1
|
Zhou R, Tang X, Wang Y. Emerging strategies to investigate the biology of early cancer. Nat Rev Cancer 2024:10.1038/s41568-024-00754-y. [PMID: 39433978 DOI: 10.1038/s41568-024-00754-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 10/23/2024]
Abstract
Early detection and intervention of cancer or precancerous lesions hold great promise to improve patient survival. However, the processes of cancer initiation and the normal-precancer-cancer progression within a non-cancerous tissue context remain poorly understood. This is, in part, due to the scarcity of early-stage clinical samples or suitable models to study early cancer. In this Review, we introduce clinical samples and model systems, such as autochthonous mice and organoid-derived or stem cell-derived models that allow longitudinal analysis of early cancer development. We also present the emerging techniques and computational tools that enhance our understanding of cancer initiation and early progression, including direct imaging, lineage tracing, single-cell and spatial multi-omics, and artificial intelligence models. Together, these models and techniques facilitate a more comprehensive understanding of the poorly characterized early malignant transformation cascade, holding great potential to unveil key drivers and early biomarkers for cancer development. Finally, we discuss how these new insights can potentially be translated into mechanism-based strategies for early cancer detection and prevention.
Collapse
Affiliation(s)
- Ran Zhou
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiwen Tang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Wang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Yamamoto K, Torigoe S, Tsujimura Y, Asaka MN, Okumura K, Ato M. In vivo imaging identified efficient antimicrobial treatment against Mycobacterium marinum infection in mouse footpads. Sci Rep 2024; 14:24343. [PMID: 39420066 PMCID: PMC11487254 DOI: 10.1038/s41598-024-75207-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Mycobacterium marinum (M. marinum) is the most common causative bacteria of cutaneous non-tuberculous mycobacterial (NTM) infections, including fish tank granuloma. Treating M. marinum-caused infection takes longer than other NTM diseases because M. marinum is less susceptible to antimicrobial agents. A standard treatment regimen for M. marinum infection has not been established yet, and few in vivo experiments have been performed in mammals to evaluate the bactericidal effects of antimicrobials. In this study, we developed a noninvasive in vivo imaging method to assess the therapeutic efficacy of antimicrobials against M. marinum infection. The data obtained using fluorescent protein or bioluminescence from luciferase will offer valuable insights into bacteria visualization across various bacterial infections. Furthermore, through this imaging technique, we demonstrated that combining clarithromycin, rifampicin, ethambutol, and minocycline effectively cleared M. marinum from the footpad. Granulomas with necrotic abscesses formed on the footpad of M. marinum-infected mice, primarily due to neutrophils involved in the host's cell-mediated immune response. Inflammatory cytokine and chemokine levels significantly increased 7 days post-infection, aligning with the footpad swelling and granuloma formation observed in the untreated group. Interestingly, immune mediators and cells induced by M. marinum footpad infection were crucial factors associated with hypersensitivity and granuloma formation, as seen in pulmonary tuberculosis. This novel imaging analysis using a cutaneous NTM mouse model might be a powerful tool for the comprehensive analysis of mycobacterial infections.
Collapse
Affiliation(s)
- Kentaro Yamamoto
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Aoba-cho, Higashimurayama, Tokyo, Japan.
| | - Shota Torigoe
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Aoba-cho, Higashimurayama, Tokyo, Japan
- Research Center for Biosafety, Laboratory Animal and Pathogen Bank, National Institute of Infectious Diseases, Toyama, Shinjuku, Tokyo, Japan
| | - Yusuke Tsujimura
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Aoba-cho, Higashimurayama, Tokyo, Japan
| | - Masamitsu N Asaka
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Aoba-cho, Higashimurayama, Tokyo, Japan
| | - Kayo Okumura
- Research Center for Biosafety, Laboratory Animal and Pathogen Bank, National Institute of Infectious Diseases, Toyama, Shinjuku, Tokyo, Japan
| | - Manabu Ato
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Aoba-cho, Higashimurayama, Tokyo, Japan
| |
Collapse
|
3
|
Labra B, Parag-Sharma K, Powers JJ, Srivastava S, Walker JR, Kirkland TA, Brennan CK, Prescher JA, Amelio AL. Optimized in vivo multispectral bioluminescent imaging of tumor biology using engineered BRET reporters. iScience 2024; 27:110655. [PMID: 39252965 PMCID: PMC11381837 DOI: 10.1016/j.isci.2024.110655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/30/2024] [Accepted: 07/31/2024] [Indexed: 09/11/2024] Open
Abstract
The ability to visualize and track multiple biological processes in vivo in real time is highly desirable. Bioluminescence imaging (BLI) has emerged as an attractive modality for non-invasive cell tracking, with various luciferase reporters enabling parallel monitoring of several processes. However, simultaneous multiplexed imaging in vivo is challenging due to suboptimal reporter intensities and the need to image one luciferase at a time. We report a multiplexed BLI approach using a single substrate that leverages bioluminescence resonance energy transfer (BRET)-based reporters with distinct spectral profiles for triple-color BLI. These luciferase-fluorophore fusion reporters address light transmission challenges and use optimized coelenterazine substrates. Comparing BRET reporters across two substrate analogs identified a green-yellow-orange combination that allows simultaneous imaging of three distinct cell populations in vitro and in vivo. These tools provide a template for imaging other biological processes in vivo during a single BLI session using a single reporter substrate.
Collapse
Affiliation(s)
- Bryan Labra
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kshitij Parag-Sharma
- Graduate Curriculum in Cell Biology & Physiology, Biological & Biomedical Sciences Program, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John J Powers
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Sonal Srivastava
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | | | - Thomas A Kirkland
- Promega Biosciences, LLC, San Luis Obispo, CA, USA
- Promega Corporation, Madison, WI, USA
| | - Caroline K Brennan
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Jennifer A Prescher
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Antonio L Amelio
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Cancer Cell Biology Program, Lineberger Comprehensive Cancer Center, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
4
|
Goreke U, Gonzales A, Shipley B, Tincher M, Sharma O, Wulftange WJ, Man Y, An R, Hinczewski M, Gurkan UA. Motion blur microscopy: in vitro imaging of cell adhesion dynamics in whole blood flow. Nat Commun 2024; 15:7058. [PMID: 39152149 PMCID: PMC11329636 DOI: 10.1038/s41467-024-51014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 07/26/2024] [Indexed: 08/19/2024] Open
Abstract
Imaging and characterizing the dynamics of cellular adhesion in blood samples is of fundamental importance in understanding biological function. In vitro microscopy methods are widely used for this task but typically require diluting the blood with a buffer to allow for transmission of light. However, whole blood provides crucial signaling cues that influence adhesion dynamics, which means that conventional approaches lack the full physiological complexity of living microvasculature. We can reliably image cell interactions in microfluidic channels during whole blood flow by motion blur microscopy (MBM) in vitro and automate image analysis using machine learning. MBM provides a low cost, easy to implement alternative to intravital microscopy, for rapid data generation where understanding cell interactions, adhesion, and motility is crucial. MBM is generalizable to studies of various diseases, including cancer, blood disorders, thrombosis, inflammatory and autoimmune diseases, as well as providing rich datasets for theoretical modeling of adhesion dynamics.
Collapse
Affiliation(s)
- Utku Goreke
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Ayesha Gonzales
- Department of Physics, Case Western Reserve University, Cleveland, OH, USA
| | - Brandon Shipley
- Department of Physics, Case Western Reserve University, Cleveland, OH, USA
| | - Madeleine Tincher
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Oshin Sharma
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - William J Wulftange
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Yuncheng Man
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Ran An
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Michael Hinczewski
- Department of Physics, Case Western Reserve University, Cleveland, OH, USA.
| | - Umut A Gurkan
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA.
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
5
|
Wehn AC, Krestel E, Harapan BN, Klymchenko A, Plesnila N, Khalin I. To see or not to see: In vivo nanocarrier detection methods in the brain and their challenges. J Control Release 2024; 371:216-236. [PMID: 38810705 DOI: 10.1016/j.jconrel.2024.05.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Nanoparticles have a great potential to significantly improve the delivery of therapeutics to the brain and may also be equipped with properties to investigate brain function. The brain, being a highly complex organ shielded by selective barriers, requires its own specialized detection system. However, a significant hurdle to achieve these goals is still the identification of individual nanoparticles within the brain with sufficient cellular, subcellular, and temporal resolution. This review aims to provide a comprehensive summary of the current knowledge on detection systems for tracking nanoparticles across the blood-brain barrier and within the brain. We discuss commonly employed in vivo and ex vivo nanoparticle identification and quantification methods, as well as various imaging modalities able to detect nanoparticles in the brain. Advantages and weaknesses of these modalities as well as the biological factors that must be considered when interpreting results obtained through nanotechnologies are summarized. Finally, we critically evaluate the prevailing limitations of existing technologies and explore potential solutions.
Collapse
Affiliation(s)
- Antonia Clarissa Wehn
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Department of Neurosurgery, University of Munich Medical Center, Marchioninistraße 17, 81377 Munich, Germany.
| | - Eva Krestel
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany.
| | - Biyan Nathanael Harapan
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Department of Neurosurgery, University of Munich Medical Center, Marchioninistraße 17, 81377 Munich, Germany.
| | - Andrey Klymchenko
- Laboratoire de Biophotonique et Pharmacologie, CNRS UMR 7213, Université de Strasbourg, 74 route du Rhin - CS 60024, 67401 Illkirch Cedex, France.
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Straße 17, 81377 Munich, Germany.
| | - Igor Khalin
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), 14 074 Bd Henri Becquerel, 14000 Caen, France.
| |
Collapse
|
6
|
Takahashi-Yamashiro K, Miyazono K. Tissue clearing method in visualization of cancer progression and metastasis. Ups J Med Sci 2024; 129:10634. [PMID: 38716075 PMCID: PMC11075440 DOI: 10.48101/ujms.v129.10634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 03/07/2024] [Indexed: 05/24/2024] Open
Abstract
Since various imaging modalities have been developed, cancer metastasis can be detected from an early stage. However, limitations still exist, especially in terms of spatial resolution. Tissue-clearing technology has emerged as a new imaging modality in cancer research, which has been developed and utilized for a long time mainly in neuroscience field. This method enables us to detect cancer metastatic foci with single-cell resolution at whole mouse body/organ level. On top of that, 3D images of cancer metastasis of whole mouse organs make it easy to understand their characteristics. Recently, further applications of tissue clearing methods were reported in combination with reporter systems, labeling, and machine learning. In this review, we would like to provide an overview of this technique and current applications in cancer research and discuss their potentials and limitations.
Collapse
Affiliation(s)
- Kei Takahashi-Yamashiro
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton, Alberta, Canada
| | - Kohei Miyazono
- Department of Applied Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Cancer Invasion and Metastasis, Institute for Medical Sciences, RIKEN, Yokohama City, Kanagawa, Japan
| |
Collapse
|
7
|
Gee M, Atai K, Coller HA, Yeates TO, Castells-Graells R. Designed fluorescent protein cages as fiducial markers for targeted cell imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582585. [PMID: 38464160 PMCID: PMC10925312 DOI: 10.1101/2024.02.28.582585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Understanding how proteins function within their cellular environments is essential for cellular biology and biomedical research. However, current imaging techniques exhibit limitations, particularly in the study of small complexes and individual proteins within cells. Previously, protein cages have been employed as imaging scaffolds to study purified small proteins using cryo-electron microscopy (cryo-EM). Here we demonstrate an approach to deliver designed protein cages - endowed with fluorescence and targeted binding properties - into cells, thereby serving as fiducial markers for cellular imaging. We used protein cages with anti-GFP DARPin domains to target a mitochondrial protein (MFN1) expressed in mammalian cells, which was genetically fused to GFP. We demonstrate that the protein cages can penetrate cells, are directed to specific subcellular locations, and are detectable with confocal microscopy. This innovation represents a milestone in developing tools for in-depth cellular exploration, especially in conjunction with methods such as cryo-correlative light and electron microscopy (cryo-CLEM).
