1
|
Salehiyeh S, Faiz AF, Manzourolhojeh M, Bagheri AM, Lorian K. The functions of hydrogen sulfide on the urogenital system of both males and females: from inception to the present. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6391-6415. [PMID: 38689070 DOI: 10.1007/s00210-024-03086-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024]
Abstract
Hydrogen sulfide (H2S) is known as a chemical gas in nature with both enzymatic and non-enzymatic biosynthesis in different human organs. A couple of studies have demonstrated the function of H2S in regulating the homeostasis of the human body. Additionally, they have shown its synthesis, measurement, chemistry, protective effects, and interaction in various aspects of scientific evidence. Furthermore, many researches have demonstrated the beneficial impacts of H2S on genital organs and systems. According to various studies, it is recognized that H2S-producing enzymes and the endogenous production of H2S are expressed in male and female reproductive systems in different mammalian species. The main goal of this comprehensive review is to assess the potential therapeutic impacts of this gasotransmitter in the male and female urogenital system and find underlying mechanisms of this agent. This narrative review investigated the articles that were published from the 1970s to 2022. The review's primary focus is the impacts of H2S on the male and female urogenital system. Medline, CINAHL, PubMed, and Google scholar databases were searched. Keywords used in this review were "Hydrogen sulfide," "H2S," "urogenital system," and "urogenital tract". Numerous studies have demonstrated the therapeutic and protective effects of sodium hydrosulfide (Na-HS) as an H2S donor on male and female infertility disorders. Furthermore, it has been observed that H2S plays a significant role in improving different diseases such as ameliorating sperm parameters. The specific localization of H2S enzymes in the urogenital system provides an excellent opportunity to comprehend its function and role in various disorders related to this system. It is noteworthy that H2S has been demonstrated to be produced in endocrine organs and exhibit diverse activities. Moreover, it is important to recognize that alterations in H2S biosynthesis are closely linked to endocrine disorders. Therefore, hormones can be pivotal in regulating H2S production, and H2S synthesis pathways may aid in establishing novel therapeutic strategies. H2S possesses pharmacological effects on essential disorders, such as anti-inflammation, anti-apoptosis, and anti-oxidant activities, which render it a valuable therapeutic agent for human urogenital disease. Furthermore, this agent shows promise in ameliorating the detrimental effects of various male and female diseases. Despite the limited clinical research, studies have demonstrated that applying H2S as an anti-oxidant source could ameliorate adverse effects of different conditions in the urogenital system. More clinical studies are required to confirm the role of this component in clinical settings.
Collapse
Affiliation(s)
- Sajad Salehiyeh
- Andrology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ahmad Faisal Faiz
- Department of Paraclinic, School of Medicine, Herat University, Herat, Afghanistan
| | - Mohammad Manzourolhojeh
- Department of Medical Laboratory Sciences, Gorgan Branch, Islamic Azad University, Gorgan, Iran
| | - Amir Mohammad Bagheri
- Department of Medical Genetics, Shahid Sadoughi university of Medical Sciences, Yazd, Iran
| | - Keivan Lorian
- Andrology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
2
|
Platt I, Bisgin A, Kilavuz S. Ethylmalonic Encephalopathy: a literature review and two new cases of mild phenotype. Neurol Sci 2023; 44:3827-3852. [PMID: 37458841 DOI: 10.1007/s10072-023-06904-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/12/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Ethylmalonic encephalopathy (EE) is a rare intoxication-type metabolic disorder with multisystem involvement. It is caused by mutations in ETHE1, which encodes the ETHE1 enzyme in the mitochondrial matrix that plays a key role in hydrogen sulfide (H2S) detoxification acting as a sulphur dioxygenase. RESULTS This review focuses on the clinical, metabolic, genetic and neuroradiological features of 70 reported cases, including two new cases. The common manifestations of EE are psychomotor regression, hypotonia, developmental delay, petechia, pyramidal signs, chronic diarrhoea, orthostatic acrocyanosis and failure to thrive, respectively. A significant difference was found in EMA and C4 levels (p=0.003, p=0.0236) between classical and mild phenotypes. Urinary EMA, C4 and C5 levels were found to exhibit normal values in milder cases during attack-free periods. The most common ETHE1 gene homozygous state mutations were (p.R163Q) (c.488G>A), exon 4 deletion, (p.R163W)(c.487C>T), (p.Glu44ValfsTer62)(c.131_132delAG) and (p.M1I)(c.3G>T) mutations, respectively. Fifty-two patients underwent cranial MRI. Basal ganglia signal alterations were detected in 42 cases. Of the 70 cases, eight had a mild phenotype and slow neurological progression with low levels of ethylmalonic acid (EMA) and C4 acylcarnitine. The current age of alive patients in the published articles with mild phenotype was significantly higher than the classical phenotype. (p=0.002). Reducing the accumulation and inducing detoxification of sulfide is the main long-term treatment strategy for EE, including metronidazole, N-acetylcysteine (NAC), dietary modification, liver transplantation and continuous renal replacement therapy (CRRT). CONCLUSION Measuring EMA and C4 acylcarnitine during metabolic attacks is critical to diagnosing EE, allowing for early treatment initiation to prevent further encephalopathic crises. Experience with liver transplantation, diet and CRRT, is currently limited. An early multidisciplinary approach with combination therapies is vital to prevent irreversible neurological damage.
Collapse
Affiliation(s)
| | - Atil Bisgin
- Department of Medical Genetics, Cukurova University AGENTEM (Adana Genetic Diseases Diagnosis and Treatment Center), Adana, Turkey
| | - Sebile Kilavuz
- Division of Pediatric Metabolism and Nutrition, Department of Pediatrics, Marmara University Faculty of Medicine, İstanbul, Turkey.
| |
Collapse
|
3
|
Arrigo E, Comità S, Pagliaro P, Penna C, Mancardi D. Clinical Applications for Gasotransmitters in the Cardiovascular System: Are We There Yet? Int J Mol Sci 2023; 24:12480. [PMID: 37569855 PMCID: PMC10419417 DOI: 10.3390/ijms241512480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Ischemia is the underlying mechanism in a wide variety of acute and persistent pathologies. As such, understanding the fine intracellular events occurring during (and after) the restriction of blood supply is pivotal to improving the outcomes in clinical settings. Among others, gaseous signaling molecules constitutively produced by mammalian cells (gasotransmitters) have been shown to be of potential interest for clinical treatment of ischemia/reperfusion injury. Nitric oxide (NO and its sibling, HNO), hydrogen sulfide (H2S), and carbon monoxide (CO) have long been proven to be cytoprotective in basic science experiments, and they are now awaiting confirmation with clinical trials. The aim of this work is to review the literature and the clinical trials database to address the state of development of potential therapeutic applications for NO, H2S, and CO and the clinical scenarios where they are more promising.
Collapse
|
4
|
Santana Maldonado C, Weir A, Rumbeiha WK. A comprehensive review of treatments for hydrogen sulfide poisoning: past, present, and future. Toxicol Mech Methods 2023; 33:183-196. [PMID: 36076319 DOI: 10.1080/15376516.2022.2121192] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Hydrogen sulfide (H2S) poisoning remains a significant source of occupational fatalities and is the second most common cause of toxic gas-induced deaths. It is a rapidly metabolized systemic toxicant targeting the mitochondria, among other organelles. Intoxication is mostly acute, but chronic or in-between exposure scenarios also occur. Some genetic defects in H2S metabolism lead to lethal chronic H2S poisoning. In acute exposures, the neural, respiratory, and cardiovascular systems are the primary target organs resulting in respiratory distress, convulsions, hypotension, and cardiac irregularities. Some survivors of acute poisoning develop long-term sequelae, particularly in the central nervous system. Currently, treatment for H2S poisoning is primarily supportive care as there are no FDA-approved drugs. Besides hyperbaric oxygen treatment, drugs in current use for the management of H2S poisoning are controversial. Novel potential drugs are under pre-clinical research development, most of which target binding the H2S. However, there is an acute need to discover new drugs to prevent and treat H2S poisoning, including reducing mortality and morbidity, preventing sequalae from acute exposures, and for treating cumulative pathology from chronic exposures. In this paper, we perform a comprehensive review of H2S poisoning including perspectives on past, present, and future.
