1
|
Scott GY, Worku D. HIV vaccination: Navigating the path to a transformative breakthrough-A review of current evidence. Health Sci Rep 2024; 7:e70089. [PMID: 39319247 PMCID: PMC11420300 DOI: 10.1002/hsr2.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024] Open
Abstract
Background and Aim Human immunodeficiency virus (HIV) remains a significant global health challenge, with approximately 39 million people living with HIV worldwide as of 2022. Despite progress in antiretroviral therapy, achieving the UNAIDS "95-95-95" target to end the HIV epidemic by 2025 faces challenges, particularly in sub-Saharan Africa. The pursuit of an HIV vaccine is crucial, offering durable immunity and the potential to end the epidemic. Challenges in vaccine development include the lack of known immune correlates, suitable animal models, and HIV's high mutation rate. This study aims to explore the current state of HIV vaccine development, focusing on the challenges and innovative approaches being investigated. Methods In writing this review, we conducted a search of medical databases such as PubMed, ResearchGate, Web of Science, Google Scholar, and Scopus. The exploration of messenger ribonucleic acid vaccines, which have proven successful in the SARS-CoV-2 pandemic, presents a promising avenue for HIV vaccine development. Understanding HIV-1's ability to infiltrate various bodily compartments, establish reservoirs, and manipulate immune responses is critical. Robust cytotoxic T lymphocytes and broadly neutralizing antibodies are identified as key components, though their production faces challenges. Innovative approaches, including computational learning and advanced drug delivery systems, are being investigated to effectively activate the immune system. Results and Conclusions Discrepancies between animal models and human responses have hindered the progress of vaccine development. Despite these challenges, ongoing research is focused on overcoming these obstacles through advanced methodologies and technologies. Addressing the challenges in HIV vaccine development is paramount to realizing an effective HIV-1 vaccine and achieving the goal of ending the epidemic. The integration of innovative approaches and a deeper understanding of HIV-1's mechanisms are essential steps toward this transformative breakthrough.
Collapse
Affiliation(s)
- Godfred Yawson Scott
- Department of Medical DiagnosticsKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Dominic Worku
- Infectious Diseases DepartmentMorriston Hospital, Heol Maes EglwysMorristonUnited Kingdom
- Public Health WalesCardiffUnited Kingdom
| |
Collapse
|
2
|
Blazkova J, Whitehead EJ, Schneck R, Shi V, Justement JS, Rai MA, Kennedy BD, Manning MR, Praiss L, Gittens K, Wender PA, Oguz C, Lack J, Moir S, Chun TW. Immunologic and Virologic Parameters Associated With Human Immunodeficiency Virus (HIV) DNA Reservoir Size in People With HIV Receiving Antiretroviral Therapy. J Infect Dis 2024; 229:1770-1780. [PMID: 38128541 PMCID: PMC11492273 DOI: 10.1093/infdis/jiad595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND A better understanding of the dynamics of human immunodeficiency virus (HIV) reservoirs in CD4+ T cells of people with HIV (PWH) receiving antiretroviral therapy (ART) is crucial for developing therapies to eradicate the virus. METHODS We conducted a study involving 28 aviremic PWH receiving ART with high and low levels of HIV DNA. We analyzed immunologic and virologic parameters and their association with the HIV reservoir size. RESULTS The frequency of CD4+ T cells carrying HIV DNA was associated with higher pre-ART plasma viremia, lower pre-ART CD4+ T-cell counts, and lower pre-ART CD4/CD8 ratios. During ART, the High group maintained elevated levels of intact HIV proviral DNA, cell-associated HIV RNA, and inducible virion-associated HIV RNA. HIV sequence analysis showed no evidence for preferential accumulation of defective proviruses nor higher frequencies of clonal expansion in the High versus Low group. Phenotypic and functional T-cell analyses did not show enhanced immune-mediated virologic control in the Low versus High group. Of considerable interest, pre-ART innate immunity was significantly higher in the Low versus High group. CONCLUSIONS Our data suggest that innate immunity at the time of ART initiation may play an important role in modulating the dynamics and persistence of viral reservoirs in PWH.
Collapse
Affiliation(s)
- Jana Blazkova
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Emily J Whitehead
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Rachel Schneck
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Victoria Shi
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - J Shawn Justement
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - M Ali Rai
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Brooke D Kennedy
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Maegan R Manning
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Lauren Praiss
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Kathleen Gittens
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland
| | - Paul A Wender
- Departments of Chemistry and Chemical and Systems Biology, Stanford University, California
| | - Cihan Oguz
- Integrated Data Sciences Section, Research Technologies Branch, NIAID, NIH, Bethesda, Maryland
| | - Justin Lack
- Integrated Data Sciences Section, Research Technologies Branch, NIAID, NIH, Bethesda, Maryland
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)
| |
Collapse
|
3
|
Manickam C, Upadhyay AA, Woolley G, Kroll KW, Terry K, Broedlow CA, Klatt NR, Bosinger SE, Reeves RK. Natural killer-like B cells are a distinct but infrequent innate immune cell subset modulated by SIV infection of rhesus macaques. PLoS Pathog 2024; 20:e1012223. [PMID: 38739675 PMCID: PMC11115201 DOI: 10.1371/journal.ppat.1012223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/23/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024] Open
Abstract
Natural killer-like B (NKB) cells are unique innate immune cells expressing both natural killer (NK) and B cell receptors. As first responders to infection, they secrete IL-18 to induce a critical cascade of innate and adaptive immune cell infiltration and activation. However, limited research exists on the role of NKB cells in homeostasis and infection, largely due to incomplete and erroneous evaluations. To fill this knowledge gap, we investigated the expression of signaling and trafficking proteins, and the in situ localization and transcriptome of naïve NKB cells compared to conventionally-defined NK and B cells, as well as modulations of these cells in SIV infection. Intracellular signaling proteins and trafficking markers were expressed differentially on naïve NKB cells, with high expression of CD62L and Syk, and low expression of CD69, α4β7, FcRg, Zap70, and CD3z, findings which were more similar to B cells than NK cells. CD20+NKG2a/c+ NKB cells were identified in spleen, mesenteric lymph nodes (MLN), colon, jejunum, and liver of naïve rhesus macaques (RM) via tissue imaging, with NKB cell counts concentrated in spleen and MLN. For the first time, single cell RNA sequencing (scRNAseq), including B cell receptor (BCR) sequencing, of sorted NKB cells confirmed that NKB cells are unique. Transcriptomic analysis of naïve splenic NKB cells by scRNAseq showed that NKB cells undergo somatic hypermutation and express Ig receptors, similar to B cells. While only 15% of sorted NKB cells showed transcript expression of both KLRC1 (NKG2A) and MS4A1 (CD20) genes, only 5% of cells expressed KLRC1, MS4A1, and IgH/IgL transcripts. We observed expanded NKB frequencies in RM gut and buccal mucosa as early as 14 and 35 days post-SIV infection, respectively. Further, mucosal and peripheral NKB cells were associated with colorectal cytokine milieu and oral microbiome changes, respectively. Our studies indicate that NKB cells gated on CD3-CD14-CD20+NKG2A/C+ cells were inclusive of transcriptomically conventional B and NK cells in addition to true NKB cells, confounding accurate phenotyping and frequency recordings that could only be resolved using genomic techniques. Although NKB cells were clearly elevated during SIV infection and associated with inflammatory changes during infection, further interrogation is necessary to acurately identify the true phenotype and significance of NKB cells in infection and inflammation.
Collapse
Affiliation(s)
- Cordelia Manickam
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Amit A. Upadhyay
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Division of Microbiology and Immunology, Emory National Primate Research Center, Atlanta, Georgia, United States of America
| | - Griffin Woolley
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Kyle W. Kroll
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Karen Terry
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Courtney A. Broedlow
- Division of Surgical Outcomes and Precision Medicine Research, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Nichole R. Klatt
- Division of Surgical Outcomes and Precision Medicine Research, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Steven E. Bosinger
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Division of Microbiology and Immunology, Emory National Primate Research Center, Atlanta, Georgia, United States of America
| | - R. Keith Reeves
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
4
|
Gunst JD, Højen JF, Pahus MH, Rosás-Umbert M, Stiksrud B, McMahon JH, Denton PW, Nielsen H, Johansen IS, Benfield T, Leth S, Gerstoft J, Østergaard L, Schleimann MH, Olesen R, Støvring H, Vibholm L, Weis N, Dyrhol-Riise AM, Pedersen KBH, Lau JSY, Copertino DC, Linden N, Huynh TT, Ramos V, Jones RB, Lewin SR, Tolstrup M, Rasmussen TA, Nussenzweig MC, Caskey M, Reikvam DH, Søgaard OS. Impact of a TLR9 agonist and broadly neutralizing antibodies on HIV-1 persistence: the randomized phase 2a TITAN trial. Nat Med 2023; 29:2547-2558. [PMID: 37696935 PMCID: PMC10579101 DOI: 10.1038/s41591-023-02547-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/15/2023] [Indexed: 09/13/2023]
Abstract
Inducing antiretroviral therapy (ART)-free virological control is a critical step toward a human immunodeficiency virus type 1 (HIV-1) cure. In this phase 2a, placebo-controlled, double-blinded trial, 43 people (85% males) with HIV-1 on ART were randomized to (1) placebo/placebo, (2) lefitolimod (TLR9 agonist)/placebo, (3) placebo/broadly neutralizing anti-HIV-1 antibodies (bNAbs) or (4) lefitolimod/bNAb. ART interruption (ATI) started at week 3. Lefitolimod was administered once weekly for the first 8 weeks, and bNAbs were administered twice, 1 d before and 3 weeks after ATI. The primary endpoint was time to loss of virologic control after ATI. The median delay in time to loss of virologic control compared to the placebo/placebo group was 0.5 weeks (P = 0.49), 12.5 weeks (P = 0.003) and 9.5 weeks (P = 0.004) in the lefitolimod/placebo, placebo/bNAb and lefitolimod/bNAb groups, respectively. Among secondary endpoints, viral doubling time was slower for bNAb groups compared to non-bNAb groups, and the interventions were overall safe. We observed no added benefit of lefitolimod. Despite subtherapeutic plasma bNAb levels, 36% (4/11) in the placebo/bNAb group compared to 0% (0/10) in the placebo/placebo group maintained virologic control after the 25-week ATI. Although immunotherapy with lefitolimod did not lead to ART-free HIV-1 control, bNAbs may be important components in future HIV-1 curative strategies. ClinicalTrials.gov identifier: NCT03837756 .
Collapse
Affiliation(s)
- Jesper D Gunst
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Jesper F Højen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Marie H Pahus
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Miriam Rosás-Umbert
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Birgitte Stiksrud
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - James H McMahon
- Department of Infectious Diseases, Alfred Hospital, Melbourne, VIC, Australia
| | - Paul W Denton
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Henrik Nielsen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Isik S Johansen
- Department of Infectious Diseases, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Thomas Benfield
- Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Leth
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Internal Medicine, Gødstrup Hospital, Gødstrup, Denmark
| | - Jan Gerstoft
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Viro-Immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Lars Østergaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Mariane H Schleimann
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Rikke Olesen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Støvring
- Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Odense, Denmark
| | - Line Vibholm
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Nina Weis
- Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anne M Dyrhol-Riise
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Karen B H Pedersen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jillian S Y Lau
- Department of Infectious Diseases, Alfred Hospital, Melbourne, VIC, Australia
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Dennis C Copertino
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Noemi Linden
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Tan T Huynh
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - R Brad Jones
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Sharon R Lewin
- Department of Infectious Diseases, Alfred Hospital, Melbourne, VIC, Australia
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Martin Tolstrup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas A Rasmussen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Dag Henrik Reikvam
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole S Søgaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
5
|
Abdulai M, Owiredu D, Boadu I, Tabong PTN, Sarfo B, Bonful HA, Addo- Lartey A, Akuffo KO, Danso-Appiah A. Psychosocial interventions and their effectiveness on quality of life among elderly persons living with HIV in Africa South of the Sahara: Systematic review and meta -analysis protocol. PLoS One 2023; 18:e0291781. [PMID: 37729324 PMCID: PMC10511069 DOI: 10.1371/journal.pone.0291781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND The number of elderly people living with HIV (EPLHIV) has increased significantly as a result of antiretroviral treatment (ART) and this has brought about a variety of psychosocial challenges that have an impact on their quality of life (QoL). Various psychosocial interventions have been tried or implemented in Sub-Saharan Africa (SSA) to improve QoL of EPLHIV. However, there is paucity of data on the types and effectiveness of these interventions. This systematic review, therefore, aims to explore available psychosocial interventions in SSA and their effectiveness in improving the QoL of EPLHIV. METHODS We will search PubMed, PsycINFO, LILACS, Cochrane Library, Google Scholar, HINARI, Africa Journals Online, Scopus and Web of Science to retrieve publications on psychosocial interventions implemented to improve QoL of EPLHIV from inception of the identified databases to 31st December 2023 without language restrictions. Also, supplementary sources such as conference proceedings, preprint repositories, databases of dissertations, as well as WHO and governmental databases can be explored for additional studies. For unpublished studies, trial registries and experts would be contacted, and reference lists of retrieved papers will be manually searched. Retrieved studies will be deduplicated using Mendeley and exported to Rayyan. At least two reviewers will independently select studies, extract data and assess the quality of the included studies using validated tools. Dichotomous outcomes data will be assessed and reported as odds ratio (OR) or risk ratio (RR) and for continuous outcomes, mean difference (MD) will be used; all reported with their 95% confidence interval (CI). Heterogeneity will be explored graphically by inspecting the overlapping of CIs and assessed quantitatively using the I2 statistic. EXPECTED OUTCOMES This systematic review will be the first to rigorously identify psychosocial intervention on QoL of EPLHIV in SSA and assess their effectiveness with the aim to provide regional and country- specific data that will inform the selection and implementation of appropriate and socially acceptable policies across countries in SSA. Key findings of the review are expected to contribute critical evidence on availability, types and effectiveness of psychosocial interventions for improving quality of life of vulnerable elderly persons in SSA living with HIV. Furthermore, the review will explore any variation and possible correlates of psychosocial interventions by age, sex, CD4 count (if available), setting and geographic location within SSA that will provide healthcare professionals with reliable evidence, with the ultimate goal of inspiring countries in SSA to adopt innovative interventions to improve HIV care. TRIAL REGISTRATION Systematic review registration: The systematic review protocol has been registered in the International Prospective Register for Systematic Reviews (PROSPERO), with registration ID CRD42021278218.
