurements of connectivity alone can inform the understanding of neural computation is an open question10. Here we show that with experimental measurements of only the connectivity of a biological neural network, we can predict the neural activity underlying a specified neural computation. We constructed a model neural network with the experimentally determined connectivity for 64 cell types in the motion pathways of the fruit fly optic lobe1-5 but with unknown parameters for the single-neuron and single-synapse properties. We then optimized the values of these unknown parameters using techniques from deep learning11, to allow the model network to detect visual motion12. Our mechanistic model makes detailed, experimentally testable predictions for each neuron in the connectome. We found that model predictions agreed with experimental measurements of neural activity across 26 studies. Our work demonstrates a strategy for generating detailed hypotheses about the mechanisms of neural circuit function from connectivity measurements. We show that this strategy is more likely to be successful when neurons are sparsely connected-a universally observed feature of biological neural networks across species and brain regions.
Collapse
Affiliation(s)
- Janne K Lappalainen
- Machine Learning in Science, Tübingen University, Tübingen, Germany
- Tübingen AI Center, Tübingen, Germany
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Fabian D Tschopp
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Sridhama Prakhya
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Mason McGill
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Computation and Neural Systems, California Institute of Technology, Pasadena, CA, USA
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Kazunori Shinomiya
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Shin-Ya Takemura
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Eyal Gruntman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Dept of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Jakob H Macke
- Machine Learning in Science, Tübingen University, Tübingen, Germany
- Tübingen AI Center, Tübingen, Germany
- Max Planck Institute for Intelligent Systems, Tübingen, Germany
| | - Srinivas C Turaga
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
11
|
Mace K, Zimmerman A, Chesi A, Doldur-Balli F, Kim H, Almeraya Del Valle E, Pack AI, Grant SFA, Kayser MS. Cross-species evidence for a developmental origin of adult hypersomnia with loss of synaptic adhesion molecules beat-Ia/CADM2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.615048. [PMID: 39386457 PMCID: PMC11463363 DOI: 10.1101/2024.09.25.615048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Idiopathic hypersomnia (IH) is a poorly-understood sleep disorder characterized by excessive daytime sleepiness despite normal nighttime sleep. Combining human genomics with behavioral and mechanistic studies in fish and flies, we uncover a role for beat-Ia/CADM2 , synaptic adhesion molecules of the immunoglobulin superfamily, in excessive sleepiness. Neuronal knockdown of Drosophila beat-Ia results in sleepy flies and loss of the vertebrate ortholog of beat-Ia , CADM2 , results in sleepy fish. We delineate a developmental function for beat-Ia in synaptic elaboration of neuropeptide F (NPF) neurites projecting to the suboesophageal zone (SEZ) of the fly brain. Brain connectome and experimental evidence demonstrate these NPF outputs synapse onto a subpopulation of SEZ GABAergic neurons to stabilize arousal. NPF is the Drosophila homolog of vertebrate neuropeptide Y (NPY), and an NPY receptor agonist restores sleep to normal levels in zebrafish lacking CADM2 . These findings point towards NPY modulation as a treatment target for human hypersomnia.
Collapse
|
12
|
Betzel R, Puxeddu MG, Seguin C. Hierarchical communities in the larval Drosophila connectome: Links to cellular annotations and network topology. Proc Natl Acad Sci U S A 2024; 121:e2320177121. [PMID: 39269775 PMCID: PMC11420166 DOI: 10.1073/pnas.2320177121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/28/2024] [Indexed: 09/15/2024] Open
Abstract
One of the longstanding aims of network neuroscience is to link a connectome's topological properties-i.e., features defined from connectivity alone-with an organism's neurobiology. One approach for doing so is to compare connectome properties with annotational maps. This type of analysis is popular at the meso-/macroscale, but is less common at the nano-scale, owing to a paucity of neuron-level connectome data. However, recent methodological advances have made possible the reconstruction of whole-brain connectomes at single-neuron resolution for a select set of organisms. These include the fruit fly, Drosophila melanogaster, and its developing larvae. In addition to fine-scale descriptions of connectivity, these datasets are accompanied by rich annotations. Here, we use a variant of the stochastic blockmodel to detect multilevel communities in the larval Drosophila connectome. We find that communities partition neurons based on function and cell type and that most interact assortatively, reflecting the principle of functional segregation. However, a small number of communities interact nonassortatively, forming form a "rich-club" of interneurons that receive sensory/ascending inputs and deliver outputs along descending pathways. Next, we investigate the role of community structure in shaping communication patterns. We find that polysynaptic signaling follows specific trajectories across modular hierarchies, with interneurons playing a key role in mediating communication routes between modules and hierarchical scales. Our work suggests a relationship between system-level architecture and the biological function and classification of individual neurons. We envision our study as an important step toward bridging the gap between complex systems and neurobiological lines of investigation in brain sciences.
Collapse
Affiliation(s)
- Richard Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN47401
- Cognitive Science Program, Indiana University, Bloomington, IN47401
- Program in Neuroscience, Indiana University, Bloomington, IN47401
- Department of Neuroscience, University of Minnesota, Minneapolis, MN55455
| | - Maria Grazia Puxeddu
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN47401
| | - Caio Seguin
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN47401
| |
Collapse
|
13
|
Walker SR, Peña-Garcia M, Devineni AV. Connectomic analysis of taste circuits in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.14.613080. [PMID: 39314399 PMCID: PMC11419157 DOI: 10.1101/2024.09.14.613080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Our sense of taste is critical for regulating food consumption. The fruit fly Drosophila represents a highly tractable model to investigate mechanisms of taste processing, but taste circuits beyond sensory neurons are largely unidentified. Here, we use a whole-brain connectome to investigate the organization of Drosophila taste circuits. We trace pathways from four populations of sensory neurons that detect different taste modalities and project to the subesophageal zone (SEZ). We find that second-order taste neurons are primarily located within the SEZ and largely segregated by taste modality, whereas third-order neurons have more projections outside the SEZ and more overlap between modalities. Taste projections out of the SEZ innervate regions implicated in feeding, olfactory processing, and learning. We characterize interconnections between taste pathways, identify modality-dependent differences in taste neuron properties, and use computational simulations to relate connectivity to predicted activity. These studies provide insight into the architecture of Drosophila taste circuits.