Collapse
Affiliation(s)
| | - Abigail Weir
- Molecular Biosciences, University of California, Davis, Davis, CA, USA
| | - Wilson K Rumbeiha
- Molecular Biosciences, University of California, Davis, Davis, CA, USA
| |
Collapse
|
5
|
Advances in Human Mitochondria-Based Therapies. Int J Mol Sci 2022; 24:ijms24010608. [PMID: 36614050 PMCID: PMC9820658 DOI: 10.3390/ijms24010608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Mitochondria are the key biological generators of eukaryotic cells, controlling the energy supply while providing many important biosynthetic intermediates. Mitochondria act as a dynamic, functionally and structurally interconnected network hub closely integrated with other cellular compartments via biomembrane systems, transmitting biological information by shuttling between cells and tissues. Defects and dysregulation of mitochondrial functions are critically involved in pathological mechanisms contributing to aging, cancer, inflammation, neurodegenerative diseases, and other severe human diseases. Mediating and rejuvenating the mitochondria may therefore be of significant benefit to prevent, reverse, and even treat such pathological conditions in patients. The goal of this review is to present the most advanced strategies using mitochondria to manage such disorders and to further explore innovative approaches in the field of human mitochondria-based therapies.
Collapse
|
6
|
Hanaford AR, Cho YJ, Nakai H. AAV-vector based gene therapy for mitochondrial disease: progress and future perspectives. Orphanet J Rare Dis 2022; 17:217. [PMID: 35668433 PMCID: PMC9169410 DOI: 10.1186/s13023-022-02324-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/09/2022] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial diseases are a group of rare, heterogeneous diseases caused by gene mutations in both nuclear and mitochondrial genomes that result in defects in mitochondrial function. They are responsible for significant morbidity and mortality as they affect multiple organ systems and particularly those with high energy-utilizing tissues, such as the nervous system, skeletal muscle, and cardiac muscle. Virtually no effective treatments exist for these patients, despite the urgent need. As the majority of these conditions are monogenic and caused by mutations in nuclear genes, gene replacement is a highly attractive therapeutic strategy. Adeno-associated virus (AAV) is a well-characterized gene replacement vector, and its safety profile and ability to transduce quiescent cells nominates it as a potential gene therapy vehicle for several mitochondrial diseases. Indeed, AAV vector-based gene replacement is currently being explored in clinical trials for one mitochondrial disease (Leber hereditary optic neuropathy) and preclinical studies have been published investigating this strategy in other mitochondrial diseases. This review summarizes the preclinical findings of AAV vector-based gene replacement therapy for mitochondrial diseases including Leigh syndrome, Barth syndrome, ethylmalonic encephalopathy, and others.
Collapse
Affiliation(s)
- Allison R Hanaford
- Center for Integrative Brain Research, Seattle Children's Reserach Institute, Seattle, WA, 98101, USA.
- Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, 97239, USA.
| | - Yoon-Jae Cho
- Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, 97239, USA
- Division of Pediatric Neurology, Doernbecher Children's Hospital, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Hiroyuki Nakai
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Molecular Immunology and Microbiology, Oregon Health and Science University, Portland, OR, 97239, USA
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| |
Collapse
|
7
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
8
|
Chen M, Zhu JY, Mu WJ, Guo L. Cysteine dioxygenase type 1 (CDO1): its functional role in physiological and pathophysiological processes. Genes Dis 2022. [DOI: 10.1016/j.gendis.2021.12.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
9
|
de Moura Alvorcem L, Britto R, Cecatto C, Cristina Roginski A, Rohden F, Nathali Scholl J, Guma FCR, Figueiró F, Umpierrez Amaral A, Zanatta G, Seminotti B, Wajner M, Leipnitz G. Ethylmalonic acid impairs bioenergetics by disturbing succinate and glutamate oxidation and induces mitochondrial permeability transition pore opening in rat cerebellum. J Neurochem 2021; 158:262-281. [PMID: 33837559 DOI: 10.1111/jnc.15363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 03/04/2021] [Accepted: 04/06/2021] [Indexed: 12/01/2022]
Abstract
Tissue accumulation and high urinary excretion of ethylmalonic acid (EMA) are found in ethylmalonic encephalopathy (EE), an inherited disorder associated with cerebral and cerebellar atrophy whose pathogenesis is poorly established. The in vitro and in vivo effects of EMA on bioenergetics and redox homeostasis were investigated in rat cerebellum. For the in vitro studies, cerebellum preparations were exposed to EMA, whereas intracerebellar injection of EMA was used for the in vivo evaluation. EMA reduced state 3 and uncoupled respiration in vitro in succinate-, glutamate-, and malate-supported mitochondria, whereas decreased state 4 respiration was observed using glutamate and malate. Furthermore, mitochondria permeabilization and succinate supplementation diminished the decrease in state 3 with succinate. EMA also inhibited the activity of KGDH, an enzyme necessary for glutamate oxidation, in a mixed manner and augmented mitochondrial efflux of α-ketoglutarate. ATP levels were markedly reduced by EMA, reflecting a severe bioenergetic disruption. Docking simulations also indicated interactions between EMA and KGDH and a competition with glutamate and succinate for their mitochondrial transporters. In vitro findings also showed that EMA decreased mitochondrial membrane potential and Ca2+ retention capacity, and induced swelling in the presence of Ca2+ , which were prevented by cyclosporine A and ADP and ruthenium red, indicating mitochondrial permeability transition (MPT). Moreover, EMA, at high concentrations, mildly increased ROS levels and altered antioxidant defenses in vitro and in vivo. Our data indicate that EMA-induced impairment of glutamate and succinate oxidation and MPT may contribute to the pathogenesis of the cerebellum abnormalities in EE.
Collapse
Affiliation(s)
- Leonardo de Moura Alvorcem
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Renata Britto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cristiane Cecatto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana Cristina Roginski
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Francieli Rohden
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Juliete Nathali Scholl
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fátima C R Guma
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fabrício Figueiró
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alexandre Umpierrez Amaral
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Departamento de Ciências Biológicas, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, RS, Brazil
| | - Geancarlo Zanatta
- Departamento de Física, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Bianca Seminotti
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
10
|
Defense responses of sulfur dioxygenase to sulfide stress in the razor clam Sinonovacula constricta. Genes Genomics 2021; 43:513-522. [PMID: 33721282 DOI: 10.1007/s13258-021-01077-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Sulfide is a well-known toxicant widely distributed in the culture environment. As a representative burrowing benthic bivalve, the razor clam Sinonovacula constricta is highly sulfide tolerant. Mitochondrial sulfide oxidation is an important way for sulfide detoxification, where sulfur dioxygenase (SDO) is the second key enzyme. OBJECTIVE To investigate the mechanism of sulfide tolerance in S. constricta, the molecular characterization of its SDO (designated as ScSDO) was studied. METHODS The cDNA sequence of ScSDO was cloned by RACE technique. The response of ScSDO in gills and livers of S. constricta was investigated during sulfide exposure (50, 150, and 300 μM sulfide) for 0, 3, 6, 12, 24, 48, 72, and 96 h by qRT-PCR. Moreover, the temporal expression of ScSDO protein in S. constricta gills after exposure to 150 μM sulfide was detected by Western blot. The subcellular location of ScSDO was identified by TargetP 1.1 prediction and Western Blot analysis. RESULTS The full-length cDNA of ScSDO was 2914 bp, encoding a protein of 304 amino acids. The deduced ScSDO protein was highly conserved, containing the signature HXHXDH motif of the metallo-β-lactamase superfamily and two metal-binding sites, of which metal-binding site I is known to be the catalytically active center. Subcellular localization confirmed that ScSDO was located only in the mitochondria. Responding to the sulfide exposure, distinct time-dependent increases in ScSDO expression were detected at both mRNA and protein levels. Moreover, the gills exhibited a higher ScSDO expression level than the livers. CONCLUSIONS All of our results suggest that ScSDO plays an important role in mitochondrial sulfide oxidation during sulfide stress, making S. constricta highly sulfide tolerant. In addition, as a respiratory tissue, the gills play a more critical role in sulfide detoxification.