Collapse
Affiliation(s)
- Marijanatu Abdulai
- Department of Epidemiology and Disease Control, School of Public Health, University of Ghana, Legon, Accra, Ghana
- National AIDS/STI Control Programme, Public Health Division, Ghana Health Service, Accra, Ghana
| | - David Owiredu
- Department of Epidemiology and Disease Control, School of Public Health, University of Ghana, Legon, Accra, Ghana
- Centre for Evidence Synthesis and Policy, School of Public Health, University of Ghana, Legon, Accra, Ghana
| | - Isaac Boadu
- Department of Population, Family and Reproductive Health, School of Public Health, University of Ghana, Legon, Accra, Ghana
| | - Philip Teg-Nefaah Tabong
- Department of Social and Behavioural Science, School of Public Health, University of Ghana, Legon, Accra, Ghana
| | - Bismark Sarfo
- Department of Epidemiology and Disease Control, School of Public Health, University of Ghana, Legon, Accra, Ghana
| | - Harriet Affran Bonful
- Department of Epidemiology and Disease Control, School of Public Health, University of Ghana, Legon, Accra, Ghana
| | - Adolphina Addo- Lartey
- Department of Epidemiology and Disease Control, School of Public Health, University of Ghana, Legon, Accra, Ghana
| | - Kwadwo Owusu Akuffo
- Department of Optometry and Visual Science, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Anthony Danso-Appiah
- Department of Epidemiology and Disease Control, School of Public Health, University of Ghana, Legon, Accra, Ghana
- Centre for Evidence Synthesis and Policy, School of Public Health, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
6
|
Xiao H, Lin R, Chen C, Lian R, Wu Y, Diao L, Yin T, Huang C. γδ-T cell with high toxic potential was associated with recurrent miscarriage. Am J Reprod Immunol 2023; 90:e13717. [PMID: 37382173 DOI: 10.1111/aji.13717] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 06/30/2023] Open
Abstract
PROBLEM RM is a common clinical disease in reproduction, affecting approximately 1%-3% of women worldwide. Previous studies have shown the role of peripheral blood γδ-T cells during physiological pregnancy. However, the relationship between the immune status of peripheral blood γδ-T cells and RM is still not well defined. METHOD OF STUDY In this study, mid-luteal peripheral blood from 51 RM patients and 40 healthy women was collected to determine the immune status of γδ-T cells. The percentage of peripheral blood γδ-T cells, and the molecules mediating their toxic potential, including cytotoxic granules (perforin, granzyme B, and granulysin) and receptors (NKG2D, CD158a, and CD158b), were detected by flow cytometry. RESULTS Compared to healthy control, an increase in the proportion of total CD3+ T cells in lymphocytes and a decrease in the ratio of γδ-T cells to CD3+ T cells were observed in patients with RM. The percentages of granzyme B+ γδ-T cells and CD158a+ γδ-T cells in total γδ-T cells or lymphocytes were significantly increased in patients with RM, compared with healthy control. Conversely, CD158b+ γδ-T cells in total γδ-T cells or lymphocytes were significantly decreased in the RM group. CONCLUSION Increased peripheral blood γδ-T cell with high toxic potential was associated with RM.
Collapse
Affiliation(s)
- Huan Xiao
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Rong Lin
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| | - Cong Chen
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| | - Ruochun Lian
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| | - Yulian Wu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chunyu Huang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Mora-Bitria L, Asquith B. Innate receptors modulating adaptive T cell responses: KIR-HLA interactions and T cell-mediated control of chronic viral infections. Immunogenetics 2023; 75:269-282. [PMID: 36719466 PMCID: PMC9887252 DOI: 10.1007/s00251-023-01293-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/02/2023] [Indexed: 02/01/2023]
Abstract
Killer-cell immunoglobulin-like receptors (KIRs) are mainly expressed on natural killer (NK) cells and are key regulators of innate immune responses. NK cells are the first responders in the face of infection and help promote placentation during pregnancy; the importance of KIRs in these NK-mediated processes is well-established. However, mounting evidence suggests that KIRs also have a prominent and long-lasting effect on the adaptive immune system. Here, we review the evidence for the impact of KIRs on T cell responses with a focus on the clinical significance of this interaction.
Collapse
Affiliation(s)
- Laura Mora-Bitria
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Becca Asquith
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
8
|
Masenga SK, Mweene BC, Luwaya E, Muchaili L, Chona M, Kirabo A. HIV-Host Cell Interactions. Cells 2023; 12:1351. [PMID: 37408185 DOI: 10.3390/cells12101351] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 07/07/2023] Open
Abstract
The development of antiretroviral drugs (ARVs) was a great milestone in the management of HIV infection. ARVs suppress viral activity in the host cell, thus minimizing injury to the cells and prolonging life. However, an effective treatment has remained elusive for four decades due to the successful immune evasion mechanisms of the virus. A thorough understanding of the molecular interaction of HIV with the host cell is essential in the development of both preventive and curative therapies for HIV infection. This review highlights several inherent mechanisms of HIV that promote its survival and propagation, such as the targeting of CD4+ lymphocytes, the downregulation of MHC class I and II, antigenic variation and an envelope complex that minimizes antibody access, and how they collaboratively render the immune system unable to mount an effective response.
Collapse
Affiliation(s)
- Sepiso K Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia
- Vanderbilt University Medical Center, Department of Medicine, Division of Clinical Pharmacology, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| | - Bislom C Mweene
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia
| | - Emmanuel Luwaya
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia
| | - Lweendo Muchaili
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia
| | - Makondo Chona
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia
| | - Annet Kirabo
- Vanderbilt University Medical Center, Department of Medicine, Division of Clinical Pharmacology, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| |
Collapse
|
9
|
Dumigan A, Gonzalez RC, Morris B, Sá-Pessoa J. Visualisation of Host-Pathogen Communication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1406:19-39. [PMID: 37016109 DOI: 10.1007/978-3-031-26462-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
The core of biomedical science is the use of laboratory techniques to support the diagnosis and treatment of disease in clinical settings. Despite tremendous advancement in our understanding of medicine in recent years, we are still far from having a complete understanding of human physiology in homeostasis, let alone the pathology of disease states. Indeed medical advances over the last two hundred years would not have been possible without the invention of and continuous development of visualisation techniques available to research scientists and clinicians. As we have all learned from the recent COVID pandemic, despite advances in modern medicine we still have much to learn regarding infection biology. Indeed antimicrobial resistant (AMR) bacteria are a global threat to human health, meaning research into bacterial pathogenesis is vital. In this chapter, we will briefly describe the nature of microbes and host immune responses before delving into some of the visualisation techniques utilised in the field of biomedical research with a focus on host-pathogen interactions. We will give a brief overview of commonly used techniques from gold standard staining methods, in situ hybridisation, microscopy, western blotting, microbial characterisation, to cutting-edge image flow cytometry and mass spectrometry. Specifically, we will focus on techniques utilised to visualise interactions between the host, our own bodies, and invading organisms including bacteria. We will touch on in vitro and ex vivo modelling methodology with examples utilised to delineate pathogenicity in disease. A better understanding of bacterial biology, immunology and how these fields interact (host-pathogen communications) in biomedical research is integral to developing novel therapeutic approaches which circumvent the need for antibiotics, an important issue as we enter a post-antibiotic era.
Collapse
Affiliation(s)
- Amy Dumigan
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK.
| | | | - Brenda Morris
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Joana Sá-Pessoa
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| |
Collapse
|
10
|
Mulherkar TH, Gómez DJ, Sandel G, Jain P. Co-Infection and Cancer: Host–Pathogen Interaction between Dendritic Cells and HIV-1, HTLV-1, and Other Oncogenic Viruses. Viruses 2022; 14:v14092037. [PMID: 36146843 PMCID: PMC9503663 DOI: 10.3390/v14092037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Dendritic cells (DCs) function as a link between innate and adaptive immune responses. Retroviruses HIV-1 and HTLV-1 modulate DCs to their advantage and utilize them to propagate infection. Coinfection of HTLV-1 and HIV-1 has implications for cancer malignancies. Both viruses initially infect DCs and propagate the infection to CD4+ T cells through cell-to-cell transmission using mechanisms including the formation of virologic synapses, viral biofilms, and conduits. These retroviruses are both neurotrophic with neurovirulence determinants. The neuropathogenesis of HIV-1 and HTLV-1 results in neurodegenerative diseases such as HIV-associated neurocognitive disorders (HAND) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Infected DCs are known to traffic to the brain (CNS) and periphery (PNS, lymphatics) to induce neurodegeneration in HAND and HAM/TSP patients. Elevated levels of neuroinflammation have been correlated with cognitive decline and impairment of motor control performance. Current vaccinations and therapeutics for HIV-1 and HTLV-1 are assessed and can be applied to patients with HIV-1-associated cancers and adult T cell leukemia/lymphoma (ATL). These diseases caused by co-infections can result in both neurodegeneration and cancer. There are associations with cancer malignancies and HIV-1 and HTLV-1 as well as other human oncogenic viruses (EBV, HBV, HCV, HDV, and HPV). This review contains current knowledge on DC sensing of HIV-1 and HTLV-1 including DC-SIGN, Tat, Tax, and current viral therapies. An overview of DC interaction with oncogenic viruses including EBV, Hepatitis viruses, and HPV is also provided. Vaccines and therapeutics targeting host–pathogen interactions can provide a solution to co-infections, neurodegeneration, and cancer.
Collapse
Affiliation(s)
- Tania H. Mulherkar
- Department of Microbiology and Immunology, Drexel University, College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Daniel Joseph Gómez
- Department of Microbiology and Immunology, Drexel University, College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
- Department of Biological Sciences, California State University, 25800 Carlos Bee Blvd, Hayward, CA 94542, USA
| | - Grace Sandel
- Department of Microbiology and Immunology, Drexel University, College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Pooja Jain
- Department of Microbiology and Immunology, Drexel University, College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
- Correspondence:
| |
Collapse
|
11
|
Singh H, Samani D. TLR3 polymorphisms in HIV infected individuals naïve to ART. Curr HIV Res 2022; 20:CHR-EPUB-126223. [PMID: 36089778 DOI: 10.2174/1570162x20666220908105434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/08/2022] [Accepted: 08/16/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND TLR3 polymorphisms affect the risk of HIV infection and modify the disease course. Consequently, we analyzed the association of TLR3 polymorphism (rs5743312, rs3775296, and rs3775291) with susceptilbity to HIV-1 acquisition and disease progression. METHOD This is a cross-sectional study. Genotyping of TLR3 polymorphisms were completed by the utilization of the PCR-RFLP technique in 153 HIV naive subjects and 158 healthy controls. RESULT A haplotype is a physical grouping of genomic variants that tend to be inherited together. The TCC haplotype was increased in HIV infected individuals compared with healthy controls (0.05% versus 0.03%). TLR3 rs3775291CT genotype was associated to the early stage of HIV infection (OR=2.19, P=0.04), with a higher occurrence in advance stage of HIV infection when contrasted with healthy controls (41.2% versus 32.3%). TLR3 rs3775296 CA genotype was likely to be associated with intermediate stage of HIV infection (19.5% versus 31.6%, OR=0.42, P=0.06). TLR3 rs5743312TT genotype was used to be greater prevalence in advanced stage of HIV infection compared with healthy controls (2.9% versus 1.9%). TLR3 rs3775296CA genotype was less prevalent in HIV subjects devouring tobacco when contrasted with non-users (9.1% versus 34.9%, OR=0.25, P=0.09). TLR3 rs3775296AA and rs3775291CT and TT genotypes have been overrepresented in HIV subjects using alcohol when contrasted with non-users (5.6% versus 1.1%, OR=1.83, P=0.67; 50.0% versus 42.2%, OR=1.84, P=0.31; 5.6% versus 3.3%, OR=2.70, P=0.50). In multivariate examination, rs5743312TT genotype showed a greater risk for HIV infection (OR=1.86, P=0.50). CONCLUSION TLR3 rs3775291 C/T polymorphism may assist the risk of disease progression in alcohol consumers. TLR3 rs3775291 CT genotype may enhance the disease progression whereas the TLR3 rs3775296 CA genotype may protect for disease progression.
Collapse
Affiliation(s)
- HariOm Singh
- Department of Molecular Biology, ICMR-National AIDS Research Institute, Pune, India
| | - Dharmesh Samani
- Department of Molecular Biology, ICMR-National AIDS Research Institute, Pune, India
| |
Collapse
|
12
|
Pymm P, Tenzer S, Wee E, Weimershaus M, Burgevin A, Kollnberger S, Gerstoft J, Josephs TM, Ladell K, McLaren JE, Appay V, Price DA, Fugger L, Bell JI, Schild H, van Endert P, Harkiolaki M, Iversen AKN. Epitope length variants balance protective immune responses and viral escape in HIV-1 infection. Cell Rep 2022; 38:110449. [PMID: 35235807 PMCID: PMC9631117 DOI: 10.1016/j.celrep.2022.110449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/31/2021] [Accepted: 02/07/2022] [Indexed: 11/21/2022] Open
Abstract
Cytotoxic T lymphocyte (CTL) and natural killer (NK) cell responses to a single optimal 10-mer epitope (KK10) in the human immunodeficiency virus type-1 (HIV-1) protein p24Gag are associated with enhanced immune control in patients expressing human leukocyte antigen (HLA)-B∗27:05. We find that proteasomal activity generates multiple length variants of KK10 (4-14 amino acids), which bind TAP and HLA-B∗27:05. However, only epitope forms ≥8 amino acids evoke peptide length-specific and cross-reactive CTL responses. Structural analyses reveal that all epitope forms bind HLA-B∗27:05 via a conserved N-terminal motif, and competition experiments show that the truncated epitope forms outcompete immunogenic epitope forms for binding to HLA-B∗27:05. Common viral escape mutations abolish (L136M) or impair (R132K) production of KK10 and longer epitope forms. Peptide length influences how well the inhibitory NK cell receptor KIR3DL1 binds HLA-B∗27:05 peptide complexes and how intraepitope mutations affect this interaction. These results identify a viral escape mechanism from CTL and NK responses based on differential antigen processing and peptide competition.