Collapse
Affiliation(s)
- Sydney R. Walker
- Department of Biology, Emory University, Atlanta GA 30322
- These authors contributed equally
| | - Marco Peña-Garcia
- Neuroscience Graduate Program, Emory University, Atlanta GA 30322
- These authors contributed equally
| | - Anita V. Devineni
- Department of Biology, Emory University, Atlanta GA 30322
- Neuroscience Graduate Program, Emory University, Atlanta GA 30322
- Lead contact
| |
Collapse
|
14
|
McKim TH, Gera J, Gayban AJ, Reinhard N, Manoli G, Hilpert S, Helfrich-Förster C, Zandawala M. Synaptic connectome of a neurosecretory network in the Drosophila brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.609616. [PMID: 39257829 PMCID: PMC11384003 DOI: 10.1101/2024.08.28.609616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Hormones mediate inter-organ signaling which is crucial in orchestrating diverse behaviors and physiological processes including sleep and activity, feeding, growth, metabolism and reproduction. The pars intercerebralis and pars lateralis in insects represent major hubs which contain neurosecretory cells (NSC) that produce various hormones. To obtain insight into how hormonal signaling is regulated, we have characterized the synaptic connectome of NSC in the adult Drosophila brain. Identification of neurons providing inputs to multiple NSC subtypes implicates diuretic hormone 44-expressing NSC as a major coordinator of physiology and behavior. Surprisingly, despite most NSC having dendrites in the subesophageal zone (primary taste processing center), gustatory inputs to NSC are largely indirect. We also deciphered pathways via which diverse olfactory inputs are relayed to NSC. Further, our analyses revealed substantial inputs from descending neurons to NSC, suggesting that descending neurons regulate both endocrine and motor output to synchronize physiological changes with appropriate behaviors. In contrast to NSC inputs, synaptic output from NSC is sparse and mostly mediated by corazonin NSC. Therefore, we additionally determine putative paracrine interconnectivity between NSC subtypes and hormonal pathways from NSC to peripheral tissues by analyzing single-cell transcriptomic datasets. Our comprehensive characterization of the Drosophila neurosecretory network connectome provides a platform to understand complex hormonal networks and how they orchestrate animal behaviors and physiology.
Collapse
Affiliation(s)
- Theresa H. McKim
- Integrative Neuroscience Program, University of Nevada Reno, Reno, 89557, NV, USA
- Department of Biology, University of Nevada Reno, Reno, 89557, NV, USA
| | - Jayati Gera
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Ariana J. Gayban
- Integrative Neuroscience Program, University of Nevada Reno, Reno, 89557, NV, USA
- Department of Biochemistry and Molecular Biology, University of Nevada Reno, Reno, 89557, NV, USA
| | - Nils Reinhard
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Giulia Manoli
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Selina Hilpert
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Meet Zandawala
- Integrative Neuroscience Program, University of Nevada Reno, Reno, 89557, NV, USA
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
- Department of Biochemistry and Molecular Biology, University of Nevada Reno, Reno, 89557, NV, USA
| |
Collapse
|
15
|
Lyu C, Li Z, Xu C, Wong KKL, Luginbuhl DJ, McLaughlin CN, Xie Q, Li T, Li H, Luo L. Dimensionality reduction simplifies synaptic partner matching in an olfactory circuit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609939. [PMID: 39253519 PMCID: PMC11383009 DOI: 10.1101/2024.08.27.609939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The distribution of postsynaptic partners in three-dimensional (3D) space presents complex choices for a navigating axon. Here, we discovered a dimensionality reduction principle in establishing the 3D glomerular map in the fly antennal lobe. Olfactory receptor neuron (ORN) axons first contact partner projection neuron (PN) dendrites at the 2D spherical surface of the antennal lobe during development, regardless of whether the adult glomeruli are at the surface or interior of the antennal lobe. Along the antennal lobe surface, axons of each ORN type take a specific 1D arc-shaped trajectory that precisely intersects with their partner PN dendrites. Altering axon trajectories compromises synaptic partner matching. Thus, a 3D search problem is reduced to 1D, which simplifies synaptic partner matching and may generalize to the wiring process of more complex brains.
Collapse
Affiliation(s)
- Cheng Lyu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Zhuoran Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Chuanyun Xu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Kenneth Kin Lam Wong
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - David J. Luginbuhl
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Colleen N. McLaughlin
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Qijing Xie
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Neurosciences Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Tongchao Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Present address: Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou 311121, China
| | - Hongjie Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Present address: Huffington Center on Aging, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
16
|
Ganguly I, Heckman EL, Litwin-Kumar A, Clowney EJ, Behnia R. Diversity of visual inputs to Kenyon cells of the Drosophila mushroom body. Nat Commun 2024; 15:5698. [PMID: 38972924 PMCID: PMC11228034 DOI: 10.1038/s41467-024-49616-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
The arthropod mushroom body is well-studied as an expansion layer representing olfactory stimuli and linking them to contingent events. However, 8% of mushroom body Kenyon cells in Drosophila melanogaster receive predominantly visual input, and their function remains unclear. Here, we identify inputs to visual Kenyon cells using the FlyWire adult whole-brain connectome. Input repertoires are similar across hemispheres and connectomes with certain inputs highly overrepresented. Many visual neurons presynaptic to Kenyon cells have large receptive fields, while interneuron inputs receive spatially restricted signals that may be tuned to specific visual features. Individual visual Kenyon cells randomly sample sparse inputs from combinations of visual channels, including multiple optic lobe neuropils. These connectivity patterns suggest that visual coding in the mushroom body, like olfactory coding, is sparse, distributed, and combinatorial. However, the specific input repertoire to the smaller population of visual Kenyon cells suggests a constrained encoding of visual stimuli.
Collapse
Affiliation(s)
- Ishani Ganguly
- Department of Neuroscience, Columbia University, New York, NY, USA
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
| | - Emily L Heckman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ashok Litwin-Kumar
- Department of Neuroscience, Columbia University, New York, NY, USA
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
| | - E Josephine Clowney
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA.
| | - Rudy Behnia
- Department of Neuroscience, Columbia University, New York, NY, USA.
- Zuckerman Institute, Columbia University, New York, NY, USA.
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA.
| |
Collapse
|
17
|
Fulton KA, Zimmerman D, Samuel A, Vogt K, Datta SR. Common principles for odour coding across vertebrates and invertebrates. Nat Rev Neurosci 2024; 25:453-472. [PMID: 38806946 DOI: 10.1038/s41583-024-00822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
The olfactory system is an ideal and tractable system for exploring how the brain transforms sensory inputs into behaviour. The basic tasks of any olfactory system include odour detection, discrimination and categorization. The challenge for the olfactory system is to transform the high-dimensional space of olfactory stimuli into the much smaller space of perceived objects and valence that endows odours with meaning. Our current understanding of how neural circuits address this challenge has come primarily from observations of the mechanisms of the brain for processing other sensory modalities, such as vision and hearing, in which optimized deep hierarchical circuits are used to extract sensory features that vary along continuous physical dimensions. The olfactory system, by contrast, contends with an ill-defined, high-dimensional stimulus space and discrete stimuli using a circuit architecture that is shallow and parallelized. Here, we present recent observations in vertebrate and invertebrate systems that relate the statistical structure and state-dependent modulation of olfactory codes to mechanisms of perception and odour-guided behaviour.
Collapse
Affiliation(s)
- Kara A Fulton
- Department of Neuroscience, Harvard Medical School, Boston, MA, USA
| | - David Zimmerman
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Aravi Samuel
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Katrin Vogt
- Department of Physics, Harvard University, Cambridge, MA, USA.
- Department of Biology, University of Konstanz, Konstanz, Germany.
