1
|
Eldemire R, Mestroni L, Taylor MRG. Genetics of Dilated Cardiomyopathy. Annu Rev Med 2024; 75:417-426. [PMID: 37788487 PMCID: PMC10842880 DOI: 10.1146/annurev-med-052422-020535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Dilated cardiomyopathy (DCM) is defined as dilation and/or reduced function of one or both ventricles and remains a common disease worldwide. An estimated 40% of cases of familial DCM have an identifiable genetic cause. Accordingly, there is a fast-growing interest in the field of molecular genetics as it pertains to DCM. Many gene mutations have been identified that contribute to phenotypically significant cardiomyopathy. DCM genes can affect a variety of cardiomyocyte functions, and particular genes whose function affects the cell-cell junction and cytoskeleton are associated with increased risk of arrhythmias and sudden cardiac death. Through advancements in next-generation sequencing and cardiac imaging, identification of genetic DCM has improved over the past couple decades, and precision medicine is now at the forefront of treatment for these patients and their families. In addition to standard treatment of heart failure and prevention of arrhythmias and sudden cardiac death, patients with genetic cardiomyopathy stand to benefit from gene mechanism-specific therapies.
Collapse
Affiliation(s)
- Ramone Eldemire
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA;
| | - Luisa Mestroni
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA;
- Cardiovascular Institute, University of Colorado, Aurora, Colorado, USA
| | - Matthew R G Taylor
- Cardiovascular Institute, University of Colorado, Aurora, Colorado, USA
- Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
2
|
Allele-specific expression analysis for complex genetic phenotypes applied to a unique dilated cardiomyopathy cohort. Sci Rep 2023; 13:564. [PMID: 36631531 PMCID: PMC9834222 DOI: 10.1038/s41598-023-27591-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Allele-specific expression (ASE) analysis detects the relative abundance of alleles at heterozygous loci as a proxy for cis-regulatory variation, which affects the personal transcriptome and proteome. This study describes the development and application of an ASE analysis pipeline on a unique cohort of 87 well phenotyped and RNA sequenced patients from the Maastricht Cardiomyopathy Registry with dilated cardiomyopathy (DCM), a complex genetic disorder with a remaining gap in explained heritability. Regulatory processes for which ASE is a proxy might explain this gap. We found an overrepresentation of known DCM-associated genes among the significant results across the cohort. In addition, we were able to find genes of interest that have not been associated with DCM through conventional methods such as genome-wide association or differential gene expression studies. The pipeline offers RNA sequencing data processing, individual and population level ASE analyses as well as group comparisons and several intuitive visualizations such as Manhattan plots and protein-protein interaction networks. With this pipeline, we found evidence supporting the case that cis-regulatory variation contributes to the phenotypic heterogeneity of DCM. Additionally, our results highlight that ASE analysis offers an additional layer to conventional genomic and transcriptomic analyses for candidate gene identification and biological insight.
Collapse
|
3
|
Kawana M, Spudich JA, Ruppel KM. Hypertrophic cardiomyopathy: Mutations to mechanisms to therapies. Front Physiol 2022; 13:975076. [PMID: 36225299 PMCID: PMC9548533 DOI: 10.3389/fphys.2022.975076] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/22/2022] [Indexed: 01/10/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) affects more than 1 in 500 people in the general population with an extensive burden of morbidity in the form of arrhythmia, heart failure, and sudden death. More than 25 years since the discovery of the genetic underpinnings of HCM, the field has unveiled significant insights into the primary effects of these genetic mutations, especially for the myosin heavy chain gene, which is one of the most commonly mutated genes. Our group has studied the molecular effects of HCM mutations on human β-cardiac myosin heavy chain using state-of-the-art biochemical and biophysical tools for the past 10 years, combining insights from clinical genetics and structural analyses of cardiac myosin. The overarching hypothesis is that HCM-causing mutations in sarcomere proteins cause hypercontractility at the sarcomere level, and we have shown that an increase in the number of myosin molecules available for interaction with actin is a primary driver. Recently, two pharmaceutical companies have developed small molecule inhibitors of human cardiac myosin to counteract the molecular consequences of HCM pathogenesis. One of these inhibitors (mavacamten) has recently been approved by the FDA after completing a successful phase III trial in HCM patients, and the other (aficamten) is currently being evaluated in a phase III trial. Myosin inhibitors will be the first class of medication used to treat HCM that has both robust clinical trial evidence of efficacy and that targets the fundamental mechanism of HCM pathogenesis. The success of myosin inhibitors in HCM opens the door to finding other new drugs that target the sarcomere directly, as we learn more about the genetics and fundamental mechanisms of this disease.
Collapse
Affiliation(s)
- Masataka Kawana
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States,Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States
| | - Kathleen M. Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States,*Correspondence: Kathleen M. Ruppel,
| |
Collapse
|
4
|
Fatkin D, Calkins H, Elliott P, James CA, Peters S, Kovacic JC. Contemporary and Future Approaches to Precision Medicine in Inherited Cardiomyopathies: JACC Focus Seminar 3/5. J Am Coll Cardiol 2021; 77:2551-2572. [PMID: 34016267 DOI: 10.1016/j.jacc.2020.12.072] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 01/02/2023]
Abstract
Inherited cardiomyopathies are commonly occurring myocardial disorders that are associated with substantial morbidity and mortality. Clinical management strategies have focused on treatment of heart failure and arrhythmic complications in symptomatic patients according to standardized guidelines. Clinicians are now being urged to implement precision medicine, but what does this involve? Advances in understanding of the genetic underpinnings of inherited cardiomyopathies have brought new possibilities for interventions that are tailored to genes, specific variants, or downstream mechanisms. However, the phenotypic variability that can occur with any given pathogenic variant suggests that factors other than single driver gene mutations are often involved. This is propelling a new imperative to elucidate the nuanced ways in which individual combinations of genetic variation, comorbidities, and lifestyle may influence cardiomyopathy phenotypes. Here, Part 3 of a 5-part precision medicine Focus Seminar series reviews the current status and future opportunities for precision medicine in the inherited cardiomyopathies.