Collapse
Affiliation(s)
- Phillip Pymm
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DS, UK; Walter and Eliza Hall Institute of Medical Research, University of Melbourne, 1G Royalparade, Parkville, VIC 3052, Australia
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Edmund Wee
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Mirjana Weimershaus
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker, 149 Rue de Severs, 75015 Paris, France; Centre National de la Recherche Scientifique, UMR8253, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker, 149 Rue de Severs, 75015 Paris, France
| | - Anne Burgevin
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker, 149 Rue de Severs, 75015 Paris, France; Centre National de la Recherche Scientifique, UMR8253, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker, 149 Rue de Severs, 75015 Paris, France
| | - Simon Kollnberger
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Heath Park, CF14 4XN Cardiff, UK
| | - Jan Gerstoft
- Department of Infectious Diseases, Rigshospitalet, The National University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Tracy M Josephs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Heath Park, CF14 4XN Cardiff, UK
| | - James E McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Heath Park, CF14 4XN Cardiff, UK
| | - Victor Appay
- Institut National de la Santé et de la Recherche Médicale, Unité 1135, Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, Boulevard de l'Hopital, 75013 Paris, France; International Research Center of Medical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto City 860-0811, Japan
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Heath Park, CF14 4XN Cardiff, UK; Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Tenovus Building, CF14 4XN Cardiff, UK
| | - Lars Fugger
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DS, UK; Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, OX3 9DS Oxford, UK
| | - John I Bell
- Office of the Regius Professor of Medicine, The Richard Doll Building, University of Oxford, Old Road Campus, OX3 7LF Oxford, UK
| | - Hansjörg Schild
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Peter van Endert
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker, 149 Rue de Severs, 75015 Paris, France; Centre National de la Recherche Scientifique, UMR8253, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker, 149 Rue de Severs, 75015 Paris, France
| | - Maria Harkiolaki
- Structural Biology Group, Wellcome Trust Centre for Human Genetics, University of Oxford, Old Road Campus, OX3 7LF Oxford, UK; Diamond Light Source, Harwell Science and Innovation Campus, Fermi Avenue, OX11 0DE Didcot, UK
| | - Astrid K N Iversen
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DS, UK.
| |
Collapse
|
13
|
Teer E, Joseph DE, Glashoff RH, Faadiel Essop M. Monocyte/Macrophage-Mediated Innate Immunity in HIV-1 Infection: From Early Response to Late Dysregulation and Links to Cardiovascular Diseases Onset. Virol Sin 2021; 36:565-576. [PMID: 33400091 DOI: 10.1007/s12250-020-00332-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Although monocytes and macrophages are key mediators of the innate immune system, the focus has largely been on the role of the adaptive immune system in the context of human immunodeficiency virus (HIV) infection. Thus more attention and research work regarding the innate immune system-especially the role of monocytes and macrophages during early HIV-1 infection-is required. Blood monocytes and tissue macrophages are both susceptible targets of HIV-1 infection, and the early host response can determine whether the nature of the infection becomes pathogenic or not. For example, monocytes and macrophages can contribute to the HIV reservoir and viral persistence, and influence the initiation/extension of immune activation and chronic inflammation. Here the expansion of monocyte subsets (classical, intermediate and non-classical) provide an increased understanding of the crucial role they play in terms of chronic inflammation and also by increasing the risk of coagulation during HIV-1 infection. This review discusses the role of monocytes and macrophages during HIV-1 pathogenesis, starting from the early response to late dysregulation that occurs as a result of persistent immune activation and chronic inflammation. Such changes are also linked to downstream targets such as increased coagulation and the onset of cardiovascular diseases.
Collapse
Affiliation(s)
- Eman Teer
- Centre for Cardio-metabolic Research in Africa (CARMA), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Danzil E Joseph
- Centre for Cardio-metabolic Research in Africa (CARMA), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Richard H Glashoff
- Division of Medical Microbiology & Immunology, Department of Pathology, Stellenbosch University and NHLS, Cape Town, 7505, South Africa
| | - M Faadiel Essop
- Centre for Cardio-metabolic Research in Africa (CARMA), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa.
| |
Collapse
|
14
|
Managing the COVID-19 Pandemic: Biopsychosocial Lessons Gleaned From the AIDS Epidemic. JOURNAL OF PUBLIC HEALTH MANAGEMENT AND PRACTICE 2020; 27 Suppl 1, COVID-19 and Public Health: Looking Back, Moving Forward:S39-S42. [PMID: 33239562 DOI: 10.1097/phh.0000000000001267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
15
|
Watanabe S, Fujino M, Saito Y, Ahmed N, Sato H, Sugimoto C, Okamura T, Hanaki K, Nakayama EE, Shioda T, Matsushima K, Ansari AA, Villinger F, Mori K. Protective Immune Responses Elicited by Deglycosylated Live-Attenuated Simian Immunodeficiency Virus Vaccine Are Associated with IL-15 Effector Functions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:1331-1344. [PMID: 32747501 PMCID: PMC7484436 DOI: 10.4049/jimmunol.1901431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/25/2020] [Indexed: 11/19/2022]
Abstract
Deglycosylated, live-attenuated SIV vaccines elicited protective immune responses against heterologous SIVsmE543-3, which differs from the vaccine strain SIVmac239 to levels similar to those across HIV-1 clades. Two thirds of the vaccinees contained the chronic SIVsmE543-3 infection (controllers), whereas one third did not (noncontrollers). In this study, we investigated immune correlates of heterologous challenge control in rhesus macaques of Burmese origin. Because depletion of CD8+ cells in the controllers by administration of anti-CD8α Ab abrogated the control of viral replication, CD8+ cells were required for the protective immune response. However, classical SIV-specific CD8+ T cells did not account for the protective immune response in all controllers. Instead, IL-15-responding CD8α+ cells, including CD8+ T and NK cells, were significantly higher in the controllers than those in the noncontrollers, before and after vaccination with deglycosylated SIV. It is well established that IL-15 signal transduction occurs through "trans-presentation" in which IL-15 complexed with IL-15Rα on monocytes, macrophages, and dendritic cells binds to IL-15 Rβ/γ expressed on CD8+ T and NK cells. Accordingly, levels of IL-15 stimulation were strongly affected by the depletion of monocytes from PBMCs, implying key roles of innate immune cells. These results suggest that intrinsic IL-15 responsiveness may dictate the outcome of protective responses and may lead to optimized formulations of future broadly protective HIV vaccines.
Collapse
Affiliation(s)
- Satoru Watanabe
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Masayuki Fujino
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Yohei Saito
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba 305-0843, Japan
| | - Nursarat Ahmed
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Hirotaka Sato
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | | | - Tomotaka Okamura
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba 305-0843, Japan
| | - Kenichi Hanaki
- Division of Experimental Animal Research, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Emi E Nakayama
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Tatsuo Shioda
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda 278-0022, Japan
| | - Aftab A Ansari
- Emory University School of Medicine, Atlanta, GA 30322; and
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70562
| | - Kazuyasu Mori
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan;
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba 305-0843, Japan
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda 278-0022, Japan
| |
Collapse
|
16
|
TLR7 Polymorphism (rs179008 and rs179009) in HIV-Infected Individual Naïve to ART. Mediators Inflamm 2020; 2020:6702169. [PMID: 32565728 PMCID: PMC7256714 DOI: 10.1155/2020/6702169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/21/2020] [Indexed: 01/18/2023] Open
Abstract
Toll-like receptors (TLRs) play an important role in the innate immune response to HIV infection. Single nucleotide polymorphism (SNP) in TLR7 (Gln11Leu) gene has been associated with a rapid decline of CD4T cell count. Hence, we assessed the TLR7 (rs179008, Gln11Leu (A/T) and rs179009, IVS2-151 (A/G)) polymorphism in 150 HIV-infected individuals naïve to ART and 158 healthy controls. The genotyping of TLR7 Gln11Leu (A/T) and IVS2-151 (A/G) polymorphisms was done using the PCR-RFLP method. In univariate analysis, none of the genotype and haplotype of TLR7 Gln11Leu (A/T) and IVS2-151 (A/G) polymorphism differed significantly between HIV-infected individuals and healthy controls. The occurrence of TLR7 rs179009AG genotype in the codominant model and rs179009 AG-GG genotype in the dominant model was significantly reduced in HIV-infected individuals as compared to healthy controls (18.0% vs. 29.1%, OR = 0.42, P = 0.016; 26.7% vs. 36.7%, OR = 0.52, P = 0.016). TLR7 rs179009AG genotype was significantly underrepresented in the intermediate HIV disease stage compared with healthy controls (OR = 0.03, P = 0.04). TLR7 rs179009AG genotype expressed higher in tobacco-consuming HIV-infected individuals compared with nonusers (OR = 1.71, P = 0.47). In conclusion, rs179009 AG-GG and AG genotypes were found reduced in HIV-infected individuals as compared to healthy controls; their higher prevalence in health individuals clearly support that they are associated with reduced risk of acquisition of HIV-1 infection.
Collapse
|
17
|
Gibson MS, Allan AJ, Sanderson ND, Birch J, Gubbins S, Ellis SA, Hammond JA. Two Lineages of KLRA with Contrasting Transcription Patterns Have Been Conserved at a Single Locus during Ruminant Speciation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:2455-2463. [PMID: 32213565 PMCID: PMC7167460 DOI: 10.4049/jimmunol.1801363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/22/2020] [Indexed: 01/29/2023]
Abstract
Cattle possess the most diverse repertoire of NK cell receptor genes among all mammals studied to date. Killer cell receptor genes encoded within the NK complex and killer cell Ig-like receptor genes encoded within the leukocyte receptor complex have both been expanded and diversified. Our previous studies identified two divergent and polymorphic KLRA alleles within the NK complex in the Holstein-Friesian breed of dairy cattle. By examining a much larger cohort and other ruminant species, we demonstrate the emergence and fixation of two KLRA allele lineages (KLRA*01 and -*02) at a single locus during ruminant speciation. Subsequent recombination events between these allele lineages have increased the frequency of KLRA*02 extracellular domains. KLRA*01 and KLRA*02 transcription levels contrasted in response to cytokine stimulation, whereas homozygous animals consistently transcribed higher levels of KLRA, regardless of the allele lineage. KLRA*02 mRNA levels were also generally higher than KLRA*01 Collectively, these data point toward alternative functional roles governed by KLRA genotype and allele lineage. On a background of high genetic diversity of NK cell receptor genes, this KLRA allele fixation points to fundamental and potentially differential function roles.
Collapse
Affiliation(s)
- Mark S Gibson
- The Pirbright Institute, Woking, Surrey GU24 0NF, United Kingdom
| | - Alasdair J Allan
- The Pirbright Institute, Woking, Surrey GU24 0NF, United Kingdom
| | | | - James Birch
- The Pirbright Institute, Woking, Surrey GU24 0NF, United Kingdom
| | - Simon Gubbins
- The Pirbright Institute, Woking, Surrey GU24 0NF, United Kingdom
| | - Shirley A Ellis
- The Pirbright Institute, Woking, Surrey GU24 0NF, United Kingdom
| | - John A Hammond
- The Pirbright Institute, Woking, Surrey GU24 0NF, United Kingdom
| |
Collapse
|
18
|
The Education of NK Cells Determines Their Responsiveness to Autologous HIV-Infected CD4 T Cells. J Virol 2019; 93:JVI.01185-19. [PMID: 31511383 DOI: 10.1128/jvi.01185-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/04/2019] [Indexed: 01/18/2023] Open
Abstract
Several studies support a role for specific killer immunoglobulin-like receptor (KIR)-HLA combinations in protection from HIV infection and slower progression to AIDS. Natural killer (NK) cells acquire effector functions through education, a process that requires the interaction of inhibitory NK cell receptors with their major histocompatibility complex (MHC) class I (or HLA class I [HLA-I]) ligands. HLA-C allotypes are ligands for the inhibitory KIRs (iKIRs) KIR2DL1, KIR2DL2, and KIR2DL3, whereas the ligand for KIR3DL1 is HLA-Bw4. HIV infection reduces the expression of HLA-A, -B, and -C on the surfaces of infected CD4 (iCD4) T cells. Here we investigated whether education through iKIR-HLA interactions influenced NK cell responses to autologous iCD4 cells. Enriched NK cells were stimulated with autologous iCD4 cells or with uninfected CD4 cells as controls. The capacities of single-positive (sp) KIR2DL1, KIR2DL2, KIR2DL3, and KIR3DL1 NK cells to produce CCL4, gamma interferon (IFN-γ), and/or CD107a were assessed by flow cytometry. Overall, we observed that the potency of NK cell education was directly related to the frequency of each spiKIR+ NK cell's ability to respond to the reduction of its cognate HLA ligand on autologous iCD4 cells, as measured by the frequency of production by spiKIR+ NK cells of CCL4, IFN-γ, and/or CD107a. Both NK cell education and HIV-mediated changes in HLA expression influenced NK cell responses to iCD4 cells.IMPORTANCE Epidemiological studies show that natural killer (NK) cells have anti-HIV activity: they are able to reduce the risk of HIV infection and/or slow HIV disease progression. How NK cells contribute to these outcomes is not fully characterized. We used primary NK cells and autologous HIV-infected cells to examine the role of education through four inhibitory killer immunoglobulin-like receptors (iKIRs) from persons with HLA types that are able to educate NK cells bearing one of these iKIRs. HIV-infected cells activated NK cells through missing-self mechanisms due to the downmodulation of cell surface HLA expression mediated by HIV Nef and Vpu. A higher frequency of educated than uneducated NK cells expressing each of these iKIRs responded to autologous HIV-infected cells by producing CCL4, IFN-γ, and CD107a. Since NK cells were from non-HIV-infected individuals, they model the consequences of healthy NK cell-HIV-infected cell interactions occurring in the HIV eclipse phase, when new infections are susceptible to extinction.
Collapse
|
19
|
Pean P, Nouhin J, Ratana M, Madec Y, Borand L, Marcy O, Laureillard D, Fernandez M, Barré-Sinoussi F, Weiss L, Scott-Algara D. High Activation of γδ T Cells and the γδ2 pos T-Cell Subset Is Associated With the Onset of Tuberculosis-Associated Immune Reconstitution Inflammatory Syndrome, ANRS 12153 CAPRI NK. Front Immunol 2019; 10:2018. [PMID: 31507608 PMCID: PMC6718564 DOI: 10.3389/fimmu.2019.02018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/09/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Human Immunodeficiency Virus 1 (HIV-1) and Mycobacterium Tuberculosis (Mtb) co-infected patients are commonly at risk of immune reconstitution inflammatory syndrome (IRIS) when initiating antiretroviral treatment (ART). Evidence indicates that innate immunity plays a role in TB-IRIS. Here, we evaluate the phenotype of Gamma-delta (γδ) T cells and invariant Natural Killer (iNK) T cells in tuberculosis-associated IRIS. Methods: Forty-eight HIV+/TB+ patients (21 IRIS) and three control groups: HIV–/TB– (HD, n = 11), HIV+/TB– (n = 26), and HIV–/TB+ (n = 22) were studied. Samples were taken at ART initiation (week 2 of anti-tuberculosis treatment) and at the diagnosis of IRIS for HIV+/TB+; before ART for HIV+/TB-, and at week 2 of anti-tuberculosis treatment for HIV–/TB+ patients. γδ T cells and Invariant natural killer T (iNKT) cells were analyzed by flow cytometry. Results: Before ART, IRIS, and non-IRIS patients showed a similar proportion of γδpos T and iNKT cells. HLA-DR on γδpos T cells and δ2posγδpos T cells was significantly higher in TB-IRIS vs. non-IRIS patients and controls (p < 0.0001). NKG2D expression on γδpos T cells and the δ2posγδpos T cell subset was lower in HIV+/TB+ patients than controls. CD158a expression on γδpos T cells was higher in TB-IRIS than non-IRIS (p = 0.02), HIV+/TB–, and HIV–/TB- patients. Conclusion: The higher activation of γδposT cells and the γδ2posγδpos T cell subset suggests that γδ T cells may play a role in the pathogenesis of TB-IRIS.