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.
| | | |
Collapse
|
18
|
Azevedo A, Lesser E, Phelps JS, Mark B, Elabbady L, Kuroda S, Sustar A, Moussa A, Khandelwal A, Dallmann CJ, Agrawal S, Lee SYJ, Pratt B, Cook A, Skutt-Kakaria K, Gerhard S, Lu R, Kemnitz N, Lee K, Halageri A, Castro M, Ih D, Gager J, Tammam M, Dorkenwald S, Collman F, Schneider-Mizell C, Brittain D, Jordan CS, Dickinson M, Pacureanu A, Seung HS, Macrina T, Lee WCA, Tuthill JC. Connectomic reconstruction of a female Drosophila ventral nerve cord. Nature 2024; 631:360-368. [PMID: 38926570 PMCID: PMC11348827 DOI: 10.1038/s41586-024-07389-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 04/04/2024] [Indexed: 06/28/2024]
Abstract
A deep understanding of how the brain controls behaviour requires mapping neural circuits down to the muscles that they control. Here, we apply automated tools to segment neurons and identify synapses in an electron microscopy dataset of an adult female Drosophila melanogaster ventral nerve cord (VNC)1, which functions like the vertebrate spinal cord to sense and control the body. We find that the fly VNC contains roughly 45 million synapses and 14,600 neuronal cell bodies. To interpret the output of the connectome, we mapped the muscle targets of leg and wing motor neurons using genetic driver lines2 and X-ray holographic nanotomography3. With this motor neuron atlas, we identified neural circuits that coordinate leg and wing movements during take-off. We provide the reconstruction of VNC circuits, the motor neuron atlas and tools for programmatic and interactive access as resources to support experimental and theoretical studies of how the nervous system controls behaviour.
Collapse
Affiliation(s)
- Anthony Azevedo
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Ellen Lesser
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Jasper S Phelps
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Neuroengineering Laboratory, Brain Mind Institute and Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Brandon Mark
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Leila Elabbady
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Sumiya Kuroda
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Anne Sustar
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Anthony Moussa
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Avinash Khandelwal
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Chris J Dallmann
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Sweta Agrawal
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Su-Yee J Lee
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Brandon Pratt
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Andrew Cook
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | | | - Stephan Gerhard
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- UniDesign Solutions, Zurich, Switzerland
| | - Ran Lu
- Zetta AI, Sherrill, NJ, USA
| | | | - Kisuk Lee
- Zetta AI, Sherrill, NJ, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | | | | | | | | | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | | | | | | | - Chris S Jordan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | | | | | | | - Wei-Chung Allen Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - John C Tuthill
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
19
|
Stürner T, Brooks P, Capdevila LS, Morris BJ, Javier A, Fang S, Gkantia M, Cachero S, Beckett IR, Champion AS, Moitra I, Richards A, Klemm F, Kugel L, Namiki S, Cheong HS, Kovalyak J, Tenshaw E, Parekh R, Schlegel P, Phelps JS, Mark B, Dorkenwald S, Bates AS, Matsliah A, Yu SC, McKellar CE, Sterling A, Seung S, Murthy M, Tuthill J, Lee WCA, Card GM, Costa M, Jefferis GS, Eichler K. Comparative connectomics of the descending and ascending neurons of the Drosophila nervous system: stereotypy and sexual dimorphism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.596633. [PMID: 38895426 PMCID: PMC11185702 DOI: 10.1101/2024.06.04.596633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
In most complex nervous systems there is a clear anatomical separation between the nerve cord, which contains most of the final motor outputs necessary for behaviour, and the brain. In insects, the neck connective is both a physical and information bottleneck connecting the brain and the ventral nerve cord (VNC, spinal cord analogue) and comprises diverse populations of descending (DN), ascending (AN) and sensory ascending neurons, which are crucial for sensorimotor signalling and control. Integrating three separate EM datasets, we now provide a complete connectomic description of the ascending and descending neurons of the female nervous system of Drosophila and compare them with neurons of the male nerve cord. Proofread neuronal reconstructions have been matched across hemispheres, datasets and sexes. Crucially, we have also matched 51% of DN cell types to light level data defining specific driver lines as well as classifying all ascending populations. We use these results to reveal the general architecture, tracts, neuropil innervation and connectivity of neck connective neurons. We observe connected chains of descending and ascending neurons spanning the neck, which may subserve motor sequences. We provide a complete description of sexually dimorphic DN and AN populations, with detailed analysis of circuits implicated in sex-related behaviours, including female ovipositor extrusion (DNp13), male courtship (DNa12/aSP22) and song production (AN hemilineage 08B). Our work represents the first EM-level circuit analyses spanning the entire central nervous system of an adult animal.
Collapse
Affiliation(s)
- Tomke Stürner
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Paul Brooks
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Billy J. Morris
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Alexandre Javier
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Siqi Fang
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Marina Gkantia
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Sebastian Cachero
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Andrew S. Champion
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Ilina Moitra
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Alana Richards
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Finja Klemm
- Genetics Department, Leipzig University, Leipzig, Germany
| | - Leonie Kugel
- Genetics Department, Leipzig University, Leipzig, Germany
| | - Shigehiro Namiki
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | - Han S.J. Cheong
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
- Zuckerman Institute, Columbia University, New York, United States
| | - Julie Kovalyak
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Emily Tenshaw
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Ruchi Parekh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Jasper S. Phelps
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- Brain Mind Institute & Institute of Bioengineering, EPFL, 1015 Lausanne, Switzerland
| | - Brandon Mark
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Computer Science Department, Princeton University, USA
| | - Alexander S. Bates
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Arie Matsliah
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Szi-chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | | | - Amy Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Computer Science Department, Princeton University, USA
| | - Mala Murthy
- Computer Science Department, Princeton University, USA
| | - John Tuthill
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Wei-Chung A. Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
| | - Gwyneth M. Card
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
- Zuckerman Institute, Columbia University, New York, United States
| | - Marta Costa
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Gregory S.X.E. Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Katharina Eichler
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
- Genetics Department, Leipzig University, Leipzig, Germany
| |
Collapse
|
20
|
Smolin N, Dombrovski M, Hina BW, Moreno-Sanchez A, Gossart R, Carmona CR, Rehan A, Hussein RH, Mirshahidi P, Ausborn J, Kurmangaliyev YZ, von Reyn CR. Neuronal identity control at the resolution of a single transcription factor isoform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.598883. [PMID: 38915533 PMCID: PMC11195191 DOI: 10.1101/2024.06.14.598883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The brain exhibits remarkable neuronal diversity which is critical for its functional integrity. From the sheer number of cell types emerging from extensive transcriptional, morphological, and connectome datasets, the question arises of how the brain is capable of generating so many unique identities. 'Terminal selectors' are transcription factors hypothesized to determine the final identity characteristics in post-mitotic cells. Which transcription factors function as terminal selectors and the level of control they exert over different terminal characteristics are not well defined. Here, we establish a novel role for the transcription factor broad as a terminal selector in Drosophila melanogaster. We capitalize on existing large sequencing and connectomics datasets and employ a comprehensive characterization of terminal characteristics including Perturb-seq and whole-cell electrophysiology. We find a single isoform broad-z4 serves as the switch between the identity of two visual projection neurons LPLC1 and LPLC2. Broad-z4 is natively expressed in LPLC1, and is capable of transforming the transcriptome, morphology, and functional connectivity of LPLC2 cells into LPLC1 cells when perturbed. Our comprehensive work establishes a single isoform as the smallest unit underlying an identity switch, which may serve as a conserved strategy replicated across developmental programs.