Collapse
Affiliation(s)
- Diane Fatkin
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, New South Wales, Australia; Cardiology Department, St. Vincent's Hospital, Darlinghurst, New South Wales, Australia.
| | - Hugh Calkins
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Perry Elliott
- Institute of Cardiovascular Sciences, University College London, London, United Kingdom; Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
| | - Cynthia A James
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Stacey Peters
- Departments of Cardiology and Genomic Medicine, Royal Melbourne Hospital, Melbourne, Victoria, Australia; Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Jason C Kovacic
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, New South Wales, Australia; Cardiology Department, St. Vincent's Hospital, Darlinghurst, New South Wales, Australia; The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
5
|
Manivannan SN, Darouich S, Masmoudi A, Gordon D, Zender G, Han Z, Fitzgerald-Butt S, White P, McBride KL, Kharrat M, Garg V. Novel frameshift variant in MYL2 reveals molecular differences between dominant and recessive forms of hypertrophic cardiomyopathy. PLoS Genet 2020; 16:e1008639. [PMID: 32453731 PMCID: PMC7274480 DOI: 10.1371/journal.pgen.1008639] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 06/05/2020] [Accepted: 01/29/2020] [Indexed: 12/18/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by thickening of the ventricular muscle without dilation and is often associated with dominant pathogenic variants in cardiac sarcomeric protein genes. Here, we report a family with two infants diagnosed with infantile-onset HCM and mitral valve dysplasia that led to death before one year of age. Using exome sequencing, we discovered that one of the affected children had a homozygous frameshift variant in Myosin light chain 2 (MYL2:NM_000432.3:c.431_432delCT: p.Pro144Argfs*57;MYL2-fs), which alters the last 20 amino acids of the protein and is predicted to impact the most C-terminal of the three EF-hand domains in MYL2. The parents are unaffected heterozygous carriers of the variant and the variant is absent in control cohorts from gnomAD. The absence of the phenotype in carriers and the infantile presentation of severe HCM is in contrast to HCM associated with dominant MYL2 variants. Immunohistochemical analysis of the ventricular muscle of the deceased patient with the MYL2-fs variant showed a marked reduction of MYL2 expression compared to an unaffected control. In vitro overexpression studies further indicate that the MYL2-fs variant is actively degraded. In contrast, an HCM-associated missense variant (MYL2:p.Gly162Arg) and three other MYL2 stop-gain variants (p.E22*, p.K62*, p.E97*) that result in loss of the EF domains are stably expressed but show impaired localization. The degradation of the MYL2-fs can be rescued by inhibiting the cell’s proteasome function supporting a post-translational effect of the variant. In vivo rescue experiments with a Drosophila MYL2-homolog (Mlc2) knockdown model indicate that neither the MYL2-fs nor the MYL2:p.Gly162Arg variant supports normal cardiac function. The tools that we have generated provide a rapid screening platform for functional assessment of variants of unknown significance in MYL2. Our study supports an autosomal recessive model of inheritance for MYL2 loss-of-function variants in infantile HCM and highlights the variant-specific molecular differences found in MYL2-associated cardiomyopathy. We report a novel frameshift variant in MYL2 that is associated with a severe form of infantile-onset hypertrophic cardiomyopathy. The impact of the variant is only observed in the recessive form of the disease found in the proband and not in the parents who are carriers of the variant. This contrasts with other dominant variants in MYL2 that are associated with cardiomyopathies. We compared the stability of this variant to that of other cardiomyopathy associated MYL2 variants and found molecular differences that correlated with disease pathology. We also show different protein domain requirements for stability and localization of MYL2 in cardiomyocytes. Furthermore, we used a fly model to demonstrate functional deficits due to the variant in the developing heart. Overall, our study shows a molecular mechanism by which loss-of-function variants in MYL2 are recessive while missense variants are dominant. We highlight the use of exome sequencing and functional testing to assist in the diagnosis of rare forms of disease where pathogenicity of the variant is not obvious. The new tools we developed for in vitro functional study and the fly fluorescent reporter analysis will permit rapid analysis of MYL2 variants of unknown significance.
Collapse
Affiliation(s)
- Sathiya N. Manivannan
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Sihem Darouich
- University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES10 Laboratory of Human Genetics, Tunis, Tunisia
- * E-mail: (SD); (VG)
| | - Aida Masmoudi
- University of Tunis El Manar, Faculty of Medicine of Tunis, Department of Embryo-Fetopathology, Maternity and Neonatology Center, Tunis, Tunisia
| | - David Gordon
- Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Gloria Zender
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Zhe Han
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Sara Fitzgerald-Butt
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Peter White
- Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Kim L. McBride
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Maher Kharrat
- University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES10 Laboratory of Human Genetics, Tunis, Tunisia
| | - Vidu Garg
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (SD); (VG)
| |
Collapse
|
6
|
Yadav K, Yadav A, Vashistha P, Pandey VP, Dwivedi UN. Protein Misfolding Diseases and Therapeutic Approaches. Curr Protein Pept Sci 2020; 20:1226-1245. [PMID: 31187709 DOI: 10.2174/1389203720666190610092840] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/01/2019] [Accepted: 02/24/2019] [Indexed: 12/12/2022]
Abstract
Protein folding is the process by which a polypeptide chain acquires its functional, native 3D structure. Protein misfolding, on the other hand, is a process in which protein fails to fold into its native functional conformation. This misfolding of proteins may lead to precipitation of a number of serious diseases such as Cystic Fibrosis (CF), Alzheimer's Disease (AD), Parkinson's Disease (PD), and Amyotrophic Lateral Sclerosis (ALS) etc. Protein Quality-control (PQC) systems, consisting of molecular chaperones, proteases and regulatory factors, help in protein folding and prevent its aggregation. At the same time, PQC systems also do sorting and removal of improperly folded polypeptides. Among the major types of PQC systems involved in protein homeostasis are cytosolic, Endoplasmic Reticulum (ER) and mitochondrial ones. The cytosol PQC system includes a large number of component chaperones, such as Nascent-polypeptide-associated Complex (NAC), Hsp40, Hsp70, prefoldin and T Complex Protein-1 (TCP-1) Ring Complex (TRiC). Protein misfolding diseases caused due to defective cytosolic PQC system include diseases involving keratin/collagen proteins, cardiomyopathies, phenylketonuria, PD and ALS. The components of PQC system of Endoplasmic Reticulum (ER) include Binding immunoglobulin Protein (BiP), Calnexin (CNX), Calreticulin (CRT), Glucose-regulated Protein GRP94, the thiol-disulphide oxidoreductases, Protein Disulphide Isomerase (PDI) and ERp57. ER-linked misfolding diseases include CF and Familial Neurohypophyseal Diabetes Insipidus (FNDI). The components of mitochondrial PQC system include mitochondrial chaperones such as the Hsp70, the Hsp60/Hsp10 and a set of proteases having AAA+ domains similar to the proteasome that are situated in the matrix or the inner membrane. Protein misfolding diseases caused due to defective mitochondrial PQC system include medium-chain acyl-CoA dehydrogenase (MCAD)/Short-chain Acyl-CoA Dehydrogenase (SCAD) deficiency diseases, hereditary spastic paraplegia. Among therapeutic approaches towards the treatment of various protein misfolding diseases, chaperones have been suggested as potential therapeutic molecules for target based treatment. Chaperones have been advantageous because of their efficient entry and distribution inside the cells, including specific cellular compartments, in therapeutic concentrations. Based on the chemical nature of the chaperones used for therapeutic purposes, molecular, chemical and pharmacological classes of chaperones have been discussed.
