1
|
Lyu J, Narum DE, Baldwin SL, Larsen SE, Bai X, Griffith DE, Dartois V, Naidoo T, Steyn AJC, Coler RN, Chan ED. Understanding the development of tuberculous granulomas: insights into host protection and pathogenesis, a review in humans and animals. Front Immunol 2024; 15:1427559. [PMID: 39717773 PMCID: PMC11663721 DOI: 10.3389/fimmu.2024.1427559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 11/18/2024] [Indexed: 12/25/2024] Open
Abstract
Granulomas, organized aggregates of immune cells which form in response to Mycobacterium tuberculosis (Mtb), are characteristic but not exclusive of tuberculosis (TB). Despite existing investigations on TB granulomas, the determinants that differentiate host-protective granulomas from granulomas that contribute to TB pathogenesis are often disputed. Thus, the goal of this narrative review is to help clarify the existing literature on such determinants. We adopt the a priori view that TB granulomas are host-protective organelles and discuss the molecular and cellular determinants that induce protective granulomas and those that promote their failure. While reports about protective TB granulomas and their failure may initially seem contradictory, it is increasingly recognized that either deficiencies or excesses of the molecular and cellular components in TB granuloma formation may be detrimental to the host. More specifically, insufficient or excessive expression/representation of the following components have been reported to skew granulomas toward the less protective phenotype: (i) epithelioid macrophages; (ii) type 1 adaptive immune response; (iii) type 2 adaptive immune response; (iv) tumor necrosis factor; (v) interleukin-12; (vi) interleukin-17; (vii) matrix metalloproteinases; (viii) hypoxia in the TB granulomas; (ix) hypoxia inducible factor-1 alpha; (x) aerobic glycolysis; (xi) indoleamine 2,3-dioxygenase activity; (xii) heme oxygenase-1 activity; (xiii) immune checkpoint; (xiv) leukotriene A4 hydrolase activity; (xv) nuclear-factor-kappa B; and (xvi) transforming growth factor-beta. Rather, more precise and timely coordinated immune responses appear essential for eradication or containment of Mtb infection. Since there are several animal models of infection with Mtb, other species within the Mtb complex, and the surrogate Mycobacterium marinum - whether natural (cattle, elephants) or experimental (zebrafish, mouse, guinea pig, rabbit, mini pig, goat, non-human primate) infections - we also compared the TB granulomatous response and other pathologic lung lesions in various animals infected with one of these mycobacteria with that of human pulmonary TB. Identifying components that dictate the formation of host-protective granulomas and the circumstances that result in their failure can enhance our understanding of the macrocosm of human TB and facilitate the development of novel remedies - whether they be direct therapeutics or indirect interventions - to efficiently eliminate Mtb infection and prevent its pathologic sequelae.
Collapse
Affiliation(s)
- Jiwon Lyu
- Division of Pulmonary and Critical Medicine, Soon Chun Hyang University Cheonan Hospital, Seoul, Republic of Korea
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
| | - Drew E. Narum
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
| | - Susan L. Baldwin
- Center for Global Infectious Diseases, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Sasha E. Larsen
- Center for Global Infectious Diseases, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Xiyuan Bai
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - David E. Griffith
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| | - Threnesan Naidoo
- Departments of Forensic & Legal Medicine and Laboratory Medicine & Pathology, Faculty of Medicine & Health Sciences, Walter Sisulu University, Mthatha, South Africa
| | - Adrie J. C. Steyn
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Microbiology and Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rhea N. Coler
- Center for Global Infectious Diseases, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Edward D. Chan
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| |
Collapse
|
2
|
Ye Z, Li L, Yang L, Zhuang L, Aspatwar A, Wang L, Gong W. Impact of diabetes mellitus on tuberculosis prevention, diagnosis, and treatment from an immunologic perspective. EXPLORATION (BEIJING, CHINA) 2024; 4:20230138. [PMID: 39439490 PMCID: PMC11491313 DOI: 10.1002/exp.20230138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/02/2024] [Indexed: 10/25/2024]
Abstract
The coexistence of diabetes mellitus (DM) and tuberculosis (TB) presents a significant global burden, with DM being recognized as a major risk factor for TB. This review comprehensively analyzes the immunological aspects of DM-TB comorbidity, shedding light on the impact of DM on TB pathogenesis and immune responses. It reveals that high blood glucose levels in TB patients contribute to reduced innate immune cell count, compromised phagocytic function, and delayed antigen presentation. These factors ultimately impair the clearance of Mycobacterium tuberculosis (MTB) and delay adaptive immune responses. With the interaction between TB and DM, there is an increase in inflammation and elevated secretion of pro-inflammatory cytokines by immune cells. This exacerbates the inflammatory response and contributes to poor treatment outcomes in TB. Moreover, the review explores the effects of DM on TB prevention, diagnosis, and treatment. It highlights how poor glycemic control, insulin resistance (IR), DM complications, and genetic factors increase the risk of MTB infection in individuals with DM. Additionally, DM-related immune suppression adversely affects the sensitivity of traditional diagnostic tests for TB, potentially resulting in underdiagnosis and delayed intervention. To mitigate the burden of TB in DM patients, the review emphasizes the need for further research on the mechanisms underlying DM reactivation in latent TB infection (LTBI). It shows how important it is to find and treat LTBI in DM patients as soon as possible and suggests looking into biomarkers that are specific to DM to make diagnosis more accurate.