Collapse
Affiliation(s)
- Natalie Smolin
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA
| | - Mark Dombrovski
- Howard Hughes Medical Institute, Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Bryce W. Hina
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA
| | - Anthony Moreno-Sanchez
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA
| | - Ryan Gossart
- Brandeis University, Department of Biology, Waltham, MA
| | | | - Aadil Rehan
- Howard Hughes Medical Institute, Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Roni H. Hussein
- Howard Hughes Medical Institute, Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Parmis Mirshahidi
- Howard Hughes Medical Institute, Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Jessica Ausborn
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA
| | | | - Catherine R. von Reyn
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA
| |
Collapse
|
21
|
Christenson MP, Sanz Diez A, Heath SL, Saavedra-Weisenhaus M, Adachi A, Nern A, Abbott LF, Behnia R. Hue selectivity from recurrent circuitry in Drosophila. Nat Neurosci 2024; 27:1137-1147. [PMID: 38755272 PMCID: PMC11537989 DOI: 10.1038/s41593-024-01640-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/04/2024] [Indexed: 05/18/2024]
Abstract
In the perception of color, wavelengths of light reflected off objects are transformed into the derived quantities of brightness, saturation and hue. Neurons responding selectively to hue have been reported in primate cortex, but it is unknown how their narrow tuning in color space is produced by upstream circuit mechanisms. We report the discovery of neurons in the Drosophila optic lobe with hue-selective properties, which enables circuit-level analysis of color processing. From our analysis of an electron microscopy volume of a whole Drosophila brain, we construct a connectomics-constrained circuit model that accounts for this hue selectivity. Our model predicts that recurrent connections in the circuit are critical for generating hue selectivity. Experiments using genetic manipulations to perturb recurrence in adult flies confirm this prediction. Our findings reveal a circuit basis for hue selectivity in color vision.
Collapse
Affiliation(s)
- Matthias P Christenson
- Zuckerman Institute, Columbia University, New York, NY, USA
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
| | - Alvaro Sanz Diez
- Zuckerman Institute, Columbia University, New York, NY, USA
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
| | - Sarah L Heath
- Zuckerman Institute, Columbia University, New York, NY, USA
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
| | - Maia Saavedra-Weisenhaus
- Zuckerman Institute, Columbia University, New York, NY, USA
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
| | - Atsuko Adachi
- Zuckerman Institute, Columbia University, New York, NY, USA
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - L F Abbott
- Zuckerman Institute, Columbia University, New York, NY, USA
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
- Kavli Institute for Brain Science, Columbia University Medical Center, New York, NY, USA
| | - Rudy Behnia
- Zuckerman Institute, Columbia University, New York, NY, USA.
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA.
- Kavli Institute for Brain Science, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
22
|
Braun J, Hurtak F, Wang-Chen S, Ramdya P. Descending networks transform command signals into population motor control. Nature 2024; 630:686-694. [PMID: 38839968 PMCID: PMC11186778 DOI: 10.1038/s41586-024-07523-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 05/06/2024] [Indexed: 06/07/2024]
Abstract
To convert intentions into actions, movement instructions must pass from the brain to downstream motor circuits through descending neurons (DNs). These include small sets of command-like neurons that are sufficient to drive behaviours1-the circuit mechanisms for which remain unclear. Here we show that command-like DNs in Drosophila directly recruit networks of additional DNs to orchestrate behaviours that require the active control of numerous body parts. Specifically, we found that command-like DNs previously thought to drive behaviours alone2-4 in fact co-activate larger populations of DNs. Connectome analyses and experimental manipulations revealed that this functional recruitment can be explained by direct excitatory connections between command-like DNs and networks of interconnected DNs in the brain. Descending population recruitment is necessary for behavioural control: DNs with many downstream descending partners require network co-activation to drive complete behaviours and drive only simple stereotyped movements in their absence. These DN networks reside within behaviour-specific clusters that inhibit one another. These results support a mechanism for command-like descending control in which behaviours are generated through the recruitment of increasingly large DN networks that compose behaviours by combining multiple motor subroutines.
Collapse
Affiliation(s)
- Jonas Braun
- Neuroengineering Laboratory, Brain Mind Institute & Interfaculty Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Femke Hurtak
- Neuroengineering Laboratory, Brain Mind Institute & Interfaculty Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Sibo Wang-Chen
- Neuroengineering Laboratory, Brain Mind Institute & Interfaculty Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Pavan Ramdya
- Neuroengineering Laboratory, Brain Mind Institute & Interfaculty Institute of Bioengineering, EPFL, Lausanne, Switzerland.
| |
Collapse
|
23
|
Babski H, Codianni M, Bhandawat V. Octopaminergic descending neurons in Drosophila: Connectivity, tonic activity and relation to locomotion. Heliyon 2024; 10:e29952. [PMID: 38698992 PMCID: PMC11064449 DOI: 10.1016/j.heliyon.2024.e29952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
Projection neurons that communicate between different brain regions and local neurons that shape computation within a brain region form the majority of all neurons in the brain. Another important class of neurons is neuromodulatory neurons; these neurons are in much smaller numbers than projection/local neurons but have a large influence on computations in the brain. Neuromodulatory neurons are classified by the neurotransmitters they carry, such as dopamine and serotonin. Much of our knowledge of the effect of neuromodulators comes from experiments in which either a large population of neuromodulatory neurons or the entire population is perturbed. Alternatively, a given neuromodulator is exogenously applied. While these experiments are informative of the general role of the neurotransmitter, one limitation of these experiments is that the role of individual neuromodulatory neurons remains unknown. In this study, we investigate the role of a class of octopaminergic (octopamine is the invertebrate equivalent of norepinephrine) neurons in Drosophila or fruit fly. Neuromodulation in Drosophila work along similar principles as humans; and the smaller number of neuromodulatory neurons allow us to assess the role of individual neurons. This study focuses on a subpopulation of octopaminergic descending neurons (OA-DNs) whose cell bodies are in the brain and project to the thoracic ganglia. Using in-vivo whole-cell patch-clamp recordings and anatomical analyses that allow us to compare light microscopy data to the electron microscopic volumes available in the fly, we find that neurons within each cluster have similar physiological properties, including their relation to locomotion. However, neurons in the same cluster with similar anatomy have very different connectivity. Our data is consistent with the hypothesis that each OA-DN is recruited individually and has a unique function within the fly's brain.