Collapse
Affiliation(s)
- Kusum Yadav
- Department of Biochemistry, University of Lucknow, Lucknow, U.P, India
| | - Anurag Yadav
- Department of Microbiology, College of Basic Sciences and Humanities, Sardar Krushinagar Dantiwada Agricultural University, Banaskantha, Gujarat, India
| | | | - Veda P Pandey
- Department of Biochemistry, University of Lucknow, Lucknow, U.P, India
| | - Upendra N Dwivedi
- Department of Biochemistry, University of Lucknow, Lucknow, U.P, India.,Institute for Development of Advanced Computing, ONGC Centre for Advanced Studies, University of Lucknow, Lucknow, U.P., India
| |
Collapse
|
7
|
Fatkin D, Huttner IG, Kovacic JC, Seidman J, Seidman CE. Precision Medicine in the Management of Dilated Cardiomyopathy. J Am Coll Cardiol 2019; 74:2921-2938. [DOI: 10.1016/j.jacc.2019.10.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/25/2019] [Accepted: 10/10/2019] [Indexed: 01/16/2023]
|
8
|
Mechanical Forces Regulate Cardiomyocyte Myofilament Maturation via the VCL-SSH1-CFL Axis. Dev Cell 2019; 51:62-77.e5. [PMID: 31495694 DOI: 10.1016/j.devcel.2019.08.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/02/2019] [Accepted: 08/07/2019] [Indexed: 01/07/2023]
Abstract
Mechanical forces regulate cell behavior and tissue morphogenesis. During cardiac development, mechanical stimuli from the heartbeat are required for cardiomyocyte maturation, but the underlying molecular mechanisms remain unclear. Here, we first show that the forces of the contracting heart regulate the localization and activation of the cytoskeletal protein vinculin (VCL), which we find to be essential for myofilament maturation. To further analyze the role of VCL in this process, we examined its interactome in contracting versus non-contracting cardiomyocytes and, in addition to several known interactors, including actin regulators, identified the slingshot protein phosphatase SSH1. We show how VCL recruits SSH1 and its effector, the actin depolymerizing factor cofilin (CFL), to regulate F-actin rearrangement and promote cardiomyocyte myofilament maturation. Overall, our results reveal that mechanical forces generated by cardiac contractility regulate cardiomyocyte maturation through the VCL-SSH1-CFL axis, providing further insight into how mechanical forces are transmitted intracellularly to regulate myofilament maturation.
Collapse
|
9
|
Schroer A, Pardon G, Castillo E, Blair C, Pruitt B. Engineering hiPSC cardiomyocyte in vitro model systems for functional and structural assessment. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 144:3-15. [PMID: 30579630 PMCID: PMC6919215 DOI: 10.1016/j.pbiomolbio.2018.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 09/24/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023]
Abstract
The study of human cardiomyopathies and the development and testing of new therapies has long been limited by the availability of appropriate in vitro model systems. Cardiomyocytes are highly specialized cells whose internal structure and contractile function are sensitive to the local microenvironment and the combination of mechanical and biochemical cues they receive. The complementary technologies of human induced pluripotent stem cell (hiPSC) derived cardiomyocytes (CMs) and microphysiological systems (MPS) allow for precise control of the genetics and microenvironment of human cells in in vitro contexts. These combined systems also enable quantitative measurement of mechanical function and intracellular organization. This review describes relevant factors in the myocardium microenvironment that affect CM structure and mechanical function and demonstrates the application of several engineered microphysiological systems for studying development, disease, and drug discovery.
Collapse
Affiliation(s)
- Alison Schroer
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, 94305, USA.
| | - Gaspard Pardon
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Erica Castillo
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, 94305, USA; Department of Mechanical Engineering, University of California at Santa Barbara, USA
| | - Cheavar Blair
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, 94305, USA; Department of Mechanical Engineering, University of California at Santa Barbara, USA
| | - Beth Pruitt
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, 94305, USA; Department of Mechanical Engineering, University of California at Santa Barbara, USA
| |
Collapse
|
10
|
Loganathan J, Pandey R, Ambhore NS, Borowicz P, Sathish V. Laser-capture microdissection of murine lung for differential cellular RNA analysis. Cell Tissue Res 2019; 376:425-432. [PMID: 30710174 PMCID: PMC6534428 DOI: 10.1007/s00441-019-02995-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/15/2019] [Indexed: 12/11/2022]
Abstract
The lung tissue contains a heterogeneous milieu of bronchioles, epithelial, airway smooth muscle (ASM), alveolar, and immune cell types. Healthy bronchiole comprises epithelial cells surrounded by ASM cells and helps in normal respiration. In contrast, airway remodeling, or plasticity, increases surrounding of bronchial epithelium during inflammation, especially in asthmatic condition. Given the profound functional difference between ASM, epithelial, and other cell types in the lung, it is imperative to separate and isolate different cell types of lungs for genomics, proteomics, and molecular analysis, which will improve the diagnostic and therapeutic approach to treat cell-specific lung disorders. Laser capture microdissection (LCM) is the technique generally used for the isolation of specific cell populations under direct visual inspection, which plays a crucial role to evaluate cell-specific effect in clinical and preclinical setup. However, maintenance of tissue RNA quality and integrity in LCM studies are very challenging tasks. It is obvious to believe that the major factor affecting the RNA quality is tissue-fixation method. The prime focus of this study was to address the RNA quality factors within the lung tissue using the different solvent system to fix tissue sample to obtain high-quality RNA. Paraformaldehyde and Carnoy's solutions were used for fixing the lung tissue and compared RNA integrity in LCM captured lung tissue samples. To further confirm the quality of RNA, we measured cellular marker genes in collected lung tissue samples from control and mixed allergen (MA)-induced asthmatic mouse model using qRT-PCR technique. RNA integrity number showed a significantly better quality of RNA in lung tissue samples fixed with Carnoy's solution compared to paraformaldehyde solution. Isolated RNA from MA-induced asthmatic murine lung epithelium, smooth muscle, and granulomatous foci using LCM showed a significant increase in remodeling gene expression compared to control which confirm the quality and integrity of isolated RNA. Overall, the study concludes tissue fixation solvent can alter the quality of RNA in the lung and the outcome of the results.