Collapse
|
11
|
Ferreira CR, Blau N. Clinical and biochemical footprints of inherited metabolic diseases. IV. Metabolic cardiovascular disease. Mol Genet Metab 2021; 132:112-118. [PMID: 33388235 PMCID: PMC7867625 DOI: 10.1016/j.ymgme.2020.12.290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022]
Abstract
Inherited metabolic diseases account for 15-20% of all cases of pediatric cardiomyopathy, with a high mortality of 15-47%. Metabolic diseases can also commonly be associated with other types of cardiovascular involvement such as arrhythmias, valvulopathy or vasculopathy. We reviewed and updated the list of known metabolic etiologies associated with cardiovascular involvement, and found 246 relevant inborn errors of metabolism. This represents the fourth of a series of articles attempting to create and maintain a comprehensive list of clinical and metabolic differential diagnoses according to system involvement.
Collapse
Affiliation(s)
- Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Nenad Blau
- Division of Metabolism, University Children's Hospital, Zürich, Switzerland.
| |
Collapse
|
12
|
Zhou GP, Qu W, Zhu ZJ, Sun LY, Wei L, Zeng ZG, Liu Y. Compromised therapeutic value of pediatric liver transplantation in ethylmalonic encephalopathy: A case report. World J Gastroenterol 2020; 26:6295-6303. [PMID: 33177801 PMCID: PMC7596645 DOI: 10.3748/wjg.v26.i40.6295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/25/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ethylmalonic encephalopathy (EE) is a rare autosomal recessive metabolic disorder caused by impaired mitochondrial sulfur dioxygenase. Due to poor therapeutic effect of current conventional treatments, progressive psychomotor regression and neurological impairment usually contribute to early death in the first decade of life. Liver transplantation (LT) is emerging as a novel therapeutic option for EE; however, worldwide experience is still limited.
CASE SUMMARY An 18-mo-old patient with the diagnosis of EE received a living donor liver transplant in our institution, which, to our knowledge, is the first case in Asian-Pacific countries. During 20 mo of follow-up, the longitudinal metabolic evaluations revealed a wild fluctuation in urinary EMA levels, still far beyond the normal range. Urinary 2-methylsuccinic acid levels gradually restored to normal, whereas the concentrations of urinary isobutyrylglycine and plasma C4- and C5-acylcarnitines fluctuated markedly and still remained above the reference limits. Only mild amelioration of petechiae and ecchymosis was observed, and no dramatic reversion of chronic mucoid diarrhea and orthostatic acrocyanosis occurred. Although brain magnetic resonance imaging suggested a certain improvement in basal ganglia lesions, the patient still presented developmental delay and neurologic disability.
CONCLUSION LT may bring about a partial but not complete cure to EE. Given its definite role in defending against the devastating natural progression of EE, LT should still be considered for patients with EE in the absence of other superior therapeutic options. Early establishment of diagnosis and initiation of conventional treatment pre-transplant, timely LT, and continuous administration of metabolism-correcting medications post-transplant may be helpful in minimizing the neurologic impairment and maximizing the therapeutic value of LT in EE.
Collapse
Affiliation(s)
- Guang-Peng Zhou
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Wei Qu
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zhi-Jun Zhu
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Li-Ying Sun
- Liver Transplantation Center, Intensive Care Unit, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Lin Wei
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zhi-Gui Zeng
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ying Liu
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
13
|
Grings M, Wajner M, Leipnitz G. Mitochondrial Dysfunction and Redox Homeostasis Impairment as Pathomechanisms of Brain Damage in Ethylmalonic Encephalopathy: Insights from Animal and Human Studies. Cell Mol Neurobiol 2020; 42:565-575. [DOI: 10.1007/s10571-020-00976-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022]
|
14
|
Identification of a novel homozygous nonsense variant in a Chinese patient with ethylmalonic encephalopathy and a genotype-phenotype spectrum review. Clin Chim Acta 2020; 509:8-17. [DOI: 10.1016/j.cca.2020.05.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 11/23/2022]
|
15
|
Ersoy M, Tiranti V, Zeviani M. Ethylmalonic encephalopathy: Clinical course and therapy response in an uncommon mild case with a severe ETHE1 mutation. Mol Genet Metab Rep 2020; 25:100641. [PMID: 32923369 PMCID: PMC7476058 DOI: 10.1016/j.ymgmr.2020.100641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/15/2020] [Accepted: 08/16/2020] [Indexed: 02/06/2023] Open
Abstract
Ethylmalonic encephalopathy (EE) is a rare metabolic disorder caused by dysfunction of ETHE1 protein, a mitochondrial dioxygenase involved in hydrogen sulfide (H2S) detoxification. EE is usually a fatal disease with a severe clinical course mainly associated with developmental delay and regression, recurrent petechiae, orthostatic acrocyanosis, and chronic diarrhoea. Treatment includes antioxidants, antibiotics that lower H2S levels and antispastic medications, which are not curative. The mutations causing absence of the ETHE1 protein, as is the case for the described patient, usually entail a severe fatal phenotype. Although there are rare reported cases with mild clinical findings, the mechanism leading to these milder cases is also unclear. Here, we describe an 11-year-old boy with an ETHE1 gene mutation who has no neurocognitive impairment but chronic diarrhoea, which is controlled by oral medical treatment, and progressive spastic paraparesis that responded to Achilles tendon lengthening.
Collapse
Key Words
- 3-MST, 3-mercaptopyruvate sulfurtransferase
- CAT, cysteine aminotransferase
- CBS, cystathionine β-synthase
- CSE, cystathionine γ-lyase
- EE, ethylmalonic encephalopathy
- EMA, ethylmalonic acid
- ETHE1 gene
- GSH, glutathione
- H2S
- H2S, hydrogen sulfide
- H2SO3, persulfide
- MTZ, metronidazole
- Mild course
- NAC, N-acetylcysteine
- SCAD, short-chain acyl-CoA dehydrogenase
- SDO, sulfur dioxygenase
- SQR, sulfide quinone oxidoreductase
- SUOX, sulfite oxidase
- TST, thiosulfate sulfur transferase
- Therapy response
- UQ, quinone
- cIII, complex III
- cIV, complex IV
Collapse
Affiliation(s)
- Melike Ersoy
- Department of Pediatrics, Division of Pediatric Metabolism, Health Sciences University, Bakirkoy Dr. Sadi Konuk Research and Education Hospital, Istanbul, Turkey
| | - Valeria Tiranti
- Molecular Pathogenesis of Mitochondrial Disorders Unit of Medical Genetics and Neurogenetics Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Massimo Zeviani
- The Clinical School, University of Padova Department of Neurosciences Veneto Institute of Molecular Medicine Via Orus 2, Padova, Italy
| |
Collapse
|
16
|
Abnormalities of hydrogen sulfide and glutathione pathways in mitochondrial dysfunction. J Adv Res 2020; 27:79-84. [PMID: 33318868 PMCID: PMC7728579 DOI: 10.1016/j.jare.2020.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/17/2022] Open
Abstract
Background Mitochondrial disorders are genetic diseases for which therapy remains woefully inadequate. Therapy of these disorders is particularly challenging partially due to the heterogeneity and tissue-specificity of pathomechanisms involved in these disorders. Abnormalities in hydrogen sulfide (H2S) metabolism are emerging as novel mechanism in mitochondrial dysfunction. However, further studies are necessary to understand the effects, protective or detrimental, of these abnormalities, and their relevance, in mitochondrial diseases. Aim of Review To review the recent evidences of derangement of the metabolism of H2S, at biosynthesis or oxidation levels, in mitochondrial dysfunction, focusing specifically on the alterations of H2S oxidation caused by primary Coenzyme Q (CoQ) deficiency. Key Scientific Concepts of Review Mitochondria play a key role in the regulation of H2S and GSH metabolism pathways. However, further studies are needed to understand the consequences of abnormalities of H2S and GSH synthesis on the oxidation pathway, and vice versa; and on the levels of H2S and GSH, their tissue-specific detrimental effects, and their role the role in mitochondrial diseases. Beside the known H2S pathways, additional, tissue-specific, enzymatic systems, involved in H2S production and elimination, might exist.