Collapse
Affiliation(s)
- Polidy Pean
- Immunology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Janin Nouhin
- Virology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Meng Ratana
- Immunology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Yoann Madec
- Unité d'Épidémiologie des Maladies Émergentes, Institut Pasteur, Paris, France
| | - Laurence Borand
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Olivier Marcy
- Bordeaux Population Health, Centre Inserm U1219, Université de Bordeaux, Bordeaux, France
| | - Didier Laureillard
- Department of Infectious and Tropical Diseases, University hospital, Nîmes, France
| | | | | | - Laurence Weiss
- Hôpital Européen Georges Pompidou, Service d'Immunologie Clinique, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | |
Collapse
|
20
|
Interferon Alpha Enhances NK Cell Function and the Suppressive Capacity of HIV-Specific CD8 + T Cells. J Virol 2019; 93:JVI.01541-18. [PMID: 30404799 DOI: 10.1128/jvi.01541-18] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/29/2018] [Indexed: 12/23/2022] Open
Abstract
Current shock-and-kill strategies for the eradication of the HIV-1 reservoir have resulted in blips of viremia but not in a decrease in the size of the latent reservoir in patients on suppressive antiretroviral therapy (ART). This discrepancy could potentially be explained by an inability of the immune system to kill HIV-1-infected cells following the reversal of latency. Furthermore, some studies have suggested that certain latency-reversing agents (LRAs) may inhibit CD8+ T cell and natural killer (NK) cell responses. In this study, we tested the hypothesis that alpha interferon (IFN-α) could improve the function of NK cells from chronic progressors (CP) on ART. We show here that IFN-α treatment enhanced cytokine secretion, polyfunctionality, degranulation, and the cytotoxic potential of NK cells from healthy donors (HD) and CP. We also show that this cytokine enhanced the viral suppressive capacity of NK cells from HD and elite controllers or suppressors. Furthermore, IFN-α enhanced global CP CD8+ T cell cytokine responses and the suppressive capacity of ES CD8+ T cells. Our data suggest that IFN-α treatment may potentially be used as an immunomodulatory agent in HIV-1 cure strategies.IMPORTANCE Data suggest that HIV+ individuals unable to control infection fail to do so due to impaired cytokine production and/cytotoxic effector cell function. Consequently, the success of cure agendas such as the shock-and-kill strategy will probably depend on enhancing patient effector cell function. In this regard, NK cells are of particular interest since they complement the function of CD8+ T cells. Here, we demonstrate the ability of short-course alpha interferon (IFN-α) treatments to effectively enhance such effector functions in chronic progressor NK cells without inhibiting their general CD8+ T cell function. These results point to the possibility of exploring such short-course IFN-α treatments for the enhancement of effector cell function in HIV+ patients in future cure strategies.
Collapse
|
21
|
Are microRNAs Important Players in HIV-1 Infection? An Update. Viruses 2018; 10:v10030110. [PMID: 29510515 PMCID: PMC5869503 DOI: 10.3390/v10030110] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/21/2018] [Accepted: 02/25/2018] [Indexed: 12/15/2022] Open
Abstract
HIV-1 has already claimed over 35 million human lives globally. No curative treatments are currently available, and the only treatment option for over 36 million people currently living with HIV/AIDS are antiretroviral drugs that disrupt the function of virus-encoded proteins. However, such virus-targeted therapeutic strategies are constrained by the ability of the virus to develop drug-resistance. Despite major advances in HIV/AIDS research over the years, substantial knowledge gaps exist in many aspects of HIV-1 replication, especially its interaction with the host. Hence, understanding the mechanistic details of virus–host interactions may lead to novel therapeutic strategies for the prevention and/or management of HIV/AIDS. Notably, unprecedented progress in deciphering host gene silencing processes mediated by several classes of cellular small non-coding RNAs (sncRNA) presents a promising and timely opportunity for developing non-traditional antiviral therapeutic strategies. Cellular microRNAs (miRNA) belong to one such important class of sncRNAs that regulate protein synthesis. Evidence is mounting that cellular miRNAs play important roles in viral replication, either usurped by the virus to promote its replication or employed by the host to control viral infection by directly targeting the viral genome or by targeting cellular proteins required for productive virus replication. In this review, we summarize the findings to date on the role of miRNAs in HIV-1 biology.
Collapse
|
22
|
Vibholm L, Schleimann MH, Højen JF, Benfield T, Offersen R, Rasmussen K, Olesen R, Dige A, Agnholt J, Grau J, Buzon M, Wittig B, Lichterfeld M, Petersen AM, Deng X, Abdel-Mohsen M, Pillai SK, Rutsaert S, Trypsteen W, De Spiegelaere W, Vandekerchove L, Østergaard L, Rasmussen TA, Denton PW, Tolstrup M, Søgaard OS. Short-Course Toll-Like Receptor 9 Agonist Treatment Impacts Innate Immunity and Plasma Viremia in Individuals With Human Immunodeficiency Virus Infection. Clin Infect Dis 2018; 64:1686-1695. [PMID: 28329286 DOI: 10.1093/cid/cix201] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/03/2017] [Indexed: 12/22/2022] Open
Abstract
Background. Treatment with latency reversing agents (LRAs) enhances human immunodeficiency virus type 1 (HIV-1) transcription in vivo but leads to only modest reductions in the size of the reservoir, possibly due to insufficient immune-mediated elimination of infected cells. We hypothesized that a single drug molecule-a novel Toll-like receptor 9 (TLR9) agonist, MGN1703-could function as an enhancer of innate immunity and an LRA in vivo. Methods. We conducted a single-arm, open-label study in which 15 virologically suppressed HIV-1-infected individuals on antiretroviral therapy received 60 mg MGN1703 subcutaneously twice weekly for 4 weeks. We characterized plasmacytoid dendritic cell, natural killer (NK), and T-cell activation using flow cytometry on baseline and after 4 weeks of treatment. HIV-1 transcription was quantified by measuring plasma HIV-1 RNA during MGN1703 administration. Results. In accordance with the cell type-specific expression of TLR9, MGN1703 treatment led to pronounced activation of plasmacytoid dendritic cells and substantial increases in plasma interferon-α2 levels (P < .0001). Consistently, transcription of interferon-stimulated genes (eg, OAS1, ISG15, Mx1; each P < .0001) were upregulated in CD4+ T cells as demonstrated by RNA sequencing. Further, proportions of activated cytotoxic NK cells and CD8+ T cells increased significantly during MGN1703 dosing, suggesting an enhancement of cellular immune responses. In 6 of 15 participants, plasma HIV-1 RNA increased from <20 copies/mL to >1500 copies/mL (range, 21-1571 copies/mL) during treatment. Conclusions. TLR9 agonist treatment in HIV infection has a dual potential by increasing HIV-1 transcription and enhancing cytotoxic NK cell activation, both of which are key outcomes in HIV-1 eradication therapy. Clinical Trials Registration. NCT02443935.
Collapse
Affiliation(s)
- Line Vibholm
- Department of Infectious Diseases, Aarhus University Hospital.,Institute of Clinical Medicine, Aarhus University
| | - Mariane H Schleimann
- Department of Infectious Diseases, Aarhus University Hospital.,Institute of Clinical Medicine, Aarhus University
| | - Jesper F Højen
- Department of Infectious Diseases, Aarhus University Hospital.,Institute of Clinical Medicine, Aarhus University
| | - Thomas Benfield
- Department of Infectious Diseases, Hvidovre Hospital, University of Copenhagen, and
| | - Rasmus Offersen
- Department of Infectious Diseases, Aarhus University Hospital.,Institute of Clinical Medicine, Aarhus University
| | | | - Rikke Olesen
- Department of Infectious Diseases, Aarhus University Hospital
| | - Anders Dige
- Institute of Clinical Medicine, Aarhus University.,Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
| | - Jørgen Agnholt
- Institute of Clinical Medicine, Aarhus University.,Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
| | - Judith Grau
- Hebron Institute of Research, Department of Infectious Diseases, Barcelona, Spain
| | - Maria Buzon
- Hebron Institute of Research, Department of Infectious Diseases, Barcelona, Spain
| | - Burghardt Wittig
- Foundation Institute Molecular Biology and Bioinformatics, Freie Universitaet, Berlin, Germany
| | - Mathias Lichterfeld
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston; Departments of
| | - Andreas Munk Petersen
- Gastroenterology and.,Microbiology, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, California, and.,University of California, San Francisco
| | - Mohamed Abdel-Mohsen
- Blood Systems Research Institute, San Francisco, California, and.,University of California, San Francisco.,The Wistar Institute, Philadelphia, Pennsylvania; and Departments of
| | - Satish K Pillai
- Blood Systems Research Institute, San Francisco, California, and.,University of California, San Francisco
| | | | | | - Ward De Spiegelaere
- Internal Medicine; and.,Morphology, Faculty of Veterinary Medicine, Ghent University, Belgium
| | | | - Lars Østergaard
- Department of Infectious Diseases, Aarhus University Hospital.,Institute of Clinical Medicine, Aarhus University
| | | | - Paul W Denton
- Department of Infectious Diseases, Aarhus University Hospital.,Institute of Clinical Medicine, Aarhus University
| | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital.,Institute of Clinical Medicine, Aarhus University
| | - Ole S Søgaard
- Department of Infectious Diseases, Aarhus University Hospital.,Institute of Clinical Medicine, Aarhus University
| |
Collapse
|
23
|
Natural killer cells migrate into and control simian immunodeficiency virus replication in lymph node follicles in African green monkeys. Nat Med 2017; 23:1277-1286. [PMID: 29035370 DOI: 10.1038/nm.4421] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/08/2017] [Indexed: 02/06/2023]
Abstract
Natural killer (NK) cells play an essential role in antiviral immunity, but knowledge of their function in secondary lymphoid organs is incomplete. Lymph node follicles constitute a major viral reservoir during infections with HIV-1 and simian immunodeficiency virus of macaques (SIVmac). In contrast, during nonpathogenic infection with SIV from African green monkeys (SIVagm), follicles remain generally virus free. We show that NK cells in secondary lymphoid organs from chronically SIVagm-infected African green monkeys (AGMs) were frequently CXCR5+ and entered and persisted in lymph node follicles throughout the follow-up (240 d post-infection). These follicles were strongly positive for IL-15, which was primarily presented in its membrane-bound form by follicular dendritic cells. NK cell depletion through treatment with anti-IL-15 monoclonal antibody during chronic SIVagm infection resulted in high viral replication rates in follicles and the T cell zone and increased viral DNA in lymph nodes. Our data suggest that, in nonpathogenic SIV infection, NK cells migrate into follicles and play a major role in viral reservoir control in lymph nodes.
Collapse
|
24
|
Attanasio J, Wherry EJ. Costimulatory and Coinhibitory Receptor Pathways in Infectious Disease. Immunity 2017; 44:1052-68. [PMID: 27192569 DOI: 10.1016/j.immuni.2016.04.022] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Indexed: 12/16/2022]
Abstract
Costimulatory and inhibitory receptors play a key role in regulating immune responses to infections. Recent translation of knowledge about inhibitory receptors such as CTLA-4 and PD-1 into the cancer clinic highlights the opportunities to manipulate these pathways to treat human disease. Studies in infectious disease have provided key insights into the specific roles of these pathways and the effects of their manipulation. Here, recent studies are discussed that have addressed how major inhibitory and costimulatory pathways play a role in regulating immune responses during acute and chronic infections. Mechanistic insights from studies of infectious disease provide opportunities to further expand our toolkit to treat cancer and chronic infections in the clinic.
Collapse
Affiliation(s)
- John Attanasio
- Institute for Immunology and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E John Wherry
- Institute for Immunology and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
25
|
Memory responses of natural killer cells. Semin Immunol 2017; 31:11-19. [PMID: 28863960 DOI: 10.1016/j.smim.2017.08.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/22/2017] [Accepted: 08/22/2017] [Indexed: 12/20/2022]
Abstract
Natural killer (NK) cells have traditionally been classified as a cellular component of the innate immune system, given their ability to rapidly produce effector cytokines and kill infected or transformed cells without prior exposure. More recently, NK cells have been shown to possess features of adaptive immunity such as clonal expansion, longevity, and robust recall responses. NK cell memory can be broadly divided into two categories: antigen-specific and antigen-independent. In the first case, exposure to certain viral or hapten stimuli endows NK cells with antigen-specific immunological memory, similar to T and B cells. In the second case, exposure of NK cells to specific cytokine milieus can imprint long-lasting changes on effector functions, resulting in antigen-independent memory-like NK cells. In this review, we discuss the various conditions that promote generation of these two categories of memory NK cells, and the mechanistic requirements underlying these processes.
Collapse
|
26
|
Nomaguchi M, Doi N, Koma T, Adachi A. HIV-1 mutates to adapt in fluxing environments. Microbes Infect 2017; 20:610-614. [PMID: 28859896 DOI: 10.1016/j.micinf.2017.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 08/23/2017] [Indexed: 01/11/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) is specifically adapted for replication, persistence, transmission, and survival in humans. HIV-1 is highly mutable in nature, and well responds to a variety of environmental pressures by altering its genome sequences. In this review, we have described experimental evidence that demonstrates this phantasmagoric property of HIV-1.
Collapse
Affiliation(s)
- Masako Nomaguchi
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima 770-8503, Japan
| | - Naoya Doi
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima 770-8503, Japan
| | - Takaaki Koma
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima 770-8503, Japan
| | - Akio Adachi
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima 770-8503, Japan; Department of Microbiology, Kansai Medical University, Osaka 573-1010, Japan.
| |
Collapse
|
27
|
Pinoli M, Marino F, Cosentino M. Dopaminergic Regulation of Innate Immunity: a Review. J Neuroimmune Pharmacol 2017; 12:602-623. [PMID: 28578466 DOI: 10.1007/s11481-017-9749-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/28/2017] [Indexed: 12/13/2022]
Abstract
Dopamine (DA) is a neurotransmitter in the central nervous system as well as in peripheral tissues. Emerging evidence however points to DA also as a key transmitter between the nervous system and the immune system as well as a mediator produced and released by immune cells themselves. Dopaminergic pathways have received so far extensive attention in the adaptive branch of the immune system, where they play a role in health and disease such as multiple sclerosis, rheumatoid arthritis, cancer, and Parkinson's disease. Comparatively little is known about DA and the innate immune response, although DA may affect innate immune system cells such as dendritic cells, macrophages, microglia, and neutrophils. The present review aims at providing a complete and exhaustive summary of currently available evidence about DA and innate immunity, and to become a reference for anyone potentially interested in the fields of immunology, neurosciences and pharmacology. A wide array of dopaminergic drugs is used in therapeutics for non-immune indications, such as Parkinson's disease, hyperprolactinemia, shock, hypertension, with a usually favorable therapeutic index, and they might be relatively easily repurposed for immune-mediated disease, thus leading to innovative treatments at low price, with benefit for patients as well as for the healthcare systems.