Collapse
Affiliation(s)
- Morgan Gee
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA 90095
| | - Kaiser Atai
- Molecular Biology Interdepartmental Doctoral Program, University of California, Los Angeles, Los Angeles, CA, USA 90095
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA 90095
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA 90095
| | - Hilary A Coller
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA 90095
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA 90095
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA 90095
| | - Todd O Yeates
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA 90095
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA 90095
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA, USA 90095
| | | |
Collapse
|
8
|
Sechrist ZR, Lee G, Schwarz EM, Cole CL. Validation of dual energy X-ray absorptiometry for longitudinal quantification of tumor burden in a murine model of pancreatic ductal adenocarcinoma. PLoS One 2024; 19:e0292196. [PMID: 38165848 PMCID: PMC10760650 DOI: 10.1371/journal.pone.0292196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/12/2023] [Indexed: 01/04/2024] Open
Abstract
Noninvasive imaging is central to preclinical, in vivo models of pancreatic ductal adenocarcinoma (PDAC). While bioluminescent imaging (BLI) is a gold standard, its signal is dependent on the metabolic activity of tumor cells. In contrast, dual energy X-ray absorptiometry (DEXA) is a direct measure of body composition. Thus, we aimed to assess its potential for longitudinal quantification of tumor burden versus BLI. We utilized the KCKO murine model of PDAC and subjected tumor-bearing (n = 20) and non-tumor control (NTC) (n = 10) animals to weekly BLI and DEXA measurements for up to 10 weeks. While BLI detected tumors at 1-week, it failed to detect tumor growth, displayed a decreasing trend overtime (slope = -9.0x108; p = 0.0028), and terminal signal did not correlate with ex vivo tumor mass (r = 0.01853; p = 0.6286). In contrast, DEXA did not detect elevated changes in abdominal cavity lean mass until week 2 post inoculation and tumors were not visible until week 3, but successfully quantified a tumor growth trend (slope = 0.7322; p<0.0001), and strongly correlated with final tumor mass (r = 0.9351; p<0.0001). These findings support the use of BLI for initial tumor engraftment and persistence but demonstrate the superiority of DEXA for longitudinal tumor burden studies. As tumor detection by DEXA is not restricted to luciferase expressing models, future studies to assess its value in various cancer models and as an in vivo outcome measure of treatment efficacy are warranted.
Collapse
Affiliation(s)
- Zachary R. Sechrist
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Surgical Oncology, University of Rochester Medical Center, Rochester, New York, United States of America
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Grace Lee
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Edward M. Schwarz
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Calvin L. Cole
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Surgical Oncology, University of Rochester Medical Center, Rochester, New York, United States of America
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, United States of America
| |
Collapse
|
9
|
Das S, Dey MK, Devireddy R, Gartia MR. Biomarkers in Cancer Detection, Diagnosis, and Prognosis. SENSORS (BASEL, SWITZERLAND) 2023; 24:37. [PMID: 38202898 PMCID: PMC10780704 DOI: 10.3390/s24010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Biomarkers are vital in healthcare as they provide valuable insights into disease diagnosis, prognosis, treatment response, and personalized medicine. They serve as objective indicators, enabling early detection and intervention, leading to improved patient outcomes and reduced costs. Biomarkers also guide treatment decisions by predicting disease outcomes and facilitating individualized treatment plans. They play a role in monitoring disease progression, adjusting treatments, and detecting early signs of recurrence. Furthermore, biomarkers enhance drug development and clinical trials by identifying suitable patients and accelerating the approval process. In this review paper, we described a variety of biomarkers applicable for cancer detection and diagnosis, such as imaging-based diagnosis (CT, SPECT, MRI, and PET), blood-based biomarkers (proteins, genes, mRNA, and peptides), cell imaging-based diagnosis (needle biopsy and CTC), tissue imaging-based diagnosis (IHC), and genetic-based biomarkers (RNAseq, scRNAseq, and spatial transcriptomics).
Collapse
Affiliation(s)
| | | | | | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (S.D.); (M.K.D.); (R.D.)
| |
Collapse
|
10
|
Chen MB, Javanmardi Y, Shahreza S, Serwinski B, Aref A, Djordjevic B, Moeendarbary E. Mechanobiology in oncology: basic concepts and clinical prospects. Front Cell Dev Biol 2023; 11:1239749. [PMID: 38020912 PMCID: PMC10644154 DOI: 10.3389/fcell.2023.1239749] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
The interplay between genetic transformations, biochemical communications, and physical interactions is crucial in cancer progression. Metastasis, a leading cause of cancer-related deaths, involves a series of steps, including invasion, intravasation, circulation survival, and extravasation. Mechanical alterations, such as changes in stiffness and morphology, play a significant role in all stages of cancer initiation and dissemination. Accordingly, a better understanding of cancer mechanobiology can help in the development of novel therapeutic strategies. Targeting the physical properties of tumours and their microenvironment presents opportunities for intervention. Advancements in imaging techniques and lab-on-a-chip systems enable personalized investigations of tumor biomechanics and drug screening. Investigation of the interplay between genetic, biochemical, and mechanical factors, which is of crucial importance in cancer progression, offers insights for personalized medicine and innovative treatment strategies.
Collapse
Affiliation(s)
- Michelle B. Chen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Yousef Javanmardi
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Somayeh Shahreza
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Bianca Serwinski
- Department of Mechanical Engineering, University College London, London, United Kingdom
- 199 Biotechnologies Ltd., London, United Kingdom
- Northeastern University London, London, United Kingdom
| | - Amir Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Boris Djordjevic
- Department of Mechanical Engineering, University College London, London, United Kingdom
- 199 Biotechnologies Ltd., London, United Kingdom
| | - Emad Moeendarbary
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Mechanical Engineering, University College London, London, United Kingdom
| |
Collapse
|
11
|
Sechrist ZR, Lee G, Schwarz EM, Cole CL. Validation of Dual Energy X-ray Absorptiometry for longitudinal quantification of tumor burden in a murine model of pancreatic ductal adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.17.558153. [PMID: 37790492 PMCID: PMC10542135 DOI: 10.1101/2023.09.17.558153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Noninvasive imaging is central to preclinical, in vivo models of pancreatic ductal adenocarcinoma (PDAC). While bioluminescent imaging (BLI) is a gold standard, its signal is dependent on the metabolic activity of tumor cells. In contrast, dual energy X-ray absorptiometry (DEXA) is a direct measure of body composition. Thus, we aimed to assess its potential for longitudinal quantification of tumor burden versus BLI. We utilized the KCKO murine model of PDAC and subjected tumor-bearing (n = 20) and non-tumor control (NTC) (n = 10) animals to weekly BLI and DEXA measurements for up to 10 weeks. While BLI detected tumors at 1-week, it failed to detect tumor growth, displayed a decreasing trend overtime (slope = -9.0×108; p = 0.0028), and terminal signal did not correlate with ex vivo tumor mass (r = 0.01853; p = 0.6286). In contrast, DEXA did not detect elevated changes in abdominal cavity lean mass until week 2 post inoculation and tumors were not visible until week 3, but successfully quantified a tumor growth trend (slope = 0.7322; p<0.0001), and strongly correlated with final tumor mass (r = 0.9351; p<0.0001). These findings support the use of BLI for initial tumor engraftment and persistence but demonstrate the superiority of DEXA for longitudinal tumor burden studies. As tumor detection by DEXA is not restricted to luciferase expressing models, future studies to assess its value in various cancer models and as an in vivo outcome measure of treatment efficacy are warranted.
Collapse
Affiliation(s)
- Zachary R Sechrist
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States
- Department of Surgical Oncology, University of Rochester Medical Center, Rochester, New York, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, United States
| | - Grace Lee
- Department of Biology, University of Rochester, Rochester, New York, United States
| | - Edward M Schwarz
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, United States
| | - Calvin L Cole
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States
- Department of Surgical Oncology, University of Rochester Medical Center, Rochester, New York, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, United States
| |
Collapse
|
12
|
Hersh J, Yang YP, Roberts E, Bilbao D, Tao W, Pollack A, Daunert S, Deo SK. Targeted Bioluminescent Imaging of Pancreatic Ductal Adenocarcinoma Using Nanocarrier-Complexed EGFR-Binding Affibody-Gaussia Luciferase Fusion Protein. Pharmaceutics 2023; 15:1976. [PMID: 37514162 PMCID: PMC10384630 DOI: 10.3390/pharmaceutics15071976] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
In vivo imaging has enabled impressive advances in biological research, both preclinical and clinical, and researchers have an arsenal of imaging methods available. Bioluminescence imaging is an advantageous method for in vivo studies that allows for the simple acquisition of images with low background signals. Researchers have increasingly been looking for ways to improve bioluminescent imaging for in vivo applications, which we sought to achieve by developing a bioluminescent probe that could specifically target cells of interest. We chose pancreatic ductal adenocarcinoma (PDAC) as the disease model because it is the most common type of pancreatic cancer and has an extremely low survival rate. We targeted the epidermal growth factor receptor (EGFR), which is frequently overexpressed in pancreatic cancer cells, using an EGFR-specific affibody to selectively identify PDAC cells and delivered a Gaussia luciferase (GLuc) bioluminescent protein for imaging by engineering a fusion protein with both the affibody and the bioluminescent protein. This fusion protein was then complexed with a G5-PAMAM dendrimer nanocarrier. The dendrimer was used to improve the protein stability in vivo and increase signal strength. Our targeted bioluminescent complex had an enhanced uptake into PDAC cells in vitro and localized to PDAC tumors in vivo in pancreatic cancer xenograft mice. The bioluminescent complexes could delineate the tumor shape, identify multiple masses, and locate metastases. Through this work, an EGFR-targeted bioluminescent-dendrimer complex enabled the straightforward identification and imaging of pancreatic cancer cells in vivo in preclinical models. This argues for the targeted nanocarrier-mediated delivery of bioluminescent proteins as a way to improve in vivo bioluminescent imaging.
Collapse
Affiliation(s)
- Jessica Hersh
- Department of Biochemistry & Molecular Biology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (J.H.); (Y.-P.Y.); (S.D.)
- The Dr. John T. McDonald Foundation Bionanotechnology Institute, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (E.R.); (D.B.); (W.T.); (A.P.)
| | - Yu-Ping Yang
- Department of Biochemistry & Molecular Biology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (J.H.); (Y.-P.Y.); (S.D.)
- The Dr. John T. McDonald Foundation Bionanotechnology Institute, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (E.R.); (D.B.); (W.T.); (A.P.)
| | - Evan Roberts
- Sylvester Comprehensive Cancer Center, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (E.R.); (D.B.); (W.T.); (A.P.)
| | - Daniel Bilbao
- Sylvester Comprehensive Cancer Center, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (E.R.); (D.B.); (W.T.); (A.P.)
- Department of Pathology and Laboratory Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Wensi Tao
- Sylvester Comprehensive Cancer Center, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (E.R.); (D.B.); (W.T.); (A.P.)
- Department of Radiation Oncology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Alan Pollack
- Sylvester Comprehensive Cancer Center, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (E.R.); (D.B.); (W.T.); (A.P.)