Collapse
Affiliation(s)
- Helene Babski
- School of Biomedical Engineering and Health Sciences, Drexel University, USA
| | - Marcello Codianni
- School of Biomedical Engineering and Health Sciences, Drexel University, USA
| | - Vikas Bhandawat
- School of Biomedical Engineering and Health Sciences, Drexel University, USA
| |
Collapse
|
24
|
Cowley BR, Calhoun AJ, Rangarajan N, Ireland E, Turner MH, Pillow JW, Murthy M. Mapping model units to visual neurons reveals population code for social behaviour. Nature 2024; 629:1100-1108. [PMID: 38778103 PMCID: PMC11136655 DOI: 10.1038/s41586-024-07451-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
The rich variety of behaviours observed in animals arises through the interplay between sensory processing and motor control. To understand these sensorimotor transformations, it is useful to build models that predict not only neural responses to sensory input1-5 but also how each neuron causally contributes to behaviour6,7. Here we demonstrate a novel modelling approach to identify a one-to-one mapping between internal units in a deep neural network and real neurons by predicting the behavioural changes that arise from systematic perturbations of more than a dozen neuronal cell types. A key ingredient that we introduce is 'knockout training', which involves perturbing the network during training to match the perturbations of the real neurons during behavioural experiments. We apply this approach to model the sensorimotor transformations of Drosophila melanogaster males during a complex, visually guided social behaviour8-11. The visual projection neurons at the interface between the optic lobe and central brain form a set of discrete channels12, and prior work indicates that each channel encodes a specific visual feature to drive a particular behaviour13,14. Our model reaches a different conclusion: combinations of visual projection neurons, including those involved in non-social behaviours, drive male interactions with the female, forming a rich population code for behaviour. Overall, our framework consolidates behavioural effects elicited from various neural perturbations into a single, unified model, providing a map from stimulus to neuronal cell type to behaviour, and enabling future incorporation of wiring diagrams of the brain15 into the model.
Collapse
Affiliation(s)
- Benjamin R Cowley
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| | - Adam J Calhoun
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Elise Ireland
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Maxwell H Turner
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | - Jonathan W Pillow
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
25
|
Chan ICW, Chen N, Hernandez J, Meltzer H, Park A, Stahl A. Future avenues in Drosophila mushroom body research. Learn Mem 2024; 31:a053863. [PMID: 38862172 PMCID: PMC11199946 DOI: 10.1101/lm.053863.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/27/2024] [Indexed: 06/13/2024]
Abstract
How does the brain translate sensory information into complex behaviors? With relatively small neuronal numbers, readable behavioral outputs, and an unparalleled genetic toolkit, the Drosophila mushroom body (MB) offers an excellent model to address this question in the context of associative learning and memory. Recent technological breakthroughs, such as the freshly completed full-brain connectome, multiomics approaches, CRISPR-mediated gene editing, and machine learning techniques, led to major advancements in our understanding of the MB circuit at the molecular, structural, physiological, and functional levels. Despite significant progress in individual MB areas, the field still faces the fundamental challenge of resolving how these different levels combine and interact to ultimately control the behavior of an individual fly. In this review, we discuss various aspects of MB research, with a focus on the current knowledge gaps, and an outlook on the future methodological developments required to reach an overall view of the neurobiological basis of learning and memory.
Collapse
Affiliation(s)
- Ivy Chi Wai Chan
- Dynamics of Neuronal Circuits Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Developmental Biology, RWTH Aachen University, Aachen, Germany
| | - Nannan Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - John Hernandez
- Neuroscience Department, Brown University, Providence, Rhode Island 02906, USA
| | - Hagar Meltzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Annie Park
- Department of Physiology, Anatomy and Genetics, Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, United Kingdom
| | - Aaron Stahl
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
26
|
Moreno-Sanchez A, Vasserman AN, Jang H, Hina BW, von Reyn CR, Ausborn J. Morphology and synapse topography optimize linear encoding of synapse numbers in Drosophila looming responsive descending neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.591016. [PMID: 38712267 PMCID: PMC11071487 DOI: 10.1101/2024.04.24.591016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Synapses are often precisely organized on dendritic arbors, yet the role of synaptic topography in dendritic integration remains poorly understood. Utilizing electron microscopy (EM) connectomics we investigate synaptic topography in Drosophila melanogaster looming circuits, focusing on retinotopically tuned visual projection neurons (VPNs) that synapse onto descending neurons (DNs). Synapses of a given VPN type project to non-overlapping regions on DN dendrites. Within these spatially constrained clusters, synapses are not retinotopically organized, but instead adopt near random distributions. To investigate how this organization strategy impacts DN integration, we developed multicompartment models of DNs fitted to experimental data and using precise EM morphologies and synapse locations. We find that DN dendrite morphologies normalize EPSP amplitudes of individual synaptic inputs and that near random distributions of synapses ensure linear encoding of synapse numbers from individual VPNs. These findings illuminate how synaptic topography influences dendritic integration and suggest that linear encoding of synapse numbers may be a default strategy established through connectivity and passive neuron properties, upon which active properties and plasticity can then tune as needed.
Collapse
Affiliation(s)
- Anthony Moreno-Sanchez
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, United States
| | - Alexander N. Vasserman
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, United States
| | - HyoJong Jang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Bryce W. Hina
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Catherine R. von Reyn
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, United States
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Jessica Ausborn
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, United States
| |
Collapse
|
27
|
Matsliah A, Yu SC, Kruk K, Bland D, Burke A, Gager J, Hebditch J, Silverman B, Willie K, Willie RW, Sorek M, Sterling AR, Kind E, Garner D, Sancer G, Wernet MF, Kim SS, Murthy M, Seung HS. Neuronal "parts list" and wiring diagram for a visual system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.12.562119. [PMID: 37873160 PMCID: PMC10592826 DOI: 10.1101/2023.10.12.562119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A catalog of neuronal cell types has often been called a "parts list" of the brain, and regarded as a prerequisite for understanding brain function. In the optic lobe of Drosophila, rules of connectivity between cell types have already proven essential for understanding fly vision. Here we analyze the fly connectome to complete the list of cell types intrinsic to the optic lobe, as well as the rules governing their connectivity. We more than double the list of known types. Most new cell types contain between 10 and 100 cells, and integrate information over medium distances in the visual field. Some existing type families (Tm, Li, and LPi) at least double in number of types. We introduce a new Sm interneuron family, which contains more types than any other, and three new families of cross-neuropil types. Self-consistency of cell types is demonstrated through automatic assignment of cells to types by distance in high-dimensional feature space, and further validation is provided by algorithms that select small subsets of discriminative features. Cell types with similar connectivity patterns divide into clusters that are interpretable in terms of motion, object, and color vision. Our work showcases the advantages of connectomic cell typing: complete and unbiased sampling, a rich array of features based on connectivity, and reduction of the connectome to a drastically simpler wiring diagram of cell types, with immediate relevance for brain function and development.