Collapse
Affiliation(s)
- Monica Pinoli
- Center of Research in Medical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9, 21100, Varese, VA, Italy
| | - Franca Marino
- Center of Research in Medical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9, 21100, Varese, VA, Italy.
| | - Marco Cosentino
- Center of Research in Medical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9, 21100, Varese, VA, Italy
| |
Collapse
|
28
|
Carlomagno S, Falco M, Bono M, Alicata C, Garbarino L, Mazzocco M, Moretta L, Moretta A, Sivori S. KIR3DS1-Mediated Recognition of HLA-*B51: Modulation of KIR3DS1 Responsiveness by Self HLA-B Allotypes and Effect on NK Cell Licensing. Front Immunol 2017; 8:581. [PMID: 28603523 PMCID: PMC5445109 DOI: 10.3389/fimmu.2017.00581] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/01/2017] [Indexed: 12/24/2022] Open
Abstract
Several studies described an association between killer-cell immunoglobulin-like receptor (KIR)/HLA gene combinations and clinical outcomes in various diseases. In particular, an important combined role for KIR3DS1 and HLA-B Bw4-I80 in controlling viral infections and a higher protection against leukemic relapses in donor equipped with activating KIRs in haplo-HSCT has been described. Here, we show that KIR3DS1 mediates positive signals upon recognition of HLA-B*51 (Bw4-I80) surface molecules on target cells and that this activation occurs only in Bw4-I80neg individuals, including those carrying particular KIR/HLA combination settings. In addition, killing of HLA-B*51 transfected target cells mediated by KIR3DS1+/NKG2A+ natural killer (NK) cell clones from Bw4-I80neg donors could be partially inhibited by antibody-mediated masking of KIR3DS1. Interestingly, KIR3DS1-mediated recognition of HLA-B*51 could be better appreciated under experimental conditions in which the function of NKG2D was reduced by mAb-mediated blocking. This experimental approach may mimic the compromised function of NKG2D occurring in certain viral infections. We also show that, in KIR3DS1+/NKG2A+ NK cell clones derived from an HLA-B Bw4-T80 donor carrying 2 KIR3DS1 gene copy numbers, the positive signal generated by the engagement of KIR3DS1 by HLA-B*51 resulted in a more efficient killing of HLA-B*51-transfected target cells. Moreover, in these clones, a direct correlation between KIR3DS1 and NKG2D surface density was detected, while the expression of NKp46 was inversely correlated with that of KIR3DS1. Finally, we analyzed KIR3DS1+/NKG2A+ NK cell clones from a HLA-B Bw4neg donor carrying cytoplasmic KIR3DL1. Although these clones expressed lower levels of surface KIR3DS1, they displayed responses comparable to those of NK cell clones derived from HLA-B Bw4neg donors that expressed surface KIR3DL1. Altogether these data suggest that, in particular KIR/HLA combinations, KIR3DS1 may play a role in the process of human NK cell education.
Collapse
Affiliation(s)
- Simona Carlomagno
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy
| | | | - Maria Bono
- Istituto Giannina Gaslini, Genova, Italy
| | - Claudia Alicata
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy.,Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, Genova, Italy
| | - Lucia Garbarino
- S.C. Laboratorio di Istocompatibilità e IBMDR, E.O. Ospedali Galliera, Genova, Italy
| | - Michela Mazzocco
- S.C. Laboratorio di Istocompatibilità e IBMDR, E.O. Ospedali Galliera, Genova, Italy
| | - Lorenzo Moretta
- Dipartimento di Immunologia, IRCCS Ospedale Bambin Gesù, Roma, Italy
| | - Alessandro Moretta
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy.,Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, Genova, Italy
| | - Simona Sivori
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy.,Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, Genova, Italy
| |
Collapse
|
29
|
Previously Unidentified Single Nucleotide Polymorphisms in HIV/AIDS Cases Associate with Clinical Parameters and Disease Progression. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2742648. [PMID: 28050553 PMCID: PMC5165134 DOI: 10.1155/2016/2742648] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/08/2016] [Indexed: 12/20/2022]
Abstract
The genetic background of an individual plays an important role in the progression of HIV infection to AIDS. Identifying previously unknown or uncharacterized single nucleotide polymorphisms (SNPs) that associate with disease progression may reveal important therapeutic targets and provide a greater understanding of disease pathogenesis. In the present study, we employed ultra-high multiplex PCR on an Ion Torrent next-generation sequencing platform to sequence 23 innate immune genes from 94 individuals with HIV/AIDS. This data was used to identify potential associations of SNPs with clinical parameters and disease progression. SNPs that associated with an increased viral load were identified in the genes for the interleukin 15 receptor (IL15RA), toll-like receptor 7 (TLR7), tripartite motif-containing protein 5 (TRIM5), and two killer-cell immunoglobulin-like receptors (KIR2DL1 and KIR2DL3). Additionally, SNPs that associated with progression from HIV infection to AIDS were identified in two 2'-5'-oligoadenylate synthetase genes (OAS2 and OAS3). In contrast, other SNPs identified in OAS2 and OAS3 genes, as well as in the TRIM5 and KIR2DS4 genes, were associated with a slower progression of disease. Taken together, our data demonstrates the utility of ultra-high multiplex PCR in identifying polymorphisms of potential clinical significance and further,identifies SNPs that may play a role in HIV pathogenesis.
Collapse
|
30
|
Burian A, Wang KL, Finton KAK, Lee N, Ishitani A, Strong RK, Geraghty DE. HLA-F and MHC-I Open Conformers Bind Natural Killer Cell Ig-Like Receptor KIR3DS1. PLoS One 2016; 11:e0163297. [PMID: 27649529 PMCID: PMC5029895 DOI: 10.1371/journal.pone.0163297] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 09/05/2016] [Indexed: 11/22/2022] Open
Abstract
Based on previous findings supporting HLA-F as a ligand for KIR3DL2 and KIR2DS4, we investigated the potential for MHC-I open conformers (OCs) as ligands for KIR3DS1 and KIR3DL1 through interactions measured by surface plasmon resonance. These measurements showed physical binding of KIR3DS1 but not KIR3DL1 with HLA-F and other MHC-I OC while also confirming the allotype specific binding of KIR3DL1 with MHC-I peptide complex. Concordant results were obtained with biochemical pull-down from cell lines and biochemical heterodimerization experiments with recombinant proteins. In addition, surface binding of HLA-F and KIR3DS1 to native and activated NK and T cells was coincident with specific expression of the putative ligand or receptor. A functional response of KIR3DS1 was indicated by increased granule exocytosis in activated cells incubated with HLA-F bound to surfaces. The data extend a model for interaction between MHC-I open conformers and activating KIR receptors expressed during an inflammatory response, potentially contributing to communication between the innate and adaptive immune response.
Collapse
Affiliation(s)
- Aura Burian
- The Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA, 98109, United States of America
| | - Kevin L. Wang
- The Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA, 98109, United States of America
| | - Kathryn A. K. Finton
- The Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA, 98109, United States of America
| | - Ni Lee
- The Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA, 98109, United States of America
| | | | - Roland K. Strong
- The Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA, 98109, United States of America
| | - Daniel E. Geraghty
- The Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA, 98109, United States of America
- * E-mail:
| |
Collapse
|
31
|
He X, Simoneau CR, Granoff ME, Lunemann S, Dugast AS, Shao Y, Altfeld M, Körner C. Assessment of the antiviral capacity of primary natural killer cells by optimized in vitro quantification of HIV-1 replication. J Immunol Methods 2016; 434:53-60. [PMID: 27094484 DOI: 10.1016/j.jim.2016.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
Abstract
Despite a growing number of studies investigating the impact of natural killer (NK) cells on HIV-1 pathogenesis, the exact mechanism by which NK cells recognize HIV-1-infected cells and exert immunological pressure on HIV-1 remains unknown. Previously several groups including ours have introduced autologous HIV-1-infected CD4(+) T cells as suitable target cells to study NK-cell function in response to HIV-1 infection in vitro. Here, we re-evaluated and optimized a standardized in vitro assay that allows assessing the antiviral capacity of NK cells. This includes the implementation of HIV-1 RNA copy numbers as readout for NK-cell-mediated inhibition of HIV-1 replication and the investigation of inter-assay variation in comparison to previous methods, such as HIV-1 p24 Gag production and frequency of p24(+) CD4(+) T cells. Furthermore, we investigated the possibility to hasten the duration of the assay and provide concepts for downstream applications. Autologous CD4(+) T cells and NK cells were obtained from peripheral blood of HIV-negative healthy individuals and were separately enriched through negative selection. CD4(+) T cells were infected with the HIV-1 strain JR-CSF at an MOI of 0.01. Infected CD4(+) T cells were then co-cultured with primary NK cells at various effector:target ratios for up to 14days. Supernatants obtained from media exchanged at days 4, 7, 11 and 14 were used for quantification of HIV-1 p24 Gag and HIV-1 RNA copy numbers. In addition, frequency of infected CD4(+) T cells was determined by flow cytometric detection of intracellular p24 Gag. The assay displayed minimal inter-assay variation when utilizing viral RNA quantification or p24 Gag concentration for the assessment of viral replication. Viral RNA quantification was more rigorous to display magnitude and kinetics of NK-cell-mediated inhibition of HIV-1 replication, longitudinally and between tested individuals. The results of this study demonstrate that NK-cell-mediated inhibition of HIV-1 replication can be reliably quantified in vitro, and that viral RNA quantification is comparable to p24 Gag quantification via ELISA, providing a robust measurement for NK-cell-mediated inhibition of viral replication. Overall, the described assay provides an optimized tool to study the antiviral capacity of NK cells against HIV-1 and an additional experimental tool to investigate the molecular determinants of NK-cell recognition of virus-infected cells.
Collapse
Affiliation(s)
- Xuan He
- Ragon Institute of MGH, MIT and Harvard, 400 Technology Square, Cambridge, MA 02139, USA; State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, People's Republic of China.
| | - Camille R Simoneau
- Ragon Institute of MGH, MIT and Harvard, 400 Technology Square, Cambridge, MA 02139, USA.
| | - Mitchell E Granoff
- Ragon Institute of MGH, MIT and Harvard, 400 Technology Square, Cambridge, MA 02139, USA.
| | - Sebastian Lunemann
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraße 52, 20251 Hamburg, Germany.
| | - Anne-Sophie Dugast
- Ragon Institute of MGH, MIT and Harvard, 400 Technology Square, Cambridge, MA 02139, USA.
| | - Yiming Shao
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, People's Republic of China.
| | - Marcus Altfeld
- Ragon Institute of MGH, MIT and Harvard, 400 Technology Square, Cambridge, MA 02139, USA; Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraße 52, 20251 Hamburg, Germany.
| | - Christian Körner
- Ragon Institute of MGH, MIT and Harvard, 400 Technology Square, Cambridge, MA 02139, USA; Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraße 52, 20251 Hamburg, Germany.
| |
Collapse
|
32
|
Boudreau JE, Mulrooney TJ, Le Luduec JB, Barker E, Hsu KC. KIR3DL1 and HLA-B Density and Binding Calibrate NK Education and Response to HIV. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:3398-410. [PMID: 26962229 PMCID: PMC4868784 DOI: 10.4049/jimmunol.1502469] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/08/2016] [Indexed: 12/11/2022]
Abstract
NK cells recognize self-HLA via killer Ig-like receptors (KIR). Homeostatic HLA expression signals for inhibition via KIR, and downregulation of HLA, a common consequence of viral infection, allows NK activation. Like HLA, KIR are highly polymorphic, and allele combinations of the most diverse receptor-ligand pair, KIR3DL1 and HLA-B, correspond to hierarchical HIV control. We used primary cells from healthy human donors to demonstrate how subtype combinations of KIR3DL1 and HLA-B calibrate NK education and their consequent capacity to eliminate HIV-infected cells. High-density KIR3DL1 and Bw4-80I partnerships endow NK cells with the greatest reactivity against HLA-negative targets; NK cells exhibiting the remaining KIR3DL1/HLA-Bw4 combinations demonstrate intermediate responsiveness; and Bw4-negative KIR3DL1(+) NK cells are poorly responsive. Cytotoxicity against HIV-infected autologous CD4(+) T cells strikingly correlated with reactivity to HLA-negative targets. These findings suggest that the programming of NK effector function results from defined features of receptor and ligand subtypes. KIR3DL1 and HLA-B subtypes exhibit an array of binding strengths. Like KIR3DL1, subtypes of HLA-Bw4 are expressed at distinct, predictable membrane densities. Combinatorial permutations of common receptor and ligand subtypes reveal binding strength, receptor density, and ligand density to be functionally important. These findings have immediate implications for prognosis in patients with HIV infection. Furthermore, they demonstrate how features of KIR and HLA modified by allelic variation calibrate NK cell reactive potential.
Collapse
Affiliation(s)
- Jeanette E Boudreau
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Tiernan J Mulrooney
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Jean-Benoît Le Luduec
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Edward Barker
- Department of Immunology and Microbiology, Rush University Medical Center, Chicago, IL 60612
| | - Katharine C Hsu
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065; and Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
33
|
Della Chiesa M, Sivori S, Carlomagno S, Moretta L, Moretta A. Activating KIRs and NKG2C in Viral Infections: Toward NK Cell Memory? Front Immunol 2015; 6:573. [PMID: 26617607 PMCID: PMC4638145 DOI: 10.3389/fimmu.2015.00573] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/26/2015] [Indexed: 01/27/2023] Open
Abstract
Natural killer (NK) cells are important players in the immune defense against viral infections. The contribution of activating killer immunoglobulin-like receptors (KIRs) and CD94/NKG2C in regulating anti-viral responses has recently emerged. Thus, in the hematopoietic stem cell transplantation setting, the presence of donor activating KIRs (aKIRs) may protect against viral infections, while in HIV-infected individuals, KIR3DS1, in combination with HLA-Bw4-I80, results in reduction of viral progression. Since, studies have been performed mainly at the genetic or transcriptional level, the effective size, the function, and the "licensing" status of NK cells expressing aKIRs, as well as the nature of their viral ligands, require further investigation. Certain viral infections, mainly due to Human cytomegalovirus (HCMV), can deeply influence the NK cell development and function by inducing a marked expansion of mature NKG2C(+) NK cells expressing self-activating KIRs. This suggests that NKG2C and/or aKIRs are involved in the selective proliferation of this subset. The persistent, HCMV-induced, imprinting suggests that NK cells may display unexpected adaptive immune traits. The role of aKIRs and NKG2C in regulating NK cell responses and promoting a memory-like response to certain viruses is discussed.