- Department of Radiation Oncology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sylvia Daunert
- Department of Biochemistry & Molecular Biology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (J.H.); (Y.-P.Y.); (S.D.)
- The Dr. John T. McDonald Foundation Bionanotechnology Institute, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (E.R.); (D.B.); (W.T.); (A.P.)
| | - Sapna K. Deo
- Department of Biochemistry & Molecular Biology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (J.H.); (Y.-P.Y.); (S.D.)
- The Dr. John T. McDonald Foundation Bionanotechnology Institute, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (E.R.); (D.B.); (W.T.); (A.P.)
| |
Collapse
|
13
|
Singhal SS, Garg R, Mohanty A, Garg P, Ramisetty SK, Mirzapoiazova T, Soldi R, Sharma S, Kulkarni P, Salgia R. Recent Advancement in Breast Cancer Research: Insights from Model Organisms-Mouse Models to Zebrafish. Cancers (Basel) 2023; 15:cancers15112961. [PMID: 37296923 DOI: 10.3390/cancers15112961] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Animal models have been utilized for decades to investigate the causes of human diseases and provide platforms for testing novel therapies. Indeed, breakthrough advances in genetically engineered mouse (GEM) models and xenograft transplantation technologies have dramatically benefited in elucidating the mechanisms underlying the pathogenesis of multiple diseases, including cancer. The currently available GEM models have been employed to assess specific genetic changes that underlay many features of carcinogenesis, including variations in tumor cell proliferation, apoptosis, invasion, metastasis, angiogenesis, and drug resistance. In addition, mice models render it easier to locate tumor biomarkers for the recognition, prognosis, and surveillance of cancer progression and recurrence. Furthermore, the patient-derived xenograft (PDX) model, which involves the direct surgical transfer of fresh human tumor samples to immunodeficient mice, has contributed significantly to advancing the field of drug discovery and therapeutics. Here, we provide a synopsis of mouse and zebrafish models used in cancer research as well as an interdisciplinary 'Team Medicine' approach that has not only accelerated our understanding of varied aspects of carcinogenesis but has also been instrumental in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Sharad S Singhal
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Rachana Garg
- Department of Surgery, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Pankaj Garg
- Department of Chemistry, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Sravani Keerthi Ramisetty
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Tamara Mirzapoiazova
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Raffaella Soldi
- Translational Genomics Research Institute, Phoenix, AZ 85338, USA
| | - Sunil Sharma
- Translational Genomics Research Institute, Phoenix, AZ 85338, USA
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
- Department of Systems Biology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
14
|
Nasser T, Adel R, Badr A, Teleb M, Bekhit AA, Elkhodairy KA, Abdelhamid AS, Elzoghby AO. Combined Cancer Immunotheranostic Nanomedicines: Delivery Technologies and Therapeutic Outcomes. ACS OMEGA 2023; 8:4491-4507. [PMID: 36777563 PMCID: PMC9909687 DOI: 10.1021/acsomega.2c05986] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/16/2023] [Indexed: 05/05/2023]
Abstract
Cancer is among the main causes of mortality all over the world. The delayed diagnosis is directly related to the decrease in survival rate. The use of immunotherapy has dramatically changed the treatment outcomes of different types of cancers. However, many patients still do not respond to immunotherapies, and many also suffer from severe immune-related side effects. Recent advances in the fields of nanomedicine bioengineering and in particular imaging offered new approaches which can enhance not only the safety but also the efficacy of immunotherapy. Theranostics has showed great progress as a branch of medicine which integrates both diagnosis and therapy in a single system. The outcomes from animal studies demonstrated an improvement in the diagnostic and immunotherapeutic potential of nanoparticles within the theranostic framework. Herein, we discuss the most recent developments in the application of nanotheranostics for combining tumor imaging and cancer immunotherapies.
Collapse
Affiliation(s)
- Tasneem
A. Nasser
- Cancer
Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Rawan Adel
- Cancer
Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Abdelrahman Badr
- Cancer
Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Mohamed Teleb
- Cancer
Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 5372066, Egypt
| | - Adnan A. Bekhit
- Cancer
Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 5372066, Egypt
| | - Kadria A. Elkhodairy
- Cancer
Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department
of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 5372066, Egypt
| | - Ahmed S. Abdelhamid
- Cancer
Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- . Cell: (002) 010-986-85077
| | - Ahmed O. Elzoghby
- Cancer
Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department
of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 5372066, Egypt
- Division
of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- . Cell: (001) 781-366-8703
| |
Collapse
|
15
|
Yusoff R, Baco S, Rahman ABA, Ghazali K, Gabda D, Al-Somali F. Design study on the microfluidic scintillator detector using GEANT4. ADVANCES IN FRACTURE AND DAMAGE MECHANICS XX 2023. [DOI: 10.1063/5.0127952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
16
|
Entenberg D, Oktay MH, Condeelis JS. Intravital imaging to study cancer progression and metastasis. Nat Rev Cancer 2023; 23:25-42. [PMID: 36385560 PMCID: PMC9912378 DOI: 10.1038/s41568-022-00527-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 11/17/2022]
Abstract
Navigation through the bulk tumour, entry into the blood vasculature, survival in the circulation, exit at distant sites and resumption of proliferation are all steps necessary for tumour cells to successfully metastasize. The ability of tumour cells to complete these steps is highly dependent on the timing and sequence of the interactions that these cells have with the tumour microenvironment (TME), including stromal cells, the extracellular matrix and soluble factors. The TME thus plays a major role in determining the overall metastatic phenotype of tumours. The complexity and cause-and-effect dynamics of the TME cannot currently be recapitulated in vitro or inferred from studies of fixed tissue, and are best studied in vivo, in real time and at single-cell resolution. Intravital imaging (IVI) offers these capabilities, and recent years have been a time of immense growth and innovation in the field. Here we review some of the recent advances in IVI of mammalian models of cancer and describe how IVI is being used to understand cancer progression and metastasis, and to develop novel treatments and therapies. We describe new techniques that allow access to a range of tissue and cancer types, novel fluorescent reporters and biosensors that allow fate mapping and the probing of functional and phenotypic states, and the clinical applications that have arisen from applying these techniques, reporters and biosensors to study cancer. We finish by presenting some of the challenges that remain in the field, how to address them and future perspectives.
Collapse
Affiliation(s)
- David Entenberg
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
| | - Maja H Oktay
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
| | - John S Condeelis
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
17
|
Bodalal Z, Katz S, Shi H, Beets-Tan R. "Advances in cancer imaging and technology"-special collection -introductory Editorial. BJR Open 2022; 4:20229003. [PMID: 38525165 PMCID: PMC10959000 DOI: 10.1259/bjro.20229003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
| | - Sharyn Katz
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Haibin Shi
- Center for Molecular Imaging and Nuclear Medicine, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| | | |
Collapse
|
18
|
Naeimi R, Najafi R, Molaei P, Amini R, Pecic S. Nanoparticles: The future of effective diagnosis and treatment of colorectal cancer? Eur J Pharmacol 2022; 936:175350. [DOI: 10.1016/j.ejphar.2022.175350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/03/2022]
|
19
|
Radzevičiūtė E, Malyško-Ptašinskė V, Novickij J, Novickij V, Girkontaitė I. Transfection by Electroporation of Cancer and Primary Cells Using Nanosecond and Microsecond Electric Fields. Pharmaceutics 2022; 14:1239. [PMID: 35745814 PMCID: PMC9230780 DOI: 10.3390/pharmaceutics14061239] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 12/18/2022] Open
Abstract
Gene transfer into primary immune cells as well as into cell lines is essential for scientific and therapeutical applications. One of the methods used for gene transfer is electroporation (EP). EP is a method where a pulsed electric field (PEF) causes a highly transient permeability of the targeted cell membrane. In this work, we present the electrotransfection of CHO-K1, 4T1 cell lines, and primary murine DCs with detectable protein-encoding plasmids in the sub-microsecond range. Microsecond (µs)- and nanosecond (ns)-range pulsed electric field transfection protocols were used. The efficiency of electrotransfection was evaluated using green fluorescent protein (GFP)-encoding plasmids (4.7 kbp; p-EGFP-N1) and plasmids expressing a firefly luciferase and red fluorescent protein (tdTomato) (8.5 kbp; pcDNA3.1(+)/Luc2 = tdT)). It was shown that the used nsPEFs protocol (7 kV/cm × 300 ns × 100, 1 MHz) ensured a better transfection efficiency than µsPEFs (1.2 kV/cm × 100 µs × 8, 1 Hz). Plasmid size and concentration had a strong impact on the cell transfection efficiency too. We also showed that there were no significant differences in transfection efficiency between immature and mature DCs. Finally, the nsPEF protocols were successfully applied for the stable transfection of the CHO-K1 cell line with the linearized pcDNA3.1(+)/Luc2 = tdT plasmid. The results of the study are applicable in gene therapy and DNA vaccination studies for the derivation of optimal electrotransfection conditions.
Collapse
Affiliation(s)
- Eivina Radzevičiūtė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, 08406 Vilnius, Lithuania;
| | - Veronika Malyško-Ptašinskė
- Faculty of Electronics, Vilnius Gediminas Technical University, 03227 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Jurij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 03227 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 03227 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Irutė Girkontaitė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, 08406 Vilnius, Lithuania;
| |
Collapse
|
20
|
Head T, Cady NC. Monitoring and modulation of the tumor microenvironment for enhanced cancer modeling. Exp Biol Med (Maywood) 2022; 247:598-613. [PMID: 35088603 PMCID: PMC9014523 DOI: 10.1177/15353702221074293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cancer treatments utilizing biologic or cytotoxic drugs compose the frontline of therapy, and though gains in treatment efficacy have been persistent in recent decades, much work remains in understanding cancer progression and treatment. Compounding this situation is the low rate of success when translating preclinical drug candidates to the clinic, which raises costs and development timelines. This underperformance is due in part to the poor recapitulation of the tumor microenvironment, a critical component of cancer biology, in cancer model systems. New technologies capable of both accurately observing and manipulating the tumor microenvironment are needed to effectively model cancer response to treatment. In this review, conventional cancer models are summarized, and a primer on emerging techniques for monitoring and modulating the tumor microenvironment is presented and discussed.
Collapse
Affiliation(s)
- Tristen Head
- College of Nanoscale Science & Engineering,
State University of New York Polytechnic Institute, Albany, NY 12203, USA
| | - Nathaniel C Cady
- College of Nanoscale Science & Engineering,
State University of New York Polytechnic Institute, Albany, NY 12203, USA
| |
Collapse
|
21
|
Lloyd-Lewis B, Gobbo F, Perkins M, Jacquemin G, Huyghe M, Faraldo MM, Fre S. In vivo imaging of mammary epithelial cell dynamics in response to lineage-biased Wnt/β-catenin activation. Cell Rep 2022; 38:110461. [PMID: 35263603 PMCID: PMC7615182 DOI: 10.1016/j.celrep.2022.110461] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/15/2021] [Accepted: 02/09/2022] [Indexed: 11/28/2022] Open
Abstract
Real-time in vivo imaging provides an essential window into the spatiotemporal cellular events contributing to tissue development and pathology. By coupling longitudinal intravital imaging with genetic lineage tracing, here we capture the earliest cellular events arising in response to active Wnt/β-catenin signaling and the ensuing impact on the organization and differentiation of the mammary epithelium. This enables us to interrogate how Wnt/β-catenin regulates the dynamics of distinct subpopulations of mammary epithelial cells in vivo and in real time. We show that β-catenin stabilization, when targeted to either the mammary luminal or basal epithelial lineage, leads to cellular rearrangements that precipitate the formation of hyperplastic lesions that undergo squamous transdifferentiation. These results enhance our understanding of the earliest stages of hyperplastic lesion formation in vivo and reveal that, in mammary neoplastic development, β-catenin activation dictates a hair follicle/epidermal differentiation program independently of the targeted cell of origin.
