1
|
Castillo-González J, González-Rey E. Beyond wrecking a wall: revisiting the concept of blood-brain barrier breakdown in ischemic stroke. Neural Regen Res 2025; 20:1944-1956. [PMID: 39254550 DOI: 10.4103/nrr.nrr-d-24-00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/04/2024] [Indexed: 09/11/2024] Open
Abstract
The blood-brain barrier constitutes a dynamic and interactive boundary separating the central nervous system and the peripheral circulation. It tightly modulates the ion transport and nutrient influx, while restricting the entry of harmful factors, and selectively limiting the migration of immune cells, thereby maintaining brain homeostasis. Despite the well-established association between blood-brain barrier disruption and most neurodegenerative/neuroinflammatory diseases, much remains unknown about the factors influencing its physiology and the mechanisms underlying its breakdown. Moreover, the role of blood-brain barrier breakdown in the translational failure underlying therapies for brain disorders is just starting to be understood. This review aims to revisit this concept of "blood-brain barrier breakdown," delving into the most controversial aspects, prevalent challenges, and knowledge gaps concerning the lack of blood-brain barrier integrity. By moving beyond the oversimplistic dichotomy of an "open"/"bad" or a "closed"/"good" barrier, our objective is to provide a more comprehensive insight into blood-brain barrier dynamics, to identify novel targets and/or therapeutic approaches aimed at mitigating blood-brain barrier dysfunction. Furthermore, in this review, we advocate for considering the diverse time- and location-dependent alterations in the blood-brain barrier, which go beyond tight-junction disruption or brain endothelial cell breakdown, illustrated through the dynamics of ischemic stroke as a case study. Through this exploration, we seek to underscore the complexity of blood-brain barrier dysfunction and its implications for the pathogenesis and therapy of brain diseases.
Collapse
Affiliation(s)
- Julia Castillo-González
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, Granada, Spain
| | | |
Collapse
|
2
|
Kembou-Ringert JE, Hotio FN, Steinhagen D, Thompson KD, Surachetpong W, Rakus K, Daly JM, Goonawardane N, Adamek M. Knowns and unknowns of TiLV-associated neuronal disease. Virulence 2024; 15:2329568. [PMID: 38555518 PMCID: PMC10984141 DOI: 10.1080/21505594.2024.2329568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/07/2024] [Indexed: 04/02/2024] Open
Abstract
Tilapia Lake Virus (TiLV) is associated with pathological changes in the brain of infected fish, but the mechanisms driving the virus's neuropathogenesis remain poorly characterized. TiLV establishes a persistent infection in the brain of infected fish even when the virus is no longer detectable in the peripheral organs, rendering therapeutic interventions and disease management challenging. Moreover, the persistence of the virus in the brain may pose a risk for viral reinfection and spread and contribute to ongoing tissue damage and neuroinflammatory processes. In this review, we explore TiLV-associated neurological disease. We discuss the possible mechanism(s) used by TiLV to enter the central nervous system (CNS) and examine TiLV-induced neuroinflammation and brain immune responses. Lastly, we discuss future research questions and knowledge gaps to be addressed to significantly advance this field.
Collapse
Affiliation(s)
- Japhette E. Kembou-Ringert
- Department of infection, immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Fortune N. Hotio
- Department of Animal Biology, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Kim D. Thompson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, UK
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Janet M. Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Niluka Goonawardane
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
3
|
Thakur P, Baraskar K, Shrivastava VK, Medhi B. Cross-talk between adipose tissue and microbiota-gut-brain-axis in brain development and neurological disorder. Brain Res 2024; 1844:149176. [PMID: 39182900 DOI: 10.1016/j.brainres.2024.149176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/25/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
The gut microbiota is an important factor responsible for the physiological processes as well as pathogenesis of host. The communication between central nervous system (CNS) and microbiota occurs by different pathways i.e., chemical, neural, immune, and endocrine. Alteration in gut microbiota i.e., gut dysbiosis causes alteration in the bidirectional communication between CNS and gut microbiota and linked to the pathogenesis of neurological and neurodevelopmental disorder. Therefore, now-a-days microbiota-gut-brain-axis (MGBA) has emerged as therapeutic target for the treatment of metabolic disorder. But, experimental data available on MGBA from basic research has limited application in clinical study. In present study we first summarized molecular mechanism of microbiota interaction with brain physiology and pathogenesis via collecting data from different sources i.e., PubMed, Scopus, Web of Science. Furthermore, evidence shows that adipose tissue (AT) is active during metabolic activities and may also interact with MGBA. Hence, in present study we have focused on the relationship among MGBA, brown adipose tissue, and white adipose tissue. Along with this, we have also studied functional specificity of AT, and understanding heterogeneity among MGBA and different types of AT. Therefore, molecular interaction among them may provide therapeutic target for the treatment of neurological disorder.
Collapse
Affiliation(s)
- Pratibha Thakur
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India.
| | - Kirti Baraskar
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India
| | - Vinoy K Shrivastava
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, Punjab 160012, India.
| |
Collapse
|
4
|
Newport-Ratiu PA, Hussein KA, Carter T, Panjarian S, Jonnalagadda SC, Pandey MK. Unveiling the intricate dance: Obesity and TNBC connection examined. Life Sci 2024; 357:123082. [PMID: 39332488 DOI: 10.1016/j.lfs.2024.123082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/03/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Amid the dynamic field of cancer research, various targeted therapies have proven crucial in combating breast cancer, the most prevalent cancer among women globally. Triple Negative Breast Cancer (TNBC) stands out from other types of breast cancer due to the absence of three key receptors on the cell surface (progesterone, estrogen, and HER2). Researchers are working on finding ways to address TNBC's elusive biomarkers and minimize the damage caused by the disease through treatments like chemotherapies and targeted pathway receptors. One connection that should receive more attention is the link between TNBC and obesity. Obesity is defined as consuming significantly more energy than is expended, resulting in a high BMI. Moreover, obesity fosters a cancer-friendly environment characterized by inflammation, elevated levels of hormones, proteins, and signaling that activate pathways promoting cancer. Non-Hispanic black women have experienced notable disparities in TNBC rates. Various factors have led to the higher incidence and poorer outcomes of TNBC in non-Hispanic black women. This detailed review explores the complex relationship between obesity and TNBC, examining how the two disorders are connected in terms of disparities and offering a glimpse into future research and interventions.
Collapse
Affiliation(s)
- Patrick A Newport-Ratiu
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA; Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, USA
| | - Kamel Abou Hussein
- Departments of Hematology and Medical Oncology, Breast Cancer Center, Women's Cancer Program, Cooper University Health Care, Camden, NJ, USA; MD Anderson Cancer Center at Cooper, Camden, NJ, USA
| | - Teralyn Carter
- Department of Breast Surgery, Breast Cancer Center, Woman's Cancer Program, Cooper University Health Care, Camden, NJ, USA; MD Anderson Cancer Center at Cooper, Camden, NJ, USA
| | | | | | - Manoj K Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA.
| |
Collapse
|
5
|
Young CM, Viña-González A, de Toledo Aguiar RS, Kalman C, Pilitsis JG, Martin-Lopez LI, Mahani T, Pineda-Pardo JA. A Scoping Review of Focused Ultrasound Enhanced Drug Delivery for Across the Blood-Brain Barrier for Brain Tumors. Oper Neurosurg (Hagerstown) 2024; 27:523-532. [PMID: 38717167 DOI: 10.1227/ons.0000000000001175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/29/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Previous mechanisms of opening the blood-brain barrier (BBB) created a hypertonic environment. Focused ultrasound (FUS) has recently been introduced as a means of controlled BBB opening. Here, we performed a scoping review to assess the advances in drug delivery across the BBB for treatment of brain tumors to identify advances and literature gaps. METHODS A review of current literature was conducted through a MEDLINE search inclusive of articles on FUS, BBB, and brain tumor barrier, including human, modeling, and animal studies written in English. Using the Rayyan platform, 2 reviewers (J.P and C.Y) identified 967 publications. 224 were chosen to review after a title screen. Ultimately 98 were reviewed. The scoping review was designed to address the following questions: (1) What FUS technology improvements have been made to augment drug delivery for brain tumors? (2) What drug delivery improvements have occurred to ensure better uptake in the target tissue for brain tumors? RESULTS Microbubbles (MB) with FUS are used for BBB opening (BBBO) through cavitation to increase its permeability. Drug delivery into the central nervous system can be combined with MB to enhance transport of therapeutic agents to target brain tissue resulting in suppression of tumor growth and prolonging survival rate, as well as reducing systemic toxicity and degradation rate. There is accumulating evidence demonstrating that drug delivery through BBBO with FUS-MB improves drug concentrations and provides a better impact on tumor growth and survival rates, compared with drug-only treatments. CONCLUSION Here, we review the role of FUS in BBBO. Identified gaps in the literature include impact of tumor microenvironment and extracellular space, improved understanding and control of MB and drug delivery, further work on ideal pharmacologics for delivery, and clinical use.
Collapse
Affiliation(s)
- Christopher M Young
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton , Florida , USA
| | - Ariel Viña-González
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid , Spain
| | | | - Cheyenne Kalman
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton , Florida , USA
| | - Julie G Pilitsis
- Department of Neurosurgery, University of Arizona, Tucson , Arizona , USA
| | - Laura I Martin-Lopez
- Pediatric Oncology Unit, Hospital Universitario HM Montepríncipe, HM Hospitales/CIOCC, Madrid , Spain
| | - Tanmay Mahani
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton , Florida , USA
| | - José A Pineda-Pardo
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid , Spain
| |
Collapse
|
6
|
Jiang H, Zhang C, Lin M, Yin Y, Deng S, Liu W, Zhuo B, Tian G, Du Y, Meng Z. Deciphering the mechanistic impact of acupuncture on the neurovascular unit in acute ischemic stroke: Insights from basic research in a narrative review. Ageing Res Rev 2024; 101:102536. [PMID: 39384155 DOI: 10.1016/j.arr.2024.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
Ischemic stroke(IS), a severe acute cerebrovascular disease, not only imposes a heavy economic burden on society but also presents numerous challenges in treatment. During the acute phase, while thrombolysis and thrombectomy serve as primary treatments, these approaches are restricted by a narrow therapeutic window. During rehabilitation, commonly used neuroprotective agents struggle with their low drug delivery efficiency and inadequate preclinical testing, and the long-term pharmacological and toxicity effects of nanomedicines remain undefined. Meanwhile, acupuncture as a therapeutic approach is widely acknowledged for its effectiveness in treating IS and has been recommended by the World Health Organization (WHO) as an alternative and complementary therapy, even though its exact mechanisms remain unclear. This review aims to summarize the known mechanisms of acupuncture and electroacupuncture (EA) in the treatment of IS. Research shows that acupuncture treatment mainly protects the neurovascular unit through five mechanisms: 1) reducing neuronal apoptosis and promoting neuronal repair and proliferation; 2) maintaining the integrity of the blood-brain barrier (BBB); 3) inhibiting the overactivation and polarization imbalance of microglia; 4) regulating the movement of vascular smooth muscle (VSM) cells; 5) promoting the proliferation of oligodendrocyte precursors. Through an in-depth analysis, this review reveals the multi-level, multi-dimensional impact of acupuncture treatment on the neurovascular unit (NVU) following IS, providing stronger evidence and a theoretical basis for its clinical application.
Collapse
Affiliation(s)
- Hailun Jiang
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Chao Zhang
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Mengxuan Lin
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yu Yin
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shizhe Deng
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Wei Liu
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Bifang Zhuo
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Guang Tian
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yuzheng Du
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Zhihong Meng
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
7
|
Ghosh P, Fontanella RA, Scisciola L, Taktaz F, Pesapane A, Basilicata MG, Tortorella G, Matacchione G, Capuano A, Vietri MT, Selvaggi F, Paolisso G, Barbieri M. Obesity-induced neuronal senescence: Unraveling the pathophysiological links. Ageing Res Rev 2024; 101:102533. [PMID: 39368666 DOI: 10.1016/j.arr.2024.102533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/24/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Obesity is one of the most prevalent and increasing metabolic disorders and is considered one of the twelve risk factors for dementia. Numerous studies have demonstrated that obesity induces pathophysiological changes leading to cognitive decline; however, the underlying molecular mechanisms are yet to be fully elucidated. Various biochemical processes, including chronic inflammation, oxidative stress, insulin resistance, dysregulation of lipid metabolism, disruption of the blood-brain barrier, and the release of adipokines have been reported to contribute to the accumulation of senescent neurons during obesity. These senescent cells dysregulate neuronal health and function by exhibiting a senescence-associated secretory phenotype, inducing neuronal inflammation, deregulating cellular homeostasis, causing mitochondrial dysfunction, and promoting microglial infiltration. These factors act as major risks for the occurrence of neurodegenerative diseases and cognitive decline. This review aims to focus on how obesity upregulates neuronal senescence and explores both pharmacological and non-pharmacological interventions for preventing cognitive impairments, thus offering new insights into potential therapeutic strategies.