Collapse
|
17
|
Özçelik S, Öztekin N, Kıykım E, Cansever MŞ, Aktuğlu‐Zeybek AÇ. Capillary electrophoresis with capacitively coupled contactless conductivity detection for the determination of urinary ethylmalonic acid for the diagnosis of ethylmalonic aciduria. J Sep Sci 2020; 43:1365-1371. [DOI: 10.1002/jssc.201901044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/30/2019] [Accepted: 01/16/2020] [Indexed: 01/17/2023]
Affiliation(s)
- Sirun Özçelik
- Department of ChemistryTechnical University of Istanbul Istanbul Turkey
| | - Nevin Öztekin
- Department of ChemistryTechnical University of Istanbul Istanbul Turkey
| | - Ertuğrul Kıykım
- Cerrahpaşa Medical FacultyDivision of Nutrition and MetabolismDepartment of PediatricsIstanbul University‐Cerrahpaşa Istanbul Turkey
| | | | - Ayşe Çiğdem Aktuğlu‐Zeybek
- Cerrahpaşa Medical FacultyDivision of Nutrition and MetabolismDepartment of PediatricsIstanbul University‐Cerrahpaşa Istanbul Turkey
| |
Collapse
|
18
|
Application of Antibiotics/Antimicrobial Agents on Dental Caries. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5658212. [PMID: 32076608 PMCID: PMC7013294 DOI: 10.1155/2020/5658212] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/13/2019] [Indexed: 02/05/2023]
Abstract
Dental caries is the most common oral disease. The bacteriological aetiology of dental caries promotes the use of antibiotics or antimicrobial agents to prevent this type of oral infectious disease. Antibiotics have been developed for more than 80 years since Fleming discovered penicillin in 1928, and systemic antibiotics have been used to treat dental caries for a long time. However, new types of antimicrobial agents have been developed to fight against dental caries. The purpose of this review is to focus on the application of systemic antibiotics and other antimicrobial agents with respect to their clinical use to date, including the history of their development, and their side effects, uses, structure types, and molecular mechanisms to promote a better understanding of the importance of microbial interactions in dental plaque and combinational treatments.
Collapse
|
19
|
Shen Y, Chen J, Shen W, Chen C, Lin Z, Li C. Molecular characterization of a novel sulfide:quinone oxidoreductase from the razor clam Sinonovacula constricta and its expression response to sulfide stress. Comp Biochem Physiol B Biochem Mol Biol 2020; 239:110367. [DOI: 10.1016/j.cbpb.2019.110367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/10/2019] [Accepted: 10/03/2019] [Indexed: 01/16/2023]
|
20
|
de Moura Alvorcem L, Britto R, Parmeggiani B, Glanzel NM, da Rosa-Junior NT, Cecatto C, Bobermin LD, Amaral AU, Wajner M, Leipnitz G. Evidence that thiol group modification and reactive oxygen species are involved in hydrogen sulfide-induced mitochondrial permeability transition pore opening in rat cerebellum. Mitochondrion 2019; 47:141-150. [DOI: 10.1016/j.mito.2018.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 08/01/2018] [Accepted: 11/02/2018] [Indexed: 12/16/2022]
|
21
|
|
22
|
Kohl JB, Mellis A, Schwarz G. Homeostatic impact of sulfite and hydrogen sulfide on cysteine catabolism. Br J Pharmacol 2019; 176:554-570. [PMID: 30088670 PMCID: PMC6346071 DOI: 10.1111/bph.14464] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/22/2018] [Accepted: 07/02/2018] [Indexed: 12/30/2022] Open
Abstract
Cysteine is one of the two key sulfur-containing amino acids with important functions in redox homeostasis, protein functionality and metabolism. Cysteine is taken up by mammals via their diet and can also be derived from methionine via the transsulfuration pathway. The cellular concentration of cysteine is kept within a narrow range by controlling its synthesis and degradation. There are two pathways for the catabolism of cysteine leading to sulfate, taurine and thiosulfate as terminal products. The oxidative pathway produces taurine and sulfate, while the H2 S pathway involves different enzymatic reactions leading to the formation and clearance of H2 S, an important signalling molecule in mammals, resulting in thiosulfate and sulfate. Sulfite is a common intermediate in both catabolic pathways. Sulfite is considered as cytotoxic and produces neurotoxic S-sulfonates. As a result, a deficiency in the terminal steps of cysteine or H2 S catabolism leads to severe forms of encephalopathy with the accumulation of sulfite and H2 S in the body. This review links the homeostatic regulation of both cysteine catabolic pathways to sulfite and H2 S. LINKED ARTICLES: This article is part of a themed section on Chemical Biology of Reactive Sulfur Species. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.4/issuetoc.
Collapse
Affiliation(s)
- Joshua B Kohl
- Institute of Biochemistry, Department of Chemistry and Center for Molecular Medicine CologneUniversity of CologneCologneGermany
| | - Anna‐Theresa Mellis
- Institute of Biochemistry, Department of Chemistry and Center for Molecular Medicine CologneUniversity of CologneCologneGermany
| | - Guenter Schwarz
- Institute of Biochemistry, Department of Chemistry and Center for Molecular Medicine CologneUniversity of CologneCologneGermany
| |
Collapse
|
23
|
Li X, Liu X, Qin Z, Wei M, Hou X, Zhang T, Zhang Z. A novel transcription factor Rwdd1 and its SUMOylation inhibit the expression of sqr, a key gene of mitochondrial sulfide metabolism in Urechis unicinctus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 204:180-189. [PMID: 30278355 DOI: 10.1016/j.aquatox.2018.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 05/26/2023]
Abstract
Sulfide-quinone oxidoreductase (SQR) is a key enzyme of sulfide metabolism in metazoans, and responsible for oxidizing sulfide into thiosulfate and transmitting the generated electrons to the ubiquinone. It has been revealed that the sqr mRNA level increases significantly in echiuran worm Urechis unicinctus exposed to sulfide, and HSF1, NF1 and Sp1 have been verified to participate in its transcriptional regulation. In this study, we obtained 23 potential transcription factors interacting possibly with the proximal region (-391 to +50) of sqr promoter, and focused on the RWD domain-containing 1 (Rwdd1), a protein with the maximum number of clones in yeast one-hybrid (Y1H) screening, to investigate its transcriptional regulation to U. unincitus sqr. The ChIP and EMSA assays identified that the Rwdd1 can bind directly to the promoter (+18/+36) of U. unicinctus sqr. The point mutation and transient transfection experiments discovered that TACG was the key sequence of the DNA element bound by the Rwdd1. Furthermore, the U. unicinctus Rwdd1 (UuRwdd1) was identified to be a transcription repressor inhibiting the sqr promoter activity, and the SUMOylation of UuRwdd1 at the lysine of 90th enhanced its inhibitory effect on sqr transcription further. Western blotting found Rwdd1 responded to sulfide in hindguts from U. unincitus, and the protein content showed a remarkable drop in hindgut nuclei in the early sulfide exposure, and then increased significantly both in the total protein and the nuclear protein extract. We suggested that the Rwdd1 is a novel transcription factor, and these data improve our understanding of the sqr transcriptional regulation and the mitochondrial sulfide metabolism.