Collapse
Affiliation(s)
| | - Szi-Chieh Yu
- Neuroscience Institute, Princeton University, USA
| | | | - Doug Bland
- Neuroscience Institute, Princeton University, USA
| | - Austin Burke
- Neuroscience Institute, Princeton University, USA
| | - Jay Gager
- Neuroscience Institute, Princeton University, USA
| | | | | | - Kyle Willie
- Neuroscience Institute, Princeton University, USA
| | | | | | | | - Emil Kind
- Institut für Biologie - Neurobiologie, Freie Universität B erlin, Germany
| | - Dustin Garner
- Molecular, Cellular, and Developmental Biology, Univ. C alifornia Santa Barbara, USA
| | - Gizem Sancer
- Institut für Biologie - Neurobiologie, Freie Universität B erlin, Germany
| | - Mathias F Wernet
- Institut für Biologie - Neurobiologie, Freie Universität B erlin, Germany
| | - Sung Soo Kim
- Molecular, Cellular, and Developmental Biology, Univ. C alifornia Santa Barbara, USA
| | - Mala Murthy
- Neuroscience Institute, Princeton University, USA
| | - H Sebastian Seung
- Neuroscience Institute, Princeton University, USA
- Computer Science Department, Princeton University, U SA
| |
Collapse
|
28
|
Le JQ, Ma D, Dai X, Rosbash M. Light and dopamine impact two circadian neurons to promote morning wakefulness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583333. [PMID: 38496661 PMCID: PMC10942368 DOI: 10.1101/2024.03.04.583333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
In both mammals and flies, circadian brain neurons orchestrate physiological oscillations and behaviors like wake and sleep; these neurons can be subdivided by morphology and by gene expression patterns. Recent single-cell sequencing studies identified 17 Drosophila circadian neuron groups. One of these include only two lateral neurons (LNs), which are marked by the expression of the neuropeptide ion transport peptide (ITP). Although these two ITP+ LNs have long been grouped with five other circadian evening activity cells, inhibiting the two neurons alone strongly reduces morning activity; this indicates that they are prominent morning neurons. As dopamine signaling promotes activity in Drosophila like in mammals, we considered that dopamine might influence this morning activity function. Moreover, the ITP+ LNs express higher mRNA levels than other LNs of the type 1-like dopamine receptor Dop1R1. Consistent with the importance of Dop1R1, CRISPR/Cas9 mutagenesis of this receptor only in the two ITP+ LNs renders flies significantly less active in the morning, and ex vivo live imaging shows that dopamine increases cAMP levels in these two neurons; cell-specific mutagenesis of Dop1R1 eliminates this cAMP response to dopamine. Notably, the response is more robust in the morning, reflecting higher morning Dop1R1 mRNA levels in the two neurons. As morning levels are not elevated in constant darkness, this suggests light-dependent upregulation of morning Dop1R1 transcript levels. Taken together with enhanced morning cAMP response to dopamine, the data indicate how light stimulates morning wakefulness in flies, which mimics the important effect of light on morning wakefulness in humans.
Collapse
Affiliation(s)
- Jasmine Quynh Le
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Dingbang Ma
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, Massachusetts 02453, USA
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Xihuimin Dai
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Michael Rosbash
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, Massachusetts 02453, USA
| |
Collapse
|
29
|
Lin A, Yang R, Dorkenwald S, Matsliah A, Sterling AR, Schlegel P, Yu SC, McKellar CE, Costa M, Eichler K, Bates AS, Eckstein N, Funke J, Jefferis GSXE, Murthy M. Network Statistics of the Whole-Brain Connectome of Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.29.551086. [PMID: 37547019 PMCID: PMC10402125 DOI: 10.1101/2023.07.29.551086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Brains comprise complex networks of neurons and connections. Network analysis applied to the wiring diagrams of brains can offer insights into how brains support computations and regulate information flow. The completion of the first whole-brain connectome of an adult Drosophila, the largest connectome to date, containing 130,000 neurons and millions of connections, offers an unprecedented opportunity to analyze its network properties and topological features. To gain insights into local connectivity, we computed the prevalence of two- and three-node network motifs, examined their strengths and neurotransmitter compositions, and compared these topological metrics with wiring diagrams of other animals. We discovered that the network of the fly brain displays rich club organization, with a large population (30% percent of the connectome) of highly connected neurons. We identified subsets of rich club neurons that may serve as integrators or broadcasters of signals. Finally, we examined subnetworks based on 78 anatomically defined brain regions or neuropils. These data products are shared within the FlyWire Codex and will serve as a foundation for models and experiments exploring the relationship between neural activity and anatomical structure.
Collapse
Affiliation(s)
- Albert Lin
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Center for the Physics of Biological Function, Princeton University, Princeton, NJ, USA
| | - Runzhe Yang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Arie Matsliah
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Amy R Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Szi-Chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Claire E McKellar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Marta Costa
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Katharina Eichler
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Alexander Shakeel Bates
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | - Nils Eckstein
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, USA
| | - Jan Funke
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, USA
| | - Gregory S X E Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| |
Collapse
|
30
|
Tao L, Ayembem D, Barranca VJ, Bhandawat V. Neurons underlying aggressive actions that are shared by both males and females in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582148. [PMID: 38464020 PMCID: PMC10925114 DOI: 10.1101/2024.02.26.582148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Aggression involves both sexually monomorphic and dimorphic actions. How the brain implements these two types of actions is poorly understood. We found that a set of neurons, which we call CL062, previously shown to mediate male aggression also mediate female aggression. These neurons elicit aggression acutely and without the presence of a target. Although the same set of actions is elicited in males and females, the overall behavior is sexually dimorphic. The CL062 neurons do not express fruitless , a gene required for sexual dimorphism in flies, and expressed by most other neurons important for controlling fly aggression. Connectomic analysis suggests that these neurons have limited connections with fruitless expressing neurons that have been shown to be important for aggression, and signal to different descending neurons. Thus, CL062 is part of a monomorphic circuit for aggression that functions parallel to the known dimorphic circuits.
Collapse
|
31
|
Mussells Pires P, Zhang L, Parache V, Abbott LF, Maimon G. Converting an allocentric goal into an egocentric steering signal. Nature 2024; 626:808-818. [PMID: 38326612 PMCID: PMC10881393 DOI: 10.1038/s41586-023-07006-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/19/2023] [Indexed: 02/09/2024]
Abstract
Neuronal signals that are relevant for spatial navigation have been described in many species1-10. However, a circuit-level understanding of how such signals interact to guide navigational behaviour is lacking. Here we characterize a neuronal circuit in the Drosophila central complex that compares internally generated estimates of the heading and goal angles of the fly-both of which are encoded in world-centred (allocentric) coordinates-to generate a body-centred (egocentric) steering signal. Past work has suggested that the activity of EPG neurons represents the fly's moment-to-moment angular orientation, or heading angle, during navigation2,11. An animal's moment-to-moment heading angle, however, is not always aligned with its goal angle-that is, the allocentric direction in which it wishes to progress forward. We describe FC2 cells12, a second set of neurons in the Drosophila brain with activity that correlates with the fly's goal angle. Focal optogenetic activation of FC2 neurons induces flies to orient along experimenter-defined directions as they walk forward. EPG and FC2 neurons connect monosynaptically to a third neuronal class, PFL3 cells12,13. We found that individual PFL3 cells show conjunctive, spike-rate tuning to both the heading angle and the goal angle during goal-directed navigation. Informed by the anatomy and physiology of these three cell classes, we develop a model that explains how this circuit compares allocentric heading and goal angles to build an egocentric steering signal in the PFL3 output terminals. Quantitative analyses and optogenetic manipulations of PFL3 activity support the model. Finally, using a new navigational memory task, we show that flies expressing disruptors of synaptic transmission in subsets of PFL3 cells have a reduced ability to orient along arbitrary goal directions, with an effect size in quantitative accordance with the prediction of our model. The biological circuit described here reveals how two population-level allocentric signals are compared in the brain to produce an egocentric output signal that is appropriate for motor control.