Collapse
Affiliation(s)
- Bethan Lloyd-Lewis
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris, France; School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, UK
| | - Francesca Gobbo
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris, France
| | - Meghan Perkins
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris, France
| | - Guillaume Jacquemin
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris, France
| | - Mathilde Huyghe
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris, France
| | - Marisa M Faraldo
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris, France
| | - Silvia Fre
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris, France.
| |
Collapse
|
22
|
Cerqueira M, Belmonte-Reche E, Gallo J, Baltazar F, Bañobre-López M. Magnetic Solid Nanoparticles and Their Counterparts: Recent Advances towards Cancer Theranostics. Pharmaceutics 2022; 14:pharmaceutics14030506. [PMID: 35335882 PMCID: PMC8950239 DOI: 10.3390/pharmaceutics14030506] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is currently a leading cause of death worldwide. The World Health Organization estimates an increase of 60% in the global cancer incidence in the next two decades. The inefficiency of the currently available therapies has prompted an urgent effort to develop new strategies that enable early diagnosis and improve response to treatment. Nanomedicine formulations can improve the pharmacokinetics and pharmacodynamics of conventional therapies and result in optimized cancer treatments. In particular, theranostic formulations aim at addressing the high heterogeneity of tumors and metastases by integrating imaging properties that enable a non-invasive and quantitative assessment of tumor targeting efficiency, drug delivery, and eventually the monitoring of the response to treatment. However, in order to exploit their full potential, the promising results observed in preclinical stages need to achieve clinical translation. Despite the significant number of available functionalization strategies, targeting efficiency is currently one of the major limitations of advanced nanomedicines in the oncology area, highlighting the need for more efficient nanoformulation designs that provide them with selectivity for precise cancer types and tumoral tissue. Under this current need, this review provides an overview of the strategies currently applied in the cancer theranostics field using magnetic nanoparticles (MNPs) and solid lipid nanoparticles (SLNs), where both nanocarriers have recently entered the clinical trials stage. The integration of these formulations into magnetic solid lipid nanoparticles—with different composition and phenotypic activity—constitutes a new generation of theranostic nanomedicines with great potential for the selective, controlled, and safe delivery of chemotherapy.
Collapse
Affiliation(s)
- Mónica Cerqueira
- Life and Health Sciences Research Institute (ICVS), Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
- Advanced (Magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (E.B.-R.); (J.G.)
| | - Efres Belmonte-Reche
- Advanced (Magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (E.B.-R.); (J.G.)
| | - Juan Gallo
- Advanced (Magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (E.B.-R.); (J.G.)
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
- Correspondence: (F.B.); (M.B.-L.)
| | - Manuel Bañobre-López
- Advanced (Magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (E.B.-R.); (J.G.)
- Correspondence: (F.B.); (M.B.-L.)
| |
Collapse
|
23
|
In Vivo Evaluation of Sgc8-c Aptamer as a Molecular Imaging Probe for Colon Cancer in a Mouse Xenograft Model. Int J Mol Sci 2022; 23:ijms23052466. [PMID: 35269608 PMCID: PMC8910571 DOI: 10.3390/ijms23052466] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 11/22/2022] Open
Abstract
Recent biotechnological applications in the field of clinical oncology led to the identification of new biomarkers as molecular targets of cancer, and to broad developments in the field of personalized medicine. Aptamers are oligonucleotides (ssDNA or RNA) that are selected to specifically recognize a molecular target with high affinity and specificity. Based on this, new horizons for their use as molecular imaging probes are being explored. The objective of this work was to evaluate the Sgc8-c aptamer conjugated with Alexa Fluor 647 fluorophore as an imaging probe in a colon tumor xenograft mouse model, with potential application in molecular imaging. In this study, the LS174T cell line was used to induce colorectal adenocarcinoma in nude mice. After confirmation of PTK7 overexpression by immunohistochemistry, in vivo studies were performed. Pharmacokinetic, in vivo and ex vivo biodistribution imaging, and a competition assay were evaluated by fluorescence imaging. In vivo visualization of the probe in the tumors was assessed two hours after aptamer probe administration, exhibiting excellent tumor-to-background ratios in biodistribution studies and high specificity in the competition test. Our results demonstrated the functionality of Scg8-c as an imaging probe for colon cancer, with potential clinical applications.
Collapse
|
24
|
Kwong GA, Ghosh S, Gamboa L, Patriotis C, Srivastava S, Bhatia SN. Synthetic biomarkers: a twenty-first century path to early cancer detection. Nat Rev Cancer 2021; 21:655-668. [PMID: 34489588 PMCID: PMC8791024 DOI: 10.1038/s41568-021-00389-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/14/2021] [Indexed: 02/08/2023]
Abstract
Detection of cancer at an early stage when it is still localized improves patient response to medical interventions for most cancer types. The success of screening tools such as cervical cytology to reduce mortality has spurred significant interest in new methods for early detection (for example, using non-invasive blood-based or biofluid-based biomarkers). Yet biomarkers shed from early lesions are limited by fundamental biological and mass transport barriers - such as short circulation times and blood dilution - that limit early detection. To address this issue, synthetic biomarkers are being developed. These represent an emerging class of diagnostics that deploy bioengineered sensors inside the body to query early-stage tumours and amplify disease signals to levels that could potentially exceed those of shed biomarkers. These strategies leverage design principles and advances from chemistry, synthetic biology and cell engineering. In this Review, we discuss the rationale for development of biofluid-based synthetic biomarkers. We examine how these strategies harness dysregulated features of tumours to amplify detection signals, use tumour-selective activation to increase specificity and leverage natural processing of bodily fluids (for example, blood, urine and proximal fluids) for easy detection. Finally, we highlight the challenges that exist for preclinical development and clinical translation of synthetic biomarker diagnostics.
Collapse
Affiliation(s)
- Gabriel A Kwong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA.
- Parker H. Petit Institute of Bioengineering and Bioscience, Atlanta, GA, USA.
- Institute for Electronics and Nanotechnology, Georgia Tech, Atlanta, GA, USA.
- The Georgia Immunoengineering Consortium, Emory University and Georgia Tech, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| | - Sharmistha Ghosh
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Lena Gamboa
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - Christos Patriotis
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sudhir Srivastava
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Sangeeta N Bhatia
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
25
|
Moody AS, Dayton PA, Zamboni WC. Imaging methods to evaluate tumor microenvironment factors affecting nanoparticle drug delivery and antitumor response. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:382-413. [PMID: 34796317 PMCID: PMC8597952 DOI: 10.20517/cdr.2020.94] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/07/2021] [Accepted: 01/28/2021] [Indexed: 11/24/2022]
Abstract
Standard small molecule and nanoparticulate chemotherapies are used for cancer treatment; however, their effectiveness remains highly variable. One reason for this variable response is hypothesized to be due to nonspecific drug distribution and heterogeneity of the tumor microenvironment, which affect tumor delivery of the agents. Nanoparticle drugs have many theoretical advantages, but due to variability in tumor microenvironment (TME) factors, the overall drug delivery to tumors and associated antitumor response are low. The nanotechnology field would greatly benefit from a thorough analysis of the TME factors that create these physiological barriers to tumor delivery and treatment in preclinical models and in patients. Thus, there is a need to develop methods that can be used to reveal the content of the TME, determine how these TME factors affect drug delivery, and modulate TME factors to increase the tumor delivery and efficacy of nanoparticles. In this review, we will discuss TME factors involved in drug delivery, and how biomedical imaging tools can be used to evaluate tumor barriers and predict drug delivery to tumors and antitumor response.
Collapse
Affiliation(s)
- Amber S. Moody
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Carolina Institute for Nanomedicine, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Paul A. Dayton
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - William C. Zamboni
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Carolina Institute for Nanomedicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
26
|
Intravital mesoscopic fluorescence molecular tomography allows non-invasive in vivo monitoring and quantification of breast cancer growth dynamics. Commun Biol 2021; 4:556. [PMID: 33976362 PMCID: PMC8113483 DOI: 10.1038/s42003-021-02063-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 03/31/2021] [Indexed: 02/03/2023] Open
Abstract
Preclinical breast tumor models are an invaluable tool to systematically study tumor progression and treatment response, yet methods to non-invasively monitor the involved molecular and mechanistic properties under physiologically relevant conditions are limited. Here we present an intravital mesoscopic fluorescence molecular tomography (henceforth IFT) approach that is capable of tracking fluorescently labeled tumor cells in a quantitative manner inside the mammary gland of living mice. Our mesoscopic approach is entirely non-invasive and thus permits prolonged observational periods of several months. The relatively high sensitivity and spatial resolution further enable inferring the overall number of oncogene-expressing tumor cells as well as their tumor volume over the entire cycle from early tumor growth to residual disease following the treatment phase. Our IFT approach is a promising method for studying tumor growth dynamics in a quantitative and longitudinal fashion in-vivo.
Collapse
|
27
|
Choo YW, Jeong J, Jung K. Recent advances in intravital microscopy for investigation of dynamic cellular behavior in vivo. BMB Rep 2021. [PMID: 32475382 PMCID: PMC7396917 DOI: 10.5483/bmbrep.2020.53.7.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Currently, most biological research relies on conventional experimental techniques that allow only static analyses at certain time points in vitro or ex vivo. However, if one could visualize cellular dynamics in living organisms, that would provide a unique opportunity to study key biological phenomena in vivo. Intravital microscopy (IVM) encompasses diverse optical systems for direct viewing of objects, including biological structures and individual cells in live animals. With the current development of devices and techniques, IVM addresses important questions in various fields of biological and biomedical sciences. In this mini-review, we provide a general introduction to IVM and examples of recent applications in the field of immunology, oncology, and vascular biology. We also introduce an advanced type of IVM, dubbed real-time IVM, equipped with video-rate resonant scanning. Since the real-time IVM can render cellular dynamics with high temporal resolution in vivo, it allows visualization and analysis of rapid biological processes.
Collapse
Affiliation(s)
- Yeon Woong Choo
- Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Juhee Jeong
- Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Keehoon Jung
- Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080; Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080; Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
| |
Collapse
|
28
|
Pandya AD, Iversen TG, Moestue S, Grinde MT, Mørch Ý, Snipstad S, Åslund AKO, Øy GF, Kildal W, Engebråten O, Sandvig K, Skotland T, Mælandsmo GM. Biodistribution of Poly(alkyl cyanoacrylate) Nanoparticles in Mice and Effect on Tumor Infiltration of Macrophages into a Patient-Derived Breast Cancer Xenograft. NANOMATERIALS 2021; 11:nano11051140. [PMID: 33924869 PMCID: PMC8145722 DOI: 10.3390/nano11051140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/18/2022]
Abstract
We have investigated the biodistribution and tumor macrophage infiltration after intravenous injection of the poly(alkyl cyanoacrylate) nanoparticles (NPs): PEBCA (poly(2-ethyl-butyl cyanoacrylate), PBCA (poly(n-butyl cyanoacrylate), and POCA (poly(octyl cyanoacrylate), in mice. These NPs are structurally similar, have similar PEGylation, and have previously been shown to give large variations in cellular responses in vitro. The PEBCA NPs had the highest uptake both in the patient-derived breast cancer xenograft MAS98.12 and in lymph nodes, and therefore, they are the most promising of these NPs for delivery of cancer drugs. High-resolution magic angle spinning magnetic resonance (HR MAS MR) spectroscopy did not reveal any differences in the metabolic profiles of tumors following injection of the NPs, but the PEBCA NPs resulted in higher tumor infiltration of the anti-tumorigenic M1 macrophages than obtained with the two other NPs. The PEBCA NPs also increased the ratio of M1/M2 (anti-tumorigenic/pro-tumorigenic) macrophages in the tumors, suggesting that these NPs might be used both as a vehicle for drug delivery and to modulate the immune response in favor of enhanced therapeutic effects.