Collapse
Affiliation(s)
- Jagadish Loganathan
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University, Sudro Hall, Room 203, Fargo, ND, 58108-6050, USA
| | - Roshni Pandey
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University, Sudro Hall, Room 203, Fargo, ND, 58108-6050, USA
| | - Nilesh Sudhakar Ambhore
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University, Sudro Hall, Room 203, Fargo, ND, 58108-6050, USA
| | - Pawel Borowicz
- Department of Animal Sciences, North Dakota State University, Fargo, ND, USA
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University, Sudro Hall, Room 203, Fargo, ND, 58108-6050, USA.
| |
Collapse
|
11
|
Currall BB, Chen M, Sallari RC, Cotter M, Wong KE, Robertson NG, Penney KL, Lunardi A, Reschke M, Hickox AE, Yin Y, Wong GT, Fung J, Brown KK, Williamson RE, Sinnott-Armstrong NA, Kammin T, Ivanov A, Zepeda-Mendoza CJ, Shen J, Quade BJ, Signoretti S, Arnos KS, Banks AS, Patsopoulos N, Liberman MC, Kellis M, Pandolfi PP, Morton CC. Loss of LDAH associated with prostate cancer and hearing loss. Hum Mol Genet 2019; 27:4194-4203. [PMID: 30169630 DOI: 10.1093/hmg/ddy310] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022] Open
Abstract
Great strides in gene discovery have been made using a multitude of methods to associate phenotypes with genetic variants, but there still remains a substantial gap between observed symptoms and identified genetic defects. Herein, we use the convergence of various genetic and genomic techniques to investigate the underpinnings of a constellation of phenotypes that include prostate cancer (PCa) and sensorineural hearing loss (SNHL) in a human subject. Through interrogation of the subject's de novo, germline, balanced chromosomal translocation, we first identify a correlation between his disorders and a poorly annotated gene known as lipid droplet associated hydrolase (LDAH). Using data repositories of both germline and somatic variants, we identify convergent genomic evidence that substantiates a correlation between loss of LDAH and PCa. This correlation is validated through both in vitro and in vivo models that show loss of LDAH results in increased risk of PCa and, to a lesser extent, SNHL. By leveraging convergent evidence in emerging genomic data, we hypothesize that loss of LDAH is involved in PCa and other phenotypes observed in support of a genotype-phenotype association in an n-of-one human subject.
Collapse
Affiliation(s)
- Benjamin B Currall
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Ming Chen
- Harvard Medical School, Boston, MA, USA.,Cancer Research Institute, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Richard C Sallari
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Maura Cotter
- Center for Molecular Oncologic Pathology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Kristen E Wong
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, MA, USA
| | - Nahid G Robertson
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, MA, USA
| | - Kathryn L Penney
- Harvard Medical School, Boston, MA, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrea Lunardi
- Harvard Medical School, Boston, MA, USA.,Cancer Research Institute, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Markus Reschke
- Harvard Medical School, Boston, MA, USA.,Cancer Research Institute, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Ann E Hickox
- Harvard Medical School, Boston, MA, USA.,Program in Speech and Hearing Bioscience and Technology, Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.,Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Yanbo Yin
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA.,Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - Garrett T Wong
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jacqueline Fung
- Cancer Research Institute, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Kerry K Brown
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | - Nicholas A Sinnott-Armstrong
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tammy Kammin
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, MA, USA
| | - Andrew Ivanov
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, MA, USA
| | - Cinthya J Zepeda-Mendoza
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Jun Shen
- Harvard Medical School, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, MA, USA.,Harvard Medical School Center for Hereditary Deafness, Boston, MA, USA
| | - Bradley J Quade
- Harvard Medical School, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Sabina Signoretti
- Harvard Medical School, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kathleen S Arnos
- Department of Science, Technology, & Mathematics, Gallaudet University, Washington, DC, USA
| | - Alexander S Banks
- Harvard Medical School, Boston, MA, USA.,Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Boston MA, USA
| | - Nikolaos Patsopoulos
- Harvard Medical School, Boston, MA, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - M Charles Liberman
- Harvard Medical School, Boston, MA, USA.,Program in Speech and Hearing Bioscience and Technology, Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.,Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA.,Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Pier Paolo Pandolfi
- Harvard Medical School, Boston, MA, USA.,Cancer Research Institute, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Cynthia C Morton
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Program in Speech and Hearing Bioscience and Technology, Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School Center for Hereditary Deafness, Boston, MA, USA.,Division of Evolution and Genomic Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
12
|
Huang G, Liu J, Yang C, Xiang Y, Wang Y, Wang J, Cao M, Yang W. RNA sequencing discloses the genome‑wide profile of long noncoding RNAs in dilated cardiomyopathy. Mol Med Rep 2019; 19:2569-2580. [PMID: 30720098 PMCID: PMC6423559 DOI: 10.3892/mmr.2019.9937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/17/2019] [Indexed: 12/13/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is a common type of non‑ischemic cardiomyopathy, of which the underlying mechanisms have not yet been fully elucidated. Long noncoding RNAs (lncRNAs) have been reported to serve crucial physiological roles in various cardiac diseases. However, the genome‑wide expression profile of lncRNAs remains to be elucidated in DCM. In the present study, a case‑control study was performed to identify expression deviations in circulating lncRNAs between patients with DCM and controls by RNA sequencing. Partial dysregulated lncRNAs were validated by reverse transcription‑polymerase chain reaction. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway, and lncRNA‑messenger RNA (mRNA) co‑expression network analyses were employed to probe potential functions of these dysregulated lncRNAs in DCM. Comparison between 8 DCM and 8 control samples demonstrated that there were alterations in the expression levels of 988 lncRNAs and 1,418 mRNAs in total. The dysregulated lncRNAs were found to be mainly associated with system development, organ morphogenesis and metabolic regulation in terms of 'biological processes'. Furthermore, the analysis revealed that the gap junction pathway, phagosome, and dilated and hypertrophic cardiomyopathy pathways may serve crucial roles in the development of DCM. The lncRNA‑mRNA co‑expression network also suggested that the target genes of the lncRNAs were different in patients with DCM as compared with those in the controls. In conclusion, the present study revealed the genome‑wide profile of circulating lncRNAs in DCM by RNA sequencing, and explored the potential functions of these lncRNAs in DCM using bioinformatics analysis. These findings provide a theoretical foundation for future studies of lncRNAs in DCM.