Collapse
Affiliation(s)
- Mariella Della Chiesa
- Dipartimento di Medicina Sperimentale and Centro di Eccellenza per la Ricerca Biomedica, Università di Genova , Genoa , Italy
| | - Simona Sivori
- Dipartimento di Medicina Sperimentale and Centro di Eccellenza per la Ricerca Biomedica, Università di Genova , Genoa , Italy
| | - Simona Carlomagno
- Dipartimento di Medicina Sperimentale and Centro di Eccellenza per la Ricerca Biomedica, Università di Genova , Genoa , Italy
| | - Lorenzo Moretta
- Dipartimento di Immunologia, IRCCS Ospedale Bambin Gesù , Roma , Italy
| | - Alessandro Moretta
- Dipartimento di Medicina Sperimentale and Centro di Eccellenza per la Ricerca Biomedica, Università di Genova , Genoa , Italy
| |
Collapse
|
34
|
Hölzemer A, Thobakgale CF, Jimenez Cruz CA, Garcia-Beltran WF, Carlson JM, van Teijlingen NH, Mann JK, Jaggernath M, Kang SG, Körner C, Chung AW, Schafer JL, Evans DT, Alter G, Walker BD, Goulder PJ, Carrington M, Hartmann P, Pertel T, Zhou R, Ndung’u T, Altfeld M. Selection of an HLA-C*03:04-Restricted HIV-1 p24 Gag Sequence Variant Is Associated with Viral Escape from KIR2DL3+ Natural Killer Cells: Data from an Observational Cohort in South Africa. PLoS Med 2015; 12:e1001900; discussion e1001900. [PMID: 26575988 PMCID: PMC4648589 DOI: 10.1371/journal.pmed.1001900] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/07/2015] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Viruses can evade immune surveillance, but the underlying mechanisms are insufficiently understood. Here, we sought to understand the mechanisms by which natural killer (NK) cells recognize HIV-1-infected cells and how this virus can evade NK-cell-mediated immune pressure. METHODS AND FINDINGS Two sequence mutations in p24 Gag associated with the presence of specific KIR/HLA combined genotypes were identified in HIV-1 clade C viruses from a large cohort of infected, untreated individuals in South Africa (n = 392), suggesting viral escape from KIR+ NK cells through sequence variations within HLA class I-presented epitopes. One sequence polymorphism at position 303 of p24 Gag (TGag303V), selected for in infected individuals with both KIR2DL3 and HLA-C*03:04, enabled significantly better binding of the inhibitory KIR2DL3 receptor to HLA-C*03:04-expressing cells presenting this variant epitope compared to the wild-type epitope (wild-type mean 18.01 ± 10.45 standard deviation [SD] and variant mean 44.67 ± 14.42 SD, p = 0.002). Furthermore, activation of primary KIR2DL3+ NK cells from healthy donors in response to HLA-C*03:04+ target cells presenting the variant epitope was significantly reduced in comparison to cells presenting the wild-type sequence (wild-type mean 0.78 ± 0.07 standard error of the mean [SEM] and variant mean 0.63 ± 0.07 SEM, p = 0.012). Structural modeling and surface plasmon resonance of KIR/peptide/HLA interactions in the context of the different viral sequence variants studied supported these results. Future studies will be needed to assess processing and antigen presentation of the investigated HIV-1 epitope in natural infection, and the consequences for viral control. CONCLUSIONS These data provide novel insights into how viruses can evade NK cell immunity through the selection of mutations in HLA-presented epitopes that enhance binding to inhibitory NK cell receptors. Better understanding of the mechanisms by which HIV-1 evades NK-cell-mediated immune pressure and the functional validation of a structural modeling approach will facilitate the development of novel targeted immune interventions to harness the antiviral activities of NK cells.
Collapse
Affiliation(s)
- Angelique Hölzemer
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- Heinrich-Pette-Institut, Leibniz Institute for Experimental Virology, Hamburg, Germany
- First Department of Internal Medicine, University Medical Center Hamburg—Eppendorf, Hamburg, Germany
| | - Christina F. Thobakgale
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Camilo A. Jimenez Cruz
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York, United States of America
| | | | | | | | - Jaclyn K. Mann
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Manjeetha Jaggernath
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Seung-gu Kang
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York, United States of America
| | - Christian Körner
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- Heinrich-Pette-Institut, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Amy W. Chung
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Jamie L. Schafer
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Microbiology, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - David T. Evans
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Microbiology, New England Primate Research Center, Southborough, Massachusetts, United States of America
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Bruce D. Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Philip J. Goulder
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Mary Carrington
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Pia Hartmann
- First Department of Internal Medicine, Division of Infectious Diseases, University of Cologne, Cologne, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | - Thomas Pertel
- Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ruhong Zhou
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York, United States of America
| | - Thumbi Ndung’u
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Max Planck Institute for Infection Biology, Berlin, Germany
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Marcus Altfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- Heinrich-Pette-Institut, Leibniz Institute for Experimental Virology, Hamburg, Germany
| |
Collapse
|
35
|
Grifoni A, Montesano C, Colizzi V, Amicosante M. Key role of human leukocyte antigen in modulating human immunodeficiency virus progression: An overview of the possible applications. World J Virol 2015; 4:124-133. [PMID: 25964877 PMCID: PMC4419116 DOI: 10.5501/wjv.v4.i2.124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 01/20/2015] [Accepted: 02/12/2015] [Indexed: 02/05/2023] Open
Abstract
Host and viral factors deeply influence the human immunodeficiency virus (HIV) disease progression. Among them human leukocyte antigen (HLA) locus plays a key role at different levels. In fact, genes of the HLA locus have shown the peculiar capability to modulate both innate and adaptive immune responses. In particular, HLA class I molecules are recognized by CD8+ T-cells and natural killers (NK) cells towards the interaction with T cell receptor (TCR) and Killer Immunoglobulin Receptor (KIR) 3DL1 respectively. Polymorphisms within the different HLA alleles generate structural changes in HLA class I peptide-binding pockets. Amino acid changes in the peptide-binding pocket lead to the presentation of a different set of peptides to T and NK cells. This review summarizes the role of HLA in HIV progression toward acquired immunodeficiency disease syndrome and its receptors. Recently, many studies have been focused on determining the HLA binding-peptides. The novel use of immune-informatics tools, from the prediction of the HLA-bound peptides to the modification of the HLA-receptor complexes, is considered. A better knowledge of HLA peptide presentation and recognition are allowing new strategies for immune response manipulation to be applied against HIV virus.
Collapse
|
36
|
Ensoli F, Cafaro A, Casabianca A, Tripiciano A, Bellino S, Longo O, Francavilla V, Picconi O, Sgadari C, Moretti S, Cossut MRP, Arancio A, Orlandi C, Sernicola L, Maggiorella MT, Paniccia G, Mussini C, Lazzarin A, Sighinolfi L, Palamara G, Gori A, Angarano G, Di Pietro M, Galli M, Mercurio VS, Castelli F, Di Perri G, Monini P, Magnani M, Garaci E, Ensoli B. HIV-1 Tat immunization restores immune homeostasis and attacks the HAART-resistant blood HIV DNA: results of a randomized phase II exploratory clinical trial. Retrovirology 2015; 12:33. [PMID: 25924841 PMCID: PMC4414440 DOI: 10.1186/s12977-015-0151-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/11/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The phase II multicenter, randomized, open label, therapeutic trial (ISS T-002, Clinicaltrials.gov NCT00751595) was aimed at evaluating the immunogenicity and the safety of the biologically active HIV-1 Tat protein administered at 7.5 or 30 μg, given 3 or 5 times monthly, and at exploring immunological and virological disease biomarkers. The study duration was 48 weeks, however, vaccinees were followed until the last enrolled subject reached the 48 weeks. Reported are final data up to 144 weeks of follow-up. The ISS T-002 trial was conducted in 11 clinical centers in Italy on 168 HIV positive subjects under Highly Active Antiretroviral Therapy (HAART), anti-Tat Antibody (Ab) negative at baseline, with plasma viremia <50 copies/mL in the last 6 months prior to enrollment, and CD4(+) T-cell number ≥200 cells/μL. Subjects from a parallel observational study (ISS OBS T-002, Clinicaltrials.gov NCT0102455) enrolled at the same clinical sites with the same criteria constituted an external reference group to explore biomarkers of disease. RESULTS The vaccine was safe and well tolerated and induced anti-Tat Abs in most patients (79%), with the highest frequency and durability in the Tat 30 μg groups (89%) particularly when given 3 times (92%). Vaccination promoted a durable and significant restoration of T, B, natural killer (NK) cells, and CD4(+) and CD8(+) central memory subsets. Moreover, a significant reduction of blood proviral DNA was seen after week 72, particularly under PI-based regimens and with Tat 30 μg given 3 times (30 μg, 3x), reaching a predicted 70% decay after 3 years from vaccination with a half-life of 88 weeks. This decay was significantly associated with anti-Tat IgM and IgG Abs and neutralization of Tat-mediated entry of oligomeric Env in dendritic cells, which predicted HIV-1 DNA decay. Finally, the 30 μg, 3x group was the only one showing significant increases of NK cells and CD38(+)HLA-DR(+)/CD8(+) T cells, a phenotype associated with increased killing activity in elite controllers. CONCLUSIONS Anti-Tat immune responses are needed to restore immune homeostasis and effective anti-viral responses capable of attacking the virus reservoir. Thus, Tat immunization represents a promising pathogenesis-driven intervention to intensify HAART efficacy.
Collapse
Affiliation(s)
- Fabrizio Ensoli
- Pathology and Microbiology, San Gallicano Institute, Istituti Fisioterapici Ospitalieri, Rome, Italy.
| | - Aurelio Cafaro
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| | - Anna Casabianca
- Department of Biomolecular Science, University of Urbino, Urbino, Italy.
| | - Antonella Tripiciano
- Pathology and Microbiology, San Gallicano Institute, Istituti Fisioterapici Ospitalieri, Rome, Italy. .,National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| | - Stefania Bellino
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| | - Olimpia Longo
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| | - Vittorio Francavilla
- Pathology and Microbiology, San Gallicano Institute, Istituti Fisioterapici Ospitalieri, Rome, Italy. .,National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| | - Orietta Picconi
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| | - Cecilia Sgadari
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| | - Sonia Moretti
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| | - Maria R Pavone Cossut
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| | - Angela Arancio
- Pathology and Microbiology, San Gallicano Institute, Istituti Fisioterapici Ospitalieri, Rome, Italy. .,National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| | - Chiara Orlandi
- Department of Biomolecular Science, University of Urbino, Urbino, Italy.
| | - Leonardo Sernicola
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| | - Maria T Maggiorella
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| | - Giovanni Paniccia
- Pathology and Microbiology, San Gallicano Institute, Istituti Fisioterapici Ospitalieri, Rome, Italy. .,National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| | - Cristina Mussini
- Division of Infectious Diseases, University Policlinic of Modena, Modena, Italy.
| | - Adriano Lazzarin
- Division of Infectious Diseases, S. Raffaele Hospital, Milan, Italy.
| | - Laura Sighinolfi
- Unit of Infectious Diseases, University Hospital of Ferrara, Ferrara, Italy.
| | - Guido Palamara
- Department of Infectious Dermatology, San Gallicano Hospital, Rome, Italy.
| | - Andrea Gori
- Division of Infectious Diseases, San Gerardo Hospital, Monza, Italy.
| | - Gioacchino Angarano
- Division of Infectious Diseases, University of Bari, Policlinic Hospital, Bari, Italy.
| | - Massimo Di Pietro
- Unit of Infectious Diseases, S.M. Annunziata Hospital, Florence, Italy.
| | - Massimo Galli
- Institute of Tropical and Infectious Diseases, L. Sacco Hospital, University of Milan, Milan, Italy.
| | - Vito S Mercurio
- Department of Infectious Diseases, S. Maria Goretti Hospital, Latina, Italy.
| | - Francesco Castelli
- Division of Tropical and Infectious Diseases, Spedali Civili, Brescia, Italy.
| | - Giovanni Di Perri
- Clinic of Infectious Diseases, Amedeo di Savoia Hospital, Turin, Italy.
| | - Paolo Monini
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| | - Mauro Magnani
- Department of Biomolecular Science, University of Urbino, Urbino, Italy.
| | - Enrico Garaci
- Istituto Superiore di Sanità, Rome, Italy, present address University of Tor Vergata, Rome, 00173, Italy.
| | - Barbara Ensoli
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| |
Collapse
|
37
|
Ni Z, Knorr DA, Bendzick L, Allred J, Kaufman DS. Expression of chimeric receptor CD4ζ by natural killer cells derived from human pluripotent stem cells improves in vitro activity but does not enhance suppression of HIV infection in vivo. Stem Cells 2015; 32:1021-31. [PMID: 24307574 DOI: 10.1002/stem.1611] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 10/25/2013] [Indexed: 12/21/2022]
Abstract
Cell-based immunotherapy has been gaining interest as an improved means to treat human immunodeficiency virus (HIV)/AIDS. Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) could become a potential resource. Our previous studies have shown hESC and iPSC-derived natural killer (NK) cells can inhibit HIV-infected targets in vitro. Here, we advance those studies by expressing a HIV chimeric receptor combining the extracellular portion of CD4 to the CD3ζ intracellular signaling chain. We hypothesized that expression of this CD4ζ receptor would more efficiently direct hESC- and iPSC-derived NK cells to target HIV-infected cells. In vitro studies showed the CD4ζ expressing hESC- and iPSC-NK cells inhibited HIV replication in CD4+ T-cells more efficiently than their unmodified counterparts. We then evaluated CD4ζ expressing hESC (CD4ζ-hESC)- and iPSC-NK cells in vivo anti-HIV activity using a humanized mouse model. We demonstrated significant suppression of HIV replication in mice treated with both CD4ζ-modified and -unmodified hESC-/iPSC-NK cells compared with control mice. However, we did not observe significantly increased efficacy of CD4ζ expression in suppression of HIV infection. These studies indicate that hESC/iPSC-based immunotherapy can be used as a unique resource to target HIV/AIDS.