Collapse
Affiliation(s)
- Abhilash D. Pandya
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway; (A.D.P.); (G.F.Ø.); (O.E.)
| | - Tore-Geir Iversen
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway; (T.-G.I.); (K.S.)
| | - Siver Moestue
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway;
| | - Maria T. Grinde
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7491 Trondheim, Norway;
| | - Ýrr Mørch
- SINTEF AS, Department of Biotechnology and Nanomedicine, 7034 Trondheim, Norway; (Ý.M.); (S.S.); (A.K.O.Å.)
| | - Sofie Snipstad
- SINTEF AS, Department of Biotechnology and Nanomedicine, 7034 Trondheim, Norway; (Ý.M.); (S.S.); (A.K.O.Å.)
- Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Cancer Clinic, St. Olav’s Hospital, 7030 Trondheim, Norway
| | - Andreas K. O. Åslund
- SINTEF AS, Department of Biotechnology and Nanomedicine, 7034 Trondheim, Norway; (Ý.M.); (S.S.); (A.K.O.Å.)
| | - Geir F. Øy
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway; (A.D.P.); (G.F.Ø.); (O.E.)
| | - Wanja Kildal
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway;
| | - Olav Engebråten
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway; (A.D.P.); (G.F.Ø.); (O.E.)
- Department of Oncology, Oslo University Hospital, 0450 Oslo, Norway
- Institute of Clinical Medicine, Medical Faculty, University of Oslo, 0315 Oslo, Norway
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway; (T.-G.I.); (K.S.)
- Department of Biosciences, University of Oslo, 0315 Oslo, Norway
| | - Tore Skotland
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway; (T.-G.I.); (K.S.)
- Correspondence: (T.S.); (G.M.M.)
| | - Gunhild M. Mælandsmo
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway; (A.D.P.); (G.F.Ø.); (O.E.)
- Department of Medical Biology, University of Tromsø, 9019 Tromsø, Norway
- Correspondence: (T.S.); (G.M.M.)
| |
Collapse
|
29
|
Harizaj A, Descamps B, Mangodt C, Stremersch S, Stoppa A, Balcaen L, Brans T, De Rooster H, Devriendt N, Fraire JC, Bolea-Fernandez E, De Wever O, Willaert W, Vanhaecke F, Stevens CV, De Smedt SC, Roman B, Vanhove C, Lentacker I, Braeckmans K. Cytosolic delivery of gadolinium via photoporation enables improved in vivo magnetic resonance imaging of cancer cells. Biomater Sci 2021; 9:4005-4018. [PMID: 33899850 DOI: 10.1039/d1bm00479d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Longitudinal in vivo monitoring of transplanted cells is crucial to perform cancer research or to assess the treatment outcome of cell-based therapies. While several bio-imaging techniques can be used, magnetic resonance imaging (MRI) clearly stands out in terms of high spatial resolution and excellent soft-tissue contrast. However, MRI suffers from low sensitivity, requiring cells to be labeled with high concentrations of contrast agents. An interesting option is to label cells with clinically approved gadolinium chelates which generate a hyperintense MR signal. However, spontaneous uptake of the label via pinocytosis results in its endosomal sequestration, leading to quenching of the T1-weighted relaxation. To avoid this quenching effect, delivery of gadolinium chelates directly into the cytosol via electroporation or hypotonic cell swelling have been proposed. However, these methods are also accompanied by several drawbacks such as a high cytotoxicity, and changes in gene expression and phenotype. Here, we demonstrate that nanoparticle-sensitized laser induced photoporation forms an attractive alternative to efficiently deliver the contrast agent gadobutrol into the cytosol of both HeLa and SK-OV-3 IP1 cells. After intracellular delivery by photoporation the quenching effect is clearly avoided, leading to a strong increase in the hyperintense T1-weighted MR signal. Moreover, when compared to nucleofection as a state-of-the-art electroporation platform, photoporation has much less impact on cell viability, which is extremely important for reliable cell tracking studies. Additional experiments confirm that photoporation does not induce any change in the long-term viability or the migratory capacity of the cells. Finally, we show that gadolinium 'labeled' SK-OV-3 IP1 cells can be imaged in vivo by MRI with high soft-tissue contrast and spatial resolution, revealing indications of potential tumor invasion or angiogenesis.
Collapse
Affiliation(s)
- Aranit Harizaj
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Science, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sharif S, Nguyen KT, Bang D, Park JO, Choi E. Optimization of Field-Free Point Position, Gradient Field and Ferromagnetic Polymer Ratio for Enhanced Navigation of Magnetically Controlled Polymer-Based Microrobots in Blood Vessel. MICROMACHINES 2021; 12:mi12040424. [PMID: 33924499 PMCID: PMC8070347 DOI: 10.3390/mi12040424] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 11/26/2022]
Abstract
Microscale and nanoscale robots, frequently referred to as future cargo systems for targeted drug delivery, can effectively convert magnetic energy into locomotion. However, navigating and imaging them within a complex colloidal vascular system at a clinical scale is exigent. Hence, a more precise and enhanced hybrid control navigation and imaging system is necessary. Magnetic particle imaging (MPI) has been successfully applied to visualize the ensemble of superparamagnetic nanoparticles (MNPs) with high temporal sensitivity. MPI uses the concept of field-free point (FFP) mechanism in the principal magnetic field. The gradient magnetic field (|∇B|) of MPI scanners can generate sufficient magnetic force in MNPs; hence, it has been recently used to navigate nanosized particles and micron-sized swimmers. In this article, we present a simulation analysis of the optimized navigation of an ensemble of microsized polymer MNP-based drug carriers in blood vessels. Initially, an ideal two-dimensional FFP case is employed for the basic optimization of the FFP position to achieve efficient navigation. Thereafter, a nine-coil electromagnetic actuation simulation system is developed to generate and manipulate the FFP position and |∇B|. Under certain vessel and fluid conditions, the particle trajectories of different ferromagnetic polymer ratios and |∇B| were compared to optimize the FFP position.
Collapse
Affiliation(s)
- Saqib Sharif
- School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Korea; (S.S.); (K.T.N.)
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea;
| | - Kim Tien Nguyen
- School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Korea; (S.S.); (K.T.N.)
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea;
| | - Doyeon Bang
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea;
- College of AI Convergence, Chonnam National University, Gwangju 61186, Korea
| | - Jong-Oh Park
- School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Korea; (S.S.); (K.T.N.)
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea;
- Correspondence: (J.-O.P.); (E.C.)
| | - Eunpyo Choi
- School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Korea; (S.S.); (K.T.N.)
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea;
- Correspondence: (J.-O.P.); (E.C.)
| |
Collapse
|
31
|
Leggett SE, Hruska AM, Guo M, Wong IY. The epithelial-mesenchymal transition and the cytoskeleton in bioengineered systems. Cell Commun Signal 2021; 19:32. [PMID: 33691719 PMCID: PMC7945251 DOI: 10.1186/s12964-021-00713-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/26/2021] [Indexed: 01/04/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) is intrinsically linked to alterations of the intracellular cytoskeleton and the extracellular matrix. After EMT, cells acquire an elongated morphology with front/back polarity, which can be attributed to actin-driven protrusion formation as well as the gain of vimentin expression. Consequently, cells can deform and remodel the surrounding matrix in order to facilitate local invasion. In this review, we highlight recent bioengineering approaches to elucidate EMT and functional changes in the cytoskeleton. First, we review transitions between multicellular clusters and dispersed individuals on planar surfaces, which often exhibit coordinated behaviors driven by leader cells and EMT. Second, we consider the functional role of vimentin, which can be probed at subcellular length scales and within confined spaces. Third, we discuss the role of topographical patterning and EMT via a contact guidance like mechanism. Finally, we address how multicellular clusters disorganize and disseminate in 3D matrix. These new technologies enable controlled physical microenvironments and higher-resolution spatiotemporal measurements of EMT at the single cell level. In closing, we consider future directions for the field and outstanding questions regarding EMT and the cytoskeleton for human cancer progression. Video Abstract.
Collapse
Affiliation(s)
- Susan E Leggett
- Department of Chemical and Biological Engineering, Princeton University, William St, Princeton, NJ, 08544, USA
| | - Alex M Hruska
- School of Engineering, Center for Biomedical Engineering, and Joint Program in Cancer Biology, Brown University, 184 Hope St Box D, Providence, RI, 02912, USA
| | - Ming Guo
- Department of Mechanical Engineering, MIT, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Ian Y Wong
- School of Engineering, Center for Biomedical Engineering, and Joint Program in Cancer Biology, Brown University, 184 Hope St Box D, Providence, RI, 02912, USA.
| |
Collapse
|
32
|
Serkova NJ, Glunde K, Haney CR, Farhoud M, De Lille A, Redente EF, Simberg D, Westerly DC, Griffin L, Mason RP. Preclinical Applications of Multi-Platform Imaging in Animal Models of Cancer. Cancer Res 2021; 81:1189-1200. [PMID: 33262127 PMCID: PMC8026542 DOI: 10.1158/0008-5472.can-20-0373] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/10/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022]
Abstract
In animal models of cancer, oncologic imaging has evolved from a simple assessment of tumor location and size to sophisticated multimodality exploration of molecular, physiologic, genetic, immunologic, and biochemical events at microscopic to macroscopic levels, performed noninvasively and sometimes in real time. Here, we briefly review animal imaging technology and molecular imaging probes together with selected applications from recent literature. Fast and sensitive optical imaging is primarily used to track luciferase-expressing tumor cells, image molecular targets with fluorescence probes, and to report on metabolic and physiologic phenotypes using smart switchable luminescent probes. MicroPET/single-photon emission CT have proven to be two of the most translational modalities for molecular and metabolic imaging of cancers: immuno-PET is a promising and rapidly evolving area of imaging research. Sophisticated MRI techniques provide high-resolution images of small metastases, tumor inflammation, perfusion, oxygenation, and acidity. Disseminated tumors to the bone and lung are easily detected by microCT, while ultrasound provides real-time visualization of tumor vasculature and perfusion. Recently available photoacoustic imaging provides real-time evaluation of vascular patency, oxygenation, and nanoparticle distributions. New hybrid instruments, such as PET-MRI, promise more convenient combination of the capabilities of each modality, enabling enhanced research efficacy and throughput.