Collapse
Affiliation(s)
- Puja Ghosh
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Anna Fontanella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fatemeh Taktaz
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Ada Pesapane
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Manuela Giovanna Basilicata
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanni Tortorella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Annalisa Capuano
- Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Maria Teresa Vietri
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, Naples 80138, Italy; UOC Clinical and Molecular Pathology, AOU University of Campania "Luigi Vanvitelli", Naple 80138, Italy
| | - Francesco Selvaggi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; UniCamillus, International Medical University, Rome, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|
8
|
Guglielmi G, Zamagni C, Del Re M, Danesi R, Fogli S. Targeting HER2 in breast cancer with brain metastases: a pharmacological point of view with special focus on the permeability of blood-brain barrier to targeted treatments. Eur J Pharmacol 2024:177076. [PMID: 39486766 DOI: 10.1016/j.ejphar.2024.177076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/15/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Understanding the capability of a drug to penetrate the blood-brain barrier (BBB) is an unmet medical need in patients with positive human epidermal growth factor receptor 2 (HER2 positive) and brain metastases. The National Comprehensive Cancer Network (NCCN) guidelines recommend the use of tyrosine kinase inhibitors (TKIs) lapatinib, neratinib, and tucatinib in co-administration with monoclonal antibodies or chemotherapy drugs and the antibody-drug conjugates (ADCs) trastuzumab-deruxtecan and trastuzumab-emtansine. Predicting the BBB permeability of these therapeutic agents is a pharmacological challenge due to the various factors involved in the barrier functions. In this review article, we discuss about the molecular and cellular features of the barriers located in the central nervous system and the pharmacological parameters found to be important in predicting BBB permeability in human normal brain and in the presence of brain metastases. Finally, we reported the clinical outcomes and intracranial response of patients with HER2-positive breast cancer with brain metastases treated with targeted TKIs and ADCs.
Collapse
Affiliation(s)
- Giorgio Guglielmi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | | | - Marzia Del Re
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Romano Danesi
- Department of Oncology and Hemato-Oncology, University of Milano, Italy
| | - Stefano Fogli
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Italy.
| |
Collapse
|
9
|
Shirvalilou S, Khoei S, Afzalipour R, Ghaznavi H, Shirvaliloo M, Derakhti Z, Sheervalilou R. Targeting the undruggable in glioblastoma using nano-based intracellular drug delivery. Med Oncol 2024; 41:303. [PMID: 39470962 DOI: 10.1007/s12032-024-02546-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/17/2024] [Indexed: 11/01/2024]
Abstract
Glioblastoma (GBM) is a highly prevalent and aggressive brain tumor in adults with limited treatment response, leading to a 5-year survival rate of less than 5%. Standard therapies, including surgery, radiation, and chemotherapy, often fall short due to the tumor's location, hypoxic conditions, and the challenge of complete removal. Moreover, brain metastases from cancers such as breast and melanoma carry similarly poor prognoses. Recent advancements in nanomedicine offer promising solutions for targeted GBM therapies, with nanoparticles (NPs) capable of delivering chemotherapy drugs or radiation sensitizers across the blood-brain barrier (BBB) to specific tumor sites. Leveraging the enhanced permeability and retention effect, NPs can preferentially accumulate in tumor tissues, where compromised BBB regions enhance delivery efficiency. By modifying NP characteristics such as size, shape, and surface charge, researchers have improved circulation times and cellular uptake, enhancing therapeutic efficacy. Recent studies show that combining photothermal therapy with magnetic hyperthermia using AuNPs and magnetic NPs induces ROS-dependent apoptosis and immunogenic cell death providing dual-targeted, immune-activating approaches. This review discusses the latest NP-based drug delivery strategies, including gene therapy, receptor-mediated transport, and multi-modal approaches like photothermal-magnetic hyperthermia combinations, all aimed at optimizing therapeutic outcomes for GBM.
Collapse
Affiliation(s)
- Sakine Shirvalilou
- Finetech in Medicine Research Center, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samideh Khoei
- Finetech in Medicine Research Center, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Afzalipour
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
- Department of Radiology, Faculty of Para-Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Habib Ghaznavi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Milad Shirvaliloo
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Future Science Group, Unitec House, 2 Albert Place, London, N3 1QB, UK
| | - Zahra Derakhti
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
10
|
Jourdain MA, Eyer J. Recent advances in liposomes and peptide-based therapeutics for glioblastoma treatment. J Control Release 2024; 376:732-752. [PMID: 39437968 DOI: 10.1016/j.jconrel.2024.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
In the context of glioblastoma treatment, the penetration of drugs is drastically limited by the blood-brain-barrier (BBB). Emerging therapies have focused on the field of therapeutic peptides for their excellent BBB targeting properties that promote a deep tumor penetration. Peptide-based strategies are also renowned for their abilities of driving cargo such as liposomal system allowing an active targeting of receptors overexpressed on GBM cells. This review provides a detailed description of the internalization mechanisms of specific GBM homing and penetrating peptides as well as the latest in vitro/in vivo studies of liposomes functionalized with them. The purpose of this review is to summarize a selection of promising pre-clinical results that demonstrate the advantages of this nanosystem, including an increase of tumor cell targeting, triggering drug accumulation and thus a strong antitumor effect. Aware of the early stage of these studies, many challenges need to be overcome to promote peptide-directed liposome at clinical level. In particular, the lack of suitable production, the difficulty to characterize the nanosystem and therapeutic competition leaded by antibodies.
Collapse
Affiliation(s)
- M-A Jourdain
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France.
| | - J Eyer
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| |
Collapse
|
11
|
Abbott KL, Subudhi S, Ferreira R, Gültekin Y, Steinbuch SC, Munim MB, Honeder SE, Kumar AS, Ramesh DL, Wu M, Hansen JA, Sivanand S, Riedmayr LM, Duquette M, Ali A, Henning N, Shevzov-Zebrun A, Gourgue F, Barbeau AM, Waite M, Kunchok T, Ferraro GB, Do BT, Spanoudaki V, Sánchez-Rivera FJ, Jin X, Church GM, Jain RK, Vander Heiden MG. Site of breast cancer metastasis is independent of single nutrient levels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.616714. [PMID: 39484531 PMCID: PMC11527034 DOI: 10.1101/2024.10.24.616714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Cancer metastasis is a major contributor to patient morbidity and mortality 1 , yet the factors that determine the organs where cancers can metastasize are incompletely understood. In this study, we quantify the absolute levels of over 100 nutrients available across multiple tissues in mice and investigate how this relates to the ability of breast cancer cells to grow in different organs. We engineered breast cancer cells with broad metastatic potential to be auxotrophic for specific nutrients and assessed their ability to colonize different organs. We then asked how tumor growth in different tissues relates to nutrient availability and tumor biosynthetic activity. We find that single nutrients alone do not define the sites where breast cancer cells can grow as metastases. Additionally, we identify purine synthesis as a requirement for tumor growth and metastasis across many tissues and find that this phenotype is independent of tissue nucleotide availability or tumor de novo nucleotide synthesis activity. These data suggest that a complex interplay of multiple nutrients within the microenvironment dictates potential sites of metastatic cancer growth, and highlights the interdependence between extrinsic environmental factors and intrinsic cellular properties in influencing where breast cancer cells can grow as metastases.
Collapse
|
12
|
Nandi S, Ghosh S, Garg S, Ghosh S. Unveiling the Human Brain on a Chip: An Odyssey to Reconstitute Neuronal Ensembles and Explore Plausible Applications in Neuroscience. ACS Chem Neurosci 2024. [PMID: 39436813 DOI: 10.1021/acschemneuro.4c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
The brain is an incredibly complex structure that consists of millions of neural networks. In developmental and cellular neuroscience, probing the highly complex dynamics of the brain remains a challenge. Furthermore, deciphering how several cues can influence neuronal growth and its interactions with different brain cell types (such as astrocytes and microglia) is also a formidable task. Traditional in vitro macroscopic cell culture techniques offer simple and straightforward methods. However, they often fall short of providing insights into the complex phenomena of neuronal network formation and the relevant microenvironments. To circumvent the drawbacks of conventional cell culture methods, recent advancements in the development of microfluidic device-based microplatforms have emerged as promising alternatives. Microfluidic devices enable precise spatiotemporal control over compartmentalized cell cultures. This feature facilitates researchers in reconstituting the intricacies of the neuronal cytoarchitecture within a regulated environment. Therefore, in this review, we focus primarily on modeling neuronal development in a microfluidic device and the various strategies that researchers have adopted to mimic neurogenesis on a chip. Additionally, we have presented an overview of the application of brain-on-chip models for the recapitulation of the blood-brain barrier and neurodegenerative diseases, followed by subsequent high-throughput drug screening. These lab-on-a-chip technologies have tremendous potential to mimic the brain on a chip, providing valuable insights into fundamental brain processes. The brain-on-chip models will also serve as innovative platforms for developing novel neurotherapeutics to address several neurological disorders.
Collapse
Affiliation(s)
- Subhadra Nandi
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342030, India
| | - Satyajit Ghosh
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342030, India
| | - Shubham Garg
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342030, India
| | - Surajit Ghosh
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342030, India
| |
Collapse
|
13
|
Młynarska E, Jakubowska P, Frąk W, Gajewska A, Sornowska J, Skwira S, Wasiak J, Rysz J, Franczyk B. Associations of Microbiota and Nutrition with Cognitive Impairment in Diseases. Nutrients 2024; 16:3570. [PMID: 39458564 PMCID: PMC11510709 DOI: 10.3390/nu16203570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Recent research highlights the growing interest in the impact of nutrition on cognitive health and function in disease, as dietary habits are increasingly recognized as crucial factors in relation to brain function. This focus is especially important given the rising prevalence of neurodegenerative diseases and the cognitive decline associated with poor dietary choices. Links are now being sought between brain function and the microbiota and gut-brain axis. Mechanisms are proposed that include low-grade chronic neuroinflammation, the influence of short-chain fatty acids, or the disruption of glial cells and transmitters in the brain. METHODS We reviewed the articles on pubmed. This is not a systematic review, but of the narrative type. We wanted to outline the issue and summarise the latest information. RESULTS The axis in question has its foundation in nutrition. It has been reported that diet, particularly the components and the timing of food intake, has an impact on cognitive processes. The Mediterranean diet is most often cited in the literature as being beneficial to health. In order to obtain a more complete view, it is worth considering other dietary patterns, even those that impair our health. CONCLUSIONS Determining what is beneficial and what is not will allow us to develop a speronized strategy for the prevention of, and fight against, cognitive impairment. Appropriately selected supplements, the functions of which we have also discussed, may prove supportive.
Collapse
Affiliation(s)
- Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Paulina Jakubowska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Weronika Frąk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Agata Gajewska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Joanna Sornowska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Sylwia Skwira
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jakub Wasiak
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
14
|
Pellowski D, Ebert F, Bornhorst J, Schwerdtle T. Zinc-modulated bidirectional copper transfer across the blood-brain barrier in a porcine brain capillary endothelial cell culture model system. J Trace Elem Med Biol 2024; 86:127547. [PMID: 39442467 DOI: 10.1016/j.jtemb.2024.127547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
The blood-brain barrier (BBB) serves as a crucial interface, regulating the transfer of trace elements (TEs) such as copper (Cu) and zinc (Zn) between the bloodstream and the brain. Cu and Zn are essential for maintaining neural function and enzymatic processes. Understanding the interplay of Cu and Zn with the BBB is crucial for elucidating their roles in neurological health and disease. This study investigates the bidirectional transfer of Cu across the BBB and examines the impact of Zn supplementation on this process using a porcine brain capillary endothelial cell (PBCEC) model. Transendothelial electrical resistance (TEER) and capacitance measurements confirmed barrier integrity upon TE exposure, while quantification of Cu and Zn concentrations via inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS) in the culture medium provided essential baseline data. Transfer studies revealed significant increases in basolateral (brain side) Cu concentrations after apical (blood side) Cu incubation, with additional Zn supplementation reducing Cu transfer from apical to basolateral compartments. Conversely, Zn incubation showed no effect on basolateral-to-apical Cu transfer. Surprisingly, it was found that Cu also transferred significantly to the apical compartments when incubated basolaterally, and with slightly higher permeability coefficients than vice versa, indicating a potential role of PBCECs in regulating Cu transport both from blood to brain and from brain to blood. These findings suggest a bidirectional Cu trafficking across PBCECs, only slightly influenced unidirectionally by Zn supplementation, highlighting the intricate interplay between TEs at the BBB. Importantly, no alterations in barrier integrity were observed, underscoring the physiological relevance of the experimental conditions. Overall, this study sheds light on the complex dynamics of Cu and Zn transfer at the BBB, emphasizing the need for comprehensive investigations into TE interactions for a deeper understanding of brain TE homeostasis.