Collapse
Affiliation(s)
- Xueyu Li
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiaolong Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhenkui Qin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Maokai Wei
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xitan Hou
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Tingting Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
24
|
Kitzler TM, Gupta IR, Osterman B, Poulin C, Trakadis Y, Waters PJ, Buhas DC. Acute and Chronic Management in an Atypical Case of Ethylmalonic Encephalopathy. JIMD Rep 2018; 45:57-63. [PMID: 30349987 DOI: 10.1007/8904_2018_136] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/01/2018] [Accepted: 08/17/2018] [Indexed: 12/19/2022] Open
Abstract
Ethylmalonic encephalopathy (EE) is caused by mutations in the ETHE1 gene. ETHE1 is vital for the catabolism of hydrogen sulfide (H2S). Patients with pathogenic mutations in ETHE1 have markedly increased thiosulfate, which is a reliable index of H2S levels. Accumulation of H2S is thought to cause the characteristic metabolic derangement found in EE. Recently introduced treatment strategies in EE, such as combined use of metronidazole (MNZ) and N-acetylcysteine (NAC), are aimed at lowering chronic H2S load. Experience with treatment strategies directed against acute episodes of metabolic decompensation (e.g., hemodialysis) is limited. Here we present an unusually mild, molecularly confirmed, case of EE in a 19-year-old male on chronic treatment with MNZ and NAC. During an acute episode of metabolic decompensation, we employed continuous renal replacement therapy (CRRT) to regain metabolic control. On continuous treatment with NAC and MNZ during the months preceding the acute event, plasma thiosulfate levels ranged from 1.6 to 4 μg/mL (reference range up to 2 μg/mL) and had a mean value of 2.5 μg/mL. During the acute decompensation, thiosulfate levels were 6.7 μg/mL, with hyperlactatemia and perturbed organic acid, acylglycine, and acylcarnitine profiles. CRRT decreased thiosulfate within 24 h to 1.4 μg/mL. Following discontinuation of CRRT, mean thiosulfate levels were 3.2 μg/mL (range, 2.4-3.7 μg/mL) accompanied by clinical improvement with metabolic stabilization of blood gas, acylcarnitine, organic acid, and acylglycine profiles. In conclusion, CRRT may help to regain metabolic control in patients with EE who have an acute metabolic decompensation on chronic treatment with NAC and MNZ.
Collapse
Affiliation(s)
- Thomas M Kitzler
- Department of Medical Genetics, McGill University Health Centre, Montreal, QC, Canada.
| | - Indra R Gupta
- Department of Pediatrics, Division of Nephrology, McGill University Health Centre, Montreal, QC, Canada
| | - Bradley Osterman
- Department of Pediatric Neurology, Centre Hospitalier de l'Université Laval (CHUL), Quebec City, QC, Canada
| | - Chantal Poulin
- Department of Pediatrics, Division of Neurology, McGill University Health Centre, Montreal, QC, Canada
| | - Yannis Trakadis
- Department of Medical Genetics, McGill University Health Centre, Montreal, QC, Canada
| | - Paula J Waters
- Medical Genetics Service, Department of Pediatrics, University of Sherbrooke Hospital Centre (CHUS), Sherbrooke, QC, Canada
| | - Daniela C Buhas
- Department of Medical Genetics, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
25
|
Boyer M, Sowa M, Di Meo I, Eftekharian S, Steenari MR, Tiranti V, Abdenur JE. Response to medical and a novel dietary treatment in newborn screen identified patients with ethylmalonic encephalopathy. Mol Genet Metab 2018. [PMID: 29526615 DOI: 10.1016/j.ymgme.2018.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ethylmalonic encephalopathy (EE) is a devastating neurodegenerative disease caused by mutations in the ETHE1 gene critical for hydrogen sulfide (H2S) detoxification. Patients present in infancy with hypotonia, developmental delay, diarrhea, orthostatic acrocyanosis and petechiae. Biochemical findings include elevated C4, C5 acylcarnitines and lactic and ethylmalonic acid (EMA) in body fluids. Current treatment modalities include metronidazole and N-acetylcysteine (NAC) to lower the production and promote detoxification of toxic H2S. Patients are typically identified after the onset of clinical symptoms and there is limited information about long term response to treatment. We report the findings of two unrelated patients with EE, identified through newborn screening, who were managed with conventional treatment (NAC, metronidazole alternated with neomycin) and in patient 2, a novel dietary treatment restricting sulfur containing amino acids. Pathogenic mutations were confirmed in the ETHE1 gene (homozygous splice site mutation in patient 1, c.505 + 1G > A; compound heterozygous mutations in patient 2, c.131_132delAG + c.566delG). Both patients were started on metronidazole and NAC by 10 weeks of age and treated for 23 months. Patient 1 did not accept the metabolic formula due to palatability and parental refusal for gastrostomy tube placement. She demonstrated improved biomarkers (EMA, lactic acid and thiosulfate) and an attenuated clinical course. Patient 2 was started on a low methionine and cysteine diet at 8 months of age utilizing SOD Anamix® Early Years, (Nutricia). Baseline EMA levels were (642 mg/g Cr; n = 2) and decreased with medical treatment by 38% to a mean of 399 (n = 4, SD = 71, p 0.0013). With dietary treatment EMA levels were further reduced by 42% to a mean of 233 (n = 8, SD = 52, p 0.0030). Lactic acid, thiosulfates and clinical outcomes were also improved. Our long-term follow-up confirms previous reports of clinical improvement with NAC and metronidazole treatment. Additionally, our studies suggest that a diet restricted in sulfur-containing amino acids results in further improvement in clinical outcomes and biochemical markers.
Collapse
Affiliation(s)
- M Boyer
- Division of Metabolic Disorders, CHOC Children's Hospital, Orange, CA, United States
| | - M Sowa
- Division of Metabolic Disorders, CHOC Children's Hospital, Orange, CA, United States
| | - I Di Meo
- Unit of Molecular Neurogenetics, Foundation IRCCS Neurological Institute C. Besta, Milan, Italy
| | - S Eftekharian
- Division of Metabolic Disorders, CHOC Children's Hospital, Orange, CA, United States
| | - M R Steenari
- Division of Pediatric Neurology, CHOC Children's Hospital, Orange, CA, United States; Department of Pediatrics, University of California-Irvine, Orange, CA, United States
| | - V Tiranti
- Unit of Molecular Neurogenetics, Foundation IRCCS Neurological Institute C. Besta, Milan, Italy
| | - J E Abdenur
- Division of Metabolic Disorders, CHOC Children's Hospital, Orange, CA, United States; Department of Pediatrics, University of California-Irvine, Orange, CA, United States.
| |
Collapse
|
26
|
Abstract
Besides its essential role in protein synthesis, cysteine plays vital roles in redox homeostasis, being a component of the major antioxidant glutathione (GSH) and a potent antioxidant by itself. In addition, cysteine undergoes a variety of post-translational modifications that modulate several physiological processes. It is becoming increasingly clear that redox-modulated events play important roles not only in peripheral tissues but also in the brain where cysteine disposition is central to these pathways. Dysregulated cysteine metabolism is associated with several neurodegenerative disorders. Accordingly, restoration of cysteine balance has therapeutic benefits. This review discusses metabolic signaling pathways pertaining to cysteine disposition in the brain under normal and pathological conditions, highlighting recent findings on cysteine metabolism during aging and in neurodegenerative conditions such as Huntington's disease (HD) and molybdenum cofactor (MoCo) deficiency (MoCD) among others.