Collapse
Affiliation(s)
- Natalie J Serkova
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
- Animal Imaging Shared Resource, University of Colorado Cancer Center, Aurora, Colorado
| | - Kristine Glunde
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology, and the Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Chad R Haney
- Center for Advanced Molecular Imaging, Northwestern University, Evanston, Illinois
| | | | | | | | - Dmitri Simberg
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - David C Westerly
- Animal Imaging Shared Resource, University of Colorado Cancer Center, Aurora, Colorado
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lynn Griffin
- Department of Radiology, Veterinary Teaching Hospital, Colorado State University, Fort Collins, Colorado
| | - Ralph P Mason
- Department of Radiology, University of Texas Southwestern, Dallas, Texas
| |
Collapse
|
33
|
Lee YJ, Krishnan G, Nishio N, van den Berg NS, Lu G, Martin BA, van Keulen S, Colevas AD, Kapoor S, Liu JTC, Rosenthal EL. Intraoperative Fluorescence-Guided Surgery in Head and Neck Squamous Cell Carcinoma. Laryngoscope 2021; 131:529-534. [PMID: 33593036 DOI: 10.1002/lary.28822] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 05/15/2020] [Indexed: 02/06/2023]
Abstract
The rate of positive margins in head and neck cancers has remained stagnant over the past three decades and is consistently associated with poor overall survival. This suggests that significant improvements must be made intraoperatively to ensure negative margins. We discuss the important role of fluorescence imaging to guide surgical oncology in head and neck cancer. This review includes a general overview of the principles of fluorescence, available fluorophores used for fluorescence imaging, and specific clinical applications of fluorescence-guided surgery, as well as challenges and future directions in head and neck surgical oncology. Laryngoscope, 131:529-534, 2021.
Collapse
Affiliation(s)
- Yu-Jin Lee
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, U.S.A
| | - Giri Krishnan
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, U.S.A.,Department of Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Naoki Nishio
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, U.S.A
| | - Nynke S van den Berg
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, U.S.A
| | - Guolan Lu
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, U.S.A
| | - Brock A Martin
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, U.S.A
| | - Stan van Keulen
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, U.S.A
| | - Alexander D Colevas
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, U.S.A
| | - Shrey Kapoor
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, U.S.A
| | - Jonathan T C Liu
- Department of Mechanical Engineering, University of Washington, Seattle, WA, U.S.A.,Department of Bioengineering, University of Washington, Seattle, WA, U.S.A.,Department of Pathology, University of Washington, Seattle, WA, U.S.A
| | - Eben L Rosenthal
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, U.S.A.,Department of Radiology, Stanford University School of Medicine, Stanford, CA, U.S.A
| |
Collapse
|
34
|
Vaghela R, Arkudas A, Horch RE, Hessenauer M. Actually Seeing What Is Going on - Intravital Microscopy in Tissue Engineering. Front Bioeng Biotechnol 2021; 9:627462. [PMID: 33681162 PMCID: PMC7925911 DOI: 10.3389/fbioe.2021.627462] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/26/2021] [Indexed: 12/21/2022] Open
Abstract
Intravital microscopy (IVM) study approach offers several advantages over in vitro, ex vivo, and 3D models. IVM provides real-time imaging of cellular events, which provides us a comprehensive picture of dynamic processes. Rapid improvement in microscopy techniques has permitted deep tissue imaging at a higher resolution. Advances in fluorescence tagging methods enable tracking of specific cell types. Moreover, IVM can serve as an important tool to study different stages of tissue regeneration processes. Furthermore, the compatibility of different tissue engineered constructs can be analyzed. IVM is also a promising approach to investigate host reactions on implanted biomaterials. IVM can provide instant feedback for improvising tissue engineering strategies. In this review, we aim to provide an overview of the requirements and applications of different IVM approaches. First, we will discuss the history of IVM development, and then we will provide an overview of available optical modalities including the pros and cons. Later, we will summarize different fluorescence labeling methods. In the final section, we will discuss well-established chronic and acute IVM models for different organs.
Collapse
Affiliation(s)
- Ravikumar Vaghela
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Raymund E Horch
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Maximilian Hessenauer
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
35
|
Le Bihan T, Driver CHS, Ebenhan T, Le Bris N, Zeevaart JR, Tripier R. In Vivo Albumin-Binding of a C-Functionalized Cyclam Platform for 64 Cu-PET/CT Imaging in Breast Cancer Model. ChemMedChem 2020; 16:809-821. [PMID: 33191627 DOI: 10.1002/cmdc.202000800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Indexed: 11/06/2022]
Abstract
An improved glucose-chelator-albumin bioconjugate (GluCAB) derivative, GluCAB-2Mal , has been synthesized and studied for in vivo 64 Cu-PET/CT imaging in breast cancer mice models together with its first-generation analogue GluCAB-1Mal . The radioligand works on the principle of tumor targeting through the enhanced permeability and retention (EPR) effect with a supportive role played by glucose metabolism. [64 Cu]Cu-GluCAB-2Mal (99 % RCP) exhibited high serum stability with immediate binding to serum proteins. In vivo experiments for comparison between tumor targeting of [64 Cu]Cu-GluCAB-2Mal and previous-generation [64 Cu]Cu-GluCAB-1Mal encompassed microPET/CT imaging and biodistribution analysis in an allograft E0771 breast cancer mouse model. Tumor uptake of [64 Cu]Cu-GluCAB-2Mal was clearly evident with twice as much accumulation as compared to its predecessor and a tumor/muscle ratio of up to 5 after 24 h. Further comparison indicated a decrease in liver accumulation for [64 Cu]Cu-Glu-CAB-2Mal .
Collapse
Affiliation(s)
- Thomas Le Bihan
- UMR CNRS 6521 CEMCA, University of Brest, 6 avenue Le Gorgeu, CS93837, 29200, Brest, France
| | - Cathryn H S Driver
- South African Nuclear Energy Corporation Radiochemistry and NuMeRI PreClinical Imaging Facility, Elias Motsoaledi Street, R104 Pelindaba, North West, 0240, South Africa
| | - Thomas Ebenhan
- South African Nuclear Energy Corporation Radiochemistry and NuMeRI PreClinical Imaging Facility, Elias Motsoaledi Street, R104 Pelindaba, North West, 0240, South Africa
| | - Nathalie Le Bris
- UMR CNRS 6521 CEMCA, University of Brest, 6 avenue Le Gorgeu, CS93837, 29200, Brest, France
| | - Jan Rijn Zeevaart
- South African Nuclear Energy Corporation Radiochemistry and NuMeRI PreClinical Imaging Facility, Elias Motsoaledi Street, R104 Pelindaba, North West, 0240, South Africa
| | - Raphaël Tripier
- UMR CNRS 6521 CEMCA, University of Brest, 6 avenue Le Gorgeu, CS93837, 29200, Brest, France
| |
Collapse
|
36
|
Maniam S, Maniam S. Cancer Cell Metabolites: Updates on Current Tracing Methods. Chembiochem 2020; 21:3476-3488. [PMID: 32639076 DOI: 10.1002/cbic.202000290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/07/2020] [Indexed: 12/15/2022]
Abstract
Cancer is the second leading cause of death-1 in 6 deaths globally is due to cancer. Cancer metabolism is a complex and one of the most actively researched area in cancer biology. Metabolic reprogramming in cancer cells entails activities that involve several enzymes and metabolites to convert nutrient into building blocks that alter energy metabolism to fuel rapid cell division. Metabolic dependencies in cancer generate signature metabolites that have key regulatory roles in tumorigenesis. In this minireview, we highlight recent advances in the popular methods ingrained in biochemistry research such as stable and flux isotope analysis, as well as radioisotope labeling, which are valuable in elucidating cancer metabolites. These methods together with analytical tools such as chromatography, nuclear magnetic resonance spectroscopy and mass spectrometry have helped to bring about exploratory work in understanding the role of important as well as obscure metabolites in cancer cells. Information obtained from these analyses significantly contribute in the diagnosis and prognosis of tumors leading to potential therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
- Subashani Maniam
- School of Applied Science, RMIT University, 240 La Trobe Street, Melbourne, VIC 3001, Australia
| | - Sandra Maniam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
37
|
Li X, Feng K, Li L, Yang L, Pan X, Yazd HS, Cui C, Li J, Moroz L, Sun Y, Wang B, Li X, Huang T, Tan W. Lipid-oligonucleotide conjugates for bioapplications. Natl Sci Rev 2020; 7:1933-1953. [PMID: 34691533 PMCID: PMC8290939 DOI: 10.1093/nsr/nwaa161] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/28/2019] [Accepted: 07/08/2020] [Indexed: 11/12/2022] Open
Abstract
Lipid-oligonucleotide conjugates (LONs) are powerful molecular-engineering materials for various applications ranging from biosensors to biomedicine. Their unique amphiphilic structures enable the self-assembly and the conveyance of information with high fidelity. In particular, LONs present remarkable potential in measuring cellular mechanical forces and monitoring cell behaviors. LONs are also essential sensing tools for intracellular imaging and have been employed in developing cell-surface-anchored DNA nanostructures for biomimetic-engineering studies. When incorporating therapeutic oligonucleotides or small-molecule drugs, LONs hold promise for targeted therapy. Moreover, LONs mediate the controllable assembly and fusion of vesicles based on DNA-strand displacements, contributing to nanoreactor construction and macromolecule delivery. In this review, we will summarize the general synthesis strategies of LONs, provide some characterization analysis and emphasize recent advances in bioanalytical and biomedical applications. We will also consider the relevant challenges and suggest future directions for building better functional LONs in nanotechnology and materials-science applications.
Collapse
Affiliation(s)
- Xiaowei Li
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Kejun Feng
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China
| | - Long Li
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Lu Yang
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Xiaoshu Pan
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Hoda Safari Yazd
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Cheng Cui
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio- Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences; The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China
| | - Juan Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio- Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Leonid Moroz
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Yujia Sun
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio- Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Bang Wang
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Xiang Li
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Tong Huang
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Weihong Tan
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio- Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences; The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
38
|
Burianova V, Kalinin S, Supuran CT, Krasavin M. Radiotracers for positron emission tomography (PET) targeting tumour-associated carbonic anhydrase isoforms. Eur J Med Chem 2020; 213:113046. [PMID: 33303236 DOI: 10.1016/j.ejmech.2020.113046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/11/2022]
Abstract
The tumour-associated, cell membrane-bound isoforms IX and XII of human carbonic anhydrase (CA, EC 4.2.1.1) are overexpressed in cancer cells contributing to the hypoxic tumour pH/metabolism regulating machinery and as thus, can serve as markers of malignant neoplastic tissue. Inhibitors of CAs can be employed both for the treatment of hypoxic tumours and in the design of radiotracers for positron emission tomography and imaging of such cancers. The present review provides a comprehensive summary of the progress achieved to-date in the field of developing PET-tracers based on monoclonal antibodies, biomolecules, and small-molecule ligands of CA IX and XII.