Collapse
Affiliation(s)
- Denny Pellowski
- Trace-Age-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Nuthetal 14558, Germany; Institute of Nutritional Science, Department of Food Chemistry, University of Potsdam, Potsdam 14469, Germany
| | - Franziska Ebert
- Institute of Nutritional Science, Department of Food Chemistry, University of Potsdam, Potsdam 14469, Germany
| | - Julia Bornhorst
- Trace-Age-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Nuthetal 14558, Germany; Food Chemistry with focus on Toxicology, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal 42119, Germany
| | - Tanja Schwerdtle
- Trace-Age-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Nuthetal 14558, Germany; German Federal Institute for Risk Assessment (BfR), Berlin 10589, Germany.
| |
Collapse
|
15
|
Khan S, Upadhyay S, Hassan MI. Novel prospects in targeting neurodegenerative disorders via autophagy. Eur J Pharmacol 2024; 984:177060. [PMID: 39426466 DOI: 10.1016/j.ejphar.2024.177060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/12/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Protein aggregation occurs as a consequence of dysfunction in the normal cellular proteostasis, which leads to the accumulation of toxic fibrillar aggregates of certain proteins in the cell. Enhancing the activity of proteolytic pathways may serve as a way of clearing these aggregates in a cell, and consequently, autophagy has surfaced as a promising target for the treatment of neurodegenerative disorders. Several strategies involving small molecule compounds that stimulate autophagic pathway of cell have been discovered. However, despite many compounds having demonstrated favorable outcomes in experimental disease models, the translation of these findings into clinical benefits for patient's remains limited. Consequently, alternative strategies are actively being explored to effectively target neurodegeneration via autophagy modulation. Recently, newer approaches such as modulation of expression of autophagic genes have emerged as novel and interesting areas of research in this field, which hold promising potential in neuroprotection. Similarly, as discussed for the first time in this review, the use of autophagy-inducing nanoparticles by utilizing their physicochemical properties to stimulate the autophagic process, rather than relying on their role as drug carriers, offers a completely fresh avenue for targeting neurodegeneration without the risk of drug-associated adverse effects. This review provides fresh perspectives on developing autophagy-targeted therapies for neurodegenerative disorders. Additionally, it discusses the challenges and impediments of implementing these strategies to alleviate the pathogenesis of neurodegenerative disorders in clinical settings and highlights the prospects and directions of future research in this context.
Collapse
Affiliation(s)
- Shumayila Khan
- International Health Division, Indian Council of Medical Research, Ansari Nagar, New Delhi, 110029, India
| | - Saurabh Upadhyay
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
16
|
Wei L, Aitchison JD, Kaushansky A, Mast FD. Systems-level reconstruction of kinase phosphosignaling networks regulating endothelial barrier integrity using temporal data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606198. [PMID: 39149238 PMCID: PMC11326140 DOI: 10.1101/2024.08.01.606198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Phosphosignaling networks control cellular processes. We built kinase-mediated regulatory networks elicited by thrombin stimulation of brain endothelial cells using two computational strategies: Temporal Pathway Synthesizer (TPS), which uses phosphoproetiomics data as input, and Temporally REsolved KInase Network Generation (TREKING), which uses kinase inhibitor screens. TPS and TREKING predicted overlapping barrier-regulatory kinases connected with unique network topology. Each strategy effectively describes regulatory signaling networks and is broadly applicable across biological systems.
Collapse
|
17
|
Munzen ME, Mathew C, Enriquez V, Minhas A, Charles-Niño CL, Saytoo D, Reguera-Gomez M, Dores MR, Martinez LR. Inhibition of RhoA Prevents Cryptococcus neoformans Capsule Glucuronoxylomannan-Stimulated Brain Endothelial Barrier Disruption. J Infect Dis 2024; 230:1042-1051. [PMID: 38622836 PMCID: PMC11481333 DOI: 10.1093/infdis/jiae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024] Open
Abstract
Cryptococcus neoformans (Cn) is an opportunistic fungus that causes severe central nervous system (CNS) disease in immunocompromised individuals. Brain parenchyma invasion requires fungal traversal of the blood-brain barrier. In this study, we describe that Cn alters the brain endothelium by activating small GTPase RhoA, causing reorganization of the actin cytoskeleton and tight junction modulation to regulate endothelial barrier permeability. We confirm that the main fungal capsule polysaccharide glucuronoxylomannan is responsible for these alterations. We reveal a therapeutic benefit of RhoA inhibition by CCG-1423 in vivo. RhoA inhibition prolonged survival and reduced fungal burden in a murine model of disseminated cryptococcosis, supporting the therapeutic potential of targeting RhoA in the context of cryptococcal infection. We examine the complex virulence of Cn in establishing CNS disease, describing cellular components of the brain endothelium that may serve as molecular targets for future antifungal therapies to alleviate the burden of life-threatening cryptococcal CNS infection.
Collapse
Affiliation(s)
- Melissa E Munzen
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville
| | - Cristian Mathew
- Department of Biology, Hofstra University, Hempstead, New York
| | - Vanessa Enriquez
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville
| | - Amanjeet Minhas
- Department of Biology, Hofstra University, Hempstead, New York
| | | | | | - Marta Reguera-Gomez
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville
| | - Michael R Dores
- Department of Biology, Hofstra University, Hempstead, New York
| | - Luis R Martinez
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville
- Emerging Pathogens Institute
- Center for Immunology and Transplantation
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville
| |
Collapse
|
18
|
Ceccarelli MC, Lefevre MC, Marino A, Pignatelli F, Krukiewicz K, Battaglini M, Ciofani G. Real-time monitoring of a 3D blood-brain barrier model maturation and integrity with a sensorized microfluidic device. LAB ON A CHIP 2024. [PMID: 39412878 PMCID: PMC11482549 DOI: 10.1039/d4lc00633j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024]
Abstract
A significant challenge in the treatment of central nervous system (CNS) disorders is represented by the presence of the blood-brain barrier (BBB), a highly selective membrane that regulates molecular transport and restricts the passage of pathogens and therapeutic compounds. Traditional in vivo models are constrained by high costs, lengthy experimental timelines, ethical concerns, and interspecies variations. In vitro models, particularly microfluidic BBB-on-a-chip devices, have been developed to address these limitations. These advanced models aim to more accurately replicate human BBB conditions by incorporating human cells and physiological flow dynamics. In this framework, here we developed an innovative microfluidic system that integrates thin-film electrodes for non-invasive, real-time monitoring of BBB integrity using electrochemical impedance spectroscopy (EIS). EIS measurements showed frequency-dependent impedance changes, indicating BBB integrity and distinguishing well-formed from non-mature barriers. The data from EIS monitoring was confirmed by permeability assays performed with a fluorescence tracer. The model incorporates human endothelial cells in a vessel-like arrangement to mimic the vascular component and three-dimensional cell distribution of human astrocytes and microglia to simulate the parenchymal compartment. By modeling the BBB-on-a-chip with an equivalent circuit, a more accurate trans-endothelial electrical resistance (TEER) value was extracted. The device demonstrated successful BBB formation and maturation, confirmed through live/dead assays, immunofluorescence and permeability assays. Computational fluid dynamics (CFD) simulations confirmed that the device mimics in vivo shear stress conditions. Drug crossing assessment was performed with two chemotherapy drugs: doxorubicin, with a known poor BBB penetration, and temozolomide, conversely a specific drug for CNS disorders and able to cross the BBB, to validate the model predictive capability for drug crossing behavior. The proposed sensorized microfluidic device represents a significant advancement in BBB modeling, offering a versatile platform for CNS drug development, disease modeling, and personalized medicine.
Collapse
Affiliation(s)
- Maria Cristina Ceccarelli
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
- Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Marie Celine Lefevre
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
| | - Attilio Marino
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
| | - Francesca Pignatelli
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Księdza Marcina Strzody 9, 44-100 Gliwice, Poland
| | - Matteo Battaglini
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
| |
Collapse
|
19
|
Velmurugan GV, Vekaria HJ, Hartz AMS, Bauer B, Hubbard WB. Oxidative stress alters mitochondrial homeostasis in isolated brain capillaries. Fluids Barriers CNS 2024; 21:81. [PMID: 39407313 PMCID: PMC11476969 DOI: 10.1186/s12987-024-00579-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Neurovascular deficits and blood-brain barrier (BBB) dysfunction are major hallmarks of brain trauma and neurodegenerative diseases. Oxidative stress is a prominent contributor to neurovascular unit (NVU) dysfunction and can propagate BBB disruption. Oxidative damage results in an imbalance of mitochondrial homeostasis, which can further drive functional impairment of brain capillaries. To this end, we developed a method to track mitochondrial-related changes after oxidative stress in the context of neurovascular pathophysiology as a critical endophenotype of neurodegenerative diseases. METHODS To study brain capillary-specific mitochondrial function and dynamics in response to oxidative stress, we developed an ex vivo model in which we used isolated brain capillaries from transgenic mice that express dendra2 green specifically in mitochondria (mtD2g). Isolated brain capillaries were incubated with 2,2'-azobis-2-methyl-propanimidamide dihydrochloride (AAPH) or hydrogen peroxide (H2O2) to induce oxidative stress through lipid peroxidation. Following the oxidative insult, mitochondrial bioenergetics were measured using the Seahorse XFe96 flux analyzer, and mitochondrial dynamics were measured using confocal microscopy with Imaris software. RESULTS We optimized brain capillary isolation with intact endothelial cell tight-junction and pericyte integrity. Further, we demonstrate consistency of the capillary isolation process and cellular enrichment of the isolated capillaries. Mitochondrial bioenergetics and morphology assessments were optimized in isolated brain capillaries. Finally, we found that oxidative stress significantly decreased mitochondrial respiration and altered mitochondrial morphology in brain capillaries, including mitochondrial volume and count. CONCLUSIONS Following ex vivo isolation of brain capillaries, we confirmed the stability of mitochondrial parameters, demonstrating the feasibility of this newly developed platform. We also demonstrated that oxidative stress has profound effects on mitochondrial homeostasis in isolated brain capillaries. This novel method can be used to evaluate pharmacological interventions to target oxidative stress or mitochondrial dysfunction in cerebral small vessel disease and neurovascular pathophysiology as major players in neurodegenerative disease.
Collapse
Affiliation(s)
- Gopal V Velmurugan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, USA
- Department of Neuroscience, University of Kentucky, Lexington, USA
| | - Hemendra J Vekaria
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, USA
- Department of Neuroscience, University of Kentucky, Lexington, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, USA
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, USA
| | - Björn Bauer
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, USA
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, USA
| | - W Brad Hubbard
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, USA.
- Department of Physiology, University of Kentucky, Lexington, USA.
- Lexington Veterans' Affairs Healthcare System, Lexington, USA.
| |
Collapse
|
20
|
Abtin S, Seyedaghamiri F, Aalidaeijavadi Z, Farrokhi AM, Moshrefi F, Ziveh T, Zibaii MI, Aliakbarian H, Rezaei-Tavirani M, Haghparast A. A review on the consequences of molecular and genomic alterations following exposure to electromagnetic fields: Remodeling of neuronal network and cognitive changes. Brain Res Bull 2024; 217:111090. [PMID: 39349259 DOI: 10.1016/j.brainresbull.2024.111090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
The use of electromagnetic fields (EMFs) is essential in daily life. Since 1970, concerns have grown about potential health hazards from EMF. Exposure to EMF can stimulate nerves and affect the central nervous system, leading to neurological and cognitive changes. However, current research results are often vague and contradictory. These effects include changes in memory and learning through changes in neuronal plasticity in the hippocampus, synapses and hippocampal neuritis, and changes in metabolism and neurotransmitter levels. Prenatal exposure to EMFs has negative effects on memory and learning, as well as changes in hippocampal neuron density and histomorphology of hippocampus. EMF exposure also affects the structure and function of glial cells, affecting gate dynamics, ion conduction, membrane concentration, and protein expression. EMF exposure affects gene expression and may change epigenetic regulation through effects on DNA methylation, histone modification, and microRNA biogenesis, and potentially leading to biological changes. Therefore, exposure to EMFs possibly leads to changes in cellular and molecular mechanisms in central nervous system and alter cognitive function.
Collapse
Affiliation(s)
- Shima Abtin
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemehsadat Seyedaghamiri
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Aalidaeijavadi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Mohammad Farrokhi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fazel Moshrefi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayebeh Ziveh
- Laboratory of Biophysics and Molecular Biology, Departments of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Hadi Aliakbarian
- Faculty of Electrical Engineering, KN Toosi University of Technology, Tehran, Iran
| | | | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Guillot P, Celle S, Barth N, Roche F, Perek N. 'Selected' Exosomes from Sera of Elderly Severe Obstructive Sleep Apnea Patients and Their Impact on Blood-Brain Barrier Function: A Preliminary Report. Int J Mol Sci 2024; 25:11058. [PMID: 39456840 PMCID: PMC11507461 DOI: 10.3390/ijms252011058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/07/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) affects a large part of the aging population. It is characterized by chronic intermittent hypoxia and associated with neurocognitive dysfunction. One hypothesis is that the blood-brain barrier (BBB) functions could be altered by exosomes. Exosomes are nanovesicles found in biological fluids. Through the study of exosomes and their content in tau and amyloid beta (Aβ), the aim of this study was to show how exosomes could be used as biomarkers of OSAS and of their cognitive disorders. Two groups of 15 volunteers from the PROOF cohort were selected: severe apnea (AHI > 30) and control (AHI < 5). After exosome isolation from blood serum, we characterized and quantified them (CD81, CD9, CD63) by western blot and ELISAs and put them 5 h in contact with an in vitro BBB model. The apparent permeability of the BBB was measured using sodium-fluorescein and TEER. Cell ELISAs were performed on tight junctions (ZO-1, claudin-5, occludin). The amount of tau and Aβ proteins found in the exosomes was quantified using ELISAs. Compared to controls, OSAS patients had a greater quantity of exosomes, tau, and Aβ proteins in their blood sera, which induced an increase in BBB permeability in the model and was reflected by a loss of tight junction' expression. Elderly patients suffering severe OSAS released more exosomes in serum from the brain compartment than controls. Such exosomes increased BBB permeability. The impact of such alterations on the risk of developing cognitive dysfunction and/or neurodegenerative diseases is questioned.