Collapse
Affiliation(s)
- Zhaoyang Ye
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and TreatmentSenior Department of TuberculosisThe Eighth Medical Center of PLA General HospitalBeijingChina
- Hebei North UniversityZhangjiakouHebeiChina
- Department of GeriatricsThe Eighth Medical Center of PLA General HospitalBeijingChina
| | | | - Ling Yang
- Hebei North UniversityZhangjiakouHebeiChina
| | - Li Zhuang
- Hebei North UniversityZhangjiakouHebeiChina
| | - Ashok Aspatwar
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Liang Wang
- Department of GeriatricsThe Eighth Medical Center of PLA General HospitalBeijingChina
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and TreatmentSenior Department of TuberculosisThe Eighth Medical Center of PLA General HospitalBeijingChina
| |
Collapse
|
3
|
Kamolratanakul S, Ariyanon W, Udompornpitak K, Bhunyakarnjanarat T, Leelahavanichkul A, Dhitavat J, Wilairatana P, Chancharoenthana W. Comparison of the Single Cell Immune Landscape between Subjects with High Mycobacterium tuberculosis Bacillary Loads during Active Pulmonary Tuberculosis and Household Members with Latent Tuberculosis Infection. Cells 2024; 13:362. [PMID: 38391975 PMCID: PMC10887672 DOI: 10.3390/cells13040362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
It is unclear how the immune system controls the transition from latent tuberculosis (TB) infection (LTBI) to active pulmonary infection (PTB). Here, we applied mass spectrometry cytometry time-of-flight (CyTOF) analysis of peripheral blood mononuclear cells to compare the immunological landscapes in patients with high tuberculous bacillary load PTB infections and LTBI. A total of 32 subjects (PTB [n = 12], LTBI [n = 17], healthy volunteers [n = 3]) were included. Participants with active PTBs were phlebotomized before administering antituberculosis treatment, whereas participants with LTBI progressed to PTB at the time of household screening. In the present study, CyTOF analysis identified significantly higher percentages of mucosal-associated invariant natural killer T (MAIT NKT) cells in subjects with LTBI than in those with active PTB and healthy controls. Moreover, 6 of 17 (35%) subjects with LTBI progressed to active PTB (LTBI progression) and had higher proportions of MAIT NKT cells and early NKT cells than those without progression (LTBI non-progression). Subjects with LTBI progression also showed a tendency toward low B cell levels relative to other subject groups. In conclusion, MAIT NKT cells were substantially more prevalent in subjects with LTBI, particularly those with progression to active PTB.
Collapse
Affiliation(s)
- Supitcha Kamolratanakul
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.K.); (J.D.); (P.W.)
- Tropical Immunology and Translational Research Unit (TITRU), Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Wassawon Ariyanon
- Department of Medicine, Banphaeo General Hospital (BGH), Samutsakhon 74120, Thailand;
| | - Kanyarat Udompornpitak
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (K.U.); (T.B.); (A.L.)
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thansita Bhunyakarnjanarat
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (K.U.); (T.B.); (A.L.)
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (K.U.); (T.B.); (A.L.)
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jittima Dhitavat
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.K.); (J.D.); (P.W.)
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.K.); (J.D.); (P.W.)
| | - Wiwat Chancharoenthana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.K.); (J.D.); (P.W.)
- Tropical Immunology and Translational Research Unit (TITRU), Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
4
|
Stewart P, Patel S, Comer A, Muneer S, Nawaz U, Quann V, Bansal M, Venketaraman V. Role of B Cells in Mycobacterium Tuberculosis Infection. Vaccines (Basel) 2023; 11:vaccines11050955. [PMID: 37243059 DOI: 10.3390/vaccines11050955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Historically, research on the immunologic response to Mycobacterium tuberculosis (M. tb) infection has focused on T cells and macrophages, as their role in granuloma formation has been robustly characterized. In contrast, the role of B cells in the pathophysiology of M. tb infection has been relatively overlooked. While T cells are well-known as an essential for granuloma formation and maintenance, B cells play a less understood role in the host response. Over the past decade, scarce research on the topic has attempted to elucidate the varying roles of B cells during mycobacterial infection, which appears to be primarily time dependent. From acute to chronic infection, the role of B cells changes with time as evidenced by cytokine release, immunological regulation, and histological morphology of tuberculous granulomas. The goal of this review is to carefully analyze the role of humoral immunity in M. tb infection to find the discriminatory nature of humoral immunity in tuberculosis (TB). We argue that there is a need for more research on the B-cell response against TB, as a better understanding of the role of B cells in defense against TB could lead to effective vaccines and therapies. By focusing on the B-cell response, we can develop new strategies to enhance immunity against TB and reduce the burden of disease.
Collapse
Affiliation(s)
- Paul Stewart
- Department of Basic Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Shivani Patel
- Department of Basic Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Andrew Comer
- Department of Basic Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Shafi Muneer
- Department of Basic Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Uzma Nawaz
- Department of Basic Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Violet Quann
- Department of Basic Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Mira Bansal
- Department of Basic Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vishwanath Venketaraman
- Department of Basic Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
5
|
Stabel JR, Bannantine JP, Humphrey S. B cell phenotypes and maturation states in cows naturally infected with Mycobacterium avium subsp. Paratuberculosis. PLoS One 2022; 17:e0278313. [PMID: 36477266 PMCID: PMC9728927 DOI: 10.1371/journal.pone.0278313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Little is known about the role that B cells play in immune responses to infection with the intracellular pathogen, Mycobacterium avium subsp. paratuberculosis (MAP). Traditionally, the role of B cells has been constrained to their function as antibody-producing cells, however, antibodies are not thought to play a protective role in mycobacterial infections. The present study was designed to characterize B cell subpopulations as well as activation/maturation states in cattle with paratuberculosis. Peripheral blood mononuclear cells (PBMCs) were isolated from noninfected control cows (n = 8); as well cattle naturally infected with MAP in the subclinical (n = 8) and clinical (n = 7) stage of infection and stimulated with MAP antigen for 6 days. MAP infection resulted in greater numbers of total B cells for clinical cows compared to control noninfected cows. The major subpopulation in freshly isolated PBMCs in clinical cows was B-1a B cells, but this shifted to a composite of both B-1a and B-2 B cells upon stimulation of PBMCs with either MAP antigen or pokeweed mitogen, with higher numbers of B-2 B cells. Early B cells were observed to predominate the population of B cells in PBMCs, with lesser populations of germinal B cells, memory B cells and plasma cells. These subpopulations were elevated in clinical cows upon stimulation of PBMCs with MAP antigen, except for plasma cells which were lower compared to control noninfected cows. Increased numbers of B cells in clinical cows aligned with higher expression of B cell markers such as MAPK1/3, BTG1, Bcl2, CD79A and SWAP70, depending upon in vitro stimulation with either mitogen or antigen. This would indicate that the B cells were capable of activation but were anti-apoptotic in nature. The shift to B-2 B cells in the periphery of clinical cows seems to be indicative of an expansion of memory B cells, rather than plasma cells. This may be a last attempt by the host to control the rampant inflammatory state associated with advanced clinical disease.