Collapse
Affiliation(s)
- Valeria Burianova
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Stanislav Kalinin
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Claudiu T Supuran
- Neurofarba Department, Section of Pharmaceutical Sciences, University of Florence, Florence, Italy.
| | - Mikhail Krasavin
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia.
| |
Collapse
|
39
|
Solimando AG, Summa SD, Vacca A, Ribatti D. Cancer-Associated Angiogenesis: The Endothelial Cell as a Checkpoint for Immunological Patrolling. Cancers (Basel) 2020; 12:cancers12113380. [PMID: 33203154 PMCID: PMC7696032 DOI: 10.3390/cancers12113380] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary A clinical decision and study design investigating the level and extent of angiogenesis modulation aimed at vascular normalization without rendering tissues hypoxic is key and represents an unmet medical need. Specifically, determining the active concentration and optimal times of the administration of antiangiogenetic drugs is crucial to inhibit the growth of any microscopic residual tumor after surgical resection and in the pre-malignant and smolder neoplastic state. This review uncovers the pre-clinical translational insights crucial to overcome the caveats faced so far while employing anti-angiogenesis. This literature revision also explores how abnormalities in the tumor endothelium harm the crosstalk with an effective immune cell response, envisioning a novel combination with other anti-cancer drugs and immunomodulatory agents. These insights hold vast potential to both repress tumorigenesis and unleash an effective immune response. Abstract Cancer-associated neo vessels’ formation acts as a gatekeeper that orchestrates the entrance and egress of patrolling immune cells within the tumor milieu. This is achieved, in part, via the directed chemokines’ expression and cell adhesion molecules on the endothelial cell surface that attract and retain circulating leukocytes. The crosstalk between adaptive immune cells and the cancer endothelium is thus essential for tumor immune surveillance and the success of immune-based therapies that harness immune cells to kill tumor cells. This review will focus on the biology of the endothelium and will explore the vascular-specific molecular mediators that control the recruitment, retention, and trafficking of immune cells that are essential for effective antitumor immunity. The literature revision will also explore how abnormalities in the tumor endothelium impair crosstalk with adaptive immune cells and how targeting these abnormalities can improve the success of immune-based therapies for different malignancies, with a particular focus on the paradigmatic example represented by multiple myeloma. We also generated and provide two original bio-informatic analyses, in order to sketch the physiopathology underlying the endothelial–neoplastic interactions in an easier manner, feeding into a vicious cycle propagating disease progression and highlighting novel pathways that might be exploited therapeutically.
Collapse
Affiliation(s)
- Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine ‘G. Baccelli’, University of Bari Medical School, 70124 Bari, Italy;
- Istituto di Ricovero e Cura a Carattere Scientifico-IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy
- Correspondence: (A.G.S.); (D.R.); Tel.: +39-3395626475 (A.G.S.); +39-080-5478326 (D.R.)
| | - Simona De Summa
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy;
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine ‘G. Baccelli’, University of Bari Medical School, 70124 Bari, Italy;
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy
- Correspondence: (A.G.S.); (D.R.); Tel.: +39-3395626475 (A.G.S.); +39-080-5478326 (D.R.)
| |
Collapse
|
40
|
Xiaoxia X, Jing S, Dongbin X, Yonggang T, Jingke Z, Yanying Z, Hulai W. Realgar Nanoparticles Inhibit Migration, Invasion and Metastasis in a Mouse Model of Breast Cancer by Suppressing Matrix Metalloproteinases and Angiogenesis. Curr Drug Deliv 2020; 17:148-158. [PMID: 31939730 DOI: 10.2174/1567201817666200115105633] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/21/2019] [Accepted: 12/31/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Realgar, a traditional Chinese medicine, has shown antitumor efficacy in several tumor types. We previously showed that realgar nanoparticles (nano-realgar) had significant antileukemia, anti-lung cancer and anti-liver cancer effects. In addition, the anti-tumor effects of nanorealgar were significantly better than those of ordinary realgar. OBJECTIVE To explore the inhibitory effects and molecular mechanisms of nano-realgar on the migration, invasion and metastasis of mouse breast cancer cells. METHODS Wound-healing migration assays and Transwell invasion assays were carried out to determine the effects of nano-realgar on breast cancer cell (4T1) migration and invasion. The expression levels of matrix metalloproteinase (MMP)-2 and -9 were measured by Western blot. A murine breast cancer metastasis model was established, administered nano-realgar for 32 days and monitored for tumor growth and metastasis by an in vivo optical imaging system. Finally, living imaging and hematoxylin and eosin (HE) staining were used to measure the morphology and pathology of lung and liver cancer cell metastases, respectively. Angiogenesis was assessed by CD34 immunohistochemistry. RESULTS Nano-realgar significantly inhibited the migration and invasion of breast cancer 4T1 cells and the expression of MMP-2 and -9. Meanwhile, nano-realgar effectively suppressed the abilities of tumor growth, metastasis and angiogenesis in the murine breast cancer metastasis model in a time- and dosedependent manner. CONCLUSION Nano-realgar significantly inhibited migration and invasion of mouse breast cancer cells in vitro as well as pulmonary and hepatic metastasis in vivo, which may be closely correlated with the downexpression of MMP-2 and -9 and suppression of tumor neovascularization.
Collapse
Affiliation(s)
- Xi Xiaoxia
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Sun Jing
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xi Dongbin
- General Surgery Department, People's Hospital of Jiuquan City, Jiuquan, China
| | - Tian Yonggang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Zhang Jingke
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Zhang Yanying
- Laboratory Animal Center, Gansu University of Chinese Medicine, Lanzhou, China
| | - Wei Hulai
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
41
|
Ancona A, Troia A, Garino N, Dumontel B, Cauda V, Canavese G. Leveraging re-chargeable nanobubbles on amine-functionalized ZnO nanocrystals for sustained ultrasound cavitation towards echographic imaging. ULTRASONICS SONOCHEMISTRY 2020; 67:105132. [PMID: 32339870 DOI: 10.1016/j.ultsonch.2020.105132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/27/2020] [Accepted: 04/15/2020] [Indexed: 05/11/2023]
Abstract
Nanoparticles able to promote inertial cavitation when exposed to focused ultrasound have recently gained much attention due to their vast range of possible applications in the biomedical field, such as enhancing drug penetration in tumor or supporting ultrasound contrast imaging. Due to their nanometric size, these contrast agents could penetrate through the endothelial cells of the vasculature to target tissues, thus enabling higher imaging resolutions than commercial gas-filled microbubbles. Herein, Zinc Oxide NanoCrystals (ZnO NCs), opportunely functionalized with amino-propyl groups, are developed as novel nanoscale contrast agents that are able, for the first time, to induce a repeatedly and over-time sustained inertial cavitation as well as ultrasound contrast imaging. The mechanism behind this phenomenon is investigated, revealing that re-adsorption of air gas nanobubbles on the nanocrystal surface is the key factor for this re-chargeable cavitation. Moreover, inertial cavitation and significant echographic signals are obtained at physiologically relevant ultrasound conditions (MI < 1.9), showing great potential for low side-effects in in-vivo applications of the novel nanoscale agent from diagnostic imaging to gas-generating theranostic nanoplatforms and to drug delivery.
Collapse
Affiliation(s)
- Andrea Ancona
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Adriano Troia
- Ultrasounds & Chemistry Lab, Advanced Metrology for Quality of Life, Istituto Nazionale di Ricerca Metrologica (I.N.Ri.M.), Strada delle Cacce 91, 10135 Turin, Italy
| | - Nadia Garino
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Bianca Dumontel
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Valentina Cauda
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy.
| | - Giancarlo Canavese
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
42
|
Calzada V. Aptamers in Diagnostic and Molecular Imaging Applications. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 174:141-160. [PMID: 31848635 DOI: 10.1007/10_2019_115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The origin of the term diagnostic comes from the Greek word gnosis, meaning "to know." In medicine, a diagnostic can predict the pathology risk, disease status, treatment, and prognosis, even following therapy. An early and correct diagnosis is necessary for an efficient treatment. Moreover, it is possible to predict if and why a therapy will be successful or fail, enabling the timely application of alternative therapeutic strategies. Available diagnostics are due to the advances in biotechnology; however, more sensitive, low-cost, and noninvasive methodologies are still a challenge. Knowledge about molecular characteristics provide personalized information, which is the goal of future medicine. Today, multiple diagnostic techniques have emerged, with which it is possible to distinguish molecular patterns.In this way, aptamers are the perfect tools to recognize molecular targets and can be easily modified to confer additional functions. Their versatile characteristics and low cost make aptamers ideal for diagnostic applications.This chapter is a review of aptamer-based diagnostics in biomedicine, with a special focus on probe design and molecular imaging. Graphical Abstract.
Collapse
Affiliation(s)
- Victoria Calzada
- Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
43
|
Alpha KM, Xu W, Turner CE. Paxillin family of focal adhesion adaptor proteins and regulation of cancer cell invasion. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 355:1-52. [PMID: 32859368 PMCID: PMC7737098 DOI: 10.1016/bs.ircmb.2020.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The paxillin family of proteins, including paxillin, Hic-5, and leupaxin, are focal adhesion adaptor/scaffolding proteins which localize to cell-matrix adhesions and are important in cell adhesion and migration of both normal and cancer cells. Historically, the role of these proteins in regulating the actin cytoskeleton through focal adhesion-mediated signaling has been well documented. However, studies in recent years have revealed additional functions in modulating the microtubule and intermediate filament cytoskeletons to affect diverse processes including cell polarization, vesicle trafficking and mechanosignaling. Expression of paxillin family proteins in stromal cells is also important in regulating tumor cell migration and invasion through non-cell autonomous effects on the extracellular matrix. Both paxillin and Hic-5 can also influence gene expression through a variety of mechanisms, while their own expression is frequently dysregulated in various cancers. Accordingly, these proteins may serve as valuable targets for novel diagnostic and treatment approaches in cancer.
Collapse
Affiliation(s)
- Kyle M Alpha
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Weiyi Xu
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Christopher E Turner
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, United States.
| |
Collapse
|
44
|
Gammon ST, Liu TW, Piwnica-Worms D. Interrogating Cellular Communication in Cancer with Genetically Encoded Imaging Reporters. Radiol Imaging Cancer 2020; 2:e190053. [PMID: 32803164 PMCID: PMC7398120 DOI: 10.1148/rycan.2020190053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/06/2020] [Accepted: 01/22/2020] [Indexed: 04/14/2023]
Abstract
Cells continuously communicate changes in their microenvironment, both locally and globally, with other cells in the organism. Integration of information arising from signaling networks impart continuous, time-dependent changes of cell function and phenotype. Use of genetically encoded reporters enable researchers to noninvasively monitor time-dependent changes in intercellular and intracellular signaling, which can be interrogated by macroscopic and microscopic optical imaging, nuclear medicine imaging, MRI, and even photoacoustic imaging techniques. Reporters enable noninvasive monitoring of changes in cell-to-cell proximity, transcription, translation, protein folding, protein association, protein degradation, drug action, and second messengers in real time. Because of their positive impact on preclinical research, attempts to improve the sensitivity and specificity of these reporters, and to develop new types and classes of reporters, remain an active area of investigation. A few reporters have migrated to proof-of-principle clinical demonstrations, and recent advances in genome editing technologies may enable the use of reporters in the context of genome-wide analysis and the imaging of complex genomic regulation in vivo that cannot be readily investigated through standard methodologies. The combination of genetically encoded imaging reporters with continuous improvements in other molecular biology techniques may enhance and expedite target discovery and drug development for cancer interventions and treatment. © RSNA, 2020.
