1
|
Victor Atoki A, Aja PM, Shinkafi TS, Ondari EN, Adeniyi AI, Fasogbon IV, Dangana RS, Shehu UU, Akin-Adewumi A. Exploring the versatility of Drosophila melanogaster as a model organism in biomedical research: a comprehensive review. Fly (Austin) 2025; 19:2420453. [PMID: 39722550 DOI: 10.1080/19336934.2024.2420453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 12/28/2024] Open
Abstract
Drosophila melanogaster is a highly versatile model organism that has profoundly advanced our understanding of human diseases. With more than 60% of its genes having human homologs, Drosophila provides an invaluable system for modelling a wide range of pathologies, including neurodegenerative disorders, cancer, metabolic diseases, as well as cardiac and muscular conditions. This review highlights key developments in utilizing Drosophila for disease modelling, emphasizing the genetic tools that have transformed research in this field. Technologies such as the GAL4/UAS system, RNA interference (RNAi) and CRISPR-Cas9 have enabled precise genetic manipulation, with CRISPR-Cas9 allowing for the introduction of human disease mutations into orthologous Drosophila genes. These approaches have yielded critical insights into disease mechanisms, identified novel therapeutic targets and facilitated both drug screening and toxicological studies. Articles were selected based on their relevance, impact and contribution to the field, with a particular focus on studies offering innovative perspectives on disease mechanisms or therapeutic strategies. Our findings emphasize the central role of Drosophila in studying complex human diseases, underscoring its genetic similarities to humans and its effectiveness in modelling conditions such as Alzheimer's disease, Parkinson's disease and cancer. This review reaffirms Drosophila's critical role as a model organism, highlighting its potential to drive future research and therapeutic advancements.
Collapse
Affiliation(s)
| | - Patrick Maduabuchi Aja
- Department of Biochemistry, Kampala International University, Ishaka, Uganda
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | | | - Erick Nyakundi Ondari
- Department of Biochemistry, Kampala International University, Ishaka, Uganda
- School of Pure and Applied Sciences, Department of Biological Sciences, Kisii University, Kisii, Kenya
| | | | | | | | - Umar Uthman Shehu
- Department of Physiology, Kampala International University, Ishaka, Uganda
| | | |
Collapse
|
2
|
Castro VIB, Amorim S, Caballero D, Abreu CM, Kundu SC, Reis RL, Pashkuleva I, Pires RA. Patterned glycopeptide-based supramolecular hydrogel promotes the alignment and contractility of iPSC-derived cardiomyocytes. BIOMATERIALS ADVANCES 2025; 167:214091. [PMID: 39500148 DOI: 10.1016/j.bioadv.2024.214091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 10/03/2024] [Accepted: 10/27/2024] [Indexed: 12/13/2024]
Abstract
The functional restoration of a damaged cardiac tissue relies on a synchronized contractile capacity of exogenous and/or endogenous cardiomyocytes, which is challenging to achieve. Here, we explored the potential of the short glycopeptide diphenylalanine glucosamine-6-sulfate (FFGlcN6S) conjugated with an aromatic moiety, namely fluorenylmethoxycarbonyl (Fmoc), to enhance cardiac tissue regeneration. At physiological conditions, Fmoc-FFGlcN6S assembles into nanofibrous hydrated meshes, i.e., matrix mimicking hydrogels. These hydrogels can be further micropatterned allowing co-existence of hierarchical structures at different lenght. The patterned hydrogels support the culture of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) and promote their alignment. The cultured iPSC-CMs exhibit anisotropic synchronized contractions, indicating maturation and electrical interconnectivity. Moreover, the cultures express specific cardiac markers including, connexin-43 and sarcomeric-α-actinin, confirming enhanced cell-cell crosstalk, spontaneous contractility, and efficient transmission of electrical signals. Our results showcase the potential of short amphiphilic glycopeptides to mimic physical and biochemical cues that are essential for cardiomyocytes functionality and thus, these conjugates can be used in cardiac tissue engineering and regeneration.
Collapse
Affiliation(s)
- Vânia I B Castro
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017, AvePark, Barco, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sara Amorim
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017, AvePark, Barco, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - David Caballero
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017, AvePark, Barco, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Catarina M Abreu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017, AvePark, Barco, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017, AvePark, Barco, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017, AvePark, Barco, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Iva Pashkuleva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017, AvePark, Barco, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Ricardo A Pires
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017, AvePark, Barco, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
3
|
Huang J, Liu M, Furey A, Rahman P, Zhai G. Transcriptomic analysis of human cartilage identified potential therapeutic targets for hip osteoarthritis. Hum Mol Genet 2025:ddae200. [PMID: 39777501 DOI: 10.1093/hmg/ddae200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/14/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Cartilage degradation is the hallmark of osteoarthritis (OA). The purpose of this study was to identify and validate differentially expressed genes (DEGs) in human articular cartilage that could serve as potential therapeutic targets for hip OA. We performed transcriptomic profiling in a discovery cohort (12 OA-free and 72 hip OA-affected cartilage) and identified 179 DEGs between OA-free and OA-affected cartilage after correcting for multiple testing (P < 2.97 × 10-6). Pathway and network analyses found eight hub genes to be associated with hip OA (ASPN, COL1A2, MXRA5, P3H1, PCOLCE, SDC1, SPARC, and TLR2), which were all confirmed using qPCR in a validation cohort (36 OA-free and 62 hip OA-affected cartilage) (P < 6.25 × 10-3). Our data showed that dysregulation of extracellular matrix formation and imbalance in the proportion of collagen chains may contribute to the development of hip OA, and SDC1 could be a promising potential therapeutic target. These findings provided a better understanding of the molecular mechanisms for hip OA and may assist in developing targeted treatment strategies.
Collapse
Affiliation(s)
- Jingyi Huang
- Human Genetics & Genomics, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, Newfoundland & Labrador, A1B 3V6, Canada
| | - Ming Liu
- Human Genetics & Genomics, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, Newfoundland & Labrador, A1B 3V6, Canada
| | - Andrew Furey
- Discipline of Orthopaedic Surgery, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, Newfoundland & Labrador, Canada A1B 3V6 & Office of the Premier, Government of Newfoundland & Labrador, 100 Prince Philip Drive, St. John's, Newfoundland & Labrador, A1B 4J6, Canada
| | - Proton Rahman
- Discipline of Medicine, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, Newfoundland & Labrador, A1B 3V6, Canada
| | - Guangju Zhai
- Human Genetics & Genomics, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, Newfoundland & Labrador, A1B 3V6, Canada
| |
Collapse
|
4
|
Froese J, Mandalari M, Civera M, Elli S, Pagani I, Vicenzi E, Garcia-Monge I, Di Iorio D, Frank S, Bisio A, Lenhart D, Gruber R, Yates EA, Richter RP, Guerrini M, Wegner SV, Grobe K. Evolution of SARS-CoV-2 spike trimers towards optimized heparan sulfate cross-linking and inter-chain mobility. Sci Rep 2024; 14:32174. [PMID: 39741163 DOI: 10.1038/s41598-024-84276-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025] Open
Abstract
The heparan sulfate (HS)-rich extracellular matrix (ECM) serves as an initial interaction site for the homotrimeric spike (S) protein of SARS-CoV-2 to facilitate subsequent docking to angiotensin-converting enzyme 2 (ACE2) receptors and cellular infection. More recent variants, notably Omicron, have evolved by swapping several amino acids to positively charged residues to enhance the interaction of the S-protein trimer with the negatively charged HS. However, these enhanced interactions may reduce Omicron's ability to move through the HS-rich ECM to effectively find ACE2 receptors and infect cells, raising the question of how to mechanistically explain HS-associated viral movement. In this work, we show that Omicron S proteins have evolved to balance HS interaction stability and dynamics, resulting in enhanced mobility on an HS-functionalized artificial matrix. This property is achieved by the ability of Omicron S-proteins to cross-link at least two HS chains, allowing direct S-protein switching between chains as a prerequisite for cell surface mobility. Optimized HS interactions can be targeted pharmaceutically, as an HS mimetic significantly suppressed surface binding and cellular infection specifically of the Omicron variant. These findings suggest a robust way to interfere with SARS-CoV-2 Omicron infection and potentially future variants.
Collapse
Affiliation(s)
- Jurij Froese
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, D-48149, Münster, Germany
| | - Marco Mandalari
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni", Via Giuseppe Colombo 81, Milano, 20133, Italy
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, Milano, 20133, Italy
| | - Monica Civera
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, Milano, 20133, Italy
| | - Stefano Elli
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni", Via Giuseppe Colombo 81, Milano, 20133, Italy
| | - Isabel Pagani
- Viral Pathogenesis and Biosafety Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Vicenzi
- Viral Pathogenesis and Biosafety Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Itzel Garcia-Monge
- School of Biomedical Sciences, Faculty of Biological Sciences, School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, Astbury Centre for Structural Molecular Biology, and Bragg Centre for Materials Research, University of Leeds, Leeds, LS2 9JT, UK
| | - Daniele Di Iorio
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, D-48149, Münster, Germany
| | - Saskia Frank
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, D-48149, Münster, Germany
| | - Antonella Bisio
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni", Via Giuseppe Colombo 81, Milano, 20133, Italy
| | | | | | - Edwin A Yates
- Department of Biochemistry, Systems and Cell Biology, Institute of Molecular, Integrative and Systems Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Ralf P Richter
- School of Biomedical Sciences, Faculty of Biological Sciences, School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, Astbury Centre for Structural Molecular Biology, and Bragg Centre for Materials Research, University of Leeds, Leeds, LS2 9JT, UK
| | - Marco Guerrini
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni", Via Giuseppe Colombo 81, Milano, 20133, Italy
| | - Seraphine V Wegner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, D-48149, Münster, Germany
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, D-48149, Münster, Germany.
| |
Collapse
|
5
|
Moreno-Vargas LM, Prada-Gracia D. Exploring the Chemical Features and Biomedical Relevance of Cell-Penetrating Peptides. Int J Mol Sci 2024; 26:59. [PMID: 39795918 DOI: 10.3390/ijms26010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 01/13/2025] Open
Abstract
Cell-penetrating peptides (CPPs) are a diverse group of peptides, typically composed of 4 to 40 amino acids, known for their unique ability to transport a wide range of substances-such as small molecules, plasmid DNA, small interfering RNA, proteins, viruses, and nanoparticles-across cellular membranes while preserving the integrity of the cargo. CPPs exhibit passive and non-selective behavior, often requiring functionalization or chemical modification to enhance their specificity and efficacy. The precise mechanisms governing the cellular uptake of CPPs remain ambiguous; however, electrostatic interactions between positively charged amino acids and negatively charged glycosaminoglycans on the membrane, particularly heparan sulfate proteoglycans, are considered the initial crucial step for CPP uptake. Clinical trials have highlighted the potential of CPPs in diagnosing and treating various diseases, including cancer, central nervous system disorders, eye disorders, and diabetes. This review provides a comprehensive overview of CPP classifications, potential applications, transduction mechanisms, and the most relevant algorithms to improve the accuracy and reliability of predictions in CPP development.
Collapse
Affiliation(s)
- Liliana Marisol Moreno-Vargas
- Research Unit on Computational Biology and Drug Design, Children's Hospital of Mexico Federico Gómez, Mexico City 06720, Mexico
| | - Diego Prada-Gracia
- Research Unit on Computational Biology and Drug Design, Children's Hospital of Mexico Federico Gómez, Mexico City 06720, Mexico
| |
Collapse
|
6
|
Ouidja MO, Biard DSF, Huynh MB, Laffray X, Gomez-Henao W, Chantepie S, Le Douaron G, Rebergue N, Maïza A, Merrick H, De Lichy A, Dady A, González-Velasco O, Rubio K, Barreto G, Baranger K, Cormier-Daire V, De Las Rivas J, Fernig DG, Papy-Garcia D. Genetic variability in proteoglycan biosynthetic genes reveals new facets of heparan sulfate diversity. Essays Biochem 2024; 68:555-578. [PMID: 39630030 PMCID: PMC11625870 DOI: 10.1042/ebc20240106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 12/11/2024]
Abstract
Heparan sulfate (HS) and chondroitin sulfate (CS) proteoglycans (PG) consist of a core protein to which the glycosaminoglycan (GAG) chains, HS or CS, are attached through a common linker tetrasaccharide. In the extracellular space, they are involved in the regulation of cell communication, assuring development and homeostasis. The HSPG biosynthetic pathway has documented 51 genes, with many diseases associated to defects in some of them. The phenotypic consequences of this genetic variation in humans, and of genetic ablation in mice, and their expression patterns, led to a phenotypically centered HSPG biosynthetic pathway model. In this model, HS sequences produced by ubiquitous NDST1, HS2ST and HS6ST enzymes are essential for normal development and homeostasis, whereas tissue restricted HS sequences produced by the non-ubiquitous NDST2-4, HS6ST2-3, and HS3ST1-6 enzymes are involved in adaptative behaviors, cognition, tissue responsiveness to stimuli, and vulnerability to disease. The model indicates that the flux through the HSPG/CSPG pathways and its diverse branches is regulated by substrate preferences and protein-protein-interactions. This results in a privileged biosynthesis of HSPG over that of CSPGs, explaining the phenotypes of linkeropathies, disease caused by defects in genes involved in the biosynthesis of the common tetrasaccharide linker. Documented feedback loops whereby cells regulate HS sulfation, and hence the interactions of HS with protein partners, may be similarly implemented, e.g., protein tyrosine sulfation and other posttranslational modifications in enzymes of the HSPG pathway. Together, ubiquitous HS, specialized HS, and their biosynthesis model can facilitate research for a better understanding of HSPG roles in physiology and pathology.