Collapse
Affiliation(s)
- Peter Mussells Pires
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Lingwei Zhang
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Victoria Parache
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - L F Abbott
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, USA
| | - Gaby Maimon
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
32
|
Zhao A, Nern A, Koskela S, Dreher M, Erginkaya M, Laughland CW, Ludwigh H, Thomson A, Hoeller J, Parekh R, Romani S, Bock DD, Chiappe E, Reiser MB. A comprehensive neuroanatomical survey of the Drosophila Lobula Plate Tangential Neurons with predictions for their optic flow sensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562634. [PMID: 37904921 PMCID: PMC10614863 DOI: 10.1101/2023.10.16.562634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Flying insects exhibit remarkable navigational abilities controlled by their compact nervous systems. Optic flow, the pattern of changes in the visual scene induced by locomotion, is a crucial sensory cue for robust self-motion estimation, especially during rapid flight. Neurons that respond to specific, large-field optic flow patterns have been studied for decades, primarily in large flies, such as houseflies, blowflies, and hover flies. The best-known optic-flow sensitive neurons are the large tangential cells of the dipteran lobula plate, whose visual-motion responses, and to a lesser extent, their morphology, have been explored using single-neuron neurophysiology. Most of these studies have focused on the large, Horizontal and Vertical System neurons, yet the lobula plate houses a much larger set of 'optic-flow' sensitive neurons, many of which have been challenging to unambiguously identify or to reliably target for functional studies. Here we report the comprehensive reconstruction and identification of the Lobula Plate Tangential Neurons in an Electron Microscopy (EM) volume of a whole Drosophila brain. This catalog of 58 LPT neurons (per brain hemisphere) contains many neurons that are described here for the first time and provides a basis for systematic investigation of the circuitry linking self-motion to locomotion control. Leveraging computational anatomy methods, we estimated the visual motion receptive fields of these neurons and compared their tuning to the visual consequence of body rotations and translational movements. We also matched these neurons, in most cases on a one-for-one basis, to stochastically labeled cells in genetic driver lines, to the mirror-symmetric neurons in the same EM brain volume, and to neurons in an additional EM data set. Using cell matches across data sets, we analyzed the integration of optic flow patterns by neurons downstream of the LPTs and find that most central brain neurons establish sharper selectivity for global optic flow patterns than their input neurons. Furthermore, we found that self-motion information extracted from optic flow is processed in distinct regions of the central brain, pointing to diverse foci for the generation of visual behaviors.
Collapse
Affiliation(s)
- Arthur Zhao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Sanna Koskela
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Marisa Dreher
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Mert Erginkaya
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Connor W Laughland
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Henrique Ludwigh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Alex Thomson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Judith Hoeller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Ruchi Parekh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Sandro Romani
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Davi D Bock
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, USA
| | - Eugenia Chiappe
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Michael B Reiser
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| |
Collapse
|
33
|
Ganguly I, Heckman EL, Litwin-Kumar A, Clowney EJ, Behnia R. Diversity of visual inputs to Kenyon cells of the Drosophila mushroom body. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.12.561793. [PMID: 37873086 PMCID: PMC10592809 DOI: 10.1101/2023.10.12.561793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The arthropod mushroom body is well-studied as an expansion layer that represents olfactory stimuli and links them to contingent events. However, 8% of mushroom body Kenyon cells in Drosophila melanogaster receive predominantly visual input, and their tuning and function are poorly understood. Here, we use the FlyWire adult whole-brain connectome to identify inputs to visual Kenyon cells. The types of visual neurons we identify are similar across hemispheres and connectomes with certain inputs highly overrepresented. Many visual projection neurons presynaptic to Kenyon cells receive input from large swathes of visual space, while local visual interneurons, providing smaller fractions of input, receive more spatially restricted signals that may be tuned to specific features of the visual scene. Like olfactory Kenyon cells, visual Kenyon cells receive sparse inputs from different combinations of visual channels, including inputs from multiple optic lobe neuropils. The sets of inputs to individual visual Kenyon cells are consistent with random sampling of available inputs. These connectivity patterns suggest that visual coding in the mushroom body, like olfactory coding, is sparse, distributed, and combinatorial. However, the expansion coding properties appear different, with a specific repertoire of visual inputs projecting onto a relatively small number of visual Kenyon cells.
Collapse
Affiliation(s)
- Ishani Ganguly
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
- Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA
| | - Emily L Heckman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ashok Litwin-Kumar
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
- Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA
| | - E Josephine Clowney
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Neuroscience Institute Affiliate
| | - Rudy Behnia
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| |
Collapse
|
34
|
Roemschied FA, Pacheco DA, Aragon MJ, Ireland EC, Li X, Thieringer K, Pang R, Murthy M. Flexible circuit mechanisms for context-dependent song sequencing. Nature 2023; 622:794-801. [PMID: 37821705 PMCID: PMC10600009 DOI: 10.1038/s41586-023-06632-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 09/11/2023] [Indexed: 10/13/2023]
Abstract
Sequenced behaviours, including locomotion, reaching and vocalization, are patterned differently in different contexts, enabling animals to adjust to their environments. How contextual information shapes neural activity to flexibly alter the patterning of actions is not fully understood. Previous work has indicated that this could be achieved via parallel motor circuits, with differing sensitivities to context1,2. Here we demonstrate that a single pathway operates in two regimes dependent on recent sensory history. We leverage the Drosophila song production system3 to investigate the role of several neuron types4-7 in song patterning near versus far from the female fly. Male flies sing 'simple' trains of only one mode far from the female fly but complex song sequences comprising alternations between modes when near her. We find that ventral nerve cord (VNC) circuits are shaped by mutual inhibition and rebound excitability8 between nodes driving the two song modes. Brief sensory input to a direct brain-to-VNC excitatory pathway drives simple song far from the female, whereas prolonged input enables complex song production via simultaneous recruitment of functional disinhibition of VNC circuitry. Thus, female proximity unlocks motor circuit dynamics in the correct context. We construct a compact circuit model to demonstrate that the identified mechanisms suffice to replicate natural song dynamics. These results highlight how canonical circuit motifs8,9 can be combined to enable circuit flexibility required for dynamic communication.