Collapse
Affiliation(s)
- Bindu D Paul
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Juan I Sbodio
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Solomon H Snyder
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
27
|
Bioenergetics dysfunction, mitochondrial permeability transition pore opening and lipid peroxidation induced by hydrogen sulfide as relevant pathomechanisms underlying the neurological dysfunction characteristic of ethylmalonic encephalopathy. Biochim Biophys Acta Mol Basis Dis 2017. [PMID: 28624490 DOI: 10.1016/j.bbadis.2017.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Hydrogen sulfide (sulfide) accumulates at high levels in brain of patients with ethylmalonic encephalopathy (EE). In the present study, we evaluated whether sulfide could disturb energy and redox homeostasis, and induce mitochondrial permeability transition (mPT) pore opening in rat brain aiming to better clarify the neuropathophysiology of EE. Sulfide decreased the activities of citrate synthase and aconitase in rat cerebral cortex mitochondria, and of creatine kinase (CK) in rat cerebral cortex, striatum and hippocampus supernatants. Glutathione prevented sulfide-induced CK activity decrease in the cerebral cortex. Sulfide also diminished mitochondrial respiration in cerebral cortex homogenates, and dissipated mitochondrial membrane potential (ΔΨm) and induced swelling in the presence of calcium in brain mitochondria. Alterations in ΔΨm and swelling caused by sulfide were prevented by the combination of ADP and cyclosporine A, and by ruthenium red, indicating the involvement of mPT in these effects. Furthermore, sulfide increased the levels of malondialdehyde in cerebral cortex supernatants, which was prevented by resveratrol and attenuated by glutathione, and of thiol groups in a medium devoid of brain samples. Finally, we verified that sulfide did not alter cell viability and DCFH oxidation in cerebral cortex slices, primary cortical astrocyte cultures and SH-SY5Y cells. Our data provide evidence that bioenergetics disturbance and lipid peroxidation along with mPT pore opening are involved in the pathophysiology of brain damage observed in EE.
Collapse
|
28
|
Kılıç M, Dedeoğlu Ö, Göçmen R, Kesici S, Yüksel D. Successful treatment of a patient with ethylmalonic encephalopathy by intravenous N-acetylcysteine. Metab Brain Dis 2017; 32:293-296. [PMID: 27830356 DOI: 10.1007/s11011-016-9928-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/01/2016] [Indexed: 12/28/2022]
Abstract
Ethylmalonic encephalopathy (EE) is an autosomal recessive devastating metabolic disorder affecting the brain, gastrointestinal tract, peripheral vessels and rarely the other vascular organs. We report a 10-month-old girl who presented as a meningococcemia clinic but later diagnosed ethylmalonic encephalopathy. Molecular analyses revealed a homozygous c.554 T > G; p. L185R mutation in ETHE1 gene. She was only partially benefited from riboflavine, coenzyme Q10, metronidazole, N-acetylcysteine and symptomatic treatment and discharged from hospital with the sequela of oxygene dependance and developmental delay. We observed N-acetylcysteine 100 mg/kg/day intravenous infusion theraphy may be the most important drug especially in comatous EE patients.
Collapse
Affiliation(s)
- Mustafa Kılıç
- Metabolism Unit, Sami Ulus Children Hospital, Babur cad. No: 44 Altındağ, 06080, Ankara, Turkey.
| | - Özge Dedeoğlu
- Pediatric Neurology Unit, Sami Ulus Children Hospital, Ankara, Turkey
| | - Rahşan Göçmen
- Deparment of Radiology, Hacettepe University, Ankara, Turkey
| | - Selman Kesici
- Pediatric Intensive Care Unit, Sami Ulus Children Hospital, Ankara, Turkey
| | - Deniz Yüksel
- Pediatric Neurology Unit, Sami Ulus Children Hospital, Ankara, Turkey
| |
Collapse
|
29
|
Ziosi M, Di Meo I, Kleiner G, Gao XH, Barca E, Sanchez-Quintero MJ, Tadesse S, Jiang H, Qiao C, Rodenburg RJ, Scalais E, Schuelke M, Willard B, Hatzoglou M, Tiranti V, Quinzii CM. Coenzyme Q deficiency causes impairment of the sulfide oxidation pathway. EMBO Mol Med 2017; 9:96-111. [PMID: 27856618 PMCID: PMC5210092 DOI: 10.15252/emmm.201606356] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 09/15/2016] [Accepted: 10/19/2016] [Indexed: 01/16/2023] Open
Abstract
Coenzyme Q (CoQ) is an electron acceptor for sulfide-quinone reductase (SQR), the first enzyme of the hydrogen sulfide oxidation pathway. Here, we show that lack of CoQ in human skin fibroblasts causes impairment of hydrogen sulfide oxidation, proportional to the residual levels of CoQ. Biochemical and molecular abnormalities are rescued by CoQ supplementation in vitro and recapitulated by pharmacological inhibition of CoQ biosynthesis in skin fibroblasts and ADCK3 depletion in HeLa cells. Kidneys of Pdss2kd/kd mice, which only have ~15% residual CoQ concentrations and are clinically affected, showed (i) reduced protein levels of SQR and downstream enzymes, (ii) accumulation of hydrogen sulfides, and (iii) glutathione depletion. These abnormalities were not present in brain, which maintains ~30% residual CoQ and is clinically unaffected. In Pdss2kd/kd mice, we also observed low levels of plasma and urine thiosulfate and increased blood C4-C6 acylcarnitines. We propose that impairment of the sulfide oxidation pathway induced by decreased levels of CoQ causes accumulation of sulfides and consequent inhibition of short-chain acyl-CoA dehydrogenase and glutathione depletion, which contributes to increased oxidative stress and kidney failure.
Collapse
Affiliation(s)
- Marcello Ziosi
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Ivano Di Meo
- Unit of Molecular Neurogenetics, IRCCS Foundation Neurological Institute "Carlo Besta", Milan, Italy
| | - Giulio Kleiner
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Xing-Huang Gao
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Emanuele Barca
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | - Saba Tadesse
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Hongfeng Jiang
- Irving Institute for Clinical and Translational Research, Columbia University Medical Center, New York, NY, USA
| | - Changhong Qiao
- Irving Institute for Clinical and Translational Research, Columbia University Medical Center, New York, NY, USA
| | - Richard J Rodenburg
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine (RCMM), RadboudUMC, Nijmegen, The Netherlands
| | - Emmanuel Scalais
- Division of Paediatric Neurology, Department of Paediatrics, Centre Hospitalier de Luxembourg, Luxembourg City, Luxembourg
| | - Markus Schuelke
- Department of Neuropediatrics and NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Belinda Willard
- Mass Spectrometry Laboratory for Protein Sequencing, Learner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Valeria Tiranti
- Unit of Molecular Neurogenetics, IRCCS Foundation Neurological Institute "Carlo Besta", Milan, Italy
| | - Catarina M Quinzii
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
30
|
Niewiadomski J, Zhou JQ, Roman HB, Liu X, Hirschberger LL, Locasale JW, Stipanuk MH. Effects of a block in cysteine catabolism on energy balance and fat metabolism in mice. Ann N Y Acad Sci 2016; 1363:99-115. [PMID: 26995761 DOI: 10.1111/nyas.13021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/08/2015] [Accepted: 01/19/2016] [Indexed: 01/14/2023]
Abstract
To gain further insights into the effects of elevated cysteine levels on energy metabolism and the possible mechanisms underlying these effects, we conducted studies in cysteine dioxygenase (Cdo1)-null mice. Cysteine dioxygenase (CDO) catalyzes the first step of the major pathway for cysteine catabolism. When CDO is absent, tissue and plasma cysteine levels are elevated, resulting in enhanced flux of cysteine through desulfhydration reactions. When Cdo1-null mice were fed a high-fat diet, they gained more weight than their wild-type controls, regardless of whether the diet was supplemented with taurine. Cdo1-null mice had markedly lower leptin levels, higher feed intakes, and markedly higher abundance of hepatic stearoyl-CoA desaturase 1 (SCD1) compared to wild-type control mice, and these differences were not affected by the fat or taurine content of the diet. Thus, reported associations of elevated cysteine levels with greater weight gain and with elevated hepatic Scd1 expression are also seen in the Cdo1-null mouse model. Hepatic accumulation of acylcarnitines suggests impaired mitochondrial β-oxidation of fatty acids in Cdo1-null mice. The strong associations of elevated cysteine levels with excess H2 S production and impairments in energy metabolism suggest that H2 S signaling could be involved.