Collapse
Affiliation(s)
- Mohand Ouidir Ouidja
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
| | - Denis S F Biard
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
- CEA, Institut de Biologie François Jacob (IBFJ), SEPIA, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Minh Bao Huynh
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
| | - Xavier Laffray
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
| | - Wilton Gomez-Henao
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
- Departamento de Bioquímica, Laboratorio Internacional Gly-CRRET-UNAM, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Sandrine Chantepie
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
| | - Gael Le Douaron
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
| | - Nicolas Rebergue
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
| | - Auriane Maïza
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
| | - Heloise Merrick
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
| | - Aubert De Lichy
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
| | - Alwyn Dady
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
| | - Oscar González-Velasco
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IMBCC, CSIC/USAL/IBSAL), University of Salamanca (USAL), Salamanca, Spain
| | - Karla Rubio
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico
- Université De Lorraine, CNRS, Laboratoire IMoPA, UMR 7365; F-54000 Nancy, France
| | - Guillermo Barreto
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
- Université De Lorraine, CNRS, Laboratoire IMoPA, UMR 7365; F-54000 Nancy, France
| | | | - Valerie Cormier-Daire
- Department of Genomic Medicine for Rare Diseases, French Reference Center for Constitutional Bone Diseases, Necker-Enfants Malades Hospital, Paris, France
| | - Javier De Las Rivas
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IMBCC, CSIC/USAL/IBSAL), University of Salamanca (USAL), Salamanca, Spain
| | - David G Fernig
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrated Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K
| | - Dulce Papy-Garcia
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
| |
Collapse
|
7
|
Sultana R, Kamihira M. Bioengineered heparin: Advances in production technology. Biotechnol Adv 2024; 77:108456. [PMID: 39326809 DOI: 10.1016/j.biotechadv.2024.108456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Heparin, a highly sulfated glycosaminoglycan, is considered an indispensable anticoagulant with diverse therapeutic applications and has been a mainstay in medical practice for nearly a century. Its potential extends beyond anticoagulation, showing promise in treating inflammation, cancer, and infectious diseases such as COVID-19. However, its current sourcing from animal tissues poses challenges due to variable structures and adulterations, impacting treatment efficacy and safety. Recent advancements in metabolic engineering and synthetic biology offer alternatives through bioengineered heparin production, albeit with challenges such as controlling molecular weight and sulfonation patterns. This review offers comprehensive insight into recent advancements, encompassing: (i) the metabolic engineering strategies in prokaryotic systems for heparin production; (ii) strides made in the development of bioengineered heparin; and (iii) groundbreaking approaches driving production enhancements in eukaryotic systems. Additionally, it explores the potential of recombinant Chinese hamster ovary cells in heparin synthesis, discussing recent progress, challenges, and future prospects, thereby opening up new avenues in biomedical research.
Collapse
Affiliation(s)
- Razia Sultana
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Department of Biotechnology and Genetic Engineering, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
8
|
Calligaris M, Spanò DP, Puccio MC, Müller SA, Bonelli S, Lo Pinto M, Zito G, Blobel CP, Lichtenthaler SF, Troeberg L, Scilabra SD. Development of a Proteomic Workflow for the Identification of Heparan Sulphate Proteoglycan-Binding Substrates of ADAM17. Proteomics 2024; 24:e202400076. [PMID: 39318062 DOI: 10.1002/pmic.202400076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024]
Abstract
Ectodomain shedding, which is the proteolytic release of transmembrane proteins from the cell surface, is crucial for cell-to-cell communication and other biological processes. The metalloproteinase ADAM17 mediates ectodomain shedding of over 50 transmembrane proteins ranging from cytokines and growth factors, such as TNF and EGFR ligands, to signalling receptors and adhesion molecules. Yet, the ADAM17 sheddome is only partly defined and biological functions of the protease have not been fully characterized. Some ADAM17 substrates (e.g., HB-EGF) are known to bind to heparan sulphate proteoglycans (HSPG), and we hypothesised that such substrates would be under-represented in traditional secretome analyses, due to their binding to cell surface or pericellular HSPGs. Thus, to identify novel HSPG-binding ADAM17 substrates, we developed a proteomic workflow that involves addition of heparin to solubilize HSPG-binding proteins from the cell layer, thereby allowing their mass spectrometry detection by heparin-treated secretome (HEP-SEC) analysis. Applying this methodology to murine embryonic fibroblasts stimulated with an ADAM17 activator enabled us to identify 47 transmembrane proteins that were shed in response to ADAM17 activation. This included known HSPG-binding ADAM17 substrates (i.e., HB-EGF, CX3CL1) and 14 novel HSPG-binding putative ADAM17 substrates. Two of these, MHC-I and IL1RL1, were validated as ADAM17 substrates by immunoblotting.
Collapse
Affiliation(s)
- Matteo Calligaris
- Department of Research IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Proteomics Group of Ri.MED Foundation, Palermo, Italy
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Donatella Pia Spanò
- Department of Research IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Proteomics Group of Ri.MED Foundation, Palermo, Italy
- STEBICEF (Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche), Università degli Studi di Palermo, Palermo, Italy
| | - Maria Chiara Puccio
- Department of Research IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Proteomics Group of Ri.MED Foundation, Palermo, Italy
| | - Stephan A Müller
- Neuroproteomics Department, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Simone Bonelli
- Department of Research IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Proteomics Group of Ri.MED Foundation, Palermo, Italy
- STEBICEF (Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche), Università degli Studi di Palermo, Palermo, Italy
| | - Margot Lo Pinto
- Department of Research IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Proteomics Group of Ri.MED Foundation, Palermo, Italy
| | - Giovanni Zito
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Carl P Blobel
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, USA
- School of Medicine, Technical University Munich, Munich, Germany
- Department of Biochemistry, Cell and Molecular Biology, Weill Cornell Medicine, New York, USA
| | - Stefan F Lichtenthaler
- Neuroproteomics Department, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- School of Medicine, Technical University Munich, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Linda Troeberg
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Simone Dario Scilabra
- Department of Research IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Proteomics Group of Ri.MED Foundation, Palermo, Italy
| |
Collapse
|
9
|
Carvalho EM, Ding EA, Saha A, Garcia DC, Weldy A, Zushin PJH, Stahl A, Aghi MK, Kumar S. Viscoelastic High-Molecular-Weight Hyaluronic Acid Hydrogels Support Rapid Glioblastoma Cell Invasion with Leader-Follower Dynamics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404885. [PMID: 39508297 PMCID: PMC11637900 DOI: 10.1002/adma.202404885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/25/2024] [Indexed: 11/15/2024]
Abstract
Hyaluronic acid (HA), the primary component of brain extracellular matrix, is increasingly used to model neuropathological processes, including glioblastoma (GBM) tumor invasion. While elastic hydrogels based on crosslinked low-molecular-weight (LMW) HA are widely exploited for this purpose and have proven valuable for discovery and screening, brain tissue is both viscoelastic and rich in high-MW (HMW) HA, and it remains unclear how these differences influence invasion. To address this question, hydrogels comprised of either HMW (1.5 MDa) or LMW (60 kDa) HA are introduced, characterized, and applied in GBM invasion studies. Unlike LMW HA hydrogels, HMW HA hydrogels relax stresses quickly, to a similar extent as brain tissue, and to a greater extent than many conventional HA-based scaffolds. GBM cells implanted within HMW HA hydrogels invade much more rapidly than in their LMW HA counterparts and exhibit distinct leader-follower dynamics. Leader cells adopt dendritic morphologies similar to invasive GBM cells observed in vivo. Transcriptomic, pharmacologic, and imaging studies suggest that leader cells exploit hyaluronidase, an enzyme strongly enriched in human GBMs, to prime a path for followers. This study offers new insight into how HA viscoelastic properties drive invasion and argues for the use of highly stress-relaxing materials to model GBM.
Collapse
Affiliation(s)
- Emily M Carvalho
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Erika A Ding
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Atul Saha
- Department of Neurosurgery, University of California, San Francisco, CA, 94158, USA
| | - Diana Cruz Garcia
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94158, USA
| | - Anna Weldy
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Peter-James H Zushin
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, 94720, USA
| | - Andreas Stahl
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, 94720, USA
| | - Manish K Aghi
- Department of Neurosurgery, University of California, San Francisco, CA, 94158, USA
| | - Sanjay Kumar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94158, USA
| |
Collapse
|
10
|
Tsiftsoglou SA, Gavriilaki E. A potential bimodal interplay between heme and complement factor H 402H in the deregulation of the complement alternative pathway by SARS-CoV-2. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 126:105698. [PMID: 39643072 DOI: 10.1016/j.meegid.2024.105698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
The recent discovery that the trimeric SARS-CoV-2 spike S glycoprotein carries heme within an NTD domain pocket of the S1 subunits, suggested that this virus may be cleverly utilizing heme, in addition to the S1 RBD domains, for invading target cells carrying a specific entry receptor like ACE2, TMEM106B and others. Studies during the COVID-19 pandemic revealed that the infectivity of this virus depends on cell surface heparan sulfate and that the infection induces non-canonical activation of the Complement Alternative pathway (AP) on the surface of infected cells. In our recent COVID-19 genomic studies, among the coding SNPs of interest we also detected the presence of the CFH rs1061170, rs800292 and rs1065489 within all the infected patient subgroups examined. The minor C allele of rs1061170 encodes CFH 402H that over the years has been associated with diseases characterized by complement dysregulation namely the age-related macular degeneration (AMD) and the atypical haemolytic uremic syndrome (aHUS). Also, more recently with the diminishment of CD4+ T cell responses with ageing. The rs800292 minor allele A encodes CFH 62I that supports enhanced cofactor activity for Complement factor I (CFI). Also, the rs1065489 minor allele T encodes CFH 936D and is located within the CCP16 domain that influences the affinity of CFH with extracellular laminins. A subsequent computational analysis revealed that the CFH residue 402 is located centrally within a heme-binding motif (HBM) in domain CCP7 (398YNQNYGRKF406). Heme on the viral spike glycoprotein S1 subunit could recruit CFH 402H for masking free viral particles from opsonisation, and when in proximity to cell surface, act as a bait disrupting CFH 402H from the heparan sulphate coat of the target cells. Publicly available genetic data for European populations indicate that the minor C allele of rs1061170 is present only in haplotypes that carry the major alleles of rs800292 and rs1065489. This combination encodes for CFH 402H that exhibits increased biochemical affinity for heme in proximity, without enhanced cofactor activity for CFI and weaker association with the extracellular matrix. In the theatre of infection, this combination can promote heme-mediated viral infection with weaker complement opsonisation and potential AP deregulation. This strategy may be evolutionary conserved among various classes of infectious agents.
Collapse
Affiliation(s)
- Stefanos A Tsiftsoglou
- Laboratory of Pharmacology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; Department of Biomedical Sciences, School of Health Sciences, Alexander Campus, International Hellenic University, Sindos, 57400, Greece.
| | - Eleni Gavriilaki
- 2(nd) Propedeutic Department of Internal Medicine, Hippocration General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
11
|
Roy PR, Link N. Loss of neuronal Imp induces seizure behavior through Syndecan function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624719. [PMID: 39605343 PMCID: PMC11601543 DOI: 10.1101/2024.11.21.624719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Seizures affect a large proportion of the global population and occur due to abnormal neuronal activity in the brain. Unfortunately, widespread genetic and phenotypic heterogeneity contribute to insufficient treatment options. It is critical to identify the genetic underpinnings of how seizures occur to better understand seizure disorders and improve therapeutic development. We used the Drosophila model to identify that IGF-II mRNA Binding Protein (Imp) is linked to the onset of this phenotype. Specific reduction of Imp in neurons causes seizures after mechanical stimulation. Importantly, gross motor behavior is unaffected, showing Imp loss does not affect general neuronal activity. Developmental loss of Imp is sufficient to cause seizures in adults, thus Imp-modulated neuron development affects mature neuronal function. Since Imp is an RNA-binding protein, we sought to identify the mRNA target that Imp regulates in neurons to ensure proper neuronal activity after mechanical stress. We find that Imp protein binds Syndecan ( Sdc ) mRNA, and reduction of Sdc also causes mechanically-induced seizures. Expression of Sdc in Imp deficient neurons rescues seizure defects, showing that Sdc is sufficient to restore normal behavior after mechanical stress. We suggest that Imp protein binds Sdc mRNA in neurons, and this functional interaction is important for normal neuronal biology and animal behavior in a mechanically-induced seizure model. Since Imp and Sdc are conserved, our work highlights a neuronal specific pathway that might contribute to seizure disorder when mutated in humans.