Collapse
Affiliation(s)
- J. R. Stabel
- Infectious Bacterial Diseases of Livestock Research Unit, USDA-ARS, National Animal Disease Center, Ames, IA, United States of America
- * E-mail:
| | - J. P. Bannantine
- Infectious Bacterial Diseases of Livestock Research Unit, USDA-ARS, National Animal Disease Center, Ames, IA, United States of America
| | - S. Humphrey
- Microscopy Services Department, USDA-ARS, National Animal Disease Center, Ames, IA, United States of America
| |
Collapse
|
6
|
Tangie E, Walters A, Hsu NJ, Fisher M, Magez S, Jacobs M, Keeton R. BCG-mediated protection against M. tuberculosis is sustained post-malaria infection independent of parasite virulence. Immunology 2021; 165:219-233. [PMID: 34775598 DOI: 10.1111/imm.13431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 11/28/2022] Open
Abstract
Tuberculosis (TB) and malaria remain serious threats to global health. Bacillus Calmette-Guerin (BCG), the only licensed vaccine against TB protects against severe disseminated forms of TB in infants but shows poor efficacy against pulmonary TB in adults. Co-infections have been reported as one of the factors implicated in vaccine inefficacy. Given the geographical overlap of malaria and TB in areas where BCG vaccination is routinely administered, we hypothesized that virulence-dependent co-infection with Plasmodium species could alter the BCG-specific immune responses thus resulting in failure to protect against Mycobacterium tuberculosis. We compared virulent Plasmodium berghei and non-virulent Plasmodium chabaudi, their effects on B cells, effector and memory T cells, and the outcome on BCG-induced efficacy against M. tuberculosis infection. We demonstrate that malaria co-infection modulates both B- and T-cell immune responses but does not significantly alter the ability of the BCG vaccine to inhibit the growth of M. tuberculosis irrespective of parasite virulence. This malaria-driven immune regulation may have serious consequences in the early clinical trials of novel vaccines, which rely on vaccine-specific T-cell responses to screen novel vaccines for progression to the more costly vaccine efficacy trials.
Collapse
Affiliation(s)
- Emily Tangie
- Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Health Sciences Faculty, University of Cape Town, Observatory, South Africa
| | - Avril Walters
- Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Health Sciences Faculty, University of Cape Town, Observatory, South Africa
| | - Nai-Jen Hsu
- Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Health Sciences Faculty, University of Cape Town, Observatory, South Africa
| | - Michelle Fisher
- South African Tuberculosis Vaccine Initiative, University of Cape Town, Observatory, South Africa
| | - Stefan Magez
- Laboratory for Cellular and Molecular Immunology (CMIM), Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Gent, Belgium.,Laboratory for Biomedical Research, Department of Molecular Biotechnology, Environment Technology and Food Technology, Ghent University Global Campus, Incheon, Korea
| | - Muazzam Jacobs
- Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Health Sciences Faculty, University of Cape Town, Observatory, South Africa.,National Health Laboratory Service, Cape Town, South Africa.,Infectious Disease Research Unit, University of Cape Town, Observatory, South Africa
| | - Roanne Keeton
- Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Health Sciences Faculty, University of Cape Town, Observatory, South Africa
| |
Collapse
|
7
|
Madan R, Pandit K, Bhati L, Kumar H, Kumari N, Singh S. Mining the Mycobacterium tuberculosis proteome for identification of potential T-cell epitope based vaccine candidates. Microb Pathog 2021; 157:104996. [PMID: 34044044 DOI: 10.1016/j.micpath.2021.104996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/22/2022]
Abstract
Identification of protective antigens for designing a high-efficacy tuberculosis vaccine is the need of the hour. Till date only 7% of the Mycobacterium tuberculosis proteome has been explored for discovering antigens capable of activating T-cell responses. Therefore, it becomes crucial to screen the remaining Mycobacterium tuberculosis proteome for more immunodominant T-cell epitopes. An extensive knowledge of the epitopes recognized by our immune system can aid this process of finding potential T cell antigens for development of a better TB vaccine. In the present in-silico study, 237 proteins belonging to the 'virulence, detoxification, and adaptation' category of Mycobacterium tuberculosis proteome were targeted for T-cell epitope screening. 50825 MHC Class I and 49357 MHC Class II epitopes were generated using NetMHC3.4 and IEDB servers respectively and tested for their antigenicity and cytokine stimulation. The highest antigenic epitopes were analyzed for their world population coverage and epitope conservancy. Molecular docking and molecular dynamics simulation studies were performed to corroborate the binding affinities and structural stability of the peptide-MHC complexes. We predicted a total of 3 MHC Class I (ILLKMCWPA, FAVGMNVYV, and SLAGNSAKV) and 7 MHC Class II (DLTIGFFLHIPFPPV, RPDLTIGFFLHIPFP, LTIGFFLHIPFPPVE, VLVFALVVALVYLQF, LVFALVVALVYLQFR, PNLVAARFIQLTPVY, and LVLVFALVVALVYLQ) epitopes that can be promising vaccine candidates. These predicted epitopes belong to 6 distinct proteins: Rv0169 (mce1a), Rv3490 (ostA), Rv3496 (mce4D), Rv1085c, Rv0563 (HtpX), Rv3497c (mce4C). All these proteins are expressed at different stages in the life cycle of Mycobacterium tuberculosis and thus, the predicted epitopes could be employed as candidates for designing a multistage-multiepitopic vaccine.
Collapse
Affiliation(s)
- Riya Madan
- Department of Zoology, Hansraj College, University of Delhi, India.
| | - Kushankur Pandit
- Department of Zoology, Hansraj College, University of Delhi, India.
| | - Lavi Bhati
- Department of Zoology, Hansraj College, University of Delhi, India.
| | - Hindesh Kumar
- Department of Zoology, Hansraj College, University of Delhi, India.
| | - Neha Kumari
- Department of Zoology, Hansraj College, University of Delhi, India.
| | - Swati Singh
- Department of Zoology, Hansraj College, University of Delhi, India.