Collapse
Affiliation(s)
- Pauline Guillot
- Gérontopôle AURA, 42000 Saint-Etienne, France;
- Inserm, U1059, Sainbiose, Faculté de Médecine Jacques Lisfranc, Université de Lyon, 42000 Saint-Etienne, France; (S.C.); (F.R.); (N.P.)
- Faculté de Médecine Jacques Lisfranc, Université Jean Monnet, 42000 Saint-Etienne, France
| | - Sebastien Celle
- Inserm, U1059, Sainbiose, Faculté de Médecine Jacques Lisfranc, Université de Lyon, 42000 Saint-Etienne, France; (S.C.); (F.R.); (N.P.)
- Physiologie Clinique et de l’Exercice, Centre Visas, CHU Saint Etienne, 42000 Saint-Etienne, France
| | - Nathalie Barth
- Gérontopôle AURA, 42000 Saint-Etienne, France;
- Chaire Santé des Ainés, Ingénierie de la Prévention, Université Jen Monnet, 42000 Saint-Etienne, France
| | - Frederic Roche
- Inserm, U1059, Sainbiose, Faculté de Médecine Jacques Lisfranc, Université de Lyon, 42000 Saint-Etienne, France; (S.C.); (F.R.); (N.P.)
- Faculté de Médecine Jacques Lisfranc, Université Jean Monnet, 42000 Saint-Etienne, France
- Physiologie Clinique et de l’Exercice, Centre Visas, CHU Saint Etienne, 42000 Saint-Etienne, France
| | - Nathalie Perek
- Inserm, U1059, Sainbiose, Faculté de Médecine Jacques Lisfranc, Université de Lyon, 42000 Saint-Etienne, France; (S.C.); (F.R.); (N.P.)
- Faculté de Médecine Jacques Lisfranc, Université Jean Monnet, 42000 Saint-Etienne, France
| |
Collapse
|
22
|
Kuo PC, Weng WT, Scofield BA, Paraiso HC, Yu ICI, Yen JHJ. Ischemia-induced endogenous Nrf2/HO-1 axis activation modulates microglial polarization and restrains ischemic brain injury. Front Immunol 2024; 15:1440592. [PMID: 39469715 PMCID: PMC11513276 DOI: 10.3389/fimmu.2024.1440592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/18/2024] [Indexed: 10/30/2024] Open
Abstract
Cerebral ischemic stroke accounts for more than 80% of all stroke cases. During cerebral ischemia, reactive oxygen species produced in the ischemic brain induce oxidative stress and inflammatory responses. Nrf2 is a transcription factor responsible for regulating cellular redox balance through the induction of protective antioxidant and phase II detoxification responses. Although the induction of endogenous Nrf2/HO-1 axis activation has been observed in the ischemic brain, whether ischemia-induced endogenous Nrf2/HO-1 axis activation plays a role in modulating microglia (MG) phenotypes and restraining ischemic brain injury is not characterized and requires further exploration. To investigate that, we generated mice with Nrf2 knockdown specifically in MG to rigorously assess the role of endogenous Nrf2 activation in ischemic brain injury after stroke. Our results showed that MG-specific Nrf2 knockdown exacerbated ischemic brain injury after stroke. We found that Nrf2 knockdown altered MG phenotypes after stroke, in which increased frequency of inflammatory MG and decreased frequency of anti-inflammatory MG were detected in the ischemic brain. Moreover, we identified attenuated Nrf2/HO-1 axis activation led to increased CD68/IL-1β and suppressed CD206 expression in MG, resulting in aggravated inflammatory MG in MG-specific Nrf2 knockdown mice after stroke. Intriguingly, using type II diabetic preclinical models, we revealed that diabetic mice exhibited attenuated Nrf2/HO-1 axis activation in MG and exacerbated ischemic brain injury after stroke that phenocopy mice with MG-specific Nrf2 knockdown. Finally, the induction of exogenous Nrf2/HO-1 axis activation in MG through pharmacological approaches ameliorated ischemic brain injury in diabetic mice. In conclusion, our findings provide cellular and molecular insights demonstrating ischemia-induced endogenous Nrf2/HO-1 axis activation modulates MG phenotypes and restrains ischemic brain injury. These results further strengthen the therapeutic potential of targeting Nrf2/HO-1 axis in MG for the treatment of ischemic stroke and diabetic stroke.
Collapse
Affiliation(s)
- Ping-Chang Kuo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Wen-Tsan Weng
- Department of Microbiology and Immunology, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Barbara A. Scofield
- Department of Microbiology and Immunology, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Hallel C. Paraiso
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - I-Chen Ivorine Yu
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Jui-Hung Jimmy Yen
- Department of Microbiology and Immunology, Indiana University School of Medicine, Fort Wayne, IN, United States
| |
Collapse
|
23
|
Holst MR, Richner M, Arenshøj PO, Alam P, Hyldig K, Nielsen MS. Ex vivo nanoscale abluminal mapping of putative cargo receptors at the blood-brain barrier of expanded brain capillaries. Fluids Barriers CNS 2024; 21:80. [PMID: 39402596 PMCID: PMC11475543 DOI: 10.1186/s12987-024-00585-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
Receptor mediated transport of therapeutic antibodies through the blood-brain barrier (BBB) give promise for drug delivery to alleviate brain diseases. We developed a low-cost method to obtain nanoscale localization data of putative cargo receptors. We combine existing ex vivo isolation methods with expansion microscopy (ExM) to analyze receptor localizations in brain microcapillaries. Using this approach, we show how to analyze receptor localizations in endothelial cells of brain microcapillaries in relation to the abluminal marker collagen IV. By choosing the thinnest capillaries, microcapillaries for analysis, we ensure the validity of collagen IV as an abluminal marker. With this tool, we confirm transferrin receptors as well as sortilin to be both luminally and abluminally localized. Furthermore, we identify basigin to be an abluminal receptor. Our methodology can be adapted to analyze different types of isolated brain capillaries and we anticipate that this approach will be very useful for the research community to gain new insight into cargo receptor trafficking in the slim brain endothelial cells to elucidate novel paths for future drug design.
Collapse
Affiliation(s)
| | - Mette Richner
- Department of Biomedicine, Aarhus University, Aarhus C, 8000, Denmark
| | | | - Parvez Alam
- Department of Biomedicine, Aarhus University, Aarhus C, 8000, Denmark
- Laboratory of Neurological Infection and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Kathrine Hyldig
- Department of Biomedicine, Aarhus University, Aarhus C, 8000, Denmark
- Biotherapeutic Discovery, H. Lundbeck A/S, Valby, Copenhagen, 2500, Denmark
| | | |
Collapse
|
24
|
Ding Y, Palecek SP, Shusta EV. iPSC-derived blood-brain barrier modeling reveals APOE isoform-dependent interactions with amyloid beta. Fluids Barriers CNS 2024; 21:79. [PMID: 39394110 PMCID: PMC11468049 DOI: 10.1186/s12987-024-00580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Three common isoforms of the apolipoprotein E (APOE) gene - APOE2, APOE3, and APOE4 - hold varying significance in Alzheimer's Disease (AD) risk. The APOE4 allele is the strongest known genetic risk factor for late-onset Alzheimer's Disease (AD), and its expression has been shown to correlate with increased central nervous system (CNS) amyloid deposition and accelerated neurodegeneration. Conversely, APOE2 is associated with reduced AD risk and lower CNS amyloid burden. Recent clinical data have suggested that increased blood-brain barrier (BBB) leakage is commonly observed among AD patients and APOE4 carriers. However, it remains unclear how different APOE isoforms may impact AD-related pathologies at the BBB. METHODS To explore potential impacts of APOE genotypes on BBB properties and BBB interactions with amyloid beta, we differentiated isogenic human induced pluripotent stem cell (iPSC) lines with different APOE genotypes into both brain microvascular endothelial cell-like cells (BMEC-like cells) and brain pericyte-like cells. We then compared the effect of different APOE isoforms on BBB-related and AD-related phenotypes. Statistical significance was determined via ANOVA with Tukey's post hoc testing as appropriate. RESULTS Isogenic BMEC-like cells with different APOE genotypes had similar trans-endothelial electrical resistance, tight junction integrity and efflux transporter gene expression. However, recombinant APOE4 protein significantly impeded the "brain-to-blood" amyloid beta 1-40 (Aβ40) transport capabilities of BMEC-like cells, suggesting a role in diminished amyloid clearance. Conversely, APOE2 increased amyloid beta 1-42 (Aβ42) transport in the model. Furthermore, we demonstrated that APOE-mediated amyloid transport by BMEC-like cells is dependent on LRP1 and p-glycoprotein pathways, mirroring in vivo findings. Pericyte-like cells exhibited similar APOE secretion levels across genotypes, yet APOE4 pericyte-like cells showed heightened extracellular amyloid deposition, while APOE2 pericyte-like cells displayed the least amyloid deposition, an observation in line with vascular pathologies in AD patients. CONCLUSIONS While APOE genotype did not directly impact general BMEC or pericyte properties, APOE4 exacerbated amyloid clearance and deposition at the model BBB. Conversely, APOE2 demonstrated a potentially protective role by increasing amyloid transport and decreasing deposition. Our findings highlight that iPSC-derived BBB models can potentially capture amyloid pathologies at the BBB, motivating further development of such in vitro models in AD modeling and drug development.
Collapse
Affiliation(s)
- Yunfeng Ding
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA.
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA.
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
25
|
Shi W, Zhang S, Yao K, Meng Q, Lu Y, Ren Y, Li L, Zhao J. Breakdown of the blood-brain barrier in depressed mice induced by chronic unpredictable mild stress. J Psychiatr Res 2024; 180:138-146. [PMID: 39418882 DOI: 10.1016/j.jpsychires.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Recent studies have suggested potential impairment of the blood-brain barrier (BBB) in depression. However, due to the limited research and variability in animal models, further investigation using diverse and stable models is necessary. METHODS A male mouse model of depression was established using the chronic unpredictable mild stress (CUMS) protocol. Following model establishment, depression-like behaviors were assessed using the sucrose preference test, tail suspension test, and forced swimming test. Morphological changes in the hippocampus were examined through hematoxylin-eosin staining. BBB permeability was evaluated using the Evans blue leakage test, fluorescein sodium (NaF) leakage test, and serum S100B content assessment. Gene and protein expression levels of BBB-related proteins in the hippocampus were determined via real-time PCR, western blotting, and immunofluorescence assays. RESULTS CUMS exposure induced depression-like behaviors, including reduced body weight gain, diminished sucrose preference, and prolonged immobility in both the tail suspension test and forced swimming test. While no significant pathological changes were observed in the hippocampus of either group, increased BBB permeability was noted in the CUMS group, as evidenced by enhanced NaF leakage into the brain parenchyma and elevated serum S100B levels. Gene expression analysis revealed downregulation of angiogenesis-related genes and tight junction proteins in the CUMS group. Additionally, protein levels of tight junction proteins Claudin-5 and ZO-1 were lower in the CUMS group compared to controls. LIMITATIONS This study is limited to a male mouse model, and the BBB in females is worth exploring in the future. CONCLUSIONS Increased BBB permeability and decreased expression of tight junction proteins Claudin5 and ZO-1 were observed in mice with CUMS-induced depression.
Collapse
Affiliation(s)
- Wei Shi
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Shan Zhang
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Kaihu Yao
- Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Qinghong Meng
- Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yujia Lu
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yi Ren
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Li Li
- Department of International Medical Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; Department of Integrated Traditional and Western Medicine, Capital Medical University, Beijing, 100050, China.
| | - Jingjie Zhao
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; Department of Integrated Traditional and Western Medicine, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
26
|
Mineiro R, Rodrigues Cardoso M, Catarina Duarte A, Santos C, Cipolla-Neto J, Gaspar do Amaral F, Costa D, Quintela T. Melatonin and brain barriers: The protection conferred by melatonin to the blood-brain barrier and blood-cerebrospinal fluid barrier. Front Neuroendocrinol 2024; 75:101158. [PMID: 39395545 DOI: 10.1016/j.yfrne.2024.101158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/29/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
The blood-brain barrier and the blood-cerebrospinal fluid barrier separate the blood from brain tissue and cerebrospinal fluid. These brain barriers are important to maintain homeostasis and complex functions by protecting the brain from xenobiotics and harmful endogenous compounds. The disruption of brain barriers is a characteristic of neurologic diseases. Melatonin is a lipophilic hormone that is mainly produced by the pineal gland. The blood-brain barrier and the blood-cerebrospinal fluid barriers are melatonin-binding sites. Among the several melatonin actions, the most characteristic one is the regulation of sleep-wake cycles, melatonin has anti-inflammatory and antioxidant properties. Since brain barriers disruption can arise from inflammation and oxidative stress, knowing the influence of melatonin on the integrity of brain barriers is extremely important. Therefore, the objective of this review is to gather and discuss the available literature about the regulation of brain barriers by melatonin.