Collapse
|
12
|
Wiens KR, Wasti N, Ulloa OO, Klegeris A. Diversity of Microglia-Derived Molecules with Neurotrophic Properties That Support Neurons in the Central Nervous System and Other Tissues. Molecules 2024; 29:5525. [PMID: 39683685 DOI: 10.3390/molecules29235525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Microglia, the brain immune cells, support neurons by producing several established neurotrophic molecules including glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF). Modern analytical techniques have identified numerous phenotypic states of microglia, each associated with the secretion of a diverse set of substances, which likely include not only canonical neurotrophic factors but also other less-studied molecules that can interact with neurons and provide trophic support. In this review, we consider the following eight such candidate cytokines: oncostatin M (OSM), leukemia inhibitory factor (LIF), activin A, colony-stimulating factor (CSF)-1, interleukin (IL)-34, growth/differentiation factor (GDF)-15, fibroblast growth factor (FGF)-2, and insulin-like growth factor (IGF)-2. The available literature provides sufficient evidence demonstrating murine cells produce these cytokines and that they exhibit neurotrophic activity in at least one neuronal model. Several distinct types of neurotrophic activity are identified that only partially overlap among the cytokines considered, reflecting either their distinct intrinsic properties or lack of comprehensive studies covering the full spectrum of neurotrophic effects. The scarcity of human-specific studies is another significant knowledge gap revealed by this review. Further studies on these potential microglia-derived neurotrophic factors are warranted since they may be used as targeted treatments for diverse neurological disorders.
Collapse
Affiliation(s)
- Kennedy R Wiens
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Naved Wasti
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Omar Orlando Ulloa
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Andis Klegeris
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
13
|
Olivieri PH, Assis IF, Lima AF, Hassan SA, Torquato RJS, Hayashi JY, Tashima AK, Nader HB, Salvati A, Justo GZ, Sousa AA. Glycocalyx Interactions Modulate the Cellular Uptake of Albumin-Coated Nanoparticles. ACS APPLIED BIO MATERIALS 2024; 7:7365-7377. [PMID: 39470630 DOI: 10.1021/acsabm.4c01012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Albumin-based nanoparticles (ABNPs) represent promising drug carriers in nanomedicine due to their versatility and biocompatibility, but optimizing their effectiveness in drug delivery requires understanding their interactions with and uptake by cells. Notably, albumin interacts with the cellular glycocalyx, a phenomenon particularly studied in endothelial cells. This observation suggests that the glycocalyx could modulate ABNP uptake and therapeutic efficacy, although this possibility remains unrecognized. In this study, we elucidate the critical role of the glycocalyx in the cellular uptake of a model ABNP system consisting of silica nanoparticles (NPs) coated with native, cationic, and anionic albumin variants (BSA, BSA+, and BSA-). Using various methodologies-including fluorescence anisotropy, dynamic light scattering, microscale thermophoresis, surface plasmon resonance spectroscopy, and computer simulations─we found that both BSA and BSA+, but not BSA-, interact with heparin, a model glycosaminoglycan (GAG). To explore the influence of albumin-GAG interactions on NP uptake, we performed comparative uptake studies in wild-type and GAG-mutated Chinese hamster ovary cells (CHO), along with complementary approaches such as enzymatic GAG cleavage in wild-type cells, chemical inhibition, and competition assays with exogenous heparin. We found that the glycocalyx enhances the cell uptake of NPs coated with BSA and BSA+, while serving as a barrier to the uptake of NPs coated with BSA-. Furthermore, we showed that harnessing albumin-GAG interactions increases cancer cell death induced by paclitaxel-loaded albumin-coated NPs. These findings underscore the importance of albumin-glycocalyx interactions in the rational design and optimization of albumin-based drug delivery systems.
Collapse
Affiliation(s)
- Paulo H Olivieri
- Department of Biochemistry, Federal University of São Paulo, São Paulo, São Paulo 04044-020, Brazil
| | - Isabela F Assis
- Department of Biochemistry, Federal University of São Paulo, São Paulo, São Paulo 04044-020, Brazil
| | - Andre F Lima
- Department of Biochemistry, Federal University of São Paulo, São Paulo, São Paulo 04044-020, Brazil
| | - Sergio A Hassan
- Bioinformatics and Computational Biosciences Branch, OCICB, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ricardo J S Torquato
- Department of Biochemistry, Federal University of São Paulo, São Paulo, São Paulo 04044-020, Brazil
| | - Jackelinne Y Hayashi
- Department of Biochemistry, Federal University of São Paulo, São Paulo, São Paulo 04044-020, Brazil
| | - Alexandre K Tashima
- Department of Biochemistry, Federal University of São Paulo, São Paulo, São Paulo 04044-020, Brazil
| | - Helena B Nader
- Department of Biochemistry, Federal University of São Paulo, São Paulo, São Paulo 04044-020, Brazil
| | - Anna Salvati
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Giselle Z Justo
- Department of Biochemistry, Federal University of São Paulo, São Paulo, São Paulo 04044-020, Brazil
| | - Alioscka A Sousa
- Department of Biochemistry, Federal University of São Paulo, São Paulo, São Paulo 04044-020, Brazil
| |
Collapse
|
14
|
Eker F, Duman H, Ertürk M, Karav S. The potential of lactoferrin as antiviral and immune-modulating agent in viral infectious diseases. Front Immunol 2024; 15:1402135. [PMID: 39620218 PMCID: PMC11604709 DOI: 10.3389/fimmu.2024.1402135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 10/29/2024] [Indexed: 12/11/2024] Open
Abstract
Emerging infectious diseases are caused by unpredictable viruses with the dangerous potential to trigger global pandemics. These viruses typically initiate infection by utilizing the anionic structures of host cell surface receptors to gain entry. Lactoferrin (Lf) is a multifunctional glycoprotein with multiple properties such as antiviral, anti-inflammatory and antioxidant activities. Due to its cationic structure, Lf naturally interacts with certain host cell receptors, such as heparan sulfate proteoglycans, as well as viral particles and other receptors that are targeted by viruses. Therefore, Lf may interfere with virus-host cell interactions by acting as a receptor competitor for viruses. Herein we summarize studies in which this competition was investigated with SARS-CoV-2, Zika, Dengue, Hepatitis and Influenza viruses in vitro. These studies have demonstrated not only Lf's competitive properties, but also its potential intracellular impact on host cells, such as enhancing cell survival and reducing infection efficiency by inhibiting certain viral enzymes. In addition, the immunomodulatory effect of Lf is highlighted, as it can influence the activity of specific immune cells and regulate cytokine release, thereby enhancing the host's response to viral infections. Collectively, these properties promote the potential of Lf as a promising candidate for research in viral infectious diseases.
Collapse
Affiliation(s)
- Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | | | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| |
Collapse
|
15
|
Han F, Guo XY, Jiang MX, Xia NS, Gu Y, Li SW. Structural biology of the human papillomavirus. Structure 2024; 32:1877-1892. [PMID: 39368462 DOI: 10.1016/j.str.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/23/2024] [Accepted: 09/10/2024] [Indexed: 10/07/2024]
Abstract
Human papillomavirus (HPV), known for its oncogenic properties, is the primary cause of cervical cancer and significantly contributes to mortality rates. It also plays a considerable role in the globally rising incidences of head and neck cancers. These cancers pose a substantial health burden worldwide. Current limitations in diagnostic and treatment strategies, along with inadequate coverage of preventive vaccines in low- and middle-income countries, hinder the progress toward the World Health Organization (WHO) HPV prevention and control targets set for 2030. In response to these challenges, extensive research in structural virology has explored the properties of HPV proteins, yielding crucial insights into the mechanisms of HPV infection that are important for the development of prevention and therapeutic strategies. This review highlights recent advances in understanding the structures of HPV proteins and discusses achievements and future opportunities for HPV vaccine development.
Collapse
Affiliation(s)
- Feng Han
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Xin-Ying Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Ming-Xia Jiang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Ning-Shao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Ying Gu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China.
| | - Shao-Wei Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
16
|
Pan Y, He QQ, Wimmer N, Ferro V. Synthesis of a deuterated disaccharide internal standard for LC-MS/MS quantitation of heparan sulfate in biological samples. Carbohydr Res 2024; 545:109270. [PMID: 39270443 DOI: 10.1016/j.carres.2024.109270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024]
Abstract
High levels of heparan sulfate (HS) are a marker for several mucopolysaccharidosis (MPS) disorders which are lysosomal storage diseases caused by genetic defects in HS-degrading enzymes. Quantitation of HS in biological samples is therefore critical for diagnosis and evaluating the efficacy of new therapies. Herein we present the efficient synthesis of a butylated GlcN-GlcA disaccharide and its deuterated derivative for use as an internal standard in a quantitative mass spectrometry-based assay for analysis of HS following butanolysis. The synthesis features the stereoselective 1,2-cis glycosylation of a GlcA acceptor with a 6-O-benzoyl-2-deoxy-2-azido thioglucoside donor.
Collapse
Affiliation(s)
- Yuchen Pan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Qi Qi He
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Norbert Wimmer
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
17
|
Wang BN, Zhang XZ, Cong PK, Zheng WW, Wu JY, Long SR, Liu RD, Zhang X, Cui J, Wang ZQ. Trichinellaspiralis C-type lectin mediates larva invasion of gut mucosa via binding to syndecan-1 and damaging epithelial integrity in mice. Int J Biol Macromol 2024; 280:135958. [PMID: 39322156 DOI: 10.1016/j.ijbiomac.2024.135958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/11/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
C-type lectin (CTL) plays a vital role in parasite adhesion, invading host's cells and immune escape. The objective of this research was to explore whether recombinant T. spiralis CTL (rTsCTL) binding with syndecan-1 damages intestine epithelial integrity and mediates T. spiralis intrusion in mice. The results showed that rTsCTL interacted with syndecan-1 and activated STAT3 pathway in gut epithelium, decreased tight junctions (TJs) expressions and damaged gut epithelium integrity, promoted T. spiralis intrusion, and increased expression level of inflammatory cytokine and mucin. The syndecan-1 inhibitor (β-xyloside) and STAT3 phosphorylation inhibitor (Stattic) significantly suppressed syndecan-1 expression and STAT3 pathway activation, reduced the expression levels of TJs, pro-inflammatory cytokines (TNF-α and IL-1β), Muc2 and Muc5ac, and declined intestinal permeability in T. spiralis-infected mice. These results revealed that the inhibitors suppressed T. spiralis invasion and development in gut mucosa, decreased intestinal adult burdens and relieved gut inflammation. These findings further testified that the in vivo binding of TsCTL with syndecan-1 destroyed enteral mucosal epithelial integrity and promoted T. spiralis intrusion of gut mucosa via activating STAT3 pathway and decreasing TJs expression. TsCTL could be deemed as a promising vaccine target to interrupt T. spiralis infection.
Collapse
Affiliation(s)
- Bo Ning Wang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xin Zhuo Zhang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Pei Kun Cong
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wen Wen Zheng
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jin Yi Wu
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shao Rong Long
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ruo Dan Liu
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xi Zhang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Cui
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhong Quan Wang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
18
|
Jhaveri JR, Khare P, Paul Pinky P, Kamte YS, Chandwani MN, Milosevic J, Abraham N, Sun M, Stolz DB, Dave KM, Zheng SY, O'Donnell L, Manickam DS. Low pinocytic brain endothelial cells primarily utilize membrane fusion to internalize extracellular vesicles. Eur J Pharm Biopharm 2024; 204:114500. [PMID: 39303949 DOI: 10.1016/j.ejpb.2024.114500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Extracellular vesicles (EVs) are an emerging class of drug carriers and are primarily reported to be internalized into recipient cells via a combination of endocytic routes such as clathrin-mediated, caveolae-mediated and macropinocytosis pathways. In this work, (1) we investigated potential effects of homotypic vs. heterotypic interactions by studying the cellular uptake of homologous EVs (EV donor cells and recipient cells of the same type) vs. heterologous EVs (EV donor cells and recipient cells of different types) and (2) determined the route of EV internalization into low pinocytic/hard-to-deliver cell models such as brain endothelial cells (BECs). Homotypic interactions led to a greater extent of uptake into the recipient BECs compared to heterotypic interactions. However, we did not see a complete reduction in EV uptake into recipient BECs when endocytic pathways were blocked using pharmacological inhibitors and our findings from a R18-based fusion assay suggest that EVs primarily use membrane fusion to enter low-pinocytic recipient BECs instead of relying on endocytosis. Lipophilic PKH67 dye-labeled EVs but not intravesicular esterase-activated calcein ester-labeled EVs severely reduced particle uptake into BECs while phagocytic macrophages internalized EVs labeled with both dyes to comparable extents. Our results also highlight the importance of carefully choosing labeling dye chemistry to study EV uptake, especially in the case of low pinocytic cells such as BECs.