Collapse
Affiliation(s)
- Zhenya Ni
- Department of Medicine, Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | | |
Collapse
|
38
|
Winnall WR, Lloyd SB, De Rose R, Alcantara S, Amarasena TH, Hedger MP, Girling JE, Kent SJ. Simian immunodeficiency virus infection and immune responses in the pig-tailed macaque testis. J Leukoc Biol 2015; 97:599-609. [PMID: 25605872 DOI: 10.1189/jlb.4a0914-438r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The testis is a site of immune privilege in rodents, and there is evidence that T cell responses are also suppressed in the primate testis. Local immunosuppression is a potential mechanism for HIV persistence in tissue reservoirs that few studies have examined. The response of the pig-tailed macaque testis to SIVmac239 infection was characterized to test this possibility. Testes were surgically removed during early-chronic (10 wk) and late-chronic (24-30 wk) SIV infection in 4 animals and compared with those from 7 uninfected animals. SIV infection caused only minor disruption to the seminiferous epithelium without marked evidence of inflammation or consistent changes in total intratesticular leukocyte numbers. Infection also led to an increase in the relative proportion of testicular effector memory CD8(+) T cell numbers and a corresponding reduction in central memory CD4(+) T cells. A decrease in the relative proportion of resident-type CD163(+) macrophages and DCs was also observed. SIV-specific CD8(+) T cells were detectable in the testis, 10-11 wk after infection by staining with SIV Gag-specific or Tat-specific MHC-I tetramers. However, testicular CD8(+) T cells from the infected animals had suppressed cytokine responses to mitogen activation. These results support the possibility that local immunosuppression in the testis may be restricting the ability of T cells to respond to SIV or HIV infection. Local immunosuppression in the testis may be an underexplored mechanism allowing HIV persistence.
Collapse
Affiliation(s)
- Wendy R Winnall
- *Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Victoria, Australia; Centre for Reproductive Health, Monash Institute of Medical Research-Prince Henry's Institute of Medical Research, Victoria, Australia; and Gynaecology Research Centre, Department of Obstetrics and Gynaecology, The University of Melbourne, Royal Women's Hospital, Parkville, Victoria, Australia
| | - Sarah B Lloyd
- *Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Victoria, Australia; Centre for Reproductive Health, Monash Institute of Medical Research-Prince Henry's Institute of Medical Research, Victoria, Australia; and Gynaecology Research Centre, Department of Obstetrics and Gynaecology, The University of Melbourne, Royal Women's Hospital, Parkville, Victoria, Australia
| | - Robert De Rose
- *Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Victoria, Australia; Centre for Reproductive Health, Monash Institute of Medical Research-Prince Henry's Institute of Medical Research, Victoria, Australia; and Gynaecology Research Centre, Department of Obstetrics and Gynaecology, The University of Melbourne, Royal Women's Hospital, Parkville, Victoria, Australia
| | - Sheilajen Alcantara
- *Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Victoria, Australia; Centre for Reproductive Health, Monash Institute of Medical Research-Prince Henry's Institute of Medical Research, Victoria, Australia; and Gynaecology Research Centre, Department of Obstetrics and Gynaecology, The University of Melbourne, Royal Women's Hospital, Parkville, Victoria, Australia
| | - Thakshila H Amarasena
- *Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Victoria, Australia; Centre for Reproductive Health, Monash Institute of Medical Research-Prince Henry's Institute of Medical Research, Victoria, Australia; and Gynaecology Research Centre, Department of Obstetrics and Gynaecology, The University of Melbourne, Royal Women's Hospital, Parkville, Victoria, Australia
| | - Mark P Hedger
- *Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Victoria, Australia; Centre for Reproductive Health, Monash Institute of Medical Research-Prince Henry's Institute of Medical Research, Victoria, Australia; and Gynaecology Research Centre, Department of Obstetrics and Gynaecology, The University of Melbourne, Royal Women's Hospital, Parkville, Victoria, Australia
| | - Jane E Girling
- *Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Victoria, Australia; Centre for Reproductive Health, Monash Institute of Medical Research-Prince Henry's Institute of Medical Research, Victoria, Australia; and Gynaecology Research Centre, Department of Obstetrics and Gynaecology, The University of Melbourne, Royal Women's Hospital, Parkville, Victoria, Australia
| | - Stephen J Kent
- *Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Victoria, Australia; Centre for Reproductive Health, Monash Institute of Medical Research-Prince Henry's Institute of Medical Research, Victoria, Australia; and Gynaecology Research Centre, Department of Obstetrics and Gynaecology, The University of Melbourne, Royal Women's Hospital, Parkville, Victoria, Australia
| |
Collapse
|
39
|
Abstract
Experimental evidence for in vivo capsid assembly suggests that capsid formation initiates from interactions between capsid (CA) proteins and lipids in the viral envelope. Various in vitro studies aiming to elucidate the detailed mechanisms of capsid self-assembly products have been carried out in conditions far removed from those, which would be encountered in a physiological environment. In this work we used lipid bilayers as a platform for studying the assembly of the CA protein with the rationale that the lipid-CA interactions play an important role in the nucleation of these structures. Observations using atomic force microscopy (AFM) have allowed a 'curling tadpole' mechanism to be suggested for the capsid self-assembly process. Stable dimeric CA proteins are able to move across the lipid bilayer to associate into trimers-of-dimers. These trimers form distinctly curved chains, which coil up to form larger features. As the feature grows additional trimers associate with the feature, giving a tadpole-like appearance. By comparing capsid assembly on mica, on single component lipid bilayers, and phase separated lipid bilayers, it was possible to determine the effect of lipid-protein interactions on capsid assembly.
Collapse
Affiliation(s)
- Penny Miles
- Chemical Engineering and Advanced Materials, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
| | | |
Collapse
|
40
|
de Goede AL, Vulto AG, Osterhaus ADME, Gruters RA. Understanding HIV infection for the design of a therapeutic vaccine. Part I: Epidemiology and pathogenesis of HIV infection. ANNALES PHARMACEUTIQUES FRANÇAISES 2014; 73:87-99. [PMID: 25496723 DOI: 10.1016/j.pharma.2014.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 11/01/2014] [Accepted: 11/07/2014] [Indexed: 02/07/2023]
Abstract
HIV infection leads to a gradual loss CD4+ T lymphocytes comprising immune competence and progression to AIDS. Effective treatment with combined antiretroviral drugs (cART) decreases viral load below detectable levels but is not able to eliminate the virus from the body. The success of cART is frustrated by the requirement of expensive life-long adherence, accumulating drug toxicities and chronic immune activation resulting in increased risk of several non-AIDS disorders, even when viral replication is suppressed. Therefore there is a strong need for therapeutic strategies as an alternative to cART. Immunotherapy, or therapeutic vaccination, aims to increase existing immune responses against HIV or induce de novo immune responses. These immune responses should provide a functional cure by controlling viral replication and preventing disease progression in the absence of cART. The key difficulty in the development of an HIV vaccine is our ignorance of the immune responses that control of viral replication, and thus how these responses can be elicited and how they can be monitored. Part one of this review provides an extensive overview of the (patho-) physiology of HIV infection. It describes the structure and replication cycle of HIV, the epidemiology and pathogenesis of HIV infection and the innate and adaptive immune responses against HIV. Part two of this review discusses therapeutic options for HIV. Prevention modalities and antiretroviral therapy are briefly touched upon, after which an extensive overview on vaccination strategies for HIV is provided, including the choice of immunogens and delivery strategies.
Collapse
Affiliation(s)
- A L de Goede
- Department of Viroscience, Erasmus MC 's-Gravendijkwal 230, 2040, 3000 CA Rotterdam, The Netherlands; Department of Hospital Pharmacy, Erasmus MC 's-Gravendijkwal 230, 2040, 3000 CA Rotterdam, The Netherlands.
| | - A G Vulto
- Department of Hospital Pharmacy, Erasmus MC 's-Gravendijkwal 230, 2040, 3000 CA Rotterdam, The Netherlands
| | - A D M E Osterhaus
- Department of Viroscience, Erasmus MC 's-Gravendijkwal 230, 2040, 3000 CA Rotterdam, The Netherlands
| | - R A Gruters
- Department of Viroscience, Erasmus MC 's-Gravendijkwal 230, 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
41
|
Albrecht C, Malzahn D, Brameier M, Hermes M, Ansari AA, Walter L. Progression to AIDS in SIV-Infected Rhesus Macaques is Associated with Distinct KIR and MHC class I Polymorphisms and NK Cell Dysfunction. Front Immunol 2014; 5:600. [PMID: 25506344 PMCID: PMC4246914 DOI: 10.3389/fimmu.2014.00600] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 11/07/2014] [Indexed: 12/21/2022] Open
Abstract
Killer cell immunoglobulin-like receptors (KIR) regulate the activity of natural killer (NK) cells and have been shown to be associated with susceptibility to a number of human infectious diseases. Here, we analyzed NK cell function and genetic associations in a cohort of 52 rhesus macaques experimentally infected with SIVmac and subsequently stratified into high viral load (HVL) and low viral load (LVL) plasma viral loads at set point. This stratification coincided with fast (HVL) and slow (LVL) disease progression indicated by the disease course and critical clinical parameters including CD4+ T cell counts. HVL animals revealed sustained proliferation of NK cells but distinct loss of peripheral blood NK cell numbers and lytic function. Genetic analyses revealed that KIR genes 3DL05, 3DS05, and 3DL10 as well as 3DSW08, 3DLW03, and 3DSW09 are correlated, most likely due to underlying haplotypes. SIV-infection outcome associated with presence of transcripts for two inhibitory KIR genes (KIR3DL02, KIR3DL10) and three activating KIR genes (KIR3DSW08, KIR3DS02, KIR3DS05). Presence of KIR3DL02 and KIR3DSW08 was associated with LVL outcome, whereas presence of KIR3DS02 was associated with HVL outcome. Furthermore, we identified epistasis between KIR and MHC class I alleles as the transcript presence of the correlated genes KIR3DL05, KIR3DS05, and KIR3DL10 increased HVL risk when Mamu-B*012 transcripts were also present or when Mamu-A1*001 transcripts were absent. These genetic associations were mirrored by changes in the numbers, the level of proliferation, and lytic capabilities of NK cells as well as overall survival time and gastro-intestinal tissue viral load.
Collapse
Affiliation(s)
- Christina Albrecht
- Primate Genetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research , Göttingen , Germany
| | - Dörthe Malzahn
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University , Göttingen , Germany
| | - Markus Brameier
- Primate Genetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research , Göttingen , Germany
| | - Meike Hermes
- Primate Genetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research , Göttingen , Germany
| | - Aftab A Ansari
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine , Atlanta, GA , USA
| | - Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research , Göttingen , Germany
| |
Collapse
|
42
|
Abstract
Natural killer (NK) cells become activated during viral infections and can play roles in such infections by attacking virus-infected cells or by regulating adaptive immune responses. Experimental models suggest that NK cells may also have the capacity to restrain virus-induced cancers. Here, we discuss the seven viruses linked to human cancers and the evidence of NK cell involvement in these systems.
Collapse
Affiliation(s)
- Rabinarayan Mishra
- Department of Pathology, University of Massachusetts Medical School, 368 Plantation Street, AS9-2051, Worcester, MA 01605
| | - Raymond Welsh
- Department of Pathology, University of Massachusetts Medical School, 368 Plantation Street, AS9-2051, Worcester, MA 01605
| | - Eva Szomolanyi-Tsuda
- Department of Pathology, University of Massachusetts Medical School, 368 Plantation Street, AS9-2051, Worcester, MA 01605
| |
Collapse
|
43
|
Sandler NG, Bosinger SE, Estes JD, Zhu RTR, Tharp GK, Boritz E, Levin D, Wijeyesinghe S, Makamdop KN, del Prete GQ, Hill BJ, Timmer JK, Reiss E, Yarden G, Darko S, Contijoch E, Todd JP, Silvestri G, Nason M, Norgren RB, Keele BF, Rao S, Langer JA, Lifson JD, Schreiber G, Douek DC. Type I interferon responses in rhesus macaques prevent SIV infection and slow disease progression. Nature 2014; 511:601-5. [PMID: 25043006 PMCID: PMC4418221 DOI: 10.1038/nature13554] [Citation(s) in RCA: 358] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/04/2014] [Indexed: 12/26/2022]
Abstract
Inflammation in HIV infection is predictive of non-AIDS morbidity and death, higher set point plasma virus load and virus acquisition; thus, therapeutic agents are in development to reduce its causes and consequences. However, inflammation may simultaneously confer both detrimental and beneficial effects. This dichotomy is particularly applicable to type I interferons (IFN-I) which, while contributing to innate control of infection, also provide target cells for the virus during acute infection, impair CD4 T-cell recovery, and are associated with disease progression. Here we manipulated IFN-I signalling in rhesus macaques (Macaca mulatta) during simian immunodeficiency virus (SIV) transmission and acute infection with two complementary in vivo interventions. We show that blockade of the IFN-I receptor caused reduced antiviral gene expression, increased SIV reservoir size and accelerated CD4 T-cell depletion with progression to AIDS despite decreased T-cell activation. In contrast, IFN-α2a administration initially upregulated expression of antiviral genes and prevented systemic infection. However, continued IFN-α2a treatment induced IFN-I desensitization and decreased antiviral gene expression, enabling infection with increased SIV reservoir size and accelerated CD4 T-cell loss. Thus, the timing of IFN-induced innate responses in acute SIV infection profoundly affects overall disease course and outweighs the detrimental consequences of increased immune activation. Yet, the clinical consequences of manipulation of IFN signalling are difficult to predict in vivo and therapeutic interventions in human studies should be approached with caution.
Collapse
Affiliation(s)
- Netanya G Sandler
- 1] Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892, USA [2] Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas 77555, USA
| | - Steven E Bosinger
- 1] Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, Georgia 30322, USA [2] Non-Human Primate Genomics Core, Yerkes National Primate Research Center, Robert W. Woodruff Health Sciences Center, Emory University, Atlanta, Georgia 30322, USA
| | - Jacob D Estes
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland 21702, USA
| | - Richard T R Zhu
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Gregory K Tharp
- 1] Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, Georgia 30322, USA [2] Non-Human Primate Genomics Core, Yerkes National Primate Research Center, Robert W. Woodruff Health Sciences Center, Emory University, Atlanta, Georgia 30322, USA
| | - Eli Boritz
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Doron Levin
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sathi Wijeyesinghe
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Krystelle Nganou Makamdop
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Gregory Q del Prete
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland 21702, USA
| | - Brenna J Hill
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - J Katherina Timmer
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Emma Reiss
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ganit Yarden
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Samuel Darko
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Eduardo Contijoch
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - John Paul Todd
- Laboratory of Animal Medicine, Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Guido Silvestri
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, Georgia 30322, USA
| | - Martha Nason
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Robert B Norgren
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland 21702, USA
| | - Srinivas Rao
- Laboratory of Animal Medicine, Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jerome A Langer
- Department of Pharmacology, Rutgers - Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland 21702, USA
| | - Gideon Schreiber
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
44
|
HIV-1 Vpu antagonism of tetherin inhibits antibody-dependent cellular cytotoxic responses by natural killer cells. J Virol 2014; 88:6031-46. [PMID: 24623433 DOI: 10.1128/jvi.00449-14] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
UNLABELLED The type I interferon-inducible factor tetherin retains virus particles on the surfaces of cells infected with vpu-deficient human immunodeficiency virus type 1 (HIV-1). While this mechanism inhibits cell-free viral spread, the immunological implications of tethered virus have not been investigated. We found that surface tetherin expression increased the antibody opsonization of vpu-deficient HIV-infected cells. The absence of Vpu also stimulated NK cell-activating FcγRIIIa signaling and enhanced NK cell degranulation and NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC). The deletion of vpu in HIV-1-infected primary CD4(+) T cells enhanced the levels of antibody binding and Fc receptor signaling mediated by HIV-positive-patient-derived antibodies. The magnitudes of antibody binding and Fc signaling were both highly correlated to the levels of tetherin on the surfaces of infected primary CD4 T cells. The affinity of antibody binding to FcγRIIIa was also found to be critical in mediating efficient Fc activation. These studies implicate Vpu antagonism of tetherin as an ADCC evasion mechanism that prevents antibody-mediated clearance of virally infected cells. IMPORTANCE The ability of the HIV-1 accessory factor to antagonize tetherin has been considered to primarily function by limiting the spread of virus by preventing the release of cell-free virus. This study supports the hypothesis that a major function of Vpu is to decrease the recognition of infected cells by anti-HIV antibodies at the cell surface, thereby reducing recognition by antibody-dependent clearance by natural killer cells.