Collapse
Affiliation(s)
- Rafael Mineiro
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Maria Rodrigues Cardoso
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ana Catarina Duarte
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Cecília Santos
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Jose Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Diana Costa
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal.
| |
Collapse
|
27
|
Rodriguez SMB, Tataranu LG, Kamel A, Turliuc S, Rizea RE, Dricu A. Glioblastoma and Immune Checkpoint Inhibitors: A Glance at Available Treatment Options and Future Directions. Int J Mol Sci 2024; 25:10765. [PMID: 39409094 PMCID: PMC11477435 DOI: 10.3390/ijms251910765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Glioblastoma is known to be one of the most aggressive and fatal human cancers, with a poor prognosis and resistance to standard treatments. In the last few years, many solid tumor treatments have been revolutionized with the help of immunotherapy. However, this type of treatment has failed to improve the results in glioblastoma patients. Effective immunotherapeutic strategies may be developed after understanding how glioblastoma achieves tumor-mediated immune suppression in both local and systemic landscapes. Biomarkers may help identify patients most likely to benefit from this type of treatment. In this review, we discuss the use of immunotherapy in glioblastoma, with an emphasis on immune checkpoint inhibitors and the factors that influence clinical response. A Pubmed data search was performed for all existing information regarding immune checkpoint inhibitors used for the treatment of glioblastoma. All data evaluating the ongoing clinical trials involving the use of ICIs either as monotherapy or in combination with other drugs was compiled and analyzed.
Collapse
Affiliation(s)
- Silvia Mara Baez Rodriguez
- Neurosurgical Department, Bagdasar-Arseni Clinical Emergency Hospital, 041915 Bucharest, Romania; (S.M.B.R.); (A.K.); (R.E.R.)
| | - Ligia Gabriela Tataranu
- Neurosurgical Department, Bagdasar-Arseni Clinical Emergency Hospital, 041915 Bucharest, Romania; (S.M.B.R.); (A.K.); (R.E.R.)
- Neurosurgical Department, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania
| | - Amira Kamel
- Neurosurgical Department, Bagdasar-Arseni Clinical Emergency Hospital, 041915 Bucharest, Romania; (S.M.B.R.); (A.K.); (R.E.R.)
| | - Serban Turliuc
- Medical Department, University of Medicine and Pharmacy “G. T. Popa”, 700115 Iasi, Romania;
| | - Radu Eugen Rizea
- Neurosurgical Department, Bagdasar-Arseni Clinical Emergency Hospital, 041915 Bucharest, Romania; (S.M.B.R.); (A.K.); (R.E.R.)
- Neurosurgical Department, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania
| | - Anica Dricu
- Biochemistry Department, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania;
| |
Collapse
|
28
|
Li J, Long S, Zhang Y, Wei W, Yu S, Liu Q, Hui X, Li X, Wang Y. Molecular mechanisms and diagnostic model of glioma-related epilepsy. NPJ Precis Oncol 2024; 8:223. [PMID: 39363097 PMCID: PMC11450052 DOI: 10.1038/s41698-024-00721-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/22/2024] [Indexed: 10/05/2024] Open
Abstract
Epilepsy is one of the most common symptoms in patients with gliomas; however, the mechanisms underlying its interaction are not yet clear. Moreover, epidemiological studies have not accurately identified patients with glioma-related epilepsy (GRE), and there is an urgent need to identify the molecular mechanisms and markers of its occurrence. We analyzed the demographics, transcriptome, whole-genome, and methylation sequences of 997 patients with glioma, to determine the genetic differences between glioma and GRE patients and to determine the upregulated molecular function, cellular composition, biological processes involved, signaling pathways, and immune cell infiltration. Twelve machine learning algorithms were refined into 113 combinatorial algorithms for building diagnostic recognition models. A total of 342 patients with GRE were identified with WHO grade 2 (174), grade 3 (107), and grade 4 (61). The mean age of the patients with GREs, with IDH mutations (n = 217 [63%]) and 1p19q non-codeletion (n = 169 [49%]), was 38 years old. GRE molecular functions were mainly passive transmembrane transporter protein activity, ion channel activity, and gated channel activity. Cellular components were enriched in the cation-channel and transmembrane transporter complexes. Cerebral cortical development regulates the membrane potential and synaptic organization as major biological processes. The signaling pathways mainly focused on cholinergic, GABAergic, and glutamatergic synapses. LASSO, combined with Random Forest, was the best diagnostic model and identified nine diagnostic genes. This study provides new insights and future perspectives for resolving the molecular mechanisms of GRE.
Collapse
Affiliation(s)
- Jinwei Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shengrong Long
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yang Zhang
- Department of Vascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wei Wei
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shuangqi Yu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Quan Liu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Xuhui Hui
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Yinyan Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
29
|
Yonk MG, Lim MA, Thompson CM, Tora MS, Lakhina Y, Du Y, Hoang KB, Molinaro AM, Boulis NM, Hassaneen W, Lei K. Improving glioma drug delivery: A multifaceted approach for glioma drug development. Pharmacol Res 2024; 208:107390. [PMID: 39233056 PMCID: PMC11440560 DOI: 10.1016/j.phrs.2024.107390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Glioma is one of the most common central nervous system (CNS) cancers that can be found within the brain and the spinal cord. One of the pressing issues plaguing the development of therapeutics for glioma originates from the selective and semipermeable CNS membranes: the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB). It is difficult to bypass these membranes and target the desired cancerous tissue because the purpose of the BBB and BSCB is to filter toxins and foreign material from invading CNS spaces. There are currently four varieties of Food and Drug Administration (FDA)-approved drug treatment for glioma; yet these therapies have limitations including, but not limited to, relatively low transmission through the BBB/BSCB, despite pharmacokinetic characteristics that allow them to cross the barriers. Steps must be taken to improve the development of novel and repurposed glioma treatments through the consideration of pharmacological profiles and innovative drug delivery techniques. This review addresses current FDA-approved glioma treatments' gaps, shortcomings, and challenges. We then outline how incorporating computational BBB/BSCB models and innovative drug delivery mechanisms will help motivate clinical advancements in glioma drug delivery. Ultimately, considering these attributes will improve the process of novel and repurposed drug development in glioma and the efficacy of glioma treatment.
Collapse
Affiliation(s)
- Marybeth G Yonk
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA; College of Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Megan A Lim
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Champaign, IL, USA; Department of Neurosurgery, Carle Foundation Hospital, Urbana, IL, USA
| | - Charee M Thompson
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Champaign, IL, USA; College of Liberal Arts & Sciences, University of Illinois Urbana Champaign, Champaign, IL, USA
| | - Muhibullah S Tora
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yuliya Lakhina
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Kimberly B Hoang
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Nicholas M Boulis
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Wael Hassaneen
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Champaign, IL, USA; Department of Neurosurgery, Carle Foundation Hospital, Urbana, IL, USA.
| | - Kecheng Lei
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
30
|
Yan RE, Greenfield JP. Challenges and Outlooks in Precision Medicine: Expectations Versus Reality. World Neurosurg 2024; 190:573-581. [PMID: 39425299 DOI: 10.1016/j.wneu.2024.06.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 10/21/2024]
Abstract
Recent developments in technology have led to rapid advances in precision medicine, especially due to the rise of next-generation sequencing and molecular profiling. These technological advances have led to rapid advances in research, including increased tumor subtype resolution, new therapeutic agents, and mechanistic insights. Certain therapies have even been approved for molecular biomarkers across histopathological diagnoses; however, translation of research findings to the clinic still faces a number of challenges. In this review, the authors discuss several key challenges to the clinical integration of precision medicine, including the blood-brain barrier, both a lack and excess of molecular targets, and tumor heterogeneity/escape from therapy. They also highlight a few key efforts to address these challenges, including new frontiers in drug delivery, a rapidly expanding treatment repertoire, and improvements in active response monitoring. With continued improvements and developments, the authors anticipate that precision medicine will increasingly become the gold standard for clinical care.
Collapse
Affiliation(s)
- Rachel E Yan
- Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Jeffrey P Greenfield
- Department of Neurological Surgery, NewYork-Presbyterian Weill Cornell Medicine, New York, New York, USA.
| |
Collapse
|
31
|
Li N, Hao S, Cao X, Lin Y, Li Y, Dai T, Liu M. Significance of radiation therapy in frontal glioblastoma patients and exploration of optimal treatment modality: a real-world multiple-center study based on propensity score matching. Quant Imaging Med Surg 2024; 14:7576-7586. [PMID: 39429582 PMCID: PMC11485375 DOI: 10.21037/qims-23-1871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 08/15/2024] [Indexed: 10/22/2024]
Abstract
Background Glioblastoma (GBM) exhibits diffuse and invasive growth patterns, with a 5-year overall survival (OS) rate of 5-10%. In addition, approximately 40 percent of GBMs are localized in the frontal lobe, a region closely linked to essential life functions including cognition, so that it cannot be completely eradicated through surgical intervention, leading to very poor prognosis. Postoperative therapy is an essential treatment modality. The aim of this study is to explain the possible role of radiation therapy (RT) in the treatment of frontal GBM, providing more evidence for clinical application. Methods In the study, patient information pertaining to frontal GBM patients was collected from the Surveillance, Epidemiology, and End Results (SEER) database for the period 2000 to 2018 with 9,904 patients deemed appropriate for inclusion in this study. A 1:2 propensity score matching analysis was conducted to balance the non-radiotherapy and radiotherapy group. This study is a retrospective study. Results Before matching, the median OS, tumor specific survival (TSS) and hazard ratio (HR) were 3 months, 3 months and 4.408 [95% confidence interval (CI): 3.762-4.535, P<0.001] in the non-RT group compared to those of 13 months, 14 months and 2.463 (95% CI: 2.247-2.936, P<0.001) in the RT group. After matching, the median OS, TSS and HR were 3 months, 4 months and 1.433 (95% CI: 1.387-1.692, P<0.001) in the non-RT group compared to those of 8 months, 8 months and 1.427 (95% CI: 1.374-1.682, P<0.001) in the RT group. Conclusions Radiotherapy is an important local therapy, which can significantly improve the tumor-specific survival and OS of frontal GBM patients. With the arrival of the era of precision radiotherapy, the continuous progress of radiotherapy technology may bring more benefits to frontal GBM patients.
Collapse
Affiliation(s)
- Nan Li
- Department of Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shuai Hao
- Department of Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Radiotherapy, Aerospace Center Hospital, Beijing, China
| | - Xiaohui Cao
- Department of Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yufeng Lin
- Department of Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yunfang Li
- Department of Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tong Dai
- Department of Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Graduate School of Hebei Medical University, Shijiazhuang, China
| | - Ming Liu
- Department of Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Graduate School of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
32
|
Simões JLB, de Carvalho Braga G, Eichler SW, da Silva GB, Bagatini MD. Implications of COVID-19 in Parkinson's disease: the purinergic system in a therapeutic-target perspective to diminish neurodegeneration. Purinergic Signal 2024; 20:487-507. [PMID: 38460075 PMCID: PMC11377384 DOI: 10.1007/s11302-024-09998-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/21/2024] [Indexed: 03/11/2024] Open
Abstract
The pathophysiology of Parkinson's disease (PD) is marked by degeneration of dopaminergic neurons in the substantia nigra. With advent of COVID-19, which is closely associated with generalized inflammation and multiple organ dysfunctions, the PD patients may develop severe conditions of disease leading to exacerbated degeneration. This condition is caused by the excessive release of pro-inflammatory markers, called cytokine storm, that is capable of triggering neurodegenerative conditions by affecting the blood-brain barrier (BBB). A possible SARS-CoV-2 infection, in serious cases, may compromise the immune system by triggering a hyperstimulation of the neuroimmune response, similar to the pathological processes found in PD. From this perspective, the inflammatory scenario triggers oxidative stress and, consequently, cellular dysfunction in the nervous tissue. The P2X7R seems to be the key mediator of the neuroinflammatory process, as it acts by increasing the concentration of ATP, allowing the influx of Ca2+ and the occurrence of mutations in the α-synuclein protein, causing activation of this receptor. Thus, modulation of the purinergic system may have therapeutic potential on the effects of PD, as well as on the damage caused by inflammation of the BBB, which may be able to mitigate the neurodegeneration caused by diseases. Considering all the processes of neuroinflammation, oxidative stress, and mitochondrial dysfunction that PD propose, we can conclude that the P2X7 antagonist acts in the prevention of viral diseases, and it also controls purinergic receptors formed by multi-target compounds directed to self-amplification circuits and, therefore, may be a viable strategy to obtain the desired disease-modifying effect. Thus, purinergic system receptor modulations have a high therapeutic potential for neurodegenerative diseases such as PD.