Collapse
Affiliation(s)
- Jhanvi R Jhaveri
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Purva Khare
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Paromita Paul Pinky
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Yashika S Kamte
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Manisha N Chandwani
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Jadranka Milosevic
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States; Captis Diagnostics Inc., Pittsburgh, PA, United States
| | - Nevil Abraham
- Unified Flow Core, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ming Sun
- Center for Biologic Imaging, University of Pittsburgh Medical School, Pittsburgh, PA, United States
| | - Donna B Stolz
- Center for Biologic Imaging, University of Pittsburgh Medical School, Pittsburgh, PA, United States
| | - Kandarp M Dave
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Si-Yang Zheng
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Lauren O'Donnell
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Devika S Manickam
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States.
| |
Collapse
|
19
|
Li S, Niu J, Smits R. RNF43 and ZNRF3: Versatile regulators at the membrane and their role in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189217. [PMID: 39551397 DOI: 10.1016/j.bbcan.2024.189217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024]
Abstract
RNF43 and ZNRF3 are recognized as important regulators of Wnt/β-catenin signaling by maintaining Wnt-receptors at minimal essential levels. In various cancer types, particularly gastrointestinal tumors, mutations in these genes lead to abnormal Wnt-dependent activation of β-catenin signaling. However, recent findings implicate RNF43/ZNRF3 also in the regulation of other tumor-related proteins, including EGFR, BRAF, and the BMP-signaling pathway, which may have important implications for tumor biology. Additionally, we describe in detail how phosphorylation and ubiquitination may finetune RNF43 and ZNRF3 activity. We also address the variety of mutations observed in cancers and the mechanism through which they support tumor growth, and challenge the prevailing view that specific missense mutations in the R-spondin and RING domains may possess dominant-negative activity in contributing to tumor formation.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands
| | - Jiahui Niu
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands
| | - Ron Smits
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands..
| |
Collapse
|
20
|
Li S, Hao L, Deng J, Zhang J, Yu F, Ye F, Li N, Hu X. The Culprit Behind HBV-Infected Hepatocytes: NTCP. Drug Des Devel Ther 2024; 18:4839-4858. [PMID: 39494152 PMCID: PMC11529284 DOI: 10.2147/dddt.s480151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
Hepatitis B virus (HBV) is a globally prevalent human DNA virus responsible for over 250 million cases of chronic liver infections, leading to conditions such as liver inflammation, cirrhosis and hepatocellular carcinoma (HCC). Sodium taurocholate co-transporting polypeptide (NTCP) is a transmembrane protein highly expressed in human hepatocytes and functions as a bile acid (BA) transporter. NTCP has been identified as the receptor that HBV and its satellite virus, hepatitis delta virus (HDV), use to enter hepatocytes. HBV entry into hepatocytes is tightly regulated by various signaling pathways, and NTCP plays an important role as the initial stage of HBV infection. NTCP acts as an initiation signal, causing metabolic changes in hepatocytes and facilitating the entry of HBV into hepatocytes. Thus, a comprehensive understanding of NTCP's role is crucial. In this review, we will examine the regulatory mechanisms governing HBV pre-S1 binding to liver membrane NTCP, the role of NTCP in HBV internalization, and the transcriptional and translational regulation of NTCP expression. Additionally, we will discuss clinical drugs targeting NTCP, including combination therapies involving NTCP inhibitors, and consider the safety of NTCP as a therapeutic target.
Collapse
Affiliation(s)
- Shenghao Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Liyuan Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Jiali Deng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Junli Zhang
- Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu Province, People’s Republic of China
| | - Fei Yu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Fanghang Ye
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Na Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| |
Collapse
|
21
|
Vishweshwara SS, Bhoge PR, Anand S, Raigawali R, Chandra A, Saladi SV, Kikkeri R. Immunogenic Sulfated l-Idose Homo Oligosaccharides Elicit Neutralizing Antibody against Native Heparan Sulfate with Biomarker and Therapeutic Possibilities. J Med Chem 2024; 67:18465-18477. [PMID: 39370617 DOI: 10.1021/acs.jmedchem.4c01772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Heparan sulfate (HS) is a non-immunogenic antigen, and developing antibodies against specific sulfated patterns in HS poses significant challenges. Herein, we employed an innovative immunization strategy that exploits the molecular mimicry of HS to generate antibodies against HS sequences. Mice were immunized with synthetic sulfated oligo-l-idose (ID49) that mimics optimum 67% of the conserved structure of HS ligands. This immunization of ID49@CRM197 with alum and Freund's adjuvant resulted in the production of robust IgG antibody responses targeting ID49 and cross-reactivity with the N-sulfated HS ligands compared to N-unsubstituted and N-acetate domain synthetic HS ligands. Such a pharmacological agent exhibited distinct staining of tissue sections and cell lines and induced complement-dependent cell cytotoxicity against SK-BR-3 cancer cells. Moreover, these antibodies inhibited heparin-mediated anticoagulation activity similar to that of protamine. These findings highlight the biomarker and possible therapeutic capability of the antibodies.
Collapse
Affiliation(s)
- Sharath S Vishweshwara
- Indian Institute of Science Education and Research, Dr. Homi bhabha road, Pune 411008, India
| | - Preeti Ravindra Bhoge
- Indian Institute of Science Education and Research, Dr. Homi bhabha road, Pune 411008, India
| | - Saurabh Anand
- Indian Institute of Science Education and Research, Dr. Homi bhabha road, Pune 411008, India
| | - Rakesh Raigawali
- Indian Institute of Science Education and Research, Dr. Homi bhabha road, Pune 411008, India
| | - Ankita Chandra
- Indian Institute of Science Education and Research, Dr. Homi bhabha road, Pune 411008, India
| | - Srinivas Vinod Saladi
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Science, Toledo, Ohio 43614, United States
| | - Raghavendra Kikkeri
- Indian Institute of Science Education and Research, Dr. Homi bhabha road, Pune 411008, India
- Department of CPAS, Jackson State University, Jackson, Mississippi 39217, United States
| |
Collapse
|
22
|
Li C, Luo P, Guo F, Jia X, Shen M, Zhang T, Wang S, Du T. Identification of HSPG2 as a bladder pro-tumor protein through NID1/AKT signaling. Cancer Cell Int 2024; 24:345. [PMID: 39438949 PMCID: PMC11515648 DOI: 10.1186/s12935-024-03527-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
PURPOSE Heparan sulfate proteoglycans (HSPGs) are complex molecules found on the cell membrane and within the extracellular matrix, increasingly recognized for their role in tumor progression. This study aimed to investigate the involvement of Heparan sulfate proteoglycan 2 (HSPG2) in the progression of bladder cancer. METHODS We identified HSPG2 as a promoter of bladder tumor progression using single-cell RNA sequencing and transcriptome analysis of sequencing data from seven patient samples obtained from the Gene Expression Omnibus (GEO) database (GSE135337). Transcript profiles of 28 normal tissues and 407 bladder tumor tissues were analyzed for HSPG2 expression and survival outcomes using the Sanger tools and cBioPortal databases. HSPG2-overexpressing T24 and Biu-87 cell lines were generated, and cell proliferation and migration were assessed using CCK-8 and Transwell assays. Western blotting and immunostaining were performed to evaluate the activation of Nidogen-1 (NID1)/protein kinase B (AKT) signaling. Mouse models with patient-derived tumor organoids (HSPG2high and HSPG2low) were established to assess anticancer effects. RESULTS Our results demonstrated a marked upregulation of HSPG2 in malignant bladder tumors, which correlated significantly with poor patient prognosis. HSPG2 overexpression consistently enhanced bladder tumor cell proliferation and conferred chemotherapy resistance, as shown in both in vitro and in vivo experiments. Mechanistically, HSPG2 upregulated NID1 expression, leading to the activation of the AKT pro-survival signaling pathway and promoting sustained tumor growth in bladder cancer. CONCLUSION This study highlights the critical pro-tumor role of HSPG2/NID1/AKT signaling in bladder cancer and suggests its potential as a therapeutic target in clinical treatment.
Collapse
Affiliation(s)
- Cong Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Pengwei Luo
- School of Clinical Medicine & The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Fengzhu Guo
- Department of Medical Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xu Jia
- School of Clinical Medicine & The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Min Shen
- School of Clinical Medicine & The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Ting Zhang
- School of Clinical Medicine & The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Shusen Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Ting Du
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, 610500, China.
| |
Collapse
|
23
|
Chung TT, Kim SK, Lee SJ. Prognostic significance of HS2ST1 expression in patients with hepatocellular carcinoma. Genes Genomics 2024; 46:1165-1174. [PMID: 39153155 PMCID: PMC11410915 DOI: 10.1007/s13258-024-01556-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Heparan sulfate 2-O-sulfotransferase 1 (HS2ST1) catalyzes the sulfation of glucuronic acid residues in heparan sulfate proteoglycans, enabling these proteoglycans to interact with numerous ligands within tumor microenvironments. However, the prognostic role of HS2ST1 expression in cancer remains unclear. OBJECTIVE This investigated HS2ST1 expression levels and their prognostic significance in various cancer types, demonstrated the prognostic value of HS2ST1 expression in hepatocellular carcinoma (HCC) patients, and identified molecular signatures associated with HS2ST1 expression. METHODS HS2ST1 expression and patient survival data from The Cancer Genome Atlas (TCGA) datasets were analyzed using the Gene Expression Profiling Interactive Analysis (GEPIA) portal. We obtained gene expression and clinicopathological information on HCC patients from the TCGA and the Japan and France International Cancer Genome Consortium (ICGC) databases and performed survival analyses. We also examined relevant protein networks, differentially expressed genes, gene set enrichments, and tumor immune microenvironment features associated with HS2ST1 expression. RESULTS HS2ST1 exhibited higher expression in eight tumor types compared with normal tissues and was associated with poor prognoses in five tumors, including HCC. HS2ST1 status correlated with poor prognosis in two ICGC HCC cohorts. Elevated HS2ST1 expression in HCC tumors was associated with signaling pathways involved in cell cycle progression, protein secretion, and mTORC1 signaling. Moreover, HS2ST1 expression levels were inversely correlated with immune cell infiltration in the tumor microenvironment. CONCLUSION Our study elucidates the prognostic significance of HS2ST1 expression in HCC patients and provides insights into the potential roles of HS2ST1 in signaling pathways and the tumor microenvironment.
Collapse
Affiliation(s)
- Ting Ting Chung
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Seung Jin Lee
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
24
|
Tang S, Yang J, Xiao B, Wang Y, Lei Y, Lai D, Qiu Q. Aberrant Lipid Metabolism and Complement Activation in Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2024; 65:20. [PMID: 39405051 PMCID: PMC11482642 DOI: 10.1167/iovs.65.12.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Age-related macular degeneration (AMD) stands as a leading cause of severe visual impairment and blindness among the elderly globally. As a multifactorial disease, AMD's pathogenesis is influenced by genetic, environmental, and age-related factors, with lipid metabolism abnormalities and complement system dysregulation playing critical roles. This review delves into recent advancements in understanding the intricate interaction between these two crucial pathways, highlighting their contribution to the disease's progression through chronic inflammation, drusen formation, and retinal pigment epithelium dysfunction. Importantly, emerging evidence points to dysregulated lipid profiles, particularly alterations in high-density lipoprotein levels, oxidized lipid deposits, and intracellular lipofuscin accumulation, as exacerbating factors that enhance complement activation and subsequently amplify tissue damage in AMD. Furthermore, genetic studies have revealed significant associations between AMD and specific genes involved in lipid transport and complement regulation, shedding light on disease susceptibility and underlying mechanisms. The review further explores the clinical implications of these findings, advocating for a novel therapeutic approach that integrates lipid metabolism modulators with complement inhibitors. By concurrently targeting these pathways, the dual-targeted approach holds promise in significantly improving outcomes for AMD patients, heralding a new horizon in AMD management and treatment.
Collapse
Affiliation(s)
- Siao Tang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Jiaqi Yang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Bingqing Xiao
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Yani Wang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Yiou Lei
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Dongwei Lai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Qinghua Qiu
- Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| |
Collapse
|
25
|
Mallanna SH, Thimmulappa RK, Chilkunda ND. Dyslipidemia and hyperglycemia induce overexpression of Syndecan-3 in erythrocytes and modulate erythrocyte adhesion. J Biochem 2024; 176:289-298. [PMID: 38960390 DOI: 10.1093/jb/mvae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/06/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024] Open
Abstract
Erythrocytes are important vascular components that play vital roles in maintaining vascular homeostasis, in addition to carrying oxygen. Previously, we reported that the changes in the internal milieu (e.g. hyperglycemia or hypercholesterolemia) increase erythrocyte adhesion to various extracellular matrix components, potentially through altering glycosaminoglycans (GAGs). In this study, we have investigated the expression of syndecan (Sdc) family members that could be involved in mediating cytoadherence under conditions of dyslipidemia and hyperglycemia. Among the Sdc family members analysed, we found significant overexpression of Sdc-3 in erythrocyte membranes harvested from high-fat-fed control and diabetic animals. Animal studies revealed a positive correlation between Sdc-3 expression, blood sugar levels and erythrocyte adhesion. In the human study, diabetic cohorts with body mass index >24.9 showed significantly increased expression of Sdc-3. Interestingly, blocking the Sdc-3 moiety with an anti-Sdc-3 antibody revealed that the core protein might not be directly involved in erythrocyte adhesion to fibronectin despite the GAGs bringing about adhesion. Lastly, Nano liquid chromatography-mass spectrometry/MS verified the presence of Sdc-3 in erythrocyte membranes. In conclusion, the high-fat diet and diabetes modulated Sdc-3 expression in the erythrocyte membrane, which may alter its adhesive properties and promote vascular complications.