Collapse
|
45
|
In vivo administration of a JAK3 inhibitor during acute SIV infection leads to significant increases in viral load during chronic infection. PLoS Pathog 2014; 10:e1003929. [PMID: 24603870 PMCID: PMC3946395 DOI: 10.1371/journal.ppat.1003929] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/31/2013] [Indexed: 12/30/2022] Open
Abstract
The studies reported herein are the first to document the effect of the in vivo administration of a JAK3 inhibitor for defining the potential role of NK cells during acute SIV infection of a group of 15 rhesus macaques (RM). An additional group of 16 MHC/KIR typed RM was included as controls. The previously optimized in vivo dose regimen (20 mg/kg daily for 35 days) led to a marked depletion of each of the major NK cell subsets both in the blood and gastro-intestinal tissues (GIT) during acute infection. While such depletion had no detectable effects on plasma viral loads during acute infection, there was a significant sustained increase in plasma viral loads during chronic infection. While the potential mechanisms that lead to such increased plasma viral loads during chronic infection remain unclear, several correlates were documented. Thus, during acute infection, the administration of the JAK3 inhibitor besides depleting all NK cell subsets also decreased some CD8+ T cells and inhibited the mobilization of the plasmacytoid dendritic cells in the blood and their localization to the GIT. Of interest is the finding that the administration of the JAK3 inhibitor during acute infection also resulted in the sustained maintenance during chronic infection of a high number of naïve and central memory CD4+ T cells, increases in B cells in the blood, but decreases in the frequencies and function of NKG2a+ NK cells within the GIT and blood, respectively. These data identify a unique role for JAK3 inhibitor sensitive cells, that includes NK cells during acute infection that in concert lead to high viral loads in SIV infected RM during chronic infection without affecting detectable changes in antiviral humoral/cellular responses. Identifying the precise mechanisms by which JAK3 sensitive cells exert their influence is critical with important implications for vaccine design against lentiviruses. In efforts to define the potential role of innate immune effector mechanisms in influencing the course of SIV infection during the acute infection period, our lab utilized the in vivo daily administration of 20 mg/kg orally of a compound called Tofacitinib (a Janus kinase 3 inhibitor) to a group of 15 rhesus macaques starting at day −6 and until day 28 post intravenous SIVmac239 infection. An additional group of 16 similarly SIV infected rhesus macaques served as a placebo control. This drug targets the JAK/STAT pathway that is utilized by cells including the NK cell lineage, a major cell of the innate immune system. The dosage utilized was based on extensive previous PK studies that resulted in a marked depletion of the NK cells. Of interest while such drug administration had no effect on plasma viral loads during acute infection, such drug administration led to significant increases in plasma and gastro-intestinal tissues (GIT) viral loads during chronic infection. A series of phenotypic/functional studies were performed to determine the mechanisms for this delayed effect and the correlates identified. These data are the first to document the effect of JAK-3 inhibitor during acute SIV infection with implications for HIV vaccine design.
Collapse
|
46
|
Della Chiesa M, Marcenaro E, Sivori S, Carlomagno S, Pesce S, Moretta A. Human NK cell response to pathogens. Semin Immunol 2014; 26:152-60. [PMID: 24582551 DOI: 10.1016/j.smim.2014.02.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 02/04/2014] [Indexed: 12/23/2022]
Abstract
NK cells represent important effectors of the innate immunity in the protection of an individual from microbes. During an NK-mediated anti-microbial response, the final fate (survival or death) of a potential infected target cell depends primarily on the type and the number of receptor/ligand interactions occurring at the effector/target immune synapse. The identification of an array of receptors involved in NK cell triggering has been crucial for a better understanding of the NK cell biology. In this context, NCR play a predominant role in NK cell activation during the process of natural cytotoxicity. Regarding the NK-mediated pathogen recognition and NK cell activation, an emerging concept is represented by the involvement of TLRs and activating KIRs. NK cells express certain TLRs in common with other innate cell types. This would mean that specific TLR ligands are able to promote the simultaneous and synergistic stimulation of these innate cells, providing a coordinated mechanism for regulating the initiation and amplification of immune responses. Evidences have been accumulated indicating that viral infections may have a significant impact on NK cell maturation, promoting the expansion of phenotypically and functionally aberrant NK cell subpopulations. For example, during chronic HIV-infection, an abnormal expansion of a dysfunctional CD56neg NK cell subset has been detected that may explain, at least in part, the defective NK cell-mediated antiviral activity. An analogous imbalance of NK cell subsets has been detected in patients receiving HSCT to cure high risk leukemias and experiencing HCMV infection/reactivation. Remarkably, NK cells developing after CMV reactivation may contain "memory-like" or "long-lived" NK cells that could exert a potent anti-leukemia effect.
Collapse
Affiliation(s)
- Mariella Della Chiesa
- DI.ME.S. Dipartimento di Medicina Sperimentale and Centro di Eccellenza per la Ricerca Biomedica, Università di Genova, Genova, Italy
| | - Emanuela Marcenaro
- DI.ME.S. Dipartimento di Medicina Sperimentale and Centro di Eccellenza per la Ricerca Biomedica, Università di Genova, Genova, Italy
| | - Simona Sivori
- DI.ME.S. Dipartimento di Medicina Sperimentale and Centro di Eccellenza per la Ricerca Biomedica, Università di Genova, Genova, Italy
| | - Simona Carlomagno
- DI.ME.S. Dipartimento di Medicina Sperimentale and Centro di Eccellenza per la Ricerca Biomedica, Università di Genova, Genova, Italy
| | - Silvia Pesce
- DI.ME.S. Dipartimento di Medicina Sperimentale and Centro di Eccellenza per la Ricerca Biomedica, Università di Genova, Genova, Italy
| | - Alessandro Moretta
- DI.ME.S. Dipartimento di Medicina Sperimentale and Centro di Eccellenza per la Ricerca Biomedica, Università di Genova, Genova, Italy.
| |
Collapse
|
47
|
Abstract
Recent advances in the immunology, pathogenesis, and prevention of human immunodeficiency virus (HIV) infection continue to reveal clues to the mechanisms involved in the progressive immunodeficiency attributed to infection, but more importantly have shed light on the correlates of immunity to infection and disease progression. HIV selectively infects, eliminates, and/or dysregulates several key cells of the human immune system, thwarting multiple arms of the host immune response, and inflicting severe damage to mucosal barriers, resulting in tissue infiltration of 'symbiotic' intestinal bacteria and viruses that essentially become opportunistic infections promoting systemic immune activation. This leads to activation and recruitment or more target cells for perpetuating HIV infection, resulting in persistent, high-level viral replication in lymphoid tissues, rapid evolution of resistant strains, and continued evasion of immune responses. However, vaccine studies and studies of spontaneous controllers are finally providing correlates of immunity from protection and disease progression, including virus-specific CD4(+) T-cell responses, binding anti-bodies, innate immune responses, and generation of antibodies with potent antibody-dependent cell-mediated cytotoxicity activity. Emerging correlates of immunity indicate that prevention of HIV infection may be possible through effective vaccine strategies that protect and stimulate key regulatory cells and immune responses in susceptible hosts. Furthermore, immune therapies specifically directed toward boosting specific aspects of the immune system may eventually lead to a cure for HIV-infected patients.
Collapse
Affiliation(s)
- Huanbin Xu
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA
| | | | | |
Collapse
|
48
|
Sholukh AM, Byrareddy SN, Shanmuganathan V, Hemashettar G, Lakhashe SK, Rasmussen RA, Watkins JD, Vyas HK, Thorat S, Brandstoetter T, Mukhtar MM, Yoon JK, Novembre FJ, Villinger F, Landucci G, Forthal DN, Ratcliffe S, Tuero I, Robert-Guroff M, Polonis VR, Bilska M, Montefiori DC, Johnson WE, Ertl HC, Ruprecht RM. Passive immunization of macaques with polyclonal anti-SHIV IgG against a heterologous tier 2 SHIV: outcome depends on IgG dose. Retrovirology 2014; 11:8. [PMID: 24444350 PMCID: PMC3905655 DOI: 10.1186/1742-4690-11-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/09/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A key goal for HIV-1 envelope immunogen design is the induction of cross-reactive neutralizing antibodies (nAbs). As AIDS vaccine recipients will not be exposed to strains exactly matching any immunogens due to multiple HIV-1 quasispecies circulating in the human population worldwide, heterologous SHIV challenges are essential for realistic vaccine efficacy testing in primates. We assessed whether polyclonal IgG, isolated from rhesus monkeys (RMs) with high-titer nAbs (termed SHIVIG), could protect RMs against the R5-tropic tier-2 SHIV-2873Nip, which was heterologous to the viruses or HIV-1 envelopes that had elicited SHIVIG. RESULTS SHIVIG demonstrated binding to HIV Gag, Tat, and Env of different clades and competed with the broadly neutralizing antibodies b12, VRC01, 4E10, and 17b. SHIVIG neutralized tier 1 and tier 2 viruses, including SHIV-2873Nip. NK-cell depletion decreased the neutralizing activity of SHIVIG 20-fold in PBMC assays. Although SHIVIG neutralized SHIV-2873Nip in vitro, this polyclonal IgG preparation failed to prevent acquisition after repeated intrarectal low-dose virus challenges, but at a dose of 400 mg/kg, it significantly lowered peak viremia (P = 0.001). Unexpectedly, single-genome analysis revealed a higher number of transmitted variants at the low dose of 25 mg/kg, implying increased acquisition at low SHIVIG levels. In vitro, SHIVIG demonstrated complement-mediated Ab-dependent enhancement of infection (C'-ADE) at concentrations similar to those observed in plasmas of RMs treated with 25 mg/kg of SHIVIG. CONCLUSION Our primate model data suggest a dual role for polyclonal anti-HIV-1 Abs depending on plasma levels upon virus encounter.
Collapse
Affiliation(s)
- Anton M Sholukh
- Department of Virology and Immunology, Texas Biomedical Research Institute, PO Box 760549, San Antonio, TX 78245-0549, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Siddappa N Byrareddy
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | | | | | - Samir K Lakhashe
- Department of Virology and Immunology, Texas Biomedical Research Institute, PO Box 760549, San Antonio, TX 78245-0549, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Robert A Rasmussen
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jennifer D Watkins
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Hemant K Vyas
- Department of Virology and Immunology, Texas Biomedical Research Institute, PO Box 760549, San Antonio, TX 78245-0549, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Swati Thorat
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Muhammad M Mukhtar
- Department of Virology and Immunology, Texas Biomedical Research Institute, PO Box 760549, San Antonio, TX 78245-0549, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - John K Yoon
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Francis J Novembre
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Microbiology and Immunology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Francois Villinger
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Gary Landucci
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Donald N Forthal
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Sarah Ratcliffe
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Iskra Tuero
- National Cancer Institute, Center for Cancer Research, Vaccine Branch, Bethesda, MD, USA
| | - Marjorie Robert-Guroff
- National Cancer Institute, Center for Cancer Research, Vaccine Branch, Bethesda, MD, USA
| | - Victoria R Polonis
- The Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Miroslawa Bilska
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - David C Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | | | | | - Ruth M Ruprecht
- Department of Virology and Immunology, Texas Biomedical Research Institute, PO Box 760549, San Antonio, TX 78245-0549, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
49
|
Yu J, Freud AG, Caligiuri MA. Location and cellular stages of natural killer cell development. Trends Immunol 2013; 34:573-82. [PMID: 24055329 DOI: 10.1016/j.it.2013.07.005] [Citation(s) in RCA: 253] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/15/2013] [Accepted: 07/19/2013] [Indexed: 01/29/2023]
Abstract
The identification of distinct tissue-specific natural killer (NK) cell populations that apparently mature from local precursor populations has brought new insight into the diversity and developmental regulation of this important lymphoid subset. NK cells provide a necessary link between the early (innate) and late (adaptive) immune responses to infection. Gaining a better understanding of the processes that govern NK cell development should allow us to harness better NK cell functions in multiple clinical settings, as well as to gain further insight into how these cells undergo malignant transformation. In this review, we summarize recent advances in understanding sites and cellular stages of NK cell development in humans and mice.
Collapse
Affiliation(s)
- Jianhua Yu
- Division of Hematology, Department of Internal Medicine, College of Medicine, Ohio State University, Columbus, OH 43210, USA; Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; James Cancer Hospital and Solove Research Institute, Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
50
|
Immunoinformatic docking approach for the analysis of KIR3DL1/HLA-B interaction. BIOMED RESEARCH INTERNATIONAL 2013; 2013:283805. [PMID: 23984333 PMCID: PMC3747338 DOI: 10.1155/2013/283805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/12/2013] [Indexed: 01/21/2023]
Abstract
KIR3DL1 is among the most interesting receptors studied, within the killer immunoglobulin receptor (KIR) family. Human leukocyte antigen (HLA) class I Bw4 epitope inhibits strongly Natural Killer (NK) cell's activity through interaction with KIR3DL1 receptor, while Bw6 generally does not. This interaction has been indicated to play an important role in the immune control of different viral infectious diseases. However, the structural interaction between the KIR3DL1 receptor and different HLA-B alleles has been scarcely studied. To understand the complexity of KIR3DL1-HLA-B interaction, HLA-B alleles carrying Bw4/Bw6 epitope and KIR3DL1∗001 allele in presence of different peptides has been evaluated by using a structural immunoinformatic approach. Different energy minimization force fields (ff) have been tested and NOVA ff enables the successful prediction of ligand-receptor interaction. HLA-B alleles carrying Bw4 epitope present the highest capability of interaction with KIR3DL1∗001 compared to the HLA-B alleles presenting Bw6. The presence of the epitope Bw4 determines a conformational change which leads to a stronger interaction between nonpolymorphic arginine at position 79 of HLA-B and KIR3DL1∗001 136–142 loop. The data shed new light on the modalities of KIR3DL1 interaction with HLA-B alleles essential for the modulation of NK immune-mediated response.
Collapse
|