| |
Collapse
|
8
|
Casadevall A, Pirofski LA, Joyner MJ. The Principles of Antibody Therapy for Infectious Diseases with Relevance for COVID-19. mBio 2021; 12:e03372-20. [PMID: 33653885 PMCID: PMC8092292 DOI: 10.1128/mbio.03372-20] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Antibody therapies such as convalescent plasma and monoclonal antibodies have emerged as major potential therapeutics for coronavirus disease 2019 (COVID-19). Immunoglobulins differ from conventional antimicrobial agents in that they mediate direct and indirect antimicrobial effects that work in concert with other components of the immune system. The field of infectious diseases pioneered antibody therapies in the first half of the 20th century but largely abandoned them with the arrival of conventional antimicrobial therapy. Consequently, much of the knowledge gained from the historical development and use of immunoglobulins such as serum and convalescent antibody therapies was forgotten; principles and practice governing their use were not taught to new generations of medical practitioners, and further development of this modality stalled. This became apparent during the COVID-19 pandemic in the spring of 2020 when convalescent plasma was initially deployed as salvage therapy in patients with severe disease. In retrospect, this was a stage of disease when it was less likely to be effective. Lessons of the past tell us that antibody therapy is most likely to be effective when used early in respiratory diseases. This article puts forth three principles of antibody therapy, namely, specificity, temporal, and quantitative principles, connoting that antibody efficacy requires the administration of specific antibody, given early in course of disease in sufficient amount. These principles are traced to the history of serum therapy for infectious diseases. The application of the specificity, temporal, and quantitative principles to COVID-19 is discussed in the context of current use of antibody therapy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland, USA
| | - Liise-Anne Pirofski
- Department of Medicine, Division of Infectious Diseases, Albert Einstein College of Medicine, Bronx, New York, USA
- Montefiore Medical Center, Bronx, New York, USA
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
9
|
Rijnink WF, Ottenhoff THM, Joosten SA. B-Cells and Antibodies as Contributors to Effector Immune Responses in Tuberculosis. Front Immunol 2021; 12:640168. [PMID: 33679802 PMCID: PMC7930078 DOI: 10.3389/fimmu.2021.640168] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/29/2021] [Indexed: 12/19/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is still a major threat to mankind, urgently requiring improved vaccination and therapeutic strategies to reduce TB-disease burden. Most present vaccination strategies mainly aim to induce cell-mediated immunity (CMI), yet a series of independent studies has shown that B-cells and antibodies (Abs) may contribute significantly to reduce the mycobacterial burden. Although early studies using B-cell knock out animals did not support a major role for B-cells, more recent studies have provided new evidence that B-cells and Abs can contribute significantly to host defense against Mtb. B-cells and Abs exist in many different functional subsets, each equipped with unique functional properties. In this review, we will summarize current evidence on the contribution of B-cells and Abs to immunity toward Mtb, their potential utility as biomarkers, and their functional contribution to Mtb control.
Collapse
Affiliation(s)
- Willemijn F Rijnink
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
10
|
Hakim JMC, Yang Z. Predicted Structural Variability of Mycobacterium tuberculosis PPE18 Protein With Immunological Implications Among Clinical Strains. Front Microbiol 2021; 11:595312. [PMID: 33488541 PMCID: PMC7819968 DOI: 10.3389/fmicb.2020.595312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/27/2020] [Indexed: 11/13/2022] Open
Abstract
Recent advancements in vaccinology have led to the development of the M72/AS01E subunit vaccine, of which the major component is the Mycobacterium tuberculosis (MTB) PPE18 protein. Previous studies have demonstrated the genetic variability of the gene encoding PPE18 protein and the resulting peptide changes in diverse clinical strains of MTB; however, none have modeled the structural changes resulting from these peptide changes and their immunological implications. In this study, we investigated the structural predictions of 29 variant PPE18 proteins previously reported. We found evidence that PPE18 is at least a two-domain protein, with a highly conserved first domain and a largely variable second domain that has different coevolutionary clusters. Further, we investigated putative epitope sites in the clinical variants of PPE18 using prediction software. We found a negative relationship between T-cell epitope number and residue variability, while B-cell epitope likelihood was positively correlated with residue variability. Moreover, we found far more residues in the second domain predicted to be B-cell epitopes compared with the first domain. These results suggest an important functional role of the first domain and a role in immune evasion for the second, which extends our knowledge base of the basic biology of the PPE18 protein and indicates the need for further study into non-traditional immunological responses to TB.
Collapse
Affiliation(s)
- Jill M C Hakim
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Zhenhua Yang
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
11
|
Chen C, Xu H, Peng Y, Luo H, Huang GX, Wu XJ, Dai YC, Luo HL, Zhang JA, Zheng BY, Zhang XN, Chen ZW, Xu JF. Elevation in the counts of IL-35-producing B cells infiltrating into lung tissue in mycobacterial infection is associated with the downregulation of Th1/Th17 and upregulation of Foxp3 +Treg. Sci Rep 2020; 10:13212. [PMID: 32764544 PMCID: PMC7411070 DOI: 10.1038/s41598-020-69984-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 06/01/2020] [Indexed: 12/19/2022] Open
Abstract
IL-35 is an anti-inflammatory cytokine and is thought to be produced by regulatory T (Treg) cells. A previous study found that IL-35 was upregulated in the serum of patients with active tuberculosis (ATB), and IL-35-producing B cells infiltrated to tuberculous granuloma of patients with ATB. Purified B cells from such patients generated more IL-35 after stimulation by antigens of Mycobacterium tuberculosis and secreted more IL-10. However, the function and the underlying mechanisms of IL-35-producing B cells in TB progression have not been investigated. The present study found that the expression of mRNA of IL-35 subsets Ebi3 and p35 was elevated in mononuclear cells from peripheral blood, spleen, bone marrow, and lung tissue in a mouse model infected with Mycobacterium bovis BCG, as tested by real-time polymerase chain reaction. Accordingly, the flow cytometry analysis showed that the counts of a subset of IL-35+ B cells were elevated in the circulating blood and in the spleen, bone marrow, and lung tissue in BCG-infected mice, whereas anti-TB therapy reduced IL-35-producing B cells. Interestingly, BCG infection could drive the infiltration of IL-35-producing B cells into the lung tissue, and the elevated counts of IL-35-producing B cells positively correlated with the bacterial load in the lungs. Importantly, the injection of exogenous IL-35 stimulated the elevation in the counts of IL-35-producing B cells and was associated with the downregulation of Th1/Th17 and upregulation of Foxp3+Treg.The study showed that a subset of IL-35-producing B cells might take part in the downregulation of immune response in mycobacterial infection.