Collapse
Affiliation(s)
- Guangyong Huang
- Department of Cardiology, Liaocheng People's Hospital of Shandong University, Liaocheng, Shandong 252000, P.R. China
| | - Jingwen Liu
- Department of Cardiology, Liaocheng People's Hospital of Shandong University, Liaocheng, Shandong 252000, P.R. China
| | - Chuansheng Yang
- Department of Cardiology, Liaocheng People's Hospital of Shandong University, Liaocheng, Shandong 252000, P.R. China
| | - Youzhang Xiang
- Shandong Institute for Endemic Disease Control, Jinan, Shandong 250014, P.R. China
| | - Yuehai Wang
- Department of Cardiology, Liaocheng People's Hospital of Shandong University, Liaocheng, Shandong 252000, P.R. China
| | - Jing Wang
- Shandong Institute for Endemic Disease Control, Jinan, Shandong 250014, P.R. China
| | - Miaomiao Cao
- Department of Cardiology, Liaocheng People's Hospital of Shandong University, Liaocheng, Shandong 252000, P.R. China
| | - Wenbo Yang
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
13
|
Peters S, Kumar S, Elliott P, Kalman JM, Fatkin D. Arrhythmic Genotypes in Familial Dilated Cardiomyopathy: Implications for Genetic Testing and Clinical Management. Heart Lung Circ 2019; 28:31-38. [DOI: 10.1016/j.hlc.2018.09.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 09/23/2018] [Indexed: 11/30/2022]
|
14
|
Schultheiss HP, Fairweather D, Caforio ALP, Escher F, Hershberger RE, Lipshultz SE, Liu PP, Matsumori A, Mazzanti A, McMurray J, Priori SG. Dilated cardiomyopathy. Nat Rev Dis Primers 2019; 5:32. [PMID: 31073128 PMCID: PMC7096917 DOI: 10.1038/s41572-019-0084-1] [Citation(s) in RCA: 353] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Dilated cardiomyopathy (DCM) is a clinical diagnosis characterized by left ventricular or biventricular dilation and impaired contraction that is not explained by abnormal loading conditions (for example, hypertension and valvular heart disease) or coronary artery disease. Mutations in several genes can cause DCM, including genes encoding structural components of the sarcomere and desmosome. Nongenetic forms of DCM can result from different aetiologies, including inflammation of the myocardium due to an infection (mostly viral); exposure to drugs, toxins or allergens; and systemic endocrine or autoimmune diseases. The heterogeneous aetiology and clinical presentation of DCM make a correct and timely diagnosis challenging. Echocardiography and other imaging techniques are required to assess ventricular dysfunction and adverse myocardial remodelling, and immunological and histological analyses of an endomyocardial biopsy sample are indicated when inflammation or infection is suspected. As DCM eventually leads to impaired contractility, standard approaches to prevent or treat heart failure are the first-line treatment for patients with DCM. Cardiac resynchronization therapy and implantable cardioverter-defibrillators may be required to prevent life-threatening arrhythmias. In addition, identifying the probable cause of DCM helps tailor specific therapies to improve prognosis. An improved aetiology-driven personalized approach to clinical care will benefit patients with DCM, as will new diagnostic tools, such as serum biomarkers, that enable early diagnosis and treatment.
Collapse
Affiliation(s)
- Heinz-Peter Schultheiss
- Institute for Cardiac Diagnostics and Therapy (IKDT), Berlin, Germany. .,Department of Cardiology, Charité-Universitaetsmedizin Berlin, Berlin, Germany.
| | - DeLisa Fairweather
- Mayo Clinic, Department of Cardiovascular Medicine, Jacksonville, FL, USA.
| | - Alida L. P. Caforio
- 0000 0004 1757 3470grid.5608.bDivision of Cardiology, Department of Cardiological Thoracic and Vascular Sciences and Public Health, University of Padua, Padova, Italy
| | - Felicitas Escher
- grid.486773.9Institute for Cardiac Diagnostics and Therapy (IKDT), Berlin, Germany ,0000 0001 2218 4662grid.6363.0Department of Cardiology, Charité–Universitaetsmedizin Berlin, Berlin, Germany ,0000 0004 5937 5237grid.452396.fDZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Ray E. Hershberger
- 0000 0001 2285 7943grid.261331.4Divisions of Human Genetics and Cardiovascular Medicine in the Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH USA
| | - Steven E. Lipshultz
- 0000 0004 1936 9887grid.273335.3Department of Pediatrics, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY USA ,0000 0000 9958 7286grid.413993.5Oishei Children’s Hospital, Buffalo, NY USA ,Roswell Park Comprehensive Cancer Center, Buffalo, NY USA
| | - Peter P. Liu
- 0000 0001 2182 2255grid.28046.38University of Ottawa Heart Institute, Ottawa, Ontario Canada
| | - Akira Matsumori
- grid.410835.bClinical Research Center, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Andrea Mazzanti
- 0000 0004 1762 5736grid.8982.bDepartment of Molecular Medicine, University of Pavia, Pavia, Italy ,Department of Molecular Cardiology, IRCCS ICS Maugeri, Pavia, Italy
| | - John McMurray
- 0000 0001 2193 314Xgrid.8756.cBritish Heart Foundation (BHF) Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Silvia G. Priori
- 0000 0004 1762 5736grid.8982.bDepartment of Molecular Medicine, University of Pavia, Pavia, Italy ,Department of Molecular Cardiology, IRCCS ICS Maugeri, Pavia, Italy
| |
Collapse
|
15
|
A gene-centric strategy for identifying disease-causing rare variants in dilated cardiomyopathy. Genet Med 2018; 21:133-143. [PMID: 29892087 DOI: 10.1038/s41436-018-0036-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/27/2018] [Indexed: 12/19/2022] Open
Abstract
PURPOSE We evaluated strategies for identifying disease-causing variants in genetic testing for dilated cardiomyopathy (DCM). METHODS Cardiomyopathy gene panel testing was performed in 532 DCM patients and 527 healthy control subjects. Rare variants in 41 genes were stratified using variant-level and gene-level characteristics. RESULTS A majority of DCM cases and controls carried rare protein-altering cardiomyopathy gene variants. Variant-level characteristics alone had limited discriminative value. Differentiation between groups was substantially improved by addition of gene-level information that incorporated ranking of genes based on literature evidence for disease association. The odds of DCM were increased to nearly 9-fold for truncating variants or high-impact missense variants in the subset of 14 genes that had the strongest biological links to DCM (P <0.0001). For some of these genes, DCM-associated variants appeared to be clustered in key protein functional domains. Multiple rare variants were present in many family probands, however, there was generally only one "driver" pathogenic variant that cosegregated with disease. CONCLUSION Rare variants in cardiomyopathy genes can be effectively stratified by combining variant-level and gene-level information. Prioritization of genes based on their a priori likelihood of disease causation is a key factor in identifying clinically actionable variants in cardiac genetic testing.