Collapse
Affiliation(s)
- Smitha Honnalagere Mallanna
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Cheluvamba Mansion, KRS Road, Mysore 570020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajesh K Thimmulappa
- Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Bannimantap, Mysore 570015, Karnataka, India
| | - Nandini D Chilkunda
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Cheluvamba Mansion, KRS Road, Mysore 570020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
26
|
Yu H, Fan J, Zhang Y, Zhao Z, Lin Z, Jiang P. Syndecan-3 inhibits LPS-induced Inflammation of Bovine Mammary Epithelial Cells through the NF-κB Signal Transduction Pathway. J Dairy Sci 2024:S0022-0302(24)01164-0. [PMID: 39343222 DOI: 10.3168/jds.2024-25212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024]
Abstract
In mastitis, excessive inflammation caused by lipopolysaccharide (LPS) is an important factor leading to mammary tissue damage. Therefore, exploring the regulatory factors that can inhibit the widespread inflammation caused by LPS is crucial. Syndecan-3 (SDC3) has been found to play an active role in anti-inflammatory infection by inhibiting leukocyte adhesion, reducing the accumulation of inflammatory products, such as reactive oxygen species, and competing with chemokines; however, the role and regulatory mechanism of SDC3 in mastitis remains unknown. Therefore, this study aimed to reveal the effect of SDC3 on LPS-induced inflammation in bovine mammary epithelial cells (BMECs) and explore its possible molecular mechanisms. First, we constructed a BMEC inflammatory model. It was found that cells stimulated with 10 μg/mL LPS for 24 h strongly induced the expression of inflammatory cytokines and had no toxic effect on cells, which was the best condition to simulate the BMECs inflammatory response in vitro. Subsequently, we used overexpression and RNAi interference, Real Time Quantitative PCR (RT-qPCR), and Western blot assays to explore the effects of SDC3 on LPS-induced inflammatory factors and their mechanisms. The results showed that overexpression of SDC3 could inhibit the transcriptional levels of inflammatory cytokines IL-6, IL-1β, and TNFα induced by LPS and inhibit the activation of the NF-κB inflammatory pathway by inhibiting the expression of NF-κB p50 and p-IκBα and promoting the expression of IκBα. Our results suggest that SDC3 inhibits the LPS-induced inflammatory response of BMECs through the NF-κB pathway, in which NF-κB p50 may be an important target of SDC3. These findings lay the foundation for elucidating the molecular regulatory mechanisms of dairy cow mastitis.
Collapse
Affiliation(s)
- Haibin Yu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Jing Fan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Yongliang Zhang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhihui Zhao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Ziwei Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China.
| | - Ping Jiang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China.
| |
Collapse
|
27
|
Paull JRA, Luscombe CA, Seta A, Heery GP, Bobardt MD, Gallay PA, Constant S, Castellarnau A. Astodrimer sodium nasal spray forms a barrier to SARS-CoV-2 in vitro and preserves normal mucociliary function in human nasal epithelium. Sci Rep 2024; 14:21259. [PMID: 39261670 PMCID: PMC11390883 DOI: 10.1038/s41598-024-72262-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024] Open
Abstract
COVID-19 remains a severe condition for many including immunocompromised individuals. There remains a need for effective measures against this and other respiratory infections, which transmit via virus-laden droplets that reach the nasal or oral mucosae. Nasal sprays offer potential protection against viruses. Such formulations should preserve normal nasal mucociliary function. The antiviral barrier efficacy and effects on mucociliary function of astodrimer sodium nasal spray (AS-NS) were evaluated and compared with other available nasal sprays-low pH hydroxypropyl methylcellulose (HPMC-NS), iota-carrageenan (Carr-NS), nitric oxide (NO-NS), and povidone iodine (PI-NS). Assays simulated clinical conditions. Antiviral barrier function and cell viability were assessed in airway cell monolayers, while a model of fully differentiated human nasal epithelium (MucilAir™) was utilized to evaluate tissue integrity, cytotoxicity, cilia beating frequency, and mucociliary clearance. AS-NS reduced infectious virus in cell monolayers and demonstrated a benign cytotoxicity profile. In human nasal epithelium ex vivo, AS-NS had no impact on mucociliary function (cilia beating nor mucociliary clearance). Carr-NS, HPMC-NS, NO-NS and PI-NS demonstrated limited antiviral effects, while HPMC-NS caused inhibition of mucociliary function. Astodrimer sodium nasal spray demonstrates an acceptable nonclinical efficacy and safety profile as a barrier nasal spray against respiratory viral infection in the nasal cavity.
Collapse
Affiliation(s)
| | | | - Aynaz Seta
- Starpharma Pty Ltd, Abbotsford, VIC, 3067, Australia
| | | | - Michael D Bobardt
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92307, USA
| | - Philippe A Gallay
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92307, USA
| | | | | |
Collapse
|
28
|
Huang Y, Mei H, Deng C, Wang W, Yuan C, Nie Y, Li JD, Liu J. EXTL3 and NPC1 are mammalian host factors for Autographa californica multiple nucleopolyhedrovirus infection. Nat Commun 2024; 15:7711. [PMID: 39231976 PMCID: PMC11374996 DOI: 10.1038/s41467-024-52193-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024] Open
Abstract
Baculovirus is an obligate parasitic virus of the phylum Arthropoda. Baculovirus including Autographa californica multiple nucleopolyhedrovirus (AcMNPV) has been widely used in the laboratory and industrial preparation of proteins or protein complexes. Due to its large packaging capacity and non-replicative and non-integrative natures in mammals, baculovirus has been proposed as a gene therapy vector for transgene delivery. However, the mechanism of baculovirus transduction in mammalian cells has not been fully illustrated. Here, we employed a cell surface protein-focused CRISPR screen to identify host dependency factors for baculovirus transduction in mammalian cells. The screening experiment uncovered a series of baculovirus host factors in human cells, including exostosin-like glycosyltransferase 3 (EXTL3) and NPC intracellular cholesterol transporter 1 (NPC1). Further investigation illustrated that EXTL3 affected baculovirus attachment and entry by participating in heparan sulfate biosynthesis. In addition, NPC1 promoted baculovirus transduction by mediating membrane fusion and endosomal escape. Moreover, in vivo, baculovirus transduction in Npc1-/+ mice showed that disruption of Npc1 gene significantly reduced baculovirus transduction in mouse liver. In summary, our study revealed the functions of EXTL3 and NPC1 in baculovirus attachment, entry, and endosomal escape in mammalian cells, which is useful for understanding baculovirus transduction in human cells.
Collapse
Affiliation(s)
- Yuege Huang
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Hong Mei
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.
| | - Chunchen Deng
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wei Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Chao Yuan
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yan Nie
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Jia-Da Li
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, Changsha, Hunan, China.
| | - Jia Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China.
- Shanghai Asiflyerbio Biotechnology, Shanghai, China.
| |
Collapse
|
29
|
Zheng Y, Luo S, Xu M, He Q, Xie J, Wu J, Huang Y. Transepithelial transport of nanoparticles in oral drug delivery: From the perspective of surface and holistic property modulation. Acta Pharm Sin B 2024; 14:3876-3900. [PMID: 39309496 PMCID: PMC11413706 DOI: 10.1016/j.apsb.2024.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/23/2024] [Accepted: 05/25/2024] [Indexed: 09/25/2024] Open
Abstract
Despite the promising prospects of nanoparticles in oral drug delivery, the process of oral administration involves a complex transportation pathway that includes cellular uptake, intracellular trafficking, and exocytosis by intestinal epithelial cells, which are necessary steps for nanoparticles to enter the bloodstream and exert therapeutic effects. Current researchers have identified several crucial factors that regulate the interaction between nanoparticles and intestinal epithelial cells, including surface properties such as ligand modification, surface charge, hydrophilicity/hydrophobicity, intestinal protein corona formation, as well as holistic properties like particle size, shape, and rigidity. Understanding these properties is essential for enhancing transepithelial transport efficiency and designing effective oral drug delivery systems. Therefore, this review provides a comprehensive overview of the surface and holistic properties that influence the transepithelial transport of nanoparticles, elucidating the underlying principles governing their impact on transepithelial transport. The review also outlines the chosen of parameters to be considered for the subsequent design of oral drug delivery systems.
Collapse
Affiliation(s)
- Yaxian Zheng
- Department of Pharmacy, the Third People's Hospital of Chengdu, the Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Shiqin Luo
- Department of Pharmacy, the Third People's Hospital of Chengdu, the Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Min Xu
- Department of Pharmacy, the Third People's Hospital of Chengdu, the Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Qin He
- Department of Pharmacy, the Third People's Hospital of Chengdu, the Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiang Xie
- Department of Pharmacy, the Third People's Hospital of Chengdu, the Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiawei Wu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
30
|
McMillan IO, Liang L, Su G, Song X, Drago K, Yang H, Alvarez C, Sood A, Gibson J, Woods RJ, Wang C, Liu J, Zhang F, Brett TJ, Wang L. TREM2 on microglia cell surface binds to and forms functional binary complexes with heparan sulfate modified with 6-O-sulfation and iduronic acid. J Biol Chem 2024; 300:107691. [PMID: 39159814 PMCID: PMC11416269 DOI: 10.1016/j.jbc.2024.107691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/21/2024] Open
Abstract
The triggering receptor expressed on myeloid cells-2 (TREM2), a pivotal innate immune receptor, orchestrates functions such as inflammatory responses, phagocytosis, cell survival, and neuroprotection. TREM2 variants R47H and R62H have been associated with Alzheimer's disease, yet the underlying mechanisms remain elusive. Our previous research established that TREM2 binds to heparan sulfate (HS) and variants R47H and R62H exhibit reduced affinity for HS. Building upon this groundwork, our current study delves into the interplay between TREM2 and HS and its impact on microglial function. We confirm TREM2's binding to cell surface HS and demonstrate that TREM2 interacts with HS, forming HS-TREM2 binary complexes on microglia cell surfaces. Employing various biochemical techniques, including surface plasmon resonance, low molecular weight HS microarray screening, and serial HS mutant cell surface binding assays, we demonstrate TREM2's robust affinity for HS, and the effective binding requires a minimum HS size of approximately 10 saccharide units. Notably, TREM2 selectively binds specific HS structures, with 6-O-sulfation and, to a lesser extent, the iduronic acid residue playing crucial roles. N-sulfation and 2-O-sulfation are dispensable for this interaction. Furthermore, we reveal that 6-O-sulfation is essential for HS-TREM2 ternary complex formation on the microglial cell surface, and HS and its 6-O-sulfation are necessary for TREM2-mediated ApoE3 uptake in microglia. By delineating the interaction between HS and TREM2 on the microglial cell surface and demonstrating its role in facilitating TREM2-mediated ApoE uptake by microglia, our findings provide valuable insights that can inform targeted interventions for modulating microglial functions in Alzheimer's disease.
Collapse
Affiliation(s)
- Ilayda Ozsan McMillan
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Li Liang
- Departments of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Guowei Su
- Glycan Therapeutics, Raleigh, North Carolina, USA
| | - Xuehong Song
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Kelly Drago
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Hua Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Claudia Alvarez
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Amika Sood
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - James Gibson
- Departments of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Chunyu Wang
- Departments of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Fuming Zhang
- Departments of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Tom J Brett
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - Lianchun Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA.
| |
Collapse
|
31
|
Cheng KO, Montaño DE, Zelante T, Dietschmann A, Gresnigt MS. Inflammatory cytokine signalling in vulvovaginal candidiasis: a hot mess driving immunopathology. OXFORD OPEN IMMUNOLOGY 2024; 5:iqae010. [PMID: 39234208 PMCID: PMC11374039 DOI: 10.1093/oxfimm/iqae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 09/06/2024] Open
Abstract
Protective immunity to opportunistic fungal infections consists of tightly regulated innate and adaptive immune responses that clear the infection. Immune responses to infections of the vaginal mucosa by Candida species are, however, an exception. In the case of vulvovaginal candidiasis (VVC), the inflammatory response is associated with symptomatic disease, rather than that it results in pathogen clearance. As such VVC can be considered an inflammatory disease, which is a significant public health problem due to its predominance as a female-specific fungal infection. Particularly, women with recurrent VVC (RVVC) suffer from a significant negative impact on their quality of life and mental health. Knowledge of the inflammatory pathogenesis of (R)VVC may guide more effective diagnostic and therapeutic options to improve the quality of life of women with (R)VVC. Here, we review the immunopathogenesis of (R)VVC describing several elements that induce an inflammatory arson, starting with the activation threshold established by vaginal epithelial cells that prevent unnecessary ignition of inflammatory responses, epithelial and inflammasome-dependent immune responses. These inflammatory responses will drive neutrophil recruitment and dysfunctional neutrophil-mediated inflammation. We also review the, sometimes controversial, findings on the involvement of adaptive and systemic responses. Finally, we provide future perspectives on the potential of some unexplored cytokine axes and discuss whether VVC needs to be subdivided into subgroups to improve diagnosis and treatment.
Collapse
Affiliation(s)
- Kar On Cheng
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (Leibniz-HKI), Beutenbergstraße 11a, Jena, 07749, Germany
| | - Dolly E Montaño
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (Leibniz-HKI), Beutenbergstraße 11a, Jena, 07749, Germany
| | - Teresa Zelante
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi 1, Perugia, 06132, Italy
| | - Axel Dietschmann
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (Leibniz-HKI), Beutenbergstraße 11a, Jena, 07749, Germany
| | - Mark S Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (Leibniz-HKI), Beutenbergstraße 11a, Jena, 07749, Germany
| |
Collapse
|
32
|
Pathak A, Jain NK, Jain K. Dendrimer-mediated targeting of angiogenic biomarkers: therapeutic intervention against cancer. Expert Opin Drug Deliv 2024; 21:1235-1250. [PMID: 39161976 DOI: 10.1080/17425247.2024.2394631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
INTRODUCTION Development of novel vascular networks is a fundamental requirement for tumor growth and progression. In the last decade, biomarkers and underlying molecular pathways of angiogenesis have been intensely investigated to disrupt the initiation and progression of tumor angiogenesis. However, the clinical applications of anti-angiogenic agents are constrained due to toxic side effects, acquired drug resistance, and unavailability of validated biomarkers. AREA COVERED This review discusses the development of dendrimeric nanocarriers that could be a promising domain to explore for the eradication of current challenges associated with angiogenesis-based cancer therapy. Novel drug-delivery approaches with subtle readouts and better understanding of molecular mechanisms have revealed that dendrimers comprise innate anti-angiogenic activity and incorporation of anti-angiogenic agents or gene-silencing RNA could lead to synergistic anti-angiogenic and anticancer effects with reduced side effects. EXPERT OPINION Dendrimer-mediated targeting of angiogenic biomarkers has efficiently led to the vascular normalization, and rational linking of dendrimers with anti-angiogenic agent or siRNA or both might be a potential area to eradicate the current challenges of angiogenesis-based cancer therapy. However, drawbacks associated with the dendrimers-mediated targeting of angiogenic biomarkers, such as poor stability or small expression of these biomarkers on the normal cells, limit their application at market scale.