Collapse
Affiliation(s)
- Chen Chen
- Department of Clinical Immunology, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, China.,Molecular Diagnostic Center, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Huan Xu
- Department of Clinical Immunology, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, China
| | - Ying Peng
- Department of Clinical Immunology, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, China
| | - Hong Luo
- Department of Clinical Immunology, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, China
| | - Gui-Xian Huang
- Department of Clinical Immunology, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, China
| | - Xian-Jin Wu
- Department of Clinical Laboratory, Huizhou Municipal Central Hospital, No. 41 North Eling Road, Huizhou, 516001, China
| | - You-Chao Dai
- Department of Clinical Immunology, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, China
| | - Hou-Long Luo
- Department of Clinical Immunology, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, China
| | - Jun-Ai Zhang
- Department of Clinical Immunology, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, China
| | - Bi-Ying Zheng
- Department of Clinical Immunology, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, China
| | - Xiang-Ning Zhang
- Department of Pathophysiology, Basic Medical School, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, China
| | - Zheng W Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, USA
| | - Jun-Fa Xu
- Department of Clinical Immunology, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, China.
| |
Collapse
|
12
|
Precision medicine in the clinical management of respiratory tract infections including multidrug-resistant tuberculosis: learning from innovations in immuno-oncology. Curr Opin Pulm Med 2020; 25:233-241. [PMID: 30883448 DOI: 10.1097/mcp.0000000000000575] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW In the light of poor management outcomes of antibiotic-resistant respiratory tract infection (RTI)-associated sepsis syndrome and multidrug-resistant tuberculosis (MDR-TB), new management interventions based on host-directed therapies (HDTs) are warranted to improve morbidity, mortality and long-term functional outcomes. We review developments in potential HDTs based on precision cancer therapy concepts applicable to RTIs including MDR-TB. RECENT FINDINGS Immune reactivity, tissue destruction and repair processes identified during studies of cancer immunotherapy share common pathogenetic mechanisms with RTI-associated sepsis syndrome and MDR-TB. T-cell receptors (TCRs) and chimeric antigen receptors targeting pathogen-specific or host-derived mutated molecules (major histocompatibility class-dependent/ major histocompatibility class-independent) can be engineered for recognition by TCR γδ and natural killer (NK) cells. T-cell subsets and, more recently, NK cells are shown to be host-protective. These cells can also be activated by immune checkpoint inhibitor (ICI) or derived from allogeneic sources and serve as potential for improving clinical outcomes in RTIs and MDR-TB. SUMMARY Recent developments of immunotherapy in cancer reveal common pathways in immune reactivity, tissue destruction and repair. RTIs-related sepsis syndrome exhibits mixed immune reactions, making cytokine or ICI therapy guided by robust biomarker analyses, viable treatment options.
Collapse
|
13
|
Angelidou A, Diray-Arce J, Conti MG, Smolen KK, van Haren SD, Dowling DJ, Husson RN, Levy O. BCG as a Case Study for Precision Vaccine Development: Lessons From Vaccine Heterogeneity, Trained Immunity, and Immune Ontogeny. Front Microbiol 2020; 11:332. [PMID: 32218774 PMCID: PMC7078104 DOI: 10.3389/fmicb.2020.00332] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
Vaccines have been traditionally developed with the presumption that they exert identical immunogenicity regardless of target population and that they provide protection solely against their target pathogen. However, it is increasingly appreciated that vaccines can have off-target effects and that vaccine immunogenicity can vary substantially with demographic factors such as age and sex. Bacille Calmette-Guérin (BCG), the live attenuated Mycobacterium bovis vaccine against tuberculosis (TB), represents a key example of these concepts. BCG vaccines are manufactured under different conditions across the globe generating divergent formulations. Epidemiologic studies have linked early life immunization with certain BCG formulations to an unanticipated reduction (∼50%) in all-cause mortality, especially in low birthweight males, greatly exceeding that attributable to TB prevention. This mortality benefit has been related to prevention of sepsis and respiratory infections suggesting that BCG induces "heterologous" protection against unrelated pathogens. Proposed mechanisms for heterologous protection include vaccine-induced immunometabolic shifts, epigenetic reprogramming of innate cell populations, and modulation of hematopoietic stem cell progenitors resulting in altered responses to subsequent stimuli, a phenomenon termed "trained immunity." In addition to genetic differences, licensed BCG formulations differ markedly in content of viable mycobacteria key for innate immune activation, potentially contributing to differences in the ability of these diverse formulations to induce TB-specific and heterologous protection. BCG immunomodulatory properties have also sparked interest in its potential use to prevent or alleviate autoimmune and inflammatory diseases, including type 1 diabetes mellitus and multiple sclerosis. BCG can also serve as a model: nanoparticle vaccine formulations incorporating Toll-like receptor 8 agonists can mimic some of BCG's innate immune activation, suggesting that aspects of BCG's effects can be induced with non-replicating stimuli. Overall, BCG represents a paradigm for precision vaccinology, lessons from which will help inform next generation vaccines.
Collapse
Affiliation(s)
- Asimenia Angelidou
- Division of Newborn Medicine, Boston Children’s Hospital and Beth Israel Deaconess Medical Center, Boston, MA, United States
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Joann Diray-Arce
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - Maria Giulia Conti
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Department of Maternal and Child Health, Sapienza University of Rome, Rome, Italy
| | - Kinga K. Smolen
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - Simon Daniël van Haren
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - David J. Dowling
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - Robert N. Husson
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - Ofer Levy
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| |
Collapse
|
14
|
Yu X, Feng J, Huang L, Gao H, Liu J, Bai S, Wu B, Xie J. Molecular Basis Underlying Host Immunity Subversion by Mycobacterium tuberculosis PE/PPE Family Molecules. DNA Cell Biol 2019; 38:1178-1187. [PMID: 31580738 DOI: 10.1089/dna.2019.4852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mycobacterium tuberculosis proline-glutamic acid (PE)/proline-proline-glutamic acid (PPE) family proteins, with >160 members, are crucial for virulence, cell wall, host cell fate, host Th1/Th2 balance, and CD8+ T cell recognition. Ca2+ signaling is involved in PE/PPE protein-mediated host-pathogen interaction. PE/PPE proteins also function in heme utilization and nitric oxide production. PE/PPE family proteins are intensively pursued as diagnosis biomarkers and vaccine components.