Collapse
|
45
|
Pan C, Schoppe O, Parra-Damas A, Cai R, Todorov MI, Gondi G, von Neubeck B, Böğürcü-Seidel N, Seidel S, Sleiman K, Veltkamp C, Förstera B, Mai H, Rong Z, Trompak O, Ghasemigharagoz A, Reimer MA, Cuesta AM, Coronel J, Jeremias I, Saur D, Acker-Palmer A, Acker T, Garvalov BK, Menze B, Zeidler R, Ertürk A. Deep Learning Reveals Cancer Metastasis and Therapeutic Antibody Targeting in the Entire Body. Cell 2020; 179:1661-1676.e19. [PMID: 31835038 DOI: 10.1016/j.cell.2019.11.013] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 10/02/2019] [Accepted: 11/12/2019] [Indexed: 12/20/2022]
Abstract
Reliable detection of disseminated tumor cells and of the biodistribution of tumor-targeting therapeutic antibodies within the entire body has long been needed to better understand and treat cancer metastasis. Here, we developed an integrated pipeline for automated quantification of cancer metastases and therapeutic antibody targeting, named DeepMACT. First, we enhanced the fluorescent signal of cancer cells more than 100-fold by applying the vDISCO method to image metastasis in transparent mice. Second, we developed deep learning algorithms for automated quantification of metastases with an accuracy matching human expert manual annotation. Deep learning-based quantification in 5 different metastatic cancer models including breast, lung, and pancreatic cancer with distinct organotropisms allowed us to systematically analyze features such as size, shape, spatial distribution, and the degree to which metastases are targeted by a therapeutic monoclonal antibody in entire mice. DeepMACT can thus considerably improve the discovery of effective antibody-based therapeutics at the pre-clinical stage. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Chenchen Pan
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich (LMU), 81377 Munich, Germany
| | - Oliver Schoppe
- Department of Informatics, Technical University of Munich, 85748 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Arnaldo Parra-Damas
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich (LMU), 81377 Munich, Germany
| | - Ruiyao Cai
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich (LMU), 81377 Munich, Germany
| | - Mihail Ivilinov Todorov
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich (LMU), 81377 Munich, Germany; Graduate School of Systemic Neurosciences (GSN), 82152 Munich, Germany
| | - Gabor Gondi
- Research Unit Gene Vectors, Helmholtz Zentrum München, 81377 Munich, Germany
| | - Bettina von Neubeck
- Research Unit Gene Vectors, Helmholtz Zentrum München, 81377 Munich, Germany
| | | | - Sascha Seidel
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, 60323 Frankfurt, Germany
| | - Katia Sleiman
- Center for Translational Cancer Research (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; Division of Translational Cancer Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Christian Veltkamp
- Center for Translational Cancer Research (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; Division of Translational Cancer Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Benjamin Förstera
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich (LMU), 81377 Munich, Germany
| | - Hongcheng Mai
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich (LMU), 81377 Munich, Germany
| | - Zhouyi Rong
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich (LMU), 81377 Munich, Germany
| | - Omelyan Trompak
- Institute of Neuropathology, University of Giessen, 35390 Giessen, Germany
| | - Alireza Ghasemigharagoz
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich (LMU), 81377 Munich, Germany
| | - Madita Alice Reimer
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich (LMU), 81377 Munich, Germany
| | - Angel M Cuesta
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, 60323 Frankfurt, Germany
| | - Javier Coronel
- Department of Informatics, Technical University of Munich, 85748 Munich, Germany
| | - Irmela Jeremias
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Center for Environmental Health (HMGU), 81377 Munich, Germany; Department of Pediatrics, Dr. von Hauner Childrens Hospital, Ludwig Maximilian University of Munich (LMU), 81377 Munich, Germany; German Consortium for Translational Cancer Research (DKTK), Partnering Site Munich, 80336 Munich, Germany
| | - Dieter Saur
- Center for Translational Cancer Research (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; Division of Translational Cancer Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Amparo Acker-Palmer
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, 60323 Frankfurt, Germany
| | - Till Acker
- Institute of Neuropathology, University of Giessen, 35390 Giessen, Germany
| | - Boyan K Garvalov
- Institute of Neuropathology, University of Giessen, 35390 Giessen, Germany; Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Bjoern Menze
- Department of Informatics, Technical University of Munich, 85748 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; Munich School of Bioengineering, Technical University of Munich, 85748 Munich, Germany
| | - Reinhard Zeidler
- Research Unit Gene Vectors, Helmholtz Zentrum München, 81377 Munich, Germany; Department for Otorhinolaryngology, Klinikum der Universität München, Ludwig Maximilian University of Munich (LMU), 81377 Munich, Germany
| | - Ali Ertürk
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich (LMU), 81377 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany.
| |
Collapse
|
46
|
Abstract
Metastatic disease is the leading cause of death in patients with solid cancers. The progression to metastasis is a multistep process that involves detachment of tumor cells from their constraining basement membrane at the primary site, migration and intravasation into the circulation, survival in the circulation, extravasation into the secondary organ, and survival and growth at the secondary site. During these steps, tumor and immune cells interact and influence each other both within the tumor microenvironment and systemically. In particular, myeloid cells such as monocytes, macrophages, neutrophils, and myeloid-derived suppressor cells (myeloid regulatory cells) have been shown to play important roles in the metastatic process. These interactions open new avenues for targeting cancer metastasis, especially given the increasing interest in development of cancer immunotherapies. In this review, we describe the currently reported pathways and mechanisms involved in myeloid cell enhancement of the metastatic cascade.
Collapse
Affiliation(s)
- Agnieszka Swierczak
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Jeffrey W Pollard
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| |
Collapse
|
47
|
Lloyd-Lewis B. Multidimensional Imaging of Mammary Gland Development: A Window Into Breast Form and Function. Front Cell Dev Biol 2020; 8:203. [PMID: 32296702 PMCID: PMC7138012 DOI: 10.3389/fcell.2020.00203] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/09/2020] [Indexed: 12/14/2022] Open
Abstract
An in-depth appreciation of organ form and function relies on the ability to image intact tissues across multiple scales. Difficulties associated with imaging deep within organs, however, can preclude high-resolution multidimensional imaging of live and fixed tissues. This is particularly challenging in the mammary gland, where the epithelium lies deeply encased within a stromal matrix. Recent advances in deep-tissue and live imaging methodologies are increasingly facilitating the visualization of complex cellular structures within their native environment. Alongside, refinements in optical tissue clearing and immunostaining methods are enabling 3D fluorescence imaging of whole organs at unprecedented resolutions. Collectively, these methods are illuminating the dynamic biological processes underlying tissue morphogenesis, homeostasis, and disease. This review provides a snapshot of the current and state-of-the-art multidimensional imaging techniques applied to the postnatal mammary gland, illustrating how these approaches have revealed important new insights into mammary gland ductal development and lactation. Continual evolution of multidimensional image acquisition and analysis methods will undoubtedly offer further insights into mammary gland biology that promises to shed new light on the perturbations leading to breast cancer.
Collapse
Affiliation(s)
- Bethan Lloyd-Lewis
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
48
|
do Nascimento T, Tavares M, Monteiro MSSB, Santos-Oliveira R, Todeschini AR, de Souza VT, Ricci-Júnior E. Trends in Nanotechnology for in vivo Cancer Diagnosis: Products and Patents. Curr Pharm Des 2020; 26:2167-2181. [PMID: 32072890 DOI: 10.2174/1381612826666200219094853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/10/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is a set of diseases formed by abnormal growth of cells leading to the formation of the tumor. The diagnosis can be made through symptoms' evaluation or imaging tests, however, the techniques are limited and the tumor detection may be late. Thus, pharmaceutical nanotechnology has emerged to optimize the cancer diagnosis through nanostructured contrast agent's development. OBJECTIVE This review aims to identify commercialized nanomedicines and patents for cancer diagnosis. METHODS The databases used for scientific articles research were Pubmed, Science Direct, Scielo and Lilacs. Research on companies' websites and articles for the recognition of commercial nanomedicines was performed. The Derwent tool was applied for patent research. RESULTS This article aimed to research on nanosystems based on nanoparticles, dendrimers, liposomes, composites and quantum dots, associated to imaging techniques. Commercialized products based on metal and composite nanoparticles, associated with magnetic resonance and computed tomography, have been observed. The research conducted through Derwent tool displayed a small number of patents using nanotechnology for cancer diagnosis. Among these patents, the most significant number was related to the use of systems based on metal nanoparticles, composites and quantum dots. CONCLUSION Although few systems are found in the market and patented, nanotechnology appears as a promising field for the development of new nanosystems in order to optimize and accelerate the cancer diagnosis.
Collapse
Affiliation(s)
- Tatielle do Nascimento
- Laboratorio de Desenvolvimento Galenico, Farmacia Universitaria, Centro de Ciencias da Saude, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Melanie Tavares
- Laboratorio de Desenvolvimento Galenico, Farmacia Universitaria, Centro de Ciencias da Saude, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana S S B Monteiro
- Laboratorio de Desenvolvimento Galenico, Farmacia Universitaria, Centro de Ciencias da Saude, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ralph Santos-Oliveira
- Instituto de Engenharia Nuclear, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Universidade Estadual da Zona Oeste, Laboratório de Radiofarmácia e Nanoradiofármacos, Rio de Janeiro, Brazil
| | - Adriane R Todeschini
- Laboratorio de Glicobiologia Estrutural e Funcional, Instituto de Biofisica Carlos Chagas Filho, Centro de Ciencias da Saude, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vilênia T de Souza
- Laboratorio de Tecnologia Industrial Farmaceutica, Centro de Ciencias da Saude, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduardo Ricci-Júnior
- Laboratorio de Desenvolvimento Galenico, Farmacia Universitaria, Centro de Ciencias da Saude, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
49
|
Kapsokalyvas D, van Zandvoort MAMJ. Molecular Imaging in Oncology: Advanced Microscopy Techniques. Recent Results Cancer Res 2020; 216:533-561. [PMID: 32594398 DOI: 10.1007/978-3-030-42618-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Preclinical studies usually require high levels of morphological, functional, and biochemical information at subcellular resolution. This type of information cannot be obtained from clinical imaging techniques, such as MRI, PET/CT, or US. Luckily, many microscopy techniques exist that can offer this information, also for malignant tissues and therapeutic approaches. In this overview, we discuss the various advanced optical microscopy techniques and their applications in oncological research. After a short introduction in Sect. 16.1, we continue in Sect. 16.2 with a discussion on fluorescent labelling strategies, followed in Sect. 16.3 by an in-depth description of confocal, light-sheet, two-photon, and super-resolution microscopy. We end in Sect. 16.4 with a focus on the applications, specifically in oncology.
Collapse
Affiliation(s)
- Dimitrios Kapsokalyvas
- School for Oncology and Developmental Biology GROW and School for Cardiovascular Diseases CARIM, Maastricht University, Maastricht, The Netherlands
- Institut für Molekulare Kreislaufforschung, Universitätsklinikum Aachen, Aachen, Germany
| | - Marc A M J van Zandvoort
- School for Oncology and Developmental Biology GROW and School for Cardiovascular Diseases CARIM, Maastricht University, Maastricht, The Netherlands.
- Institut für Molekulare Kreislaufforschung, Universitätsklinikum Aachen, Aachen, Germany.
| |
Collapse
|
50
|
Vinegoni C, Feruglio PF, Gryczynski I, Mazitschek R, Weissleder R. Fluorescence anisotropy imaging in drug discovery. Adv Drug Deliv Rev 2019; 151-152:262-288. [PMID: 29410158 PMCID: PMC6072632 DOI: 10.1016/j.addr.2018.01.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 12/15/2022]
Abstract
Non-invasive measurement of drug-target engagement can provide critical insights in the molecular pharmacology of small molecule drugs. Fluorescence polarization/fluorescence anisotropy measurements are commonly employed in protein/cell screening assays. However, the expansion of such measurements to the in vivo setting has proven difficult until recently. With the advent of high-resolution fluorescence anisotropy microscopy it is now possible to perform kinetic measurements of intracellular drug distribution and target engagement in commonly used mouse models. In this review we discuss the background, current advances and future perspectives in intravital fluorescence anisotropy measurements to derive pharmacokinetic and pharmacodynamic measurements in single cells and whole organs.
Collapse
Affiliation(s)
- Claudio Vinegoni
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Paolo Fumene Feruglio
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy
| | - Ignacy Gryczynski
- University of North Texas Health Science Center, Institute for Molecular Medicine, Fort Worth, TX, United States
| | - Ralph Mazitschek
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ralph Weissleder
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|