Collapse
Affiliation(s)
- Anchal Pathak
- Drug Delivery and Nanomedicine Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, India
| | - Narendra Kumar Jain
- Department of Pharmaceutical Sciences, Dr. H. S. Gour Central University, Sagar, India
| | - Keerti Jain
- Drug Delivery and Nanomedicine Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, India
| |
Collapse
|
33
|
Lei H, Wang H, Wang X, Xiao Z, Tian T, Cui K. Surface-enhanced Raman scattering-based identification of breast cancer progression using extracellular vesicles-derived integrin α6β4. Talanta 2024; 275:126092. [PMID: 38615459 DOI: 10.1016/j.talanta.2024.126092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Detection of progression is of great importance to breast cancer treatment and can benefit patients. Limited by current detection technologies and biomarkers, early breast cancer progression diagnosis remains challenging. Researchers have found blood extracellular vesicles (EVs)-derived integrin α6β4 directly facilitate progression in breast cancer, enabling cancer detection. However, EVs size and heterogeneity hinder protein detection, masked by abundant background EVs. Hence, novel tools for efficient detection of EVs with high selectivity and low interference are significantly desired. Here, a new silver-coated gold nanorods SERS probe, termed as Au@Ag@IDA-B/4MSTP, based on DNA aptamer was established for the detection of integrin α6β4 derived from EVs. Validation of the Au@Ag@IDA-B/4MSTP probes using cell-culture-derived EVs revealed a LOD of 23 particles/μL for EVs detection. This tool was further confirmed to mimic the real state of cancer with subcutaneous tumor model and lung metastasis model in mice. With 10 μL of blood plasma and simple Raman analysis process, the test achieved 85.7 % sensitivity and 83.3 % specificity. Moreover, our method achieves a simplified approach that expedites the detection process. These results demonstrate the good detection performance of Au@Ag@IDA-B/4MSTP probes for EVs integrin α6β4, and suggest that this non-invasive approach could be a promising tool for early detection of breast cancer progression.
Collapse
Affiliation(s)
- Haozhi Lei
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Shanghai, 200127, China
| | - Haoze Wang
- Department of Pharmacology and Chemical Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China; College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200233, China
| | - Xiqiu Wang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zeyu Xiao
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; Department of Pharmacology and Chemical Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Tian Tian
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Kai Cui
- Department of Pharmacology and Chemical Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
34
|
Gyimesi M, Oikari LE, Yu C, Sutherland HG, Nyholt DR, Griffiths LR, Van Wijnen AJ, Okolicsanyi RK, Haupt LM. CpG methylation changes in human mesenchymal and neural stem cells in response to in vitro niche modifications. Biochimie 2024; 223:147-157. [PMID: 38640996 DOI: 10.1016/j.biochi.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Stem cell therapies hold promise in addressing the burden of neurodegenerative diseases with human embryonic neural stem cells (hNSC-H9s) and bone marrow-derived human mesenchymal stem cells (hMSCs) as viable candidates. The induction of hMSC neurospheres (hMSC-IN) generate a more lineage-restricted common neural progenitor-like cell population, potentially tunable by heparan sulfate proteoglycans (HSPGs). We examined CpG (5 mC) site methylation patterns using Illumina Infinium 850 K EPIC arrays in hNSC-H9, hMSCs and hMSC-IN cultures with HSPG agonist heparin at early and late phases of growth. We identified key regulatory CpG sites in syndecans (SDC2; SDC4) that potentially regulate gene expression in monolayers. Unique hMSC-IN hypomethylation in glypicans (GPC3; GPC4) underscore their significance in neural lineages with Sulfatase 1 and 2 (SULF1 &2) CpG methylation changes potentially driving the neurogenic shift. hMSC-INs methylation levels at SULF1 CpG sites and SULF2:cg25401628 were more closely aligned with hNSC-H9 cells than with hMSCs. We further suggest SOX2 regulation governed by lncSOX2-Overall Transcript (lncSOX2-OT) methylation changes with preferential activation of ENO2 over other neuronal markers within hMSC-INs. Our findings illuminate epigenetic dynamics governing neural lineage commitment of hMSC-INs offering insights for targeted mechanisms for regenerative medicine and therapeutic strategies.
Collapse
Affiliation(s)
- Martina Gyimesi
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Australia
| | - Lotta E Oikari
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Australia
| | - Chieh Yu
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Australia
| | - Heidi G Sutherland
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Australia
| | - Dale R Nyholt
- Statistical and Genomic Epidemiology Laboratory, School of Biomedical Sciences, Faculty of Health and Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Lyn R Griffiths
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Australia
| | | | - Rachel K Okolicsanyi
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Australia; Max Planck Queensland Centre for the Materials Science of Extracellular Matrices, Australia
| | - Larisa M Haupt
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Australia; Max Planck Queensland Centre for the Materials Science of Extracellular Matrices, Australia; Centre for Biomedical Technologies, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD 4059, Australia.
| |
Collapse
|
35
|
Schultheis N, Connell A, Kapral A, Becker RJ, Mueller R, Shah S, O'Donnell M, Roseman M, Swanson L, DeGuara S, Wang W, Yin F, Saini T, Weiss RJ, Selleck SB. Altering heparan sulfate suppresses cell abnormalities and neuron loss in Drosophila presenilin model of Alzheimer Disease. iScience 2024; 27:110256. [PMID: 39109174 PMCID: PMC11302002 DOI: 10.1016/j.isci.2024.110256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/06/2024] [Accepted: 06/10/2024] [Indexed: 08/10/2024] Open
Abstract
We examined the function of heparan-sulfate-modified proteoglycans (HSPGs) in pathways affecting Alzheimer disease (AD)-related cell pathology in human cell lines and mouse astrocytes. Mechanisms of HSPG influences on presenilin-dependent cell loss were evaluated in Drosophila using knockdown of the presenilin homolog, Psn, together with partial loss-of-function of sulfateless (sfl), a gene specifically affecting HS sulfation. HSPG modulation of autophagy, mitochondrial function, and lipid metabolism were shown to be conserved in human cell lines, Drosophila, and mouse astrocytes. RNA interference (RNAi) of Ndst1 reduced intracellular lipid levels in wild-type mouse astrocytes or those expressing humanized variants of APOE, APOE3, and APOE4. Neuron-directed knockdown of Psn in Drosophila produced apoptosis and cell loss in the brain, phenotypes suppressed by reductions in sfl expression. Abnormalities in mitochondria, liposomes, and autophagosome-derived structures in animals with Psn knockdown were also rescued by reduction of sfl. These findings support the direct involvement of HSPGs in AD pathogenesis.
Collapse
Affiliation(s)
- Nicholas Schultheis
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Alyssa Connell
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Alexander Kapral
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Robert J. Becker
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Richard Mueller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Shalini Shah
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Mackenzie O'Donnell
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Matthew Roseman
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Lindsey Swanson
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Sophia DeGuara
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Weihua Wang
- Center for Innovation in Brain Science and Department of Pharmacology, University of Arizona, Tucson, AZ 85721, USA
| | - Fei Yin
- Center for Innovation in Brain Science and Department of Pharmacology, University of Arizona, Tucson, AZ 85721, USA
| | - Tripti Saini
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Ryan J. Weiss
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Scott B. Selleck
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
36
|
Du TY, Hall SR, Chung F, Kurdyukov S, Crittenden E, Patel K, Dawson CA, Westhorpe AP, Bartlett KE, Rasmussen SA, Moreno CL, Denes CE, Albulescu LO, Marriott AE, Mackay JP, Wilkinson MC, Gutiérrez JM, Casewell NR, Neely GG. Molecular dissection of cobra venom highlights heparinoids as an antidote for spitting cobra envenoming. Sci Transl Med 2024; 16:eadk4802. [PMID: 39018365 DOI: 10.1126/scitranslmed.adk4802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/28/2024] [Accepted: 05/31/2024] [Indexed: 07/19/2024]
Abstract
Snakebites affect about 1.8 million people annually. The current standard of care involves antibody-based antivenoms, which can be difficult to access and are generally not effective against local tissue injury, the primary cause of morbidity. Here, we used a pooled whole-genome CRISPR knockout screen to define human genes that, when targeted, modify cell responses to spitting cobra venoms. A large portion of modifying genes that conferred resistance to venom cytotoxicity was found to control proteoglycan biosynthesis, including EXT1, B4GALT7, EXT2, EXTL3, XYLT2, NDST1, and SLC35B2, which we validated independently. This finding suggested heparinoids as possible inhibitors. Heparinoids prevented venom cytotoxicity through binding to three-finger cytotoxins, and the US Food and Drug Administration-approved heparinoid tinzaparin was found to reduce tissue damage in mice when given via a medically relevant route and dose. Overall, our systematic molecular dissection of cobra venom cytotoxicity provides insight into how we can better treat cobra snakebite envenoming.
Collapse
Affiliation(s)
- Tian Y Du
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, and School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Steven R Hall
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA, Liverpool, UK
| | - Felicity Chung
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, and School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Sergey Kurdyukov
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, and School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Edouard Crittenden
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA, Liverpool, UK
| | - Karishma Patel
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2008, Australia
| | - Charlotte A Dawson
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA, Liverpool, UK
| | - Adam P Westhorpe
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA, Liverpool, UK
| | - Keirah E Bartlett
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA, Liverpool, UK
| | - Sean A Rasmussen
- Department of Pathology and Laboratory Medicine, Queen Elizabeth II Health Sciences Centre and Dalhousie University, 7th Floor of MacKenzie Building, 5788 University Avenue, Halifax, NS B3H 1V8, Canada
| | - Cesar L Moreno
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, and School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Christopher E Denes
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, and School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Laura-Oana Albulescu
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA, Liverpool, UK
| | - Amy E Marriott
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA, Liverpool, UK
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2008, Australia
| | - Mark C Wilkinson
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA, Liverpool, UK
| | - José María Gutiérrez
- Clodomiro Picado Institute, School of Microbiology, University of Costa Rica, P.O. Box 15501, 11501-2060 San José, Costa Rica
| | - Nicholas R Casewell
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA, Liverpool, UK
| | - G Gregory Neely
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, and School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
37
|
Huang CY, Chou ST, Hsu YM, Chao WJ, Wu GH, Hsiao JR, Wang HD, Shiah SG. MEG3-Mediated Oral Squamous-Cell-Carcinoma-Derived Exosomal miR-421 Activates Angiogenesis by Targeting HS2ST1 in Vascular Endothelial Cells. Int J Mol Sci 2024; 25:7576. [PMID: 39062818 PMCID: PMC11277508 DOI: 10.3390/ijms25147576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Exosomal microRNAs (miRNAs) from cancer cells play a key role in mediating the oral squamous cell carcinoma (OSCC) microenvironment. The objective of this study was to investigate how the long non-coding RNA (lncRNA) MEG3 affects OSCC angiogenesis through exosomal miR-421. Global miRNA microarray analysis and quantitative real-time PCR (qRT-PCR) were performed to determine the level of miRNAs in OSCC cell-derived exosomes. Cell migration, invasion, tube formation, immunohistochemistry, and hemoglobin concentrations were used to study the effects of exosomal miR-421 in angiogenesis. Western blotting was used to determine the expression level of HS2ST1 and VEGFR2-related downstream proteins. MiRNA array and qRT-PCR identified the upregulation of miR-421 in OSCC cell-derived exosomes. Furthermore, exosomal miR-421 can be taken up by human umbilical vein endothelial cells (HUVECs) and then target HS2ST1 through VEGF-mediated ERK and AKT phosphorylation, thereby promoting HUVEC migration, invasion, and tube formation. Additionally, forced expression of the lncRNA MEG3 in OSCC cells reduced exosomal miR-421 levels and then increased HS2ST1 expression, thereby reducing the VEGF/VEGFR2 pathway in HUVECs. Our results demonstrate a novel mechanism by which lncRNA MEG3 can act as a tumor suppressor and regulate endothelial angiogenesis through the exosomal miR-421/HS2ST1 axis, which provides a potential therapeutic strategy for OSCC angiogenesis.
Collapse
Affiliation(s)
- Chia-Yun Huang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 350401, Taiwan; (C.-Y.H.); (S.-T.C.); (Y.-M.H.); (W.-J.C.); (G.-H.W.)
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan;
| | - Sung-Tau Chou
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 350401, Taiwan; (C.-Y.H.); (S.-T.C.); (Y.-M.H.); (W.-J.C.); (G.-H.W.)
| | - Yuan-Ming Hsu
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 350401, Taiwan; (C.-Y.H.); (S.-T.C.); (Y.-M.H.); (W.-J.C.); (G.-H.W.)
| | - Wan-Ju Chao
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 350401, Taiwan; (C.-Y.H.); (S.-T.C.); (Y.-M.H.); (W.-J.C.); (G.-H.W.)
| | - Guan-Hsun Wu
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 350401, Taiwan; (C.-Y.H.); (S.-T.C.); (Y.-M.H.); (W.-J.C.); (G.-H.W.)
| | - Jenn-Ren Hsiao
- Head and Neck Collaborative Oncology Group, Department of Otolaryngology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704302, Taiwan;
| | - Horng-Dar Wang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan;
| | - Shine-Gwo Shiah
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 350401, Taiwan; (C.-Y.H.); (S.-T.C.); (Y.-M.H.); (W.-J.C.); (G.-H.W.)
- Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 116079, Taiwan
| |
Collapse
|
38
|
Busch C, Nyamondo K, Wheadon H. Complexities of modeling the bone marrow microenvironment to facilitate hematopoietic research. Exp Hematol 2024; 135:104233. [PMID: 38740324 DOI: 10.1016/j.exphem.2024.104233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
Hematopoiesis occurs in the bone marrow (BM), within a specialized microenvironment referred to as the stem cell niche, where the hematopoietic stem cells (HSCs) reside and are regulated for quiescence, self-renewal and differentiation through intrinsic and extrinsic mechanisms. The BM contains at least two distinctive HSC-supportive niches: an endosteal osteoblastic niche that supports quiescence and self-renewal and a more vascular/perisinusoidal niche that promotes proliferation and differentiation. Both associate with supporting mesenchymal stromal cells. Within the more hypoxic osteoblastic niche, HSCs specifically interact with the osteoblasts that line the endosteal surface, which secrete several important HSC quiescence and maintenance regulatory factors. In vivo imaging indicates that the HSCs and progenitors located further away, in the vicinity of sinusoidal endothelial cells, are more proliferative. Here, HSCs interact with endothelial cells via specific cell adhesion molecules. Endothelial cells also secrete several factors important for HSC homeostasis and proliferation. In addition, HSCs and mesenchymal stromal cells are embedded within the extracellular matrix (ECM), an important network of proteins such as collagen, elastin, laminin, proteoglycans, vitronectin, and fibronectin. The ECM provides mechanical characteristics such as stiffness and elasticity important for cell behavior regulation. ECM proteins are also able to bind, sequester, display, and distribute growth factors across the BM, thus directly affecting stem cell fate and regulation of hematopoiesis. These important physical and chemical features of the BM require careful consideration when creating three-dimensional models of the BM.
Collapse
Affiliation(s)
- Caroline Busch
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kudzai Nyamondo
- Wellcome-Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Helen Wheadon
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
39
|
Yurchenco PD, Kulczyk AW. Polymerizing laminins in development, health, and disease. J Biol Chem 2024; 300:107429. [PMID: 38825010 PMCID: PMC11260871 DOI: 10.1016/j.jbc.2024.107429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/12/2024] [Accepted: 05/26/2024] [Indexed: 06/04/2024] Open
Abstract
Polymerizing laminins are multi-domain basement membrane (BM) glycoproteins that self-assemble into cell-anchored planar lattices to establish the initial BM scaffold. Nidogens, collagen-IV and proteoglycans then bind to the scaffold at different domain loci to create a mature BM. The LN domains of adjacent laminins bind to each other to form a polymer node, while the LG domains attach to cytoskeletal-anchoring integrins and dystroglycan, as well as to sulfatides and heparan sulfates. The polymer node, the repeating unit of the polymer scaffold, is organized into a near-symmetrical triskelion. The structure, recently solved by cryo-electron microscopy in combination with AlphaFold2 modeling and biochemical studies, reveals how the LN surface residues interact with each other and how mutations cause failures of self-assembly in an emerging group of diseases, the LN-lamininopathies, that include LAMA2-related dystrophy and Pierson syndrome.
Collapse
Affiliation(s)
- Peter D Yurchenco
- Department of Pathology & Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA.
| | - Arkadiusz W Kulczyk
- Department of Biochemistry and Microbiology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
40
|
Damen LAA, Bui TP, van Wessel T, Li Y, Straten BF, Pampiermole R, Daamen WF, Fernig DG, van Kuppevelt TH. Identification of heparin-binding amino acid residues in antibody HS4C3 with the potential to design antibodies against heparan sulfate domains. Glycobiology 2024; 34:cwae046. [PMID: 38963938 PMCID: PMC11231949 DOI: 10.1093/glycob/cwae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/06/2024] [Indexed: 07/06/2024] Open
Abstract
Heparan sulfate (HS) is a linear polysaccharide with high structural and functional diversity. Detection and localization of HS in tissues can be performed using single chain variable fragment (scFv) antibodies. Although several anti-HS antibodies recognizing different sulfation motifs have been identified, little is known about their interaction with HS. In this study the interaction between the scFv antibody HS4C3 and heparin was investigated. Heparin-binding lysine and arginine residues were identified using a protect and label methodology. Site-directed mutagenesis was applied to further identify critical heparin-binding lysine/arginine residues using immunohistochemical and biochemical assays. In addition, computational docking of a heparin tetrasaccharide towards a 3-D homology model of HS4C3 was applied to identify potential heparin-binding sites. Of the 12 lysine and 15 arginine residues within the HS4C3 antibody, 6 and 9, respectively, were identified as heparin-binding. Most of these residues are located within one of the complementarity determining regions (CDR) or in their proximity. All basic amino acid residues in the CDR3 region of the heavy chain were involved in binding. Computational docking showed a heparin tetrasaccharide close to these regions. Mutagenesis of heparin-binding residues reduced or altered reactivity towards HS and heparin. Identification of heparin-binding arginine and lysine residues in HS4C3 allows for better understanding of the interaction with HS and creates a framework to rationally design antibodies targeting specific HS motifs.
Collapse
Affiliation(s)
- Lars A A Damen
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, Nijmegen 6500 HB, the Netherlands
| | - Thao P Bui
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrated Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Thierry van Wessel
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, Nijmegen 6500 HB, the Netherlands
| | - Yong Li
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrated Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Bart F Straten
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, Nijmegen 6500 HB, the Netherlands
| | - Robin Pampiermole
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, Nijmegen 6500 HB, the Netherlands
| | - Willeke F Daamen
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, Nijmegen 6500 HB, the Netherlands
| | - David G Fernig
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrated Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Toin H van Kuppevelt
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, Nijmegen 6500 HB, the Netherlands
| |
Collapse
|
41
|
Schoufour TA, van der Plas - van Duijn A, Derksen I, Melgers M, van Veenendaal JM, Lensen C, Heemskerk MH, Neefjes J, Wijdeven RH, Scheeren FA. CRISPR-Cas9 screening reveals a distinct class of MHC-I binders with precise HLA-peptide recognition. iScience 2024; 27:110120. [PMID: 38939106 PMCID: PMC11209011 DOI: 10.1016/j.isci.2024.110120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/10/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
Human leukocyte antigen (HLA) class-I molecules present fragments of the cellular proteome to the T cell receptor (TCR) of cytotoxic T cells to control infectious diseases and cancer. The large number of combinations of HLA class-I allotypes and peptides allows for highly specific and dedicated low-affinity interactions to a diverse array of TCRs and natural killer (NK) cell receptors. Whether the divergent HLA class-I peptide complex is exclusive for interactions with these proteins is unknown. Using genome-wide CRISPR-Cas9 activation and knockout screens, we identified peptide-specific HLA-C∗07 combinations that can interact with the surface molecules CD55 and heparan sulfate. These interactions closely resemble the HLA class-I interaction with the TCR regarding both the affinity range and the specificity of the peptide and HLA allele. These findings indicate that various proteins can specifically bind HLA class-I peptide complexes due to their polymorphic nature, which suggests there are more interactions like the ones we describe here.
Collapse
Affiliation(s)
- Tom A.W. Schoufour
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
| | - Anneloes van der Plas - van Duijn
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
- Department of Dermatology, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
| | - Ian Derksen
- Department of Dermatology, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
| | - Marije Melgers
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
| | | | - Claire Lensen
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
| | - Mirjam H.M. Heemskerk
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
| | - Ruud H.M. Wijdeven
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Medical Center, 1007 MB Amsterdam, Noord-Holland, the Netherlands
| | - Ferenc A. Scheeren
- Department of Dermatology, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
| |
Collapse
|
42
|
Martins C, Aukan MI, De Luca M. Lower levels of plasma syndecan-4 are associated with loss of body weight and fat-free mass after bariatric surgery. BMC Res Notes 2024; 17:164. [PMID: 38879520 PMCID: PMC11179341 DOI: 10.1186/s13104-024-06822-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/05/2024] [Indexed: 06/19/2024] Open
Abstract
OBJECTIVE Bariatric surgery induces a significant loss of both fat mass (FM) and fat-free mass (FFM). The proteoglycan receptor syndecan-4 (SDC4) plays a crucial role in adipose tissue and skeletal muscle functions. Thus, this study was performed (i) to assess plasma SDC4 levels after both Sleeve Gastrectomy (SG) and Roux-en-Y Gastric Bypass (RYGB) surgeries, and (ii) to explore potential associations with changes in body composition variables. RESULTS Twenty-six patients (17 females) with severe obesity underwent SG (n = 13) or RYGB (n = 13) and were followed up to 1 year (1Y). Body weight, FM, FFM, and SCD4 were measured at baseline (BL), and at week 11 (W11) and 1Y after surgery. Independently of procedure, there was a significant body weight loss at W11, with an average FM and FFM reduction of 13.7 ± 0.6 kg and 5.3 ± 0.5 kg, respectively. Participants continued to lose weight afterwards, with a total weigth loss of 38.2 ± 1.5 kg at 1Y. No associations were found at BL between SDC4 levels and any anthropometric variable; however, SDC4 levels were lower than BL at both W11 and 1Y, independently of type of surgery. Additionally, changes in SDC4 between BL and 1Y were positively correlated with weight and FFM loss during the same period. TRIAL REGISTRATION ClinicalTrials.gov NCT04051190 on 09/08/2019.
Collapse
Affiliation(s)
- Catia Martins
- Department of Nutrition Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Centre of Obesity and Innovation (ObeCe), Clinic of Surgery, St. Olav University Hospital, Trondheim, Norway
| | - Marthe Isaksen Aukan
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Centre of Obesity and Innovation (ObeCe), Clinic of Surgery, St. Olav University Hospital, Trondheim, Norway
| | - Maria De Luca
- Department of Nutrition Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
| |
Collapse
|
43
|
Zhang P, Yue L, Leng Q, Chang C, Gan C, Ye T, Cao D. Targeting FGFR for cancer therapy. J Hematol Oncol 2024; 17:39. [PMID: 38831455 PMCID: PMC11149307 DOI: 10.1186/s13045-024-01558-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
The FGFR signaling pathway is integral to cellular activities, including proliferation, differentiation, and survival. Dysregulation of this pathway is implicated in numerous human cancers, positioning FGFR as a prominent therapeutic target. Here, we conduct a comprehensive review of the function, signaling pathways and abnormal alterations of FGFR, as well as its role in tumorigenesis and development. Additionally, we provide an in-depth analysis of pivotal phase 2 and 3 clinical trials evaluating the performance and safety of FGFR inhibitors in oncology, thereby shedding light on the current state of clinical research in this field. Then, we highlight four drugs that have been approved for marketing by the FDA, offering insights into their molecular mechanisms and clinical achievements. Our discussion encompasses the intricate landscape of FGFR-driven tumorigenesis, current techniques for pinpointing FGFR anomalies, and clinical experiences with FGFR inhibitor regimens. Furthermore, we discuss the inherent challenges of targeting the FGFR pathway, encompassing resistance mechanisms such as activation by gatekeeper mutations, alternative pathways, and potential adverse reactions. By synthesizing the current evidence, we underscore the potential of FGFR-centric therapies to enhance patient prognosis, while emphasizing the imperative need for continued research to surmount resistance and optimize treatment modalities.
Collapse
Affiliation(s)
- Pei Zhang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Lin Yue
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - QingQing Leng
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Chen Chang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Cailing Gan
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tinghong Ye
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Dan Cao
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
44
|
Gyimesi M, Okolicsanyi RK, Haupt LM. Beyond amyloid and tau: rethinking Alzheimer's disease through less explored avenues. Open Biol 2024; 14:240035. [PMID: 38862019 DOI: 10.1098/rsob.240035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/25/2024] [Indexed: 06/13/2024] Open
Abstract
Neurodegenerative diseases, particularly Alzheimer's disease (AD), pose a significant challenge in ageing populations. Our current understanding indicates that the onset of toxic amyloid and tau protein pathologies initiates disease progression. However, existing treatments targeting these hallmark symptoms offer symptomatic relief without halting disease advancement. This review offers an alternative perspective on AD, centring on impaired adult hippocampal neurogenesis (AHN) as a potential early aetiological factor. By delving into the intricate molecular events during the initial stages of AD (Braak Stages I-III), a novel hypothesis is presented, interweaving the roles of Notch signalling and heparan sulfate proteoglycans (HSPGs) in compromised AHN. While acknowledging the significance of the amyloid and tau hypotheses, it calls for further exploration beyond these paradigms, suggesting the potential of altered HS sulfation patterns in AD initiation. Future directions propose more detailed investigations into early HS aggregation, aberrant sulfation patterns and examination of their temporal relationship with tau hyperphosphorylation. In challenging the conventional 'triggers' of AD and urging their reconsideration as symptoms, this review advocates an alternative approach to understanding this disease, offering new avenues of investigation into the intricacies of AD pathogenesis.