Collapse
Affiliation(s)
- Xiaowen Yu
- Chongqing Key Laboratory of Traditional Chinese Medicine to Prevent and Treat Autoimmune Diseases, Chongqing, P.R. China
| | - Jing Feng
- Chongqing Key Laboratory of Traditional Chinese Medicine to Prevent and Treat Autoimmune Diseases, Chongqing, P.R. China
| | - Lu Huang
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, P.R. China
| | - Hongyan Gao
- Chongqing Key Laboratory of Traditional Chinese Medicine to Prevent and Treat Autoimmune Diseases, Chongqing, P.R. China
| | - Jinkun Liu
- Chongqing Key Laboratory of Traditional Chinese Medicine to Prevent and Treat Autoimmune Diseases, Chongqing, P.R. China
| | - Shutong Bai
- Chongqing Key Laboratory of Traditional Chinese Medicine to Prevent and Treat Autoimmune Diseases, Chongqing, P.R. China
| | - Bin Wu
- Chongqing Key Laboratory of Traditional Chinese Medicine to Prevent and Treat Autoimmune Diseases, Chongqing, P.R. China
| | - Jianping Xie
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing, P.R. China
| |
Collapse
|
15
|
Immunological Impacts of Diabetes on the Susceptibility of Mycobacterium tuberculosis. J Immunol Res 2019; 2019:6196532. [PMID: 31583258 PMCID: PMC6754884 DOI: 10.1155/2019/6196532] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 08/26/2019] [Indexed: 02/06/2023] Open
Abstract
The interaction between diabetes and major world infections like TB is a major public health concern because of rapidly rising levels of diabetes. The dual burden of tuberculosis (TB) and diabetes mellitus (DM) has become a major global public health problem. Diabetes mellitus is a major risk factor for the development of active and latent tuberculosis. Immune mechanisms contributing to the increased susceptibility of diabetic patients to TB are due to the defects in bacterial recognition, phagocytic activity, and cellular activation which results in impaired production of chemokines and cytokines. The initiation of adaptive immunity is delayed by impaired antigen-presenting cell (APC) recruitment and function in hyperglycemic host, which results in reduced frequencies of Th1, Th2, and Th17 cells and its secretion of cytokines having a great role in activation of macrophage and inflammatory response of tuberculosis. In addition, impaired immune response and killing of intracellular bacteria potentially increase bacterial load, chronic inflammation, and central necrosis that facilitate bacterial dissemination and miliary tuberculosis. Understanding of the immunological and biochemical basis of TB susceptibility in diabetic patients will tell us the rational development of implementation and therapeutic strategies to alleviate the dual burden of the diseases. Therefore, the aim of this review was focused on the association between diabetes and tuberculosis, focusing on epidemiology, pathogenesis, and immune dysfunction in diabetes mellitus, and its association with susceptibility, severity, and treatment outcome failure to tuberculosis.
Collapse
|
16
|
Choudhary A, Patel D, Honnen W, Lai Z, Prattipati RS, Zheng RB, Hsueh YC, Gennaro ML, Lardizabal A, Restrepo BI, Garcia-Viveros M, Joe M, Bai Y, Shen K, Sahloul K, Spencer JS, Chatterjee D, Broger T, Lowary TL, Pinter A. Characterization of the Antigenic Heterogeneity of Lipoarabinomannan, the Major Surface Glycolipid of Mycobacterium tuberculosis, and Complexity of Antibody Specificities toward This Antigen. THE JOURNAL OF IMMUNOLOGY 2018; 200:3053-3066. [PMID: 29610143 PMCID: PMC5911930 DOI: 10.4049/jimmunol.1701673] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/16/2018] [Indexed: 12/17/2022]
Abstract
Lipoarabinomannan (LAM), the major antigenic glycolipid of Mycobacterium tuberculosis, is an important immunodiagnostic target for detecting tuberculosis (TB) infection in HIV-1–coinfected patients, and is believed to mediate a number of functions that promote infection and disease development. To probe the human humoral response against LAM during TB infection, several novel LAM-specific human mAbs were molecularly cloned from memory B cells isolated from infected patients and grown in vitro. The fine epitope specificities of these Abs, along with those of a panel of previously described murine and phage-derived LAM-specific mAbs, were mapped using binding assays against LAM Ags from several mycobacterial species and a panel of synthetic glycans and glycoconjugates that represented diverse carbohydrate structures present in LAM. Multiple reactivity patterns were seen that differed in their specificity for LAM from different species, as well as in their dependence on arabinofuranoside branching and nature of capping at the nonreducing termini. Competition studies with mAbs and soluble glycans further defined these epitope specificities and guided the design of highly sensitive immunodetection assays capable of detecting LAM in urine of TB patients, even in the absence of HIV-1 coinfection. These results highlighted the complexity of the antigenic structure of LAM and the diversity of the natural Ab response against this target. The information and novel reagents described in this study will allow further optimization of diagnostic assays for LAM and may facilitate the development of potential immunotherapeutic approaches to inhibit the functional activities of specific structural motifs in LAM.
Collapse
Affiliation(s)
- Alok Choudhary
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103
| | - Deendayal Patel
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103
| | - William Honnen
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103
| | - Zhong Lai
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103
| | - Raja Sekhar Prattipati
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103
| | - Ruixiang Blake Zheng
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Ying-Chao Hsueh
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103
| | - Maria Laura Gennaro
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103
| | - Alfred Lardizabal
- Global Tuberculosis Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103
| | - Blanca I Restrepo
- University of Texas Health Science Center at Houston, School of Public Health at Brownsville, Brownsville, TX 78520
| | | | - Maju Joe
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Yu Bai
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Ke Shen
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Kamar Sahloul
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - John S Spencer
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523; and
| | - Delphi Chatterjee
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523; and
| | - Tobias Broger
- Foundation for Innovative New Diagnostics, Geneva 1202, Switzerland
| | - Todd L Lowary
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Abraham Pinter
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103;
| |
Collapse
|
17
|
Sun ET, Xia D, Li BH, Ma J, Dong YY, Ding SS, Chen BF, Wen YF. Association of Immune Factors with Drug-Resistant Tuberculosis: A Case-Control Study. Med Sci Monit 2017; 23:5330-5336. [PMID: 29118314 PMCID: PMC5691569 DOI: 10.12659/msm.904309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Presently, studies of factors associated with drug-resistant tuberculosis (TB) focus on patients’ socio-demographic characteristics and living habits, to the exclusion of biochemical indicators, especially immune factors. This study was carried out to determine whether immune factors are associated with drug-resistant TB. Material/Methods A total of 227 drug-resistant pulmonary TB patients and 225 drug-susceptible pulmonary TB patients were enrolled in this study. Information on socio-demographic characteristics and biochemical indicators were obtained through their clinical records. Non-conditional logistic regression was used to analyze the association of these indicators with drug-resistant TB. Results There were significant differences in re-treatment, marital status, alanine aminotransferase (ALT), blood uric acid (BUA), carcino-embryonic antigen (CEA), T-spot, and CD3 and CD4 counts between the 2 groups. In multivariable analysis, re-treatment [Odds Ratio (OR)=5.290, 95% Confidence Interval [CI]=2.652–10.551); CD3 (OR=1.034, 95% CI=1.001–1.068); CD4 (OR=1.035, 95% CI =1.001–1.070) and IgM (OR=1.845, 95% CI=1.153–2.952) were associated with drug-resistant TB. Conclusions These results suggest the need for greater attention to re-treatment cases and immune function when treating drug-resistant TB.