Collapse
Affiliation(s)
| | | | | | - Gilnei Bruno da Silva
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC, Brazil
| | - Margarete Dulce Bagatini
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil.
| |
Collapse
|
33
|
Euclydes V, Braga CI, Gouveia G, Martinez RC, Camilo C, Simões SN, Martins-Jr DC, Fracolli L, Argeu A, Ferraro A, Matijasevich A, Fatori D, Miguel EC, Polanczyk GV, Brentani H. Maternal immune response during pregnancy and neurodevelopmental outcomes: A longitudinal approach. Brain Behav Immun Health 2024; 40:100832. [PMID: 39193418 PMCID: PMC11347843 DOI: 10.1016/j.bbih.2024.100832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/23/2024] [Accepted: 07/28/2024] [Indexed: 08/29/2024] Open
Abstract
Background and objectives The neurodevelopment of the offspring is suggested to be influenced by the maternal immune system's responses throughout pregnancy, which in turn is also vulnerable to maternal psychosocial stress conditions. Therefore, our main goal was to investigate whether maternal peripheral immunological biomarkers (IB) during two stages of gestation are associated with distinct neurodevelopmental trajectories in the first two years of life. As a second goal, we also explored the association between maternal distal (childhood) and proximal (gestation) stressful experiences and the immunological markers assessed during pregnancy. Methods Maternal childhood trauma, depressive and anxiety symptoms, and peripheral IB (IFNγ, IL-10, IL1β, IL6, IL8, TNFα, EGF, IL13, IL17, IL1Ra and IL4) were measured at baseline (8-16 weeks of pregnancy) and at 30 weeks of pregnancy in 160 women. The participants had the blood samples collected from two randomized clinical trials conducted by the same team and methods in the same community. A Principal Component Analysis (PCA) was implemented to create meaningful composite variables that describe the cytokines joint variation. Finally, linear mixed-effects modeling was used to investigate the influence of inflammatory biomarkers, maternal childhood trauma, anxiety, and depressive symptoms on Bayley's III scores trajectories. Results The IB profile during the 3rd trimester of pregnancy predicted the offspring's neurodevelopmental trajectories in the first two years of life. The components derived from PCA were important predictors and captured different immune responses, reflecting both pro- and anti-inflammatory states. Maternal stressful experiences did not correlate with the immunological markers. Although not a reliable predictor alone, maternal psychosocial stress at the 1st trimester of pregnancy interacted with the mother's immune response while predicting the neurodevelopmental scores during the first two years of life. Conclusions Our results underscore the importance of the maternal immune response during pregnancy in shaping the neurodevelopmental trajectory of the offspring. Additionally, we observed that the maternal distress at the early stages of pregnancy has an incremental effect on the neurodevelopmental outcome but depends upon the immune response.
Collapse
Affiliation(s)
- Veronica Euclydes
- Instituto e Departamento de Psiquiatria, Faculdade de Medicina FMUSP, LIM/23, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Caio I.S. Braga
- Center for Mathematics, Computation and Cognition, Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Gisele Gouveia
- Instituto e Departamento de Psiquiatria, Faculdade de Medicina FMUSP, LIM/23, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | | | - Caroline Camilo
- Instituto e Departamento de Psiquiatria, Faculdade de Medicina FMUSP, LIM/23, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | | | - David C. Martins-Jr
- Center for Mathematics, Computation and Cognition, Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Lislaine Fracolli
- Escola de Enfermagem, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Adriana Argeu
- Instituto e Departamento de Psiquiatria, Faculdade de Medicina FMUSP, LIM/23, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Alexandre Ferraro
- Departamento de Pediatria, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Alicia Matijasevich
- Departamento de Medicina Preventiva, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Daniel Fatori
- Instituto e Departamento de Psiquiatria, Faculdade de Medicina FMUSP, LIM/23, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Euripedes C. Miguel
- Instituto e Departamento de Psiquiatria, Faculdade de Medicina FMUSP, LIM/23, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Guilherme V. Polanczyk
- Instituto e Departamento de Psiquiatria, Faculdade de Medicina FMUSP, LIM/23, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Helena Brentani
- Instituto e Departamento de Psiquiatria, Faculdade de Medicina FMUSP, LIM/23, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
34
|
Thomson EL, Powell E, Gandini Wheeler-Kingshott CAM, Parker GJM. Quantification of water exchange across the blood-brain barrier using noncontrast MR fingerprinting. Magn Reson Med 2024; 92:1392-1403. [PMID: 38725240 DOI: 10.1002/mrm.30127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 07/23/2024]
Abstract
PURPOSE A method is proposed to quantify cerebral blood volume (v b $$ {v}_b $$ ) and intravascular water residence time (τ b $$ {\tau}_b $$ ) using MR fingerprinting (MRF), applied using a spoiled gradient echo sequence without the need for contrast agent. METHODS An in silico study optimized an acquisition protocol to maximize the sensitivity of the measurement tov b $$ {v}_b $$ andτ b $$ {\tau}_b $$ changes. Its accuracy in the presence of variations inT 1 , t $$ {\mathrm{T}}_{1,t} $$ ,T 1 , b $$ {\mathrm{T}}_{1,b} $$ , andB 1 $$ {\mathrm{B}}_1 $$ was evaluated. The optimized protocol (scan time of 19 min) was then tested in a exploratory healthy volunteer study (10 volunteers, mean age 24± $$ \pm $$ 3, six males) at 3 T with a repeat scan taken after repositioning to allow estimation of repeatability. RESULTS Simulations show that assuming literature values forT 1 , b $$ {\mathrm{T}}_{1,b} $$ andT 1 , t $$ {\mathrm{T}}_{1,t} $$ , no variation inB 1 $$ {\mathrm{B}}_1 $$ , while fitting onlyv b $$ {v}_b $$ andτ b $$ {\tau}_b $$ , leads to large errors in quantification ofv b $$ {v}_b $$ andτ b $$ {\tau}_b $$ , regardless of noise levels. However, simulations also show that matchingT 1 , t $$ {\mathrm{T}}_{1,t} $$ ,T 1 , b $$ {\mathrm{T}}_{1,b} $$ ,B 1 + $$ {\mathrm{B}}_1^{+} $$ ,v b $$ {v}_b $$ andτ b $$ {\tau}_b $$ , simultaneously is feasible at clinically achievable noise levels. Across the healthy volunteers, all parameter quantifications fell within the expected literature range. In addition, the maps show good agreement between hemispheres suggesting physiologically relevant information is being extracted. Expected differences between white and gray matterT 1 , t $$ {\mathrm{T}}_{1,t} $$ (p < 0.0001) andv b $$ {v}_b $$ (p < 0.0001) are observed,T 1 , b $$ {\mathrm{T}}_{1,b} $$ andτ b $$ {\tau}_b $$ show no significant differences, p = 0.4 and p = 0.6, respectively. Moderate to excellent repeatability was seen between repeat scans: mean intra-class correlation coefficient ofT 1 , t : 0 . 91 $$ {\mathrm{T}}_{1,t}:0.91 $$ ,T 1 , b : 0 . 58 $$ {\mathrm{T}}_{1,b}:0.58 $$ ,v b : 0 . 90 $$ {v}_b:0.90 $$ , andτ b : 0 . 96 $$ {\tau}_b:0.96 $$ . CONCLUSION We demonstrate that regional simultaneous quantification ofv b $$ {v}_b $$ ,τ b $$ {\tau}_b $$ ,T 1 , b , T 1 , t $$ {\mathrm{T}}_{1,b},{T}_{1,t} $$ , andB 1 + $$ {\mathrm{B}}_1^{+} $$ using MRF is feasible in vivo.
Collapse
Affiliation(s)
- Emma L Thomson
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, London, UK
| | - Elizabeth Powell
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Claudia A M Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, London, UK
- Department of Brain & Behavioural Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | - Geoff J M Parker
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, London, UK
- Bioxydyn Limited, Manchester, UK
| |
Collapse
|
35
|
Kim TY, Choi JW, Park K, Kim S, Kim JF, Park TE, Seo J. Lubricant-Coated Organ-on-a-Chip for Enhanced Precision in Preclinical Drug Testing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402431. [PMID: 38934549 DOI: 10.1002/smll.202402431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Indexed: 06/28/2024]
Abstract
In drug discovery, human organ-on-a-chip (organ chip) technology has emerged as an essential tool for preclinical testing, offering a realistic representation of human physiology, real-time monitoring, and disease modeling. Polydimethylsiloxane (PDMS) is commonly used in organ chip fabrication owing to its biocompatibility, flexibility, transparency, and ability to replicate features down to the nanoscale. However, the porous nature of PDMS leads to unintended absorption of small molecules, critically affecting the drug response analysis. Addressing this challenge, the precision drug testing organ chip (PreD chip) is introduced, an innovative platform engineered to minimize small molecule absorption while facilitating cell culture. This chip features a PDMS microchannel wall coated with a perfluoropolyether-based lubricant, providing slipperiness and antifouling properties. It also incorporates an ECM-coated semi-porous membrane that supports robust multicellular cultures. The PreD chip demonstrates its outstanding antifouling properties and resistance to various biological fluids, small molecule drugs, and plasma proteins. In simulating the human gut barrier, the PreD chip demonstrates highly enhanced sensitivity in tests for dexamethasone toxicity and is highly effective in assessing drug transport across the human blood-brain barrier. These findings emphasize the potential of the PreD chip in advancing organ chip-based drug testing methodologies.
Collapse
Affiliation(s)
- Tae Young Kim
- School of Electrical and Electronic Engineering, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jeong-Won Choi
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Kijun Park
- School of Electrical and Electronic Engineering, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - SeungHwan Kim
- Department of Energy and Chemical Engineering, Incheon National University (INU), Incheon, 22012, South Korea
| | - Jeong F Kim
- Department of Energy and Chemical Engineering, Incheon National University (INU), Incheon, 22012, South Korea
- Innovation Center for Chemical Engineering, Incheon National University (INU), Incheon, 22012, South Korea
| | - Tae-Eun Park
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jungmok Seo
- School of Electrical and Electronic Engineering, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Lynk Solutec lnc, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
36
|
Samreen S, Khan E, Ahmad IZ. Molecular docking and molecular dynamics simulation analysis of bioactive compounds of Cichorium intybus L. seed against hepatocellular carcinoma. J Biomol Struct Dyn 2024; 42:9133-9144. [PMID: 37621217 DOI: 10.1080/07391102.2023.2250465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/12/2023] [Indexed: 08/26/2023]
Abstract
In this article, bioactive compounds present in Cichorium intybus L. seeds were collected from literature review and analyzed for probable remedy for hepatocellular carcinoma. Cichorium intybus L. is a traditional plant used all over the world mainly in hepatic disorders and renal diseases. This therapeutic plant has many bioactive compounds like chicoric acid, chlorogenic acid, sesquiterpne lactones, stigmasterols etc are found in seeds. Here, the target protein p53 (PDB ID: 2OCJ) which is involved in many cancerous pathways, is chosen. The preADMET study filtered out some compounds which were then subjected to molecular docking studies by Autodock tool 4.2. Afterwards, two best compounds (Esculetin and Isochlorogenic acid) were screened out on the basis of binding energy as compared to the standard compound (Doxorubicin). All these complexes were then analyzed for stability by molecular dynamics using online GROMACS tool. In the comparative simulation study, the compound Esculetin shows a stable interaction with the p53 over the 100 ns trajectory. Hepatocellular carcinoma accounts for high mortality of cancer related death worldwide. These findings suggest that these compound can be used to treat the hepatocellular carcinoma.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sadiyah Samreen
- Natural Products Laboratory, Department of Bioengineering, Integral University, Lucknow, India
| | - Elhan Khan
- Natural Products Laboratory, Department of Bioengineering, Integral University, Lucknow, India
| | - Iffat Zareen Ahmad
- Natural Products Laboratory, Department of Bioengineering, Integral University, Lucknow, India
| |
Collapse
|
37
|
Sahu B, Nookala S, Floden AM, Ambhore NS, Sathish V, Klug MG, Combs CK. House dust mite-induced asthma exacerbates Alzheimer's disease changes in the brain of the App NL-G-F mouse model of disease. Brain Behav Immun 2024; 121:365-383. [PMID: 39084541 PMCID: PMC11442016 DOI: 10.1016/j.bbi.2024.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 07/19/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by the accumulation of amyloid-β (Aβ) plaques, neuroinflammation, and neuronal death. Besides aging, various comorbidities increase the risk of AD, including obesity, diabetes, and allergic asthma. Epidemiological studies have reported a 2.17-fold higher risk of dementia in asthmatic patients. However, the molecular mechanism(s) underlying this asthma-associated AD exacerbation is unknown. This study was designed to explore house dust mite (HDM)-induced asthma effects on AD-related brain changes using the AppNL-G-F transgenic mouse model of disease. Male and female 8-9 months old C57BL/6J wild type and AppNL-G-F mice were exposed to no treatment, saline sham, or HDM extract every alternate day for 16 weeks for comparison across genotypes and treatment. Mice were euthanized at the end of the experiment, and broncho-alveolar lavage fluid (BALF), blood, lungs, and brains were collected. BALF was used to quantify immune cell phenotype, cytokine levels, total protein content, lactate dehydrogenase (LDH) activity, and total IgE. Lungs were sectioned and stained with hematoxylin and eosin, Alcian blue, and Masson's trichrome. Serum levels of cytokines and soluble Aβ1-40/42 were quantified. Brains were sectioned and immunostained for Aβ, GFAP, CD68, and collagen IV. Finally, frozen hippocampi and temporal cortices were used to perform Aβ ELISAs and cytokine arrays, respectively. HDM exposure led to increased levels of inflammatory cells, cytokines, total protein content, LDH activity, and total IgE in the BALF, as well as increased pulmonary mucus and collagen staining in both sexes and genotypes. Levels of serum cytokines increased in all HDM-exposed groups. Serum from the AppNL-G-F HDM-induced asthma group also had significantly increased soluble Aβ1-42 levels in both sexes. In agreement with this peripheral change, hippocampi from asthma-induced male and female AppNL-G-F mice demonstrated elevated Aβ plaque load and increased soluble Aβ 1-40/42 and insoluble Aβ 1-40 levels. HDM exposure also increased astrogliosis and microgliosis in both sexes of AppNL-G-F mice, as indicated by GFAP and CD68 immunoreactivity, respectively. Additionally, HDM exposure elevated cortical levels of several cytokines in both sexes and genotypes. Finally, HDM-exposed groups also showed a disturbed blood-brain-barrier (BBB) integrity in the hippocampus of AppNL-G-F mice, as indicated by decreased collagen IV immunoreactivity. HDM exposure was responsible for an asthma-like condition in the lungs that exacerbated Aβ pathology, astrogliosis, microgliosis, and cytokine changes in the brains of male and female AppNL-G-F mice that correlated with reduced BBB integrity. Defining mechanisms of asthma effects on the brain may identify novel therapeutic targets for asthma and AD.