Collapse
Affiliation(s)
- Frederic A Roemschied
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- European Neuroscience Institute, Göttingen, Germany
| | - Diego A Pacheco
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Harvard Medical School, Boston, MA, USA
| | - Max J Aragon
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Elise C Ireland
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Xinping Li
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Kyle Thieringer
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Rich Pang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
35
|
Dorkenwald S, Schneider-Mizell CM, Brittain D, Halageri A, Jordan C, Kemnitz N, Castro MA, Silversmith W, Maitin-Shephard J, Troidl J, Pfister H, Gillet V, Xenes D, Bae JA, Bodor AL, Buchanan J, Bumbarger DJ, Elabbady L, Jia Z, Kapner D, Kinn S, Lee K, Li K, Lu R, Macrina T, Mahalingam G, Mitchell E, Mondal SS, Mu S, Nehoran B, Popovych S, Takeno M, Torres R, Turner NL, Wong W, Wu J, Yin W, Yu SC, Reid RC, da Costa NM, Seung HS, Collman F. CAVE: Connectome Annotation Versioning Engine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550598. [PMID: 37546753 PMCID: PMC10402030 DOI: 10.1101/2023.07.26.550598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Advances in Electron Microscopy, image segmentation and computational infrastructure have given rise to large-scale and richly annotated connectomic datasets which are increasingly shared across communities. To enable collaboration, users need to be able to concurrently create new annotations and correct errors in the automated segmentation by proofreading. In large datasets, every proofreading edit relabels cell identities of millions of voxels and thousands of annotations like synapses. For analysis, users require immediate and reproducible access to this constantly changing and expanding data landscape. Here, we present the Connectome Annotation Versioning Engine (CAVE), a computational infrastructure for immediate and reproducible connectome analysis in up-to petascale datasets (~1mm3) while proofreading and annotating is ongoing. For segmentation, CAVE provides a distributed proofreading infrastructure for continuous versioning of large reconstructions. Annotations in CAVE are defined by locations such that they can be quickly assigned to the underlying segment which enables fast analysis queries of CAVE's data for arbitrary time points. CAVE supports schematized, extensible annotations, so that researchers can readily design novel annotation types. CAVE is already used for many connectomics datasets, including the largest datasets available to date.
Collapse
Affiliation(s)
- Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Computer Science Department, Princeton University, Princeton, USA
| | | | | | - Akhilesh Halageri
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Chris Jordan
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Nico Kemnitz
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Manual A. Castro
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | | | | | - Jakob Troidl
- School of Engineering and Applied Sciences, Harvard University, Boston, USA
| | - Hanspeter Pfister
- School of Engineering and Applied Sciences, Harvard University, Boston, USA
| | - Valentin Gillet
- Lund University, Department of Biology, Lund Vision Group, Lund, Sweden
| | - Daniel Xenes
- Research & Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, United States
| | - J. Alexander Bae
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Electrical and Computer Engineering Department, Princeton University, Princeton, USA
| | | | | | | | | | - Zhen Jia
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Computer Science Department, Princeton University, Princeton, USA
| | | | - Sam Kinn
- Allen Institute for Brain Science, Seattle, USA
| | - Kisuk Lee
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Brain & Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, USA
| | - Kai Li
- Computer Science Department, Princeton University, Princeton, USA
| | - Ran Lu
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Thomas Macrina
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Computer Science Department, Princeton University, Princeton, USA
| | | | - Eric Mitchell
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Shanka Subhra Mondal
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Electrical and Computer Engineering Department, Princeton University, Princeton, USA
| | - Shang Mu
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Barak Nehoran
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Computer Science Department, Princeton University, Princeton, USA
| | - Sergiy Popovych
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Computer Science Department, Princeton University, Princeton, USA
| | - Marc Takeno
- Allen Institute for Brain Science, Seattle, USA
| | | | - Nicholas L. Turner
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Computer Science Department, Princeton University, Princeton, USA
| | - William Wong
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Jingpeng Wu
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Wenjing Yin
- Allen Institute for Brain Science, Seattle, USA
| | - Szi-chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | | | | | - H. Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Computer Science Department, Princeton University, Princeton, USA
| | | |
Collapse
|
36
|
Dorkenwald S, Matsliah A, Sterling AR, Schlegel P, Yu SC, McKellar CE, Lin A, Costa M, Eichler K, Yin Y, Silversmith W, Schneider-Mizell C, Jordan CS, Brittain D, Halageri A, Kuehner K, Ogedengbe O, Morey R, Gager J, Kruk K, Perlman E, Yang R, Deutsch D, Bland D, Sorek M, Lu R, Macrina T, Lee K, Bae JA, Mu S, Nehoran B, Mitchell E, Popovych S, Wu J, Jia Z, Castro M, Kemnitz N, Ih D, Bates AS, Eckstein N, Funke J, Collman F, Bock DD, Jefferis GS, Seung HS, Murthy M. Neuronal wiring diagram of an adult brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546656. [PMID: 37425937 PMCID: PMC10327113 DOI: 10.1101/2023.06.27.546656] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Connections between neurons can be mapped by acquiring and analyzing electron microscopic (EM) brain images. In recent years, this approach has been applied to chunks of brains to reconstruct local connectivity maps that are highly informative, yet inadequate for understanding brain function more globally. Here, we present the first neuronal wiring diagram of a whole adult brain, containing 5×107 chemical synapses between ~130,000 neurons reconstructed from a female Drosophila melanogaster. The resource also incorporates annotations of cell classes and types, nerves, hemilineages, and predictions of neurotransmitter identities. Data products are available by download, programmatic access, and interactive browsing and made interoperable with other fly data resources. We show how to derive a projectome, a map of projections between regions, from the connectome. We demonstrate the tracing of synaptic pathways and the analysis of information flow from inputs (sensory and ascending neurons) to outputs (motor, endocrine, and descending neurons), across both hemispheres, and between the central brain and the optic lobes. Tracing from a subset of photoreceptors all the way to descending motor pathways illustrates how structure can uncover putative circuit mechanisms underlying sensorimotor behaviors. The technologies and open ecosystem of the FlyWire Consortium set the stage for future large-scale connectome projects in other species.
Collapse
Affiliation(s)
- Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Computer Science Department, Princeton University, Princeton, USA
| | - Arie Matsliah
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Amy R Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Eyewire, Boston, USA
| | - Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Szi-chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | | | - Albert Lin
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Center for the Physics of Biological Function, Princeton University, Princeton, USA
| | - Marta Costa
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Katharina Eichler
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Yijie Yin
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Will Silversmith
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | | | - Chris S. Jordan
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | | | - Akhilesh Halageri
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Kai Kuehner
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | | | - Ryan Morey
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Jay Gager
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | | | | | - Runzhe Yang
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Computer Science Department, Princeton University, Princeton, USA
| | - David Deutsch
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Doug Bland
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Marissa Sorek
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Eyewire, Boston, USA
| | - Ran Lu
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Thomas Macrina
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Computer Science Department, Princeton University, Princeton, USA
| | - Kisuk Lee
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Brain & Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, USA
| | - J. Alexander Bae
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Electrical and Computer Engineering Department, Princeton University, Princeton, USA
| | - Shang Mu
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Barak Nehoran
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Computer Science Department, Princeton University, Princeton, USA
| | - Eric Mitchell
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Sergiy Popovych
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Computer Science Department, Princeton University, Princeton, USA
| | - Jingpeng Wu
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Zhen Jia
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Manuel Castro
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Nico Kemnitz
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Dodam Ih
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Alexander Shakeel Bates
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
- Harvard Medical School, Boston, USA
- Centre for Neural Circuits and Behaviour, The University of Oxford, Oxford, UK
| | - Nils Eckstein
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, USA
| | - Jan Funke
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, USA
| | | | - Davi D. Bock
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, USA
| | - Gregory S.X.E Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - H. Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Computer Science Department, Princeton University, Princeton, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | | |
Collapse
|