Collapse
Affiliation(s)
- En-Tao Sun
- School of Public Health, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Dan Xia
- School of Public Health, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Ben-He Li
- School of Public Health, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Jun Ma
- School of Public Health, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Yuan-Yuan Dong
- School of Public Health, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Shu-Shu Ding
- School of Public Health, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Bai-Feng Chen
- School of Public Health, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Yu-Feng Wen
- School of Public Health, Wannan Medical College, Wuhu, Anhui, China (mainland)
| |
Collapse
|
18
|
Alvarez N, Serpa D, Kadir R, Tirado Y, Borrero R, Fernández S, Cabrera R, Valdes Y, Zayas C, Acevedo R, Izquierdo L, Sarmiento ME, Norazmi MN, Pérez JL, Acosta A. Specific and cross-reactive immune response against Mycobacterium tuberculosis antigens in mice immunized with proteoliposomes from Mycobacterium bovis BCG. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2016.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
19
|
Fu Y, Xu X, Xue J, Duan W, Yi Z. Deregulated lncRNAs in B Cells from Patients with Active Tuberculosis. PLoS One 2017; 12:e0170712. [PMID: 28125665 PMCID: PMC5268381 DOI: 10.1371/journal.pone.0170712] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/09/2017] [Indexed: 12/18/2022] Open
Abstract
Role of lncRNAs in human adaptive immune response to TB infection is largely unexplored. To address this issue, here we characterized lncRNA expression profile in primary human B cell response to TB infection using microarray assay. Several lncRNAs and mRNAs were chosen for RT-qPCR validation. Bioinformatics prediction was applied to delineate function of the deregulated mRNAs. We found that 844 lncRNAs and 597 mRNAs were differentially expressed between B cell samples from individuals with or without TB. KEGG pathway analysis for the deregulated mRNAs indicated a number of pathways, such as TB, TLR signaling pathway and antigen processing and presentation. Moreover, corresponding to the dysregulation of many lncRNAs, we also found that their adjacent protein-coding genes were also deregulated. Functional annotation for the corresponding mRNAs showed that these lncRNAs were mainly associated with TLR signaling, TGF-β signaling. Interestingly, SOCS3, which is a critical negative regulator of cytokine response to TB infection and its nearby lncRNA XLOC_012582, were highly expressed in active TB B cells. Subsequent RT-qPCR results confirmed the changes. Whether upregulated XLOC_012582 causes SOCS3 overexpression and is eventually involved in the context of exacerbations of active TB represents an interesting issue that deserves to be further explored. Taken together, for the first time, we identified a set of deregulated lncRNAs in active TB B cells and their functions were predicted. Such findings provided novel insight into the pathogenesis of TB and further studies should focus on the function and pathogenic mechanisms of the lncRNAs involved in active TB.
Collapse
Affiliation(s)
- Yurong Fu
- Department of Medical Microbiology of Clinical Medicine College, Weifang Medical University, Shandong, Weifang, China
- Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong, Weifang Medical University, Shandong, Weifang, China
- * E-mail: (YF); (ZY)
| | - Xianqin Xu
- Department of Clinical Skill Laboratory of Clinical Medicine College, Weifang Medical University, Shandong, Weifang, China
| | - Junfang Xue
- Department of Surgery of Gaomi City people's Hospital, Shandong, Weifang, China
| | - Wenping Duan
- Department of Nursing of Affiliated Hospital of Weifang Medical University, Shandong, Weifang, China
| | - Zhengjun Yi
- Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong, Weifang Medical University, Shandong, Weifang, China
- * E-mail: (YF); (ZY)
| |
Collapse
|
20
|
Jacobs AJ, Mongkolsapaya J, Screaton GR, McShane H, Wilkinson RJ. Antibodies and tuberculosis. Tuberculosis (Edinb) 2016; 101:102-113. [PMID: 27865379 PMCID: PMC5120988 DOI: 10.1016/j.tube.2016.08.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/19/2016] [Accepted: 08/04/2016] [Indexed: 12/16/2022]
Abstract
Tuberculosis (TB) remains a major public health problem internationally, causing 9.6 million new cases and 1.5 million deaths worldwide in 2014. The Bacillus Calmette-Guérin vaccine is the only licensed vaccine against TB, but its protective effect does not extend to controlling the development of infectious pulmonary disease in adults. The development of a more effective vaccine against TB is therefore a pressing need for global health. Although it is established that cell-mediated immunity is necessary for the control of latent infection, the presupposition that such immunity is sufficient for vaccine-induced protection has recently been challenged. A greater understanding of protective immunity against TB is required to guide future vaccine strategies against TB. In contrast to cell-mediated immunity, the human antibody response against M.tb is conventionally thought to exert little immune control over the course of infection. Humoral responses are prominent during active TB disease, and have even been postulated to contribute to immunopathology. However, there is evidence to suggest that specific antibodies may limit the dissemination of M.tb, and potentially also play a role in prevention of infection via mucosal immunity. Further, antibodies are now understood to confer protection against a range of intracellular pathogens by modulating immunity via Fc-receptor mediated phagocytosis. In this review, we will explore the evidence that antibody-mediated immunity could be reconsidered in the search for new vaccine strategies against TB.