Collapse
Affiliation(s)
- Bijayani Sahu
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, 1301 N Columbia Road, Grand Forks, ND 58202-9037, USA
| | - Suba Nookala
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, 1301 N Columbia Road, Grand Forks, ND 58202-9037, USA
| | - Angela M Floden
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, 1301 N Columbia Road, Grand Forks, ND 58202-9037, USA
| | - Nilesh S Ambhore
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Marilyn G Klug
- Department of Population health, School of Medicine and Health Sciences, USA
| | - Colin K Combs
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, 1301 N Columbia Road, Grand Forks, ND 58202-9037, USA.
| |
Collapse
|
38
|
Aziz N, Wal P, Patel A, Prajapati H. A comprehensive review on the pharmacological role of gut microbiome in neurodegenerative disorders: potential therapeutic targets. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7307-7336. [PMID: 38734839 DOI: 10.1007/s00210-024-03109-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
Neurological disorders, including Alzheimer and Parkinson's, pose significant challenges to public health due to their complex etiologies and limited treatment options. Recent advances in research have highlighted the intricate bidirectional communication between the gut microbiome and the central nervous system (CNS), revealing a potential therapeutic avenue for neurological disorders. Thus, this review aims to summarize the current understanding of the pharmacological role of gut microbiome in neurological disorders. Mounting evidence suggests that the gut microbiome plays a crucial role in modulating CNS function through various mechanisms, including the production of neurotransmitters, neuroactive metabolites, and immune system modulation. Dysbiosis, characterized by alterations in gut microbial composition and function, has been observed in many neurological disorders, indicating a potential causative or contributory role. Pharmacological interventions targeting the gut microbiome have emerged as promising therapeutic strategies for neurological disorders. Probiotics, prebiotics, antibiotics, and microbial metabolite-based interventions have shown beneficial effects in animal models and some human studies. These interventions aim to restore microbial homeostasis, enhance microbial diversity, and promote the production of beneficial metabolites. However, several challenges remain, including the need for standardized protocols, identification of specific microbial signatures associated with different neurological disorders, and understanding the precise mechanisms underlying gut-brain communication. Further research is necessary to unravel the intricate interactions between the gut microbiome and the CNS and to develop targeted pharmacological interventions for neurological disorders.
Collapse
Affiliation(s)
- Namra Aziz
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur, UP, 209305, India
| | - Pranay Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur, UP, 209305, India.
| | - Aman Patel
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur, UP, 209305, India
| | - Harshit Prajapati
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur, UP, 209305, India
| |
Collapse
|
39
|
Deng Y, Qiao Z, Zhou C, Pei Y, Xu H, Kang X, Luo J. Endothelial Myosin IIA Is Required for the Maintenance of Blood-Brain Barrier Integrity. Cells 2024; 13:1635. [PMID: 39404399 PMCID: PMC11475711 DOI: 10.3390/cells13191635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/19/2024] Open
Abstract
Brain endothelial cells (ECs) are essential elements of the blood-brain barrier (BBB), maintaining its integrity through both paracellular junctions and transcellular transport systems. Myosin IIA, a multifunctional protein, plays a significant role in various cellular processes, including cytoskeletal maintenance, cell division, and signal transduction. While Myosin IIA has been implicated in bleeding and ischemic stroke, its role in regulating BBB integrity under physiological conditions remains unclear. In this study, we investigated the impact of Myosin IIA deficiency on BBB integrity using intravenous tracer injections and models of epilepsy. Flow cytometry, Western blot, and real-time PCR were employed to isolate brain cells and assess changes in protein and mRNA levels. Additionally, immunofluorescence staining and electron microscopy were used to explore alterations in protein expression and the structure of BBB. Our results demonstrate that endothelial Myosin IIA deficiency increased BBB permeability and exacerbated symptoms in BBB-related diseases. Mechanistically, we found that Myosin IIA modulates β-catenin transcription and protein interactions. The overexpression of β-catenin in brain endothelial Myosin IIA deficiency mice improved BBB integrity and reduced disease severity. This study establishes Myosin IIA as a critical regulator of BBB integrity and suggests new therapeutic targets for vascular diseases.
Collapse
Affiliation(s)
- Yanan Deng
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Peking University, Beijing 100871, China
| | - Ziqi Qiao
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Peking University, Beijing 100871, China
| | - Changping Zhou
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Peking University, Beijing 100871, China
| | - Yujun Pei
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Peking University, Beijing 100871, China
| | - Han Xu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Peking University, Beijing 100871, China
| | - Xuya Kang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Peking University, Beijing 100871, China
| | - Jincai Luo
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, School of Future Technology, Peking University, Beijing 100871, China
- College of Future Technology, Peking University, Beijing 100871, China
| |
Collapse
|
40
|
Furman S, Green K, Lane TE. COVID-19 and the impact on Alzheimer's disease pathology. J Neurochem 2024; 168:3415-3429. [PMID: 37850241 PMCID: PMC11024062 DOI: 10.1111/jnc.15985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has rapidly escalated into a global pandemic that primarily affects older and immunocompromised individuals due to underlying clinical conditions and suppressed immune responses. Furthermore, COVID-19 patients exhibit a spectrum of neurological symptoms, indicating that COVID-19 can affect the brain in a variety of manners. Many studies, past and recent, suggest a connection between viral infections and an increased risk of neurodegeneration, raising concerns about the neurological effects of COVID-19 and the possibility that it may contribute to Alzheimer's disease (AD) onset or worsen already existing AD pathology through inflammatory processes given that both COVID-19 and AD share pathological features and risk factors. This leads us to question whether COVID-19 is a risk factor for AD and how these two conditions might influence each other. Considering the extensive reach of the COVID-19 pandemic and the devastating impact of the ongoing AD pandemic, their combined effects could have significant public health consequences worldwide.
Collapse
Affiliation(s)
- Susana Furman
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine 92697
| | - Kim Green
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine 92697
| | - Thomas E. Lane
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine 92697
- Department of Molecular Biology & Biochemistry, School of Biological Sciences, University of California, Irvine 92697, USA
- Center for Virus Research, University of California, Irvine 92697, USA
| |
Collapse
|
41
|
Hameed H, Sarwar HS, Younas K, Zaman M, Jamshaid M, Irfan A, Khalid M, Sohail MF. Exploring the potential of nanomedicine for gene therapy across the physicochemical and cellular barriers. Funct Integr Genomics 2024; 24:177. [PMID: 39340586 DOI: 10.1007/s10142-024-01459-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
After COVID-19, a turning point in the way of pharmaceutical technology is gene therapy with beneficial potential to start a new medical era. However, commercialization of such pharmaceuticals would never be possible without the help of nanotechnology. Nanomedicine can fulfill the growing needs linked to safety, efficiency, and site-specific targeted delivery of Gene therapy-based pharmaceuticals. This review's goal is to investigate how nanomedicine may be used to transfer nucleic acids by getting beyond cellular and physicochemical barriers. Firstly, we provide a full description of types of gene therapy, their mechanism, translation, transcription, expression, type, and details of diseases with possible mechanisms that can only be treated with genes-based pharmaceuticals. Additionally, we also reviewed different types of physicochemical barriers, physiological and cellular barriers in nucleic acids (DNA/RNA) based drug delivery. Finally, we highlight the need and importance of cationic lipid-based nanomedicine/nanocarriers in gene-linked drug delivery and how nanotechnology can help to overcome the above-discussed barrier in gene therapy and their biomedical applications.
Collapse
Affiliation(s)
- Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan.
| | - Hafiz Shoaib Sarwar
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan
| | - Komel Younas
- Faculty of Pharmacy, University Paris Saclay, 17 Avenue des sciences, 91190, Orsay, France
| | - Muhammad Zaman
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan
| | - Muhammad Jamshaid
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Maha Khalid
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan
| | - Muhammad Farhan Sohail
- Department of Chemistry, SBASSE, Lahore University of Management Sciences (LUMS), Lahore, 54000, Pakistan
- Alliant College of Pharmacy and Allied Health Sciences, Lahore, 54000, Pakistan
| |
Collapse
|
42
|
Uddin N, Scott J, Nixon J, Patterson SD, Kidgell D, Pearce AJ, Waldron M, Tallent J. The effects of exercise, heat-induced hypo-hydration and rehydration on blood-brain-barrier permeability, corticospinal and peripheral excitability. Eur J Appl Physiol 2024:10.1007/s00421-024-05616-x. [PMID: 39340668 DOI: 10.1007/s00421-024-05616-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024]
Abstract
PURPOSE The effects of low-intensity exercise, heat-induced hypo-hydration and rehydration on maximal strength and the underlying neurophysiological mechanisms are not well understood. METHODS To assess this, 12 participants took part in a randomised crossover study, in a prolonged (3 h) submaximal (60 W) cycling protocol under 3 conditions: (i) in 45 °C (achieving ~ 5% body mass reduction), with post-exercise rehydration in 2 h (RHY2), (ii) with rehydration across 24 h (RHY24), and (iii) a euhydrated trial in 25 °C (CON). Dependent variables included maximal voluntary contractions (MVC), maximum motor unit potential (MMAX), motor evoked potential (MEPRAW) amplitude and cortical silent period (cSP) duration. Blood-brain-barrier integrity was also assessed by serum Ubiquitin Carboxyl-terminal Hydrolase (UCH-L1) concentrations. All measures were obtained immediately pre, post, post 2 h and 24 h. RESULTS During both dehydration trials, MVC (RHY2: p < 0.001, RHY24: p = 0.001) and MEPRAW (RHY2: p = 0.025, RHY24: p = 0.045) decreased from pre- to post-exercise. MEPRAW returned to baseline during RHY2 and CON, but not RHY24 (p = 0.020). MEP/MMAX ratio decreased across time for all trials (p = 0.009) and returned to baseline, except RHY24 (p < 0.026). Increased cSP (p = 0.011) was observed during CON post-exercise, but not during RHY2 and RHY24. Serum UCH-L1 increased across time for all conditions (p < 0.001) but was not significantly different between conditions. CONCLUSION Our findings demonstrate an increase in corticospinal inhibition after exercise with fluid ingestion, but a decrease in corticospinal excitability after heat-induced hypo-hydration. In addition, low-intensity exercise increases peripheral markers of blood-brain-barrier permeability.Kindly check and confirm inserted city name correctly identified in affiliation 7This is correct.
Collapse
Affiliation(s)
- Nasir Uddin
- Faculty of Sport, Technology and Health Sciences, St Mary's University, Twickenham, UK.
- School of Sport, Rehabilitation, and Exercise Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - Jamie Scott
- Faculty of Sport, Technology and Health Sciences, St Mary's University, Twickenham, UK
| | - Jonathan Nixon
- Faculty of Sport, Technology and Health Sciences, St Mary's University, Twickenham, UK
| | - Stephen D Patterson
- Faculty of Sport, Technology and Health Sciences, St Mary's University, Twickenham, UK
| | - Dawson Kidgell
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| | - Alan J Pearce
- Swinburne Neuroimaging Facility, School of Health Science, Swinburne University of Technology, Melbourne, Australia
| | - Mark Waldron
- Applied Sport, Technology, Exercise and Medicine, College of Engineering, Swansea University, Swansea, Wales, UK
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- Welsh Institute of Performance Science, Swansea University, Swansea, UK
| | - Jamie Tallent
- School of Sport, Rehabilitation, and Exercise Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| |
Collapse
|
43
|
Cater RJ. Food for thought: The molecular basis of nutrient uptake into the brain. Science 2024; 385:1429. [PMID: 39325899 DOI: 10.1126/science.ads1320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The molecular basis of nutrient uptake into the brain.