Collapse
|
16
|
|
17
|
Mehta LS, Watson KE, Barac A, Beckie TM, Bittner V, Cruz-Flores S, Dent S, Kondapalli L, Ky B, Okwuosa T, Piña IL, Volgman AS. Cardiovascular Disease and Breast Cancer: Where These Entities Intersect: A Scientific Statement From the American Heart Association. Circulation 2018; 137:e30-e66. [PMID: 29437116 PMCID: PMC6722327 DOI: 10.1161/cir.0000000000000556] [Citation(s) in RCA: 484] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of mortality in women, yet many people perceive breast cancer to be the number one threat to women's health. CVD and breast cancer have several overlapping risk factors, such as obesity and smoking. Additionally, current breast cancer treatments can have a negative impact on cardiovascular health (eg, left ventricular dysfunction, accelerated CVD), and for women with pre-existing CVD, this might influence cancer treatment decisions by both the patient and the provider. Improvements in early detection and treatment of breast cancer have led to an increasing number of breast cancer survivors who are at risk of long-term cardiac complications from cancer treatments. For older women, CVD poses a greater mortality threat than breast cancer itself. This is the first scientific statement from the American Heart Association on CVD and breast cancer. This document will provide a comprehensive overview of the prevalence of these diseases, shared risk factors, the cardiotoxic effects of therapy, and the prevention and treatment of CVD in breast cancer patients.
Collapse
|
18
|
Iorga B, Schwanke K, Weber N, Wendland M, Greten S, Piep B, Dos Remedios CG, Martin U, Zweigerdt R, Kraft T, Brenner B. Differences in Contractile Function of Myofibrils within Human Embryonic Stem Cell-Derived Cardiomyocytes vs. Adult Ventricular Myofibrils Are Related to Distinct Sarcomeric Protein Isoforms. Front Physiol 2018; 8:1111. [PMID: 29403388 PMCID: PMC5780405 DOI: 10.3389/fphys.2017.01111] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 12/15/2017] [Indexed: 01/10/2023] Open
Abstract
Characterizing the contractile function of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is key for advancing their utility for cellular disease models, promoting cell based heart repair, or developing novel pharmacological interventions targeting cardiac diseases. The aim of the present study was to understand whether steady-state and kinetic force parameters of β-myosin heavy chain (βMyHC) isoform-expressing myofibrils within human embryonic stem cell-derived cardiomyocytes (hESC-CMs) differentiated in vitro resemble those of human ventricular myofibrils (hvMFs) isolated from adult donor hearts. Contractile parameters were determined using the same micromechanical method and experimental conditions for both types of myofibrils. We identified isoforms and phosphorylation of main sarcomeric proteins involved in the modulation of force generation of both, chemically demembranated hESC-CMs (d-hESC-CMs) and hvMFs. Our results indicate that at saturating Ca2+ concentration, both human-derived contractile systems developed forces with similar rate constants (0.66 and 0.68 s−1), reaching maximum isometric force that was significantly smaller for d-hESC-CMs (42 kPa) than for hvMFs (94 kPa). At submaximal Ca2+-activation, where intact cardiomyocytes normally operate, contractile parameters of d-hESC-CMs and hvMFs exhibited differences. Ca2+ sensitivity of force was higher for d-hESC-CMs (pCa50 = 6.04) than for hvMFs (pCa50 = 5.80). At half-maximum activation, the rate constant for force redevelopment was significantly faster for d-hESC-CMs (0.51 s−1) than for hvMFs (0.28 s−1). During myofibril relaxation, kinetics of the slow force decay phase were significantly faster for d-hESC-CMs (0.26 s−1) than for hvMFs (0.21 s−1), while kinetics of the fast force decay were similar and ~20x faster. Protein analysis revealed that hESC-CMs had essentially no cardiac troponin-I, and partially non-ventricular isoforms of some other sarcomeric proteins, explaining the functional discrepancies. The sarcomeric protein isoform pattern of hESC-CMs had features of human cardiomyocytes at an early developmental stage. The study indicates that morphological and ultrastructural maturation of βMyHC isoform-expressing hESC-CMs is not necessarily accompanied by ventricular-like expression of all sarcomeric proteins. Our data suggest that hPSC-CMs could provide useful tools for investigating inherited cardiac diseases affecting contractile function during early developmental stages.
Collapse
Affiliation(s)
- Bogdan Iorga
- Department of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany.,Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| | - Kristin Schwanke
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs, REBIRTH-Center for Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Natalie Weber
- Department of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Meike Wendland
- Department of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Stephan Greten
- Department of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Birgit Piep
- Department of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | | | - Ulrich Martin
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs, REBIRTH-Center for Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Robert Zweigerdt
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs, REBIRTH-Center for Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Theresia Kraft
- Department of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Bernhard Brenner
- Department of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
19
|
Chopra A, Kutys ML, Zhang K, Polacheck WJ, Sheng CC, Luu RJ, Eyckmans J, Hinson JT, Seidman JG, Seidman CE, Chen CS. Force Generation via β-Cardiac Myosin, Titin, and α-Actinin Drives Cardiac Sarcomere Assembly from Cell-Matrix Adhesions. Dev Cell 2018; 44:87-96.e5. [PMID: 29316444 DOI: 10.1016/j.devcel.2017.12.012] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/16/2017] [Accepted: 12/11/2017] [Indexed: 12/26/2022]
Abstract
Truncating mutations in the sarcomere protein titin cause dilated cardiomyopathy due to sarcomere insufficiency. However, it remains mechanistically unclear how these mutations decrease sarcomere content in cardiomyocytes. Utilizing human induced pluripotent stem cell-derived cardiomyocytes, CRISPR/Cas9, and live microscopy, we characterize the fundamental mechanisms of human cardiac sarcomere formation. We observe that sarcomerogenesis initiates at protocostameres, sites of cell-extracellular matrix adhesion, where nucleation and centripetal assembly of α-actinin-2-containing fibers provide a template for the fusion of Z-disk precursors, Z bodies, and subsequent striation. We identify that β-cardiac myosin-titin-protocostamere form an essential mechanical connection that transmits forces required to direct α-actinin-2 centripetal fiber assembly and sarcomere formation. Titin propagates diastolic traction stresses from β-cardiac myosin, but not α-cardiac myosin or non-muscle myosin II, to protocostameres during sarcomerogenesis. Ablating protocostameres or decoupling titin from protocostameres abolishes sarcomere assembly. Together these results identify the mechanical and molecular components critical for human cardiac sarcomerogenesis.