Collapse
Affiliation(s)
| | - James Q Zhou
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
| | - Heather B Roman
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
| | - Xiaojing Liu
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
| | | | - Jason W Locasale
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
| | - Martha H Stipanuk
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
| |
Collapse
|
31
|
Di Meo I, Lamperti C, Tiranti V. Mitochondrial diseases caused by toxic compound accumulation: from etiopathology to therapeutic approaches. EMBO Mol Med 2016. [PMID: 26194912 PMCID: PMC4604682 DOI: 10.15252/emmm.201505040] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial disorders are a group of highly invalidating human conditions for which effective treatment is currently unavailable and characterized by faulty energy supply due to defective oxidative phosphorylation (OXPHOS). Given the complexity of mitochondrial genetics and biochemistry, mitochondrial inherited diseases may present with a vast range of symptoms, organ involvement, severity, age of onset, and outcome. Despite the wide spectrum of clinical signs and biochemical underpinnings of this group of dis-orders, some common traits can be identified, based on both pathogenic mechanisms and potential therapeutic approaches. Here, we will review two peculiar mitochondrial disorders, ethylmalonic encephalopathy (EE) and mitochondrial neurogastrointestinal encephalomyopathy (MNGIE), caused by mutations in the ETHE1 and TYMP nuclear genes, respectively. ETHE1 encodes for a mitochondrial enzyme involved in sulfide detoxification and TYMP for a cytosolic enzyme involved in the thymidine/deoxyuridine catabolic pathway. We will discuss these two clinical entities as a paradigm of mitochondrial diseases caused by the accumulation of compounds normally present in traces, which exerts a toxic and inhibitory effect on the OXPHOS system.
Collapse
Affiliation(s)
- Ivano Di Meo
- Unit of Molecular Neurogenetics, Foundation IRCCS Neurological Institute C. Besta, Milan, Italy
| | - Costanza Lamperti
- Unit of Molecular Neurogenetics, Foundation IRCCS Neurological Institute C. Besta, Milan, Italy
| | - Valeria Tiranti
- Unit of Molecular Neurogenetics, Foundation IRCCS Neurological Institute C. Besta, Milan, Italy
| |
Collapse
|
32
|
Korshunov S, Imlay KRC, Imlay JA. The cytochrome bd oxidase of Escherichia coli prevents respiratory inhibition by endogenous and exogenous hydrogen sulfide. Mol Microbiol 2016; 101:62-77. [PMID: 26991114 DOI: 10.1111/mmi.13372] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2016] [Indexed: 12/31/2022]
Abstract
When sulfur compounds are scarce or difficult to process, Escherichia coli adapts by inducing the high-level expression of sulfur-compound importers. If cystine then becomes available, the cystine is rapidly overimported and reduced, leading to a burgeoning pool of intracellular cysteine. Most of the excess cysteine is exported, but some is adventitiously degraded, with the consequent release of sulfide. Sulfide is a potent ligand of copper and heme moieties, raising the prospect that it interferes with enzymes. We observed that when cystine was provided and sulfide levels rose, E. coli became strictly dependent upon cytochrome bd oxidase for continued respiration. Inspection revealed that low-micromolar levels of sulfide inhibited the proton-pumping cytochrome bo oxidase that is regarded as the primary respiratory oxidase. In the absence of the back-up cytochrome bd oxidase, growth failed. Exogenous sulfide elicited the same effect. The potency of sulfide was enhanced when oxygen concentrations were low. Natural oxic-anoxic interfaces are often sulfidic, including the intestinal environment where E. coli dwells. We propose that the sulfide resistance of the cytochrome bd oxidase is a key trait that permits respiration in such habitats.
Collapse
Affiliation(s)
- Sergey Korshunov
- Department of Microbiology, University of Illinois, Urbana, IL, 61801, USA
| | - Karin R C Imlay
- Department of Microbiology, University of Illinois, Urbana, IL, 61801, USA
| | - James A Imlay
- Department of Microbiology, University of Illinois, Urbana, IL, 61801, USA
| |
Collapse
|
33
|
Sahebekhtiari N, Nielsen CB, Johannsen M, Palmfeldt J. Untargeted Metabolomics Analysis Reveals a Link between ETHE1-Mediated Disruptive Redox State and Altered Metabolic Regulation. J Proteome Res 2016; 15:1630-8. [DOI: 10.1021/acs.jproteome.6b00100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Navid Sahebekhtiari
- Research
Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Camilla Bak Nielsen
- Section
for Forensic Chemistry, Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Mogens Johannsen
- Section
for Forensic Chemistry, Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Johan Palmfeldt
- Research
Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| |
Collapse
|
34
|
Papetti L, Garone G, Schettini L, Giordano C, Nicita F, Papoff P, Zeviani M, Leuzzi V, Spalice A. Severe early onset ethylmalonic encephalopathy with West syndrome. Metab Brain Dis 2015; 30:1537-45. [PMID: 26194623 DOI: 10.1007/s11011-015-9707-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/26/2015] [Indexed: 10/23/2022]
Abstract
Ethylmalonic encephalopathy (EE) is a rare autosomal recessive disorder characterized by early onset encephalopathy, chronic diarrhoea, petechiae, orthostatic acrocyanosis and defective cytochrome c oxidase (COX) in muscle and brain. High levels of lactic, ethylmalonic and methylsuccinic acids are detected in body fluids. EE is caused by mutations in ETHE1 gene, a mitochondrial sulfur dioxygenase. Neurologic signs and symptoms include progressively delayed development, hypotonia, seizures, and abnormal movements. We report on the clinical, electroencephalographic and MRI findings of a baby with a severe early onset encephalopathy associated with novel ETHE1 gene mutation. This is the first case described in literature with an early pure epileptic onset, presenting with West syndrome.
Collapse
MESH Headings
- Amino Acid Sequence
- Biomarkers/blood
- Brain/pathology
- Brain Diseases, Metabolic, Inborn/complications
- Brain Diseases, Metabolic, Inborn/genetics
- Brain Diseases, Metabolic, Inborn/pathology
- Electroencephalography
- Female
- Humans
- Infant
- Magnetic Resonance Imaging
- Mitochondrial Proteins/genetics
- Molecular Sequence Data
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Mutation/genetics
- Nucleocytoplasmic Transport Proteins/genetics
- Purpura/complications
- Purpura/genetics
- Purpura/pathology
- Spasms, Infantile/complications
- Spasms, Infantile/genetics
- Spasms, Infantile/pathology
Collapse
Affiliation(s)
- Laura Papetti
- Division of Child Neurology, Department of Paediatrics, Sapienza University of Rome, Rome, Italy
| | - Giacomo Garone
- Division of Child Neurology, Department of Paediatrics, Sapienza University of Rome, Rome, Italy
| | - Livia Schettini
- Division of Child Neurology, Department of Paediatrics, Sapienza University of Rome, Rome, Italy
| | - Carla Giordano
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Nicita
- Division of Child Neurology, Department of Paediatrics, Sapienza University of Rome, Rome, Italy
| | - Paola Papoff
- Pediatric Emergency and Intensive Care, Department of Paediatrics, Sapienza University of Rome, Rome, Italy
| | | | - Vincenzo Leuzzi
- Division of Child Neurology, Department of Paediatrics, Sapienza University of Rome, Rome, Italy
| | - Alberto Spalice
- Division of Child Neurology, Department of Paediatrics, Sapienza University of Rome, Rome, Italy.
- Department of Pediatrics - Child Neurology Division, Università "Sapienza" Roma, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
35
|
Yiş U, Polat İ, Karakaya P, Ayanoğlu M, Hiz AS. Importance of acrocyanosis in delayed walking. J Pediatr Neurosci 2015; 10:80-1. [PMID: 25878756 PMCID: PMC4395958 DOI: 10.4103/1817-1745.154368] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We present a four-year-old wth ethylmalonic encephalopathy who presented with delayed walking. She had bilateral hyperintense lesions in the basal ganglia. Molecular analysis revealed a homozygous c.3G>T mutation in the ETHE1 gene. She did not have typical findings of the disease including recurrent petechia, chronic diarrhea and acrocyanosis was very subtle and orthostatic. She benefited from riboflavine and Q10 treatments. We suggest that acrocyanosis should be questioned and examined in patients with motor delay.