Collapse
Affiliation(s)
- Ashley J Jacobs
- Department of Medicine, Imperial College London, W2 1PG, United Kingdom; Clinical Infectious Diseases Research Initiative and Department of Medicine, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa.
| | | | - Gavin R Screaton
- Department of Medicine, Imperial College London, W2 1PG, United Kingdom
| | - Helen McShane
- The Jenner Institute, University of Oxford, OX3 7DQ, United Kingdom
| | - Robert J Wilkinson
- Department of Medicine, Imperial College London, W2 1PG, United Kingdom; Clinical Infectious Diseases Research Initiative and Department of Medicine, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa; The Francis Crick Institute, London NW1 2AT, United Kingdom
| |
Collapse
|
21
|
Rao M, Valentini D, Poiret T, Dodoo E, Parida S, Zumla A, Brighenti S, Maeurer M. B in TB: B Cells as Mediators of Clinically Relevant Immune Responses in Tuberculosis. Clin Infect Dis 2016; 61Suppl 3:S225-34. [PMID: 26409285 PMCID: PMC4583574 DOI: 10.1093/cid/civ614] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The protective role of B cells and humoral immune responses in tuberculosis infection has been regarded as inferior to cellular immunity directed to the intracellular pathogen Mycobacterium tuberculosis. However, B-cell–mediated immune responses in tuberculosis have recently been revisited in the context of B-cell physiology and antigen presentation. We discuss in this review the diverse functions of B cells in tuberculosis, with a focus on their biological and clinical relevance to progression of active disease. We also present the peptide microarray platform as a promising strategy to discover unknown antigenic targets of M. tuberculosis that could contribute to the better understanding of epitope focus of the humoral immune system against M. tuberculosis.
Collapse
Affiliation(s)
- Martin Rao
- Division of Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institutet
| | - Davide Valentini
- Division of Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institutet Centre for Allogeneic Stem Cell Transplantation, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Thomas Poiret
- Division of Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institutet
| | - Ernest Dodoo
- Division of Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institutet
| | - Shreemanta Parida
- Division of Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institutet
| | - Alimuddin Zumla
- Division of Infection and Immunity, University College London, and NIHR Biomedical Research Centre at University College Hospitals NHS Foundation Trust, United Kingdom
| | - Susanna Brighenti
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Markus Maeurer
- Division of Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institutet Centre for Allogeneic Stem Cell Transplantation, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
22
|
Graves AJ, Hokey DA. Tuberculosis vaccine development: Shifting focus amid increasing development challenges. Hum Vaccin Immunother 2016; 11:1910-6. [PMID: 26125249 PMCID: PMC4635864 DOI: 10.1080/21645515.2015.1040955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A new tuberculosis vaccine is needed to replace or enhance BCG, which induces variable protection against Mycobacterium tuberculosis pulmonary infections in adults. Development of new TB vaccine candidates is severely hampered by the lack of a correlate of immunity, unproven animal models, and limited funding opportunities. One candidate, MVA85A, recently failed to meet its efficacy endpoint goals despite promising early-phase trial data. As a result, some in the field believe we should now shift our focus away from product development and toward a research-oriented approach. Here, we outline our suggestions for this research-oriented strategy including diversification of the candidate pipeline, expanding measurements of immunity, improving pre-clinical animal models, and investing in combination pre-clinical/experimental medicine studies. As with any evolution, this change in strategy comes at a cost but may also represent an opportunity for advancing the field.
Collapse
|
23
|
du Plessis WJ, Kleynhans L, du Plessis N, Stanley K, Malherbe ST, Maasdorp E, Ronacher K, Chegou NN, Walzl G, Loxton AG. The Functional Response of B Cells to Antigenic Stimulation: A Preliminary Report of Latent Tuberculosis. PLoS One 2016; 11:e0152710. [PMID: 27050308 PMCID: PMC4822853 DOI: 10.1371/journal.pone.0152710] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 03/17/2016] [Indexed: 01/11/2023] Open
Abstract
Mycobacterium tuberculosis (M.tb) remains a successful pathogen, causing tuberculosis disease numbers to constantly increase. Although great progress has been made in delineating the disease, the host-pathogen interaction is incompletely described. B cells have shown to function as both effectors and regulators of immunity via non-humoral methods in both innate and adaptive immune settings. Here we assessed specific B cell functional interaction following stimulation with a broad range of antigens within the LTBI milieu. Our results indicate that B cells readily produce pro- and anti-inflammatory cytokines (including IL-1β, IL-10, IL-17, IL-21 and TNF-α) in response to stimulation. TLR4 and TLR9 based stimulations achieved the greatest secreted cytokine-production response and BCG stimulation displayed a clear preference for inducing IL-1β production. We also show that the cytokines produced by B cells are implicated strongly in cell-mediated communication and that plasma (memory) B cells (CD19+CD27+CD138+) is the subset with the greatest contribution to cytokine production. Collectively our data provides insight into B cell responses, where they are implicated in and quantifies responses from specific B cell phenotypes. These findings warrant further functional B cell research with a focus on specific B cell phenotypes under conditions of active TB disease to further our knowledge about the contribution of various cell subsets which could have implications for future vaccine development or refined B cell orientated treatment in the health setting.
Collapse
Affiliation(s)
- Willem J. du Plessis
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Léanie Kleynhans
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nelita du Plessis
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Kim Stanley
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Stephanus T. Malherbe
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Elizna Maasdorp
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Katharina Ronacher
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Novel N. Chegou
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gerhard Walzl
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Andre G. Loxton
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- * E-mail:
| |
Collapse
|
24
|
Achkar JM, Chan J, Casadevall A. B cells and antibodies in the defense against Mycobacterium tuberculosis infection. Immunol Rev 2015; 264:167-81. [PMID: 25703559 DOI: 10.1111/imr.12276] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Better understanding of the immunological components and their interactions necessary to prevent or control Mycobacterium tuberculosis (Mtb) infection in humans is critical for tuberculosis (TB) vaccine development strategies. Although the contributory role of humoral immunity in the protection against Mtb infection and disease is less defined than the role of T cells, it has been well-established for many other intracellular pathogens. Here we update and discuss the increasing evidence and the mechanisms of B cells and antibodies in the defense against Mtb infection. We posit that B cells and antibodies have a variety of potential protective roles at each stage of Mtb infection and postulate that such roles should be considered in the development strategies for TB vaccines and other immune-based interventions.
Collapse
|