Collapse
Affiliation(s)
- Anant Chopra
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Matthew L Kutys
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Kehan Zhang
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - William J Polacheck
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Calvin C Sheng
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Rebeccah J Luu
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Jeroen Eyckmans
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - J Travis Hinson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Cardiology Center, University of Connecticut Health, Farmington, CT 06030, USA.
| | - Jonathan G Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Christopher S Chen
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Position Statement on the Diagnosis and Management of Familial Dilated Cardiomyopathy. Heart Lung Circ 2017; 26:1127-1132. [DOI: 10.1016/j.hlc.2017.04.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 04/14/2017] [Indexed: 11/24/2022]
|
21
|
Sharifi-Sanjani M, Oyster NM, Tichy ED, Bedi KC, Harel O, Margulies KB, Mourkioti F. Cardiomyocyte-Specific Telomere Shortening is a Distinct Signature of Heart Failure in Humans. J Am Heart Assoc 2017; 6:JAHA.116.005086. [PMID: 28882819 PMCID: PMC5634248 DOI: 10.1161/jaha.116.005086] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background Telomere defects are thought to play a role in cardiomyopathies, but the specific cell type affected by the disease in human hearts is not yet identified. The aim of this study was to systematically evaluate the cell type specificity of telomere shortening in patients with heart failure in relation to their cardiac disease, age, and sex. Methods and Results We studied cardiac tissues from patients with heart failure by utilizing telomere quantitative fluorescence in situ hybridization, a highly sensitive method with single‐cell resolution. In this study, total of 63 human left ventricular samples, including 37 diseased and 26 nonfailing donor hearts, were stained for telomeres in combination with cardiomyocyte‐ or α‐smooth muscle cell‐specific markers, cardiac troponin T, and smooth muscle actin, respectively, and assessed for telomere length. Patients with heart failure demonstrate shorter cardiomyocyte telomeres compared with nonfailing donors, which is specific only to cardiomyocytes within diseased human hearts and is associated with cardiomyocyte DNA damage. Our data further reveal that hypertrophic hearts with reduced ejection fraction exhibit the shortest telomeres. In contrast to other reported cell types, no difference in cardiomyocyte telomere length is evident with age. However, under the disease state, telomere attrition manifests in both young and older patients with cardiac hypertrophy. Finally, we demonstrate that cardiomyocyte‐telomere length is better sustained in women than men under diseased conditions. Conclusions This study provides the first evidence of cardiomyocyte‐specific telomere shortening in heart failure.
Collapse
Affiliation(s)
| | - Nicholas M Oyster
- Department of Orthopaedic Surgery, University of Connecticut, Storrs, CT
| | - Elisia D Tichy
- Department of Orthopaedic Surgery, University of Connecticut, Storrs, CT
| | - Kenneth C Bedi
- Cardiovascular Institute, University of Connecticut, Storrs, CT
| | - Ofer Harel
- College of Liberal Arts and Sciences, Department of Statistics, University of Connecticut, Storrs, CT
| | | | - Foteini Mourkioti
- Department of Orthopaedic Surgery, University of Connecticut, Storrs, CT .,Cardiovascular Institute, University of Connecticut, Storrs, CT.,Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
22
|
Fatkin D, Santiago CF, Huttner IG, Lubitz SA, Ellinor PT. Genetics of Atrial Fibrillation: State of the Art in 2017. Heart Lung Circ 2017; 26:894-901. [DOI: 10.1016/j.hlc.2017.04.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/18/2017] [Indexed: 12/14/2022]
|
23
|
Feiglin A, Allen BK, Kohane IS, Kong SW. Comprehensive Analysis of Tissue-wide Gene Expression and Phenotype Data Reveals Tissues Affected in Rare Genetic Disorders. Cell Syst 2017; 5:140-148.e2. [PMID: 28822752 PMCID: PMC5928498 DOI: 10.1016/j.cels.2017.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/21/2017] [Accepted: 06/29/2017] [Indexed: 01/23/2023]
Abstract
Linking putatively pathogenic variants to the tissues they affect is necessary for determining the correct diagnostic workup and therapeutic regime in undiagnosed patients. Here, we explored how gene expression across healthy tissues can be used to infer this link. We integrated 6,665 tissue-wide transcriptomes with genetic disorder knowledge bases covering 3,397 diseases. Receiver-operating characteristics (ROC) analysis using expression levels in each tissue and across tissues indicated significant but modest associations between elevated expression and phenotype for most tissues (maximum area under ROC curve = 0.69). At extreme elevation, associations were marked. Upregulation of disease genes in affected tissues was pronounced for genes associated with autosomal dominant over recessive disorders. Pathways enriched for genes expressed and associated with phenotypes highlighted tissue functionality, including lipid metabolism in spleen and DNA repair in adipose tissue. These results suggest features useful for evaluating the likelihood of particular tissue manifestations in genetic disorders. The web address of an interactive platform integrating these data is provided.