Collapse
Affiliation(s)
- Uluç Yiş
- Department of Pediatrics, Division of Child Neurology, School of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - İpek Polat
- Department of Pediatrics, Division of Child Neurology, School of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Pakize Karakaya
- Department of Pediatrics, Division of Child Neurology, School of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Müge Ayanoğlu
- Department of Pediatrics, Division of Child Neurology, School of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Ayşe Semra Hiz
- Department of Pediatrics, Division of Child Neurology, School of Medicine, Dokuz Eylül University, İzmir, Turkey
| |
Collapse
|
36
|
Módis K, Bos EM, Calzia E, van Goor H, Coletta C, Papapetropoulos A, Hellmich MR, Radermacher P, Bouillaud F, Szabo C. Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part II. Pathophysiological and therapeutic aspects. Br J Pharmacol 2014; 171:2123-46. [PMID: 23991749 DOI: 10.1111/bph.12368] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 07/30/2013] [Accepted: 08/05/2013] [Indexed: 12/15/2022] Open
Abstract
Emerging work demonstrates the dual regulation of mitochondrial function by hydrogen sulfide (H2 S), including, at lower concentrations, a stimulatory effect as an electron donor, and, at higher concentrations, an inhibitory effect on cytochrome C oxidase. In the current article, we overview the pathophysiological and therapeutic aspects of these processes. During cellular hypoxia/acidosis, the inhibitory effect of H2 S on complex IV is enhanced, which may shift the balance of H2 S from protective to deleterious. Several pathophysiological conditions are associated with an overproduction of H2 S (e.g. sepsis), while in other disease states H2 S levels and H2 S bioavailability are reduced and its therapeutic replacement is warranted (e.g. diabetic vascular complications). Moreover, recent studies demonstrate that colorectal cancer cells up-regulate the H2 S-producing enzyme cystathionine β-synthase (CBS), and utilize its product, H2 S, as a metabolic fuel and tumour-cell survival factor; pharmacological CBS inhibition or genetic CBS silencing suppresses cancer cell bioenergetics and suppresses cell proliferation and cell chemotaxis. In the last chapter of the current article, we overview the field of H2 S-induced therapeutic 'suspended animation', a concept in which a temporary pharmacological reduction in cell metabolism is achieved, producing a decreased oxygen demand for the experimental therapy of critical illness and/or organ transplantation.
Collapse
Affiliation(s)
- Katalin Módis
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ethylmalonic encephalopathy ETHE1 R163W/R163Q mutations alter protein stability and redox properties of the iron centre. PLoS One 2014; 9:e107157. [PMID: 25198162 PMCID: PMC4157841 DOI: 10.1371/journal.pone.0107157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/06/2014] [Indexed: 11/19/2022] Open
Abstract
ETHE1 is an iron-containing protein from the metallo β-lactamase family involved in the mitochondrial sulfide oxidation pathway. Mutations in ETHE1 causing loss of function result in sulfide toxicity and in the rare fatal disease Ethylmalonic Encephalopathy (EE). Frequently mutations resulting in depletion of ETHE1 in patient cells are due to severe structural and folding defects. However, some ETHE1 mutations yield nearly normal protein levels and in these cases disease mechanism was suspected to lie in compromised catalytic activity. To address this issue and to elicit how ETHE1 dysfunction results in EE, we have investigated two such pathological mutations, ETHE1-p.Arg163Gln and p.Arg163Trp. In addition, we report a number of benchmark properties of wild type human ETHE1, including for the first time the redox properties of the mononuclear iron centre. We show that loss of function in these variants results from a combination of decreased protein stability and activity. Although structural assessment revealed that the protein fold is not perturbed by mutations, both variants have decreased thermal stabilities and higher proteolytic susceptibilities. ETHE1 wild type and variants bind 1 ± 0.2 mol iron/protein and no zinc; however, the variants exhibited only ≈ 10% of wild-type catalytically activity. Analysis of the redox properties of ETHE1 mononuclear iron centre revealed that the variants have lowered reduction potentials with respect to that of the wild type. This illustrates how point mutation-induced loss of function may arise via very discrete subtle conformational effects on the protein fold and active site chemistry, without extensive disruption of the protein structure or protein-cofactor association.
Collapse
|
38
|
Mani S, Cao W, Wu L, Wang R. Hydrogen sulfide and the liver. Nitric Oxide 2014; 41:62-71. [PMID: 24582857 DOI: 10.1016/j.niox.2014.02.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/11/2014] [Accepted: 02/17/2014] [Indexed: 12/16/2022]
Abstract
Hydrogen sulfide (H2S) is a gasotransmitter that regulates numerous physiological and pathophysiological processes in our body. Enzymatic production of H2S is catalyzed by cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS), and 3-mercaptopyruvate sulfurtransferase (MST). All these three enzymes present in the liver and via H2S production regulate liver functions. The liver is the hub for metabolism of glucose and lipids, and maintains the level of circulatory lipids through lipoprotein metabolism. Hepatic H2S metabolism affects glucose metabolism, insulin sensitivity, lipoprotein synthesis, mitochondrial biogenetics and biogenesis. Malfunction of hepatic H2S metabolism may be involved in many liver diseases, such as hepatic fibrosis and hepatic cirrhosis.
Collapse
Affiliation(s)
- Sarathi Mani
- Department of Biology, Lakehead University, Thunder Bay, Canada; Cardiovascular and Metabolic Research Unit, Lakehead University, Thunder Bay, Canada
| | - Wei Cao
- Cardiovascular and Metabolic Research Unit, Lakehead University, Thunder Bay, Canada; Thunder Bay Regional Research Institute, Thunder Bay, Canada; Department of Natural Medicine & Institute of Materia Medica, Fourth Military Medical University, Xi'an, China
| | - Lingyun Wu
- Cardiovascular and Metabolic Research Unit, Lakehead University, Thunder Bay, Canada; Thunder Bay Regional Research Institute, Thunder Bay, Canada; Department of Health Sciences, Lakehead University, Thunder Bay, Canada
| | - Rui Wang
- Department of Biology, Lakehead University, Thunder Bay, Canada; Cardiovascular and Metabolic Research Unit, Lakehead University, Thunder Bay, Canada.
| |
Collapse
|
39
|
Rahman S. Gastrointestinal and hepatic manifestations of mitochondrial disorders. J Inherit Metab Dis 2013; 36:659-73. [PMID: 23674168 DOI: 10.1007/s10545-013-9614-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/13/2013] [Accepted: 04/16/2013] [Indexed: 12/23/2022]
Abstract
Inherited defects of oxidative phosphorylation lead to heterogeneous, often multisystem, mitochondrial diseases. This review highlights those mitochondrial syndromes with prominent gastrointestinal and hepatic symptoms, categorised according to underlying disease mechanism. Mitochondrial encephalopathies with major gastrointestinal involvement include mitochondrial neurogastrointestinal encephalopathy and ethylmalonic encephalopathy, which are each associated with highly specific clinical and metabolic profiles. Mitochondrial hepatopathies are most frequently caused by defects of mitochondrial DNA maintenance and expression. Although mitochondrial disorders are notorious for extreme clinical, biochemical and genetic heterogeneity, there are some pathognomonic clinical and metabolic clues that suggest a specific diagnosis, and these are highlighted. An approach to diagnosis of these complex disorders is presented, together with a genetic classification, including mitochondrial DNA disorders and nuclear-encoded defects of mitochondrial DNA maintenance and translation, OXPHOS complex assembly and mitochondrial membrane lipids. Finally, supportive and experimental therapeutic options for these currently incurable diseases are reviewed, including liver transplantation, allogeneic haematopoietic stem cell transplantation and gene therapy.
Collapse
Affiliation(s)
- Shamima Rahman
- Mitochondrial Research Group, Clinical and Molecular Genetics Unit, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
| |
Collapse
|