Collapse
Affiliation(s)
- Rosemary J Cater
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
44
|
Culkins C, Adomanis R, Phan N, Robinson B, Slaton E, Lothrop E, Chen Y, Kimmel BR. Unlocking the Gates: Therapeutic Agents for Noninvasive Drug Delivery Across the Blood-Brain Barrier. Mol Pharm 2024. [PMID: 39324552 DOI: 10.1021/acs.molpharmaceut.4c00604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The blood-brain barrier (BBB) is a highly selective network of various cell types that acts as a filter between the blood and the brain parenchyma. Because of this, the BBB remains a major obstacle for drug delivery to the central nervous system (CNS). In recent years, there has been a focus on developing various modifiable platforms, such as monoclonal antibodies (mAbs), nanobodies (Nbs), peptides, and nanoparticles, as both therapeutic agents and carriers for targeted drug delivery to treat brain cancers and diseases. Methods for bypassing the BBB can be invasive or noninvasive. Invasive techniques, such as transient disruption of the BBB using low pulse electrical fields and intracerebroventricular infusion, lack specificity and have numerous safety concerns. In this review, we will focus on noninvasive transport mechanisms that offer high levels of biocompatibility, personalization, specificity and are regarded as generally safer than their invasive counterparts. Modifiable platforms can be designed to noninvasively traverse the BBB through one or more of the following pathways: passive diffusion through a physio-pathologically disrupted BBB, adsorptive-mediated transcytosis, receptor-mediated transcytosis, shuttle-mediated transcytosis, and somatic gene transfer. Through understanding the noninvasive pathways, new applications, including Chimeric Antigen Receptors T-cell (CAR-T) therapy, and approaches for drug delivery across the BBB are emerging.
Collapse
Affiliation(s)
- Courtney Culkins
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Roman Adomanis
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nathan Phan
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Blaise Robinson
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ethan Slaton
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Elijah Lothrop
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yinuo Chen
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Blaise R Kimmel
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Engineering, Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Pelotonia Institute for Immuno-Oncology, Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
45
|
Fu Y, Gu Z, Cao H, Zuo C, Huang Y, Song Y, Jiang Y, Wang F. The role of the gut microbiota in neurodegenerative diseases targeting metabolism. Front Neurosci 2024; 18:1432659. [PMID: 39391755 PMCID: PMC11464490 DOI: 10.3389/fnins.2024.1432659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024] Open
Abstract
In recent years, the incidence of neurodegenerative diseases (NDs) has gradually increased over the past decades due to the rapid aging of the global population. Traditional research has had difficulty explaining the relationship between its etiology and unhealthy lifestyle and diets. Emerging evidence had proved that the pathogenesis of neurodegenerative diseases may be related to changes of the gut microbiota's composition. Metabolism of gut microbiota has insidious and far-reaching effects on neurodegenerative diseases and provides new directions for disease intervention. Here, we delineated the basic relationship between gut microbiota and neurodegenerative diseases, highlighting the metabolism of gut microbiota in neurodegenerative diseases and also focusing on treatments for NDs based on gut microbiota. Our review may provide novel insights for neurodegeneration and approach a broadly applicable basis for the clinical therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Yufeng Fu
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongya Gu
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan Cao
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chengchao Zuo
- Department of Rehabilitation, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yaqi Huang
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Song
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongsheng Jiang
- Cancer Center of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Furong Wang
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging (HUST), Ministry of Education, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
46
|
Zhao Y, Huang Y, Cao Y, Yang J. Astrocyte-Mediated Neuroinflammation in Neurological Conditions. Biomolecules 2024; 14:1204. [PMID: 39456137 PMCID: PMC11505625 DOI: 10.3390/biom14101204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Astrocytes are one of the key glial types of the central nervous system (CNS), accounting for over 20% of total glial cells in the brain. Extensive evidence has established their indispensable functions in the maintenance of CNS homeostasis, as well as their broad involvement in neurological conditions. In particular, astrocytes can participate in various neuroinflammatory processes, e.g., releasing a repertoire of cytokines and chemokines or specific neurotrophic factors, which result in both beneficial and detrimental effects. It has become increasingly clear that such astrocyte-mediated neuroinflammation, together with its complex crosstalk with other glial cells or immune cells, designates neuronal survival and the functional integrity of neurocircuits, thus critically contributing to disease onset and progression. In this review, we focus on the current knowledge of the neuroinflammatory responses of astrocytes, summarizing their common features in neurological conditions. Moreover, we highlight several vital questions for future research that promise novel insights into diagnostic or therapeutic strategies against those debilitating CNS diseases.
Collapse
Affiliation(s)
- Yanxiang Zhao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- The Affiliated High School, Peking University, Beijing 100080, China
| | - Yingying Huang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Cao
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jing Yang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking University Third Hospital Cancer Center, Beijing 100191, China
| |
Collapse
|
47
|
Martínez-Espinosa I, Serrato JA, Ortiz-Quintero B. MicroRNAs in Lung Cancer Brain Metastasis. Int J Mol Sci 2024; 25:10325. [PMID: 39408656 PMCID: PMC11476622 DOI: 10.3390/ijms251910325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Brain metastasis is a significant clinical challenge for patients with advanced lung cancer, occurring in about 20-40% of cases. Brain metastasis causes severe neurological symptoms, leading to a poor prognosis and contributing significantly to lung cancer-related mortality. However, the underlying molecular mechanism behind brain metastasis remains largely unknown. MicroRNAs (miRNAs) are small, non-coding RNAs linked to several aspects of cancer progression, including metastasis. In the context of lung cancer, significant research has shown the involvement of miRNAs in regulating critical pathways related to metastatic spread to the brain. This review summarizes the scientific evidence regarding the regulatory roles of intra- and extracellular miRNAs, which specifically drive the spread of lung cancer cells to the brain. It also revises the known molecular mechanisms of brain metastasis, focusing on those from lung cancer as the primary tumor to better understand the complex mechanisms underlying this regulation. Understanding these complex regulatory mechanisms holds promise for developing novel diagnostic biomarkers and potential therapeutic strategies in brain metastasis.
Collapse
Affiliation(s)
| | | | - Blanca Ortiz-Quintero
- Department of Molecular Biomedicine and Translational Research, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, 14080 Mexico City, Mexico
| |
Collapse
|
48
|
Mohamed SS, Rasheed NOA, Ibrahim WW, Shiha NA. Targeting Toll-like Receptor 4/Nuclear Factor-κB and Nrf2/Heme Oxygenase-1 Crosstalk via Trimetazidine Alleviates Lipopolysaccharide-Induced Depressive-like Behaviors in Mice. J Neuroimmune Pharmacol 2024; 19:50. [PMID: 39312021 PMCID: PMC11420337 DOI: 10.1007/s11481-024-10149-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/01/2024] [Indexed: 09/26/2024]
Abstract
Depression is a global psychiatric illness that imposes a substantial economic burden. Unfortunately, traditional antidepressants induce many side effects which limit patient compliance thus, exploring alternative therapies with fewer adverse effects became urgent. This study aimed to investigate the effect of trimetazidine (TMZ); a well-known anti-ischemic drug in lipopolysaccharide (LPS) mouse model of depression focusing on its ability to regulate toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) as well as nuclear factor erythroid 2 related factor 2 (Nrf2)/ heme oxygenase-1 (HO-1) signaling pathways. Male Swiss albino mice were injected with LPS (500 µg/kg, i.p) every other day alone or parallel with oral doses of either escitalopram (Esc) (10 mg/kg/day) or TMZ (20 mg/kg/day) for 14 days. Treatment with TMZ attenuated LPS-induced animals' despair with reduced immobility time inforced swimming test. TMZ also diminished LPS- induced neuro-inflammation via inhibition of TLR4/NF-κB pathway contrary to Nrf2/HO-1 cascade activation with consequent increase in reduced glutathione (GSH) and HO-1 levels whereas the pro-inflammatory cytokines; tumor necrosis factor-α (TNF-α) and interleukin (IL)-1β were evidently reduced. Besides, TMZ replenished brain serotonin levels via serotonin transporter (SERT) inhibition. Thus, TMZ hindered LPS-induced neuro-inflammation, oxidative stress, serotonin deficiency besides its anti-apoptotic effect which was reflected by decreased caspase-3 level. Neuroprotective effects of TMZ were confirmed by the histological photomicrographs which showed prominent neuronal survival. Here we showed that TMZ is an affluent nominee for depression management via targeting TLR4/NF-κB and Nrf2/HO-1 pathways. Future research addressing TMZ-antidepressant activity in humans is mandatory to enroll it as a novel therapeutic strategy for depression.
Collapse
Affiliation(s)
- Sarah S Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St, Cairo, Egypt.
| | - Nora O Abdel Rasheed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St, Cairo, Egypt
| | - Weam W Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St, Cairo, Egypt
| | - Nesma A Shiha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St, Cairo, Egypt
| |
Collapse
|
49
|
Chuang SH, Chen KJ, Cheng YT, Chen YS, Lin SY, Chou HY, Tsai HC. A thermo-responsive chemically crosslinked long-term-release chitosan hydrogel system increases the efficiency of synergy chemo-immunotherapy in treating brain tumors. Int J Biol Macromol 2024; 280:135894. [PMID: 39322160 DOI: 10.1016/j.ijbiomac.2024.135894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/03/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Glioblastoma multiforme (GBM) is an aggressive and common brain tumor. The blood-brain barrier prevents several treatments from reaching the tumor. This study proposes a Chemo-Immunotherapy synergy treatment chemically crosslinked hydrogel system that is injected into the tumor to treat GBM. The strategy uses doxorubicin and BMS-1 with a thermo-responsive and chemically crosslinked hydrogel for extended drug release into the affected area. The hydrogels are produced by mixing with Chitosan (Chi), modified Pluronic F-127 (PF-127) with aldehyde end group and doxorubicin and then chemically crosslinking the aldehyde and amine bonds to increase the drug retention time. PF-127-CHO/Chi, which gels at body temperatures and chemically crosslinks between PF-127-CHO and Chitosan, increases the time that the drug remains in the affected area and prevents the hydrogel from swelling and compressing surrounding tissue. The drug is released from the chemically crosslinked hydrogels, prevents tumor progression and increases survival for subjects with GBM tumors. The Synergy Chemo-Immunotherapy also allows more efficient treatment of GBM than chemotherapy. The PF-127-CHO/Chi DOX and BMS-1 group have a tumor that is 43 times smaller than the untreated group. These results show that the proposed chemically crosslinking hydrogel is an efficient intratumoral delivery platform for the treatment of tumors.
Collapse
Affiliation(s)
- Shun-Hao Chuang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Kuan-Ju Chen
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Yu-Ting Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Yu-Shuan Chen
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Taiwan; Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan
| | - Shuian-Yin Lin
- Biomedical Technology and Device Research Center, Industrial Technology Research Institute, Hsinchu, 310, Taiwan
| | - Hsiao-Ying Chou
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan; R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan.
| |
Collapse
|
50
|
Shamul JG, Wang Z, Gong H, Ou W, White AM, Moniz-Garcia DP, Gu S, Clyne AM, Quiñones-Hinojosa A, He X. Meta-analysis of the make-up and properties of in vitro models of the healthy and diseased blood-brain barrier. Nat Biomed Eng 2024:10.1038/s41551-024-01250-2. [PMID: 39304761 DOI: 10.1038/s41551-024-01250-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/08/2024] [Indexed: 09/22/2024]
Abstract
In vitro models of the human blood-brain barrier (BBB) are increasingly used to develop therapeutics that can cross the BBB for treating diseases of the central nervous system. Here we report a meta-analysis of the make-up and properties of transwell and microfluidic models of the healthy BBB and of BBBs in glioblastoma, Alzheimer's disease, Parkinson's disease and inflammatory diseases. We found that the type of model, the culture method (static or dynamic), the cell types and cell ratios, and the biomaterials employed as extracellular matrix are all crucial to recapitulate the low permeability and high expression of tight-junction proteins of the BBB, and to obtain high trans-endothelial electrical resistance. Specifically, for models of the healthy BBB, the inclusion of endothelial cells and pericytes as well as physiological shear stresses (~10-20 dyne cm-2) are necessary, and when astrocytes are added, astrocytes or pericytes should outnumber endothelial cells. We expect this meta-analysis to facilitate the design of increasingly physiological models of the BBB.
Collapse
Affiliation(s)
- James G Shamul
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Zhiyuan Wang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Hyeyeon Gong
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Wenquan Ou
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Alisa M White
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | | | - Shuo Gu
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Alisa Morss Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
- Brain and Behavior Institute, University of Maryland, College Park, MD, USA
| | | | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA.
- Brain and Behavior Institute, University of Maryland, College Park, MD, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|