Collapse
Affiliation(s)
- M Gyimesi
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave , Kelvin Grove, Queensland 4059, Australia
| | - R K Okolicsanyi
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave , Kelvin Grove, Queensland 4059, Australia
- Max Planck Queensland Centre for the Materials Sciences of Extracellular Matrices , Brisbane, QLD 4059, Australia
| | - L M Haupt
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave , Kelvin Grove, Queensland 4059, Australia
- Max Planck Queensland Centre for the Materials Sciences of Extracellular Matrices , Brisbane, QLD 4059, Australia
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), 60 Musk Ave , Kelvin Grove, Queensland 4059, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies , Brisbane, QLD 4059, Australia
| |
Collapse
|
45
|
Cheng MF, Abdullah FS, Buechler MB. Essential growth factor receptors for fibroblast homeostasis and activation: Fibroblast Growth Factor Receptor (FGFR), Platelet Derived Growth Factor Receptor (PDGFR), and Transforming Growth Factor β Receptor (TGFβR). F1000Res 2024; 13:120. [PMID: 38988879 PMCID: PMC11234085 DOI: 10.12688/f1000research.143514.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/12/2024] Open
Abstract
Fibroblasts are cells of mesenchymal origin that are found throughout the body. While these cells have several functions, their integral roles include maintaining tissue architecture through the production of key extracellular matrix components, and participation in wound healing after injury. Fibroblasts are also key mediators in disease progression during fibrosis, cancer, and other inflammatory diseases. Under these perturbed states, fibroblasts can activate into inflammatory fibroblasts or contractile myofibroblasts. Fibroblasts require various growth factors and mitogenic molecules for survival, proliferation, and differentiation. While the activity of mitogenic growth factors on fibroblasts in vitro was characterized as early as the 1970s, the proliferation and differentiation effects of growth factors on these cells in vivo are unclear. Recent work exploring the heterogeneity of fibroblasts raises questions as to whether all fibroblast cell states exhibit the same growth factor requirements. Here, we will examine and review existing studies on the influence of fibroblast growth factor receptors (FGFRs), platelet-derived growth factor receptors (PDGFRs), and transforming growth factor β receptor (TGFβR) on fibroblast cell states.
Collapse
Affiliation(s)
- Maye F. Cheng
- Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | | | | |
Collapse
|
46
|
Lai ZY, Yang CC, Chen PH, Chen WC, Lai TY, Lu GY, Yang CY, Wang KY, Liu WC, Chen YC, Liu LYM, Chuang YJ. Syndecan-4 is required for early-stage repair responses during zebrafish heart regeneration. Mol Biol Rep 2024; 51:604. [PMID: 38700644 PMCID: PMC11068835 DOI: 10.1007/s11033-024-09531-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/08/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND The healing process after a myocardial infarction (MI) in humans involves complex events that replace damaged tissue with a fibrotic scar. The affected cardiac tissue may lose its function permanently. In contrast, zebrafish display a remarkable capacity for scar-free heart regeneration. Previous studies have revealed that syndecan-4 (SDC4) regulates inflammatory response and fibroblast activity following cardiac injury in higher vertebrates. However, whether and how Sdc4 regulates heart regeneration in highly regenerative zebrafish remains unknown. METHODS AND RESULTS This study showed that sdc4 expression was differentially regulated during zebrafish heart regeneration by transcriptional analysis. Specifically, sdc4 expression increased rapidly and transiently in the early regeneration phase upon ventricular cryoinjury. Moreover, the knockdown of sdc4 led to a significant reduction in extracellular matrix protein deposition, immune cell accumulation, and cell proliferation at the lesion site. The expression of tgfb1a and col1a1a, as well as the protein expression of Fibronectin, were all down-regulated under sdc4 knockdown. In addition, we verified that sdc4 expression was required for cardiac repair in zebrafish via in vivo electrocardiogram analysis. Loss of sdc4 expression caused an apparent pathological Q wave and ST elevation, which are signs of human MI patients. CONCLUSIONS Our findings support that Sdc4 is required to mediate pleiotropic repair responses in the early stage of zebrafish heart regeneration.
Collapse
Grants
- MOST 110-2311-B-007-005-MY3 Ministry of Science and Technology, Taiwan
- MOST 110-2311-B-007-005-MY3 Ministry of Science and Technology, Taiwan
- MOST 110-2311-B-007-005-MY3 Ministry of Science and Technology, Taiwan
- MOST 110-2311-B-007-005-MY3 Ministry of Science and Technology, Taiwan
- MOST 110-2311-B-007-005-MY3 Ministry of Science and Technology, Taiwan
- MOST 110-2311-B-007-005-MY3 Ministry of Science and Technology, Taiwan
- MOST 110-2311-B-007-005-MY3 Ministry of Science and Technology, Taiwan
- MOST 110-2311-B-007-005-MY3 Ministry of Science and Technology, Taiwan
- MOST 110-2311-B-007-005-MY3 Ministry of Science and Technology, Taiwan
- MOST 110-2311-B-007-005-MY3 Ministry of Science and Technology, Taiwan
- MOST 110-2311-B-007-005-MY3 Ministry of Science and Technology, Taiwan
- MOST 110-2311-B-007-005-MY3 Ministry of Science and Technology, Taiwan
Collapse
Affiliation(s)
- Zih-Yin Lai
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
| | - Chung-Chi Yang
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
- Division of Cardiovascular Medicine, Taoyuan Armed Forces General Hospital, Taoyuan City, 325208, Taiwan, ROC
- Cardiovascular Division, Tri-Service General Hospital, National Defense Medical Center, Taipei City, 114201, Taiwan, ROC
| | - Po-Hsun Chen
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
| | - Wei-Chen Chen
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
| | - Ting-Yu Lai
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
| | - Guan-Yun Lu
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
| | - Chiao-Yu Yang
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
| | - Ko-Ying Wang
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
| | - Wei-Cen Liu
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
| | - Yu-Chieh Chen
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
| | - Lawrence Yu-Min Liu
- Department of Internal Medicine, Division of Cardiology, Hsinchu MacKay Memorial Hospital, Hsinchu, 300044, Taiwan, ROC.
- Department of Medicine, MacKay Medical College, New Taipei City, 252005, Taiwan, ROC.
| | - Yung-Jen Chuang
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC.
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC.
| |
Collapse
|
47
|
Dombrowsky CS, Happel D, Habermann J, Hofmann S, Otmi S, Cohen B, Kolmar H. A Conditionally Activated Cytosol-Penetrating Antibody for TME-Dependent Intracellular Cargo Delivery. Antibodies (Basel) 2024; 13:37. [PMID: 38804305 PMCID: PMC11130931 DOI: 10.3390/antib13020037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/29/2024] Open
Abstract
Currently, therapeutic and diagnostic applications of antibodies are primarily limited to cell surface-exposed and extracellular proteins. However, research has been conducted on cell-penetrating peptides (CPP), as well as cytosol-penetrating antibodies, to overcome these limitations. In this context, a heparin sulfate proteoglycan (HSPG)-binding antibody was serendipitously discovered, which eventually localizes to the cytosol of target cells. Functional characterization revealed that the tested antibody has beneficial cytosol-penetrating capabilities and can deliver cargo proteins (up to 70 kDa) to the cytosol. To achieve tumor-specific cell targeting and cargo delivery through conditional activation of the cell-penetrating antibody in the tumor microenvironment, a single-chain Fc fragment (scFv) and a VL domain were isolated as masking units. Several in vitro assays demonstrated that fusing the masking protein with a cleavable linker to the cell penetration antibody results in the inactivation of antibody cell binding and internalization. Removal of the mask via MMP-9 protease cleavage, a protease that is frequently overexpressed in the tumor microenvironment (TME), led to complete regeneration of binding and cytosol-penetrating capabilities. Masked and conditionally activated cytosol-penetrating antibodies have the potential to serve as a modular platform for delivering protein cargoes addressing intracellular targets in tumor cells.
Collapse
Affiliation(s)
- Carolin Sophie Dombrowsky
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
| | - Dominic Happel
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
| | - Jan Habermann
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
| | - Sarah Hofmann
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
| | - Sasi Otmi
- Inter-Lab, a Subsidiary of Merck KGaA, South Industrial Area, Yavne 8122004, Israel
| | - Benny Cohen
- Inter-Lab, a Subsidiary of Merck KGaA, South Industrial Area, Yavne 8122004, Israel
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, D-64287 Darmstadt, Germany
| |
Collapse
|
48
|
Mii Y. Understanding and manipulating extracellular behaviors of Wnt ligands. In Vitro Cell Dev Biol Anim 2024; 60:441-448. [PMID: 38379096 DOI: 10.1007/s11626-024-00856-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024]
Abstract
Wnt, a family of secreted signaling proteins, serves diverse functions in embryogenesis, organogenesis, cancer, and stem cell functions. In the context of development, Wnt has been considered a representative morphogen, forming concentration gradients to give positional information to cells or tissues. However, although gradients are often illustrated in schemata, the reality of concentration gradients, or in other words, actual spatial distribution of Wnt ligands, and their behaviors in the extracellular space still remain poorly known. To understand extracellular behavior of Wnt ligands, quantitative analyses such as fluorescence correlation spectroscopy (FCS) and fluorescence recovery after photobleaching (FRAP) are highly informative because Wnt dispersal involves physical and biochemical processes, such as diffusion and binding to or dissociation from cell surface molecules, including heparan sulfate proteoglycans (HSPGs). Here, I briefly discuss representative methods to quantify morphogen dynamics. In addition, I discuss molecular manipulations of morphogens, mainly focusing on use of protein binders, and synthetic biology of morphogens as indicators of current and future directions in this field.
Collapse
Affiliation(s)
- Yusuke Mii
- National Institute for Basic Biology (NIBB) and Exploratory Research Center On Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
49
|
Loffredo LF, Surpur A, Ringham OR, Li F, de Los Santos-Alexis K, Arpaia N. Heparan sulfate regulates amphiregulin signaling towards reparative lung mesenchymal cells during influenza A infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591175. [PMID: 38712053 PMCID: PMC11071614 DOI: 10.1101/2024.04.25.591175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Amphiregulin (Areg), a growth factor produced by regulatory T (Treg) cells to facilitate tissue repair/regeneration, contains a heparan sulfate (HS) binding domain. How HS, a highly sulfated glycan subtype that alters growth factor signaling, influences Areg repair/regeneration functions is unclear. Here we report that inhibition of HS in various cell lines and primary lung mesenchymal cells (LMC) qualitatively alters downstream signaling and highlights the existence of HS-dependent vs. -independent Areg transcriptional signatures. Utilizing a panel of cell lines with targeted deletions in HS synthesis-related genes, we found that the presence of the glypican family of heparan sulfate proteoglycans is critical for Areg signaling and confirmed this dependency in primary LMC by siRNA-mediated knockdown. Furthermore, in the context of influenza A (IAV) infection in vivo , we found that an Areg-responsive subset of reparative LMC upregulate glypican-4 and HS. Conditional deletion of HS primarily within this LMC subset resulted in reduced blood oxygen saturation following infection with IAV, with no changes in viral load. Finally, we found that co-culture of HS-knockout LMC with IAV-induced Treg cells results in reduced LMC responses. Collectively, this study reveals the essentiality of HS on a specific lung mesenchymal population as a mediator of Treg cell-derived Areg reparative signaling during IAV infection.
Collapse
|
50
|
Kršek A, Batičić L, Ćurko-Cofek B, Batinac T, Laškarin G, Miletić-Gršković S, Sotošek V. Insights into the Molecular Mechanism of Endothelial Glycocalyx Dysfunction during Heart Surgery. Curr Issues Mol Biol 2024; 46:3794-3809. [PMID: 38785504 PMCID: PMC11119104 DOI: 10.3390/cimb46050236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
The endothelial glycocalyx (EGC) is a layer of proteoglycans (associated with glycosaminoglycans) and glycoproteins, which adsorbs plasma proteins on the luminal surface of endothelial cells. Its main function is to participate in separating the circulating blood from the inner layers of the vessels and the surrounding tissues. Physiologically, the EGC stimulates mechanotransduction, the endothelial charge, thrombocyte adhesion, leukocyte tissue recruitment, and molecule extravasation. Hence, severe impairment of the EGC has been implicated in various pathological conditions, including sepsis, diabetes, chronic kidney disease, inflammatory disorders, hypernatremia, hypervolemia, atherosclerosis, and ischemia/reperfusion injury. Moreover, alterations in EGC have been associated with altered responses to therapeutic interventions in conditions such as cardiovascular diseases. Investigation into the function of the glycocalyx has expanded knowledge about vascular disorders and indicated the need to consider new approaches in the treatment of severe endothelial dysfunction. This review aims to present the current understanding of the molecular mechanisms underlying cardiovascular diseases and to elucidate the impact of heart surgery on EGC dysfunction.
Collapse
Affiliation(s)
- Antea Kršek
- Faculty of Rijeka, University of Medicine, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Lara Batičić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Božena Ćurko-Cofek
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (B.Ć.-C.); (G.L.)
| | - Tanja Batinac
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia; (T.B.); (V.S.)
| | - Gordana Laškarin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (B.Ć.-C.); (G.L.)
- Hospital for Medical Rehabilitation of Hearth and Lung Diseases and Rheumatism “Thalassotherapia-Opatija”, M. Tita 188, 51410 Opatija, Croatia;
| | - Silvija Miletić-Gršković
- Hospital for Medical Rehabilitation of Hearth and Lung Diseases and Rheumatism “Thalassotherapia-Opatija”, M. Tita 188, 51410 Opatija, Croatia;
| | - Vlatka Sotošek
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia; (T.B.); (V.S.)
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| |
Collapse
|