Collapse
Affiliation(s)
- Ariel Feiglin
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Bryce K Allen
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Isaac S Kohane
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA.
| | - Sek Won Kong
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
24
|
Colman MA, Ni H, Liang B, Schmitt N, Zhang H. In silico assessment of genetic variation in KCNA5 reveals multiple mechanisms of human atrial arrhythmogenesis. PLoS Comput Biol 2017. [PMID: 28622331 PMCID: PMC5493429 DOI: 10.1371/journal.pcbi.1005587] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A recent experimental study investigating patients with lone atrial fibrillation identified six novel mutations in the KCNA5 gene. The mutants exhibited both gain- and loss-of-function of the atrial specific ultra-rapid delayed rectifier K+ current, IKur. The aim of this study is to elucidate and quantify the functional impact of these KCNA5 mutations on atrial electrical activity. A multi-scale model of the human atria was updated to incorporate detailed experimental data on IKur from both wild-type and mutants. The effects of the mutations on human atrial action potential and rate dependence were investigated at the cellular level. In tissue, we assessed the effects of the mutations on the vulnerability to unidirectional conduction patterns and dynamics of re-entrant excitation waves. Gain-of-function mutations shortened the action potential duration in single cells, and stabilised and accelerated re-entrant excitation in tissue. Loss-of-function mutations had heterogeneous effects on action potential duration and promoted early-after-depolarisations following beta-adrenergic stimulation. In the tissue model, loss-of-function mutations facilitated breakdown of excitation waves at more physiological excitation rates than the wild-type, and the generation of early-after-depolarisations promoted unidirectional patterns of excitation. Gain- and loss-of-function IKur mutations produced multiple mechanisms of atrial arrhythmogenesis, with significant differences between the two groups of mutations. This study provides new insights into understanding the mechanisms by which mutant IKur contributes to atrial arrhythmias. In addition, as IKur is an atrial-specific channel and a number of IKur-selective blockers have been developed as anti-AF agents, this study also helps to understand some contradictory results on both pro- and anti-arrhythmic effects of blocking IKur. In a recent study, six mutations resulting in either gain-of-function or loss-of-function in the ultra-rapid delayed rectifier potassium current IKur, were identified to be associated with atrial fibrillation (AF). However, the causative link between the mutant IKur (either gain- or loss-of-function) and AF genesis, especially the difference and similarity between the two mutant groups, has not been elucidated. In our study, we used multiscale computational models to investigate the mechanism of arrhythmogenesis mediated by the two groups of mutations. The results suggest that the gain-of-function mutations shortened atrial action potential duration, stabilised and accelerated re-entrant excitation waves in tissue; the loss-of-function mutation promoted early-after-depolarisations following beta-adrenergic stimulation and thus wave breaks in tissue. We show these two groups of mutants carrying IKur produced multiple mechanisms of atrial arrhythmogenesis, with significant differences between the two groups. Our study provides new insights into understanding the mechanisms by which mutant IKur contributes to atrial arrhythmias. In addition, as IKur is an atrial-specific channel and a number of IKur-selective blockers have been developed as anti-AF agents, this study also helps to understand some contradictory results on both pro- and anti-arrhythmic effects of blocking IKur.
Collapse
Affiliation(s)
- Michael A. Colman
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Haibo Ni
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Bo Liang
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicole Schmitt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
- * E-mail:
| |
Collapse
|
25
|
Duan Q, McMahon S, Anand P, Shah H, Thomas S, Salunga HT, Huang Y, Zhang R, Sahadevan A, Lemieux ME, Brown JD, Srivastava D, Bradner JE, McKinsey TA, Haldar SM. BET bromodomain inhibition suppresses innate inflammatory and profibrotic transcriptional networks in heart failure. Sci Transl Med 2017; 9:eaah5084. [PMID: 28515341 PMCID: PMC5544253 DOI: 10.1126/scitranslmed.aah5084] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 01/18/2017] [Accepted: 03/30/2017] [Indexed: 12/13/2022]
Abstract
Despite current standard of care, the average 5-year mortality after an initial diagnosis of heart failure (HF) is about 40%, reflecting an urgent need for new therapeutic approaches. Previous studies demonstrated that the epigenetic reader protein bromodomain-containing protein 4 (BRD4), an emerging therapeutic target in cancer, functions as a critical coactivator of pathologic gene transactivation during cardiomyocyte hypertrophy. However, the therapeutic relevance of these findings to human disease remained unknown. We demonstrate that treatment with the BET bromodomain inhibitor JQ1 has therapeutic effects during severe, preestablished HF from prolonged pressure overload, as well as after a massive anterior myocardial infarction in mice. Furthermore, JQ1 potently blocks agonist-induced hypertrophy in human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). Integrated transcriptomic analyses across animal models and human iPSC-CMs reveal that BET inhibition preferentially blocks transactivation of a common pathologic gene regulatory program that is robustly enriched for NFκB and TGF-β signaling networks, typified by innate inflammatory and profibrotic myocardial genes. As predicted by these specific transcriptional mechanisms, we found that JQ1 does not suppress physiological cardiac hypertrophy in a mouse swimming model. These findings establish that pharmacologically targeting innate inflammatory and profibrotic myocardial signaling networks at the level of chromatin is effective in animal models and human cardiomyocytes, providing the critical rationale for further development of BET inhibitors and other epigenomic medicines for HF.
Collapse
Affiliation(s)
- Qiming Duan
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Sarah McMahon
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Priti Anand
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Hirsh Shah
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Sean Thomas
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Hazel T Salunga
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Yu Huang
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Rongli Zhang
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Aarathi Sahadevan
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | | | - Jonathan D Brown
- Division of Cardiovascular Medicine, Department of Medicine, and Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
- Division of Cardiology, Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco, CA 94158, USA
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Timothy A McKinsey
- Division of Cardiology, Department of Medicine, Consortium for Fibrosis Research & Translation, University of Colorado, Anschutz Medical Campus, Denver, CO 80204, USA
| | - Saptarsi M Haldar
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA.
- Division of Cardiology, Department of Medicine, and Cardiovascular Research Institute, University of California San Francisco School of Medicine, San Francisco, CA 94158, USA
| |
Collapse
|
26
|
|
27
|
Dossat AM, Sanchez-Gonzalez MA, Koutnik AP, Leitner S, Ruiz EL, Griffin B, Rosenberg JT, Grant SC, Fincham FD, Pinto JR, Kabbaj M. Pathogenesis of depression- and anxiety-like behavior in an animal model of hypertrophic cardiomyopathy. FASEB J 2017; 31:2492-2506. [PMID: 28235781 DOI: 10.1096/fj.201600955rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 02/07/2017] [Indexed: 01/04/2023]
Abstract
Cardiovascular dysfunction is highly comorbid with mood disorders, such as anxiety and depression. However, the mechanisms linking cardiovascular dysfunction with the core behavioral features of mood disorder remain poorly understood. In this study, we used mice bearing a knock-in sarcomeric mutation, which is exhibited in human hypertrophic cardiomyopathy (HCM), to investigate the influence of HCM over the development of anxiety and depression. We employed behavioral, MRI, and biochemical techniques in young (3-4 mo) and aged adult (7-8 mo) female mice to examine the effects of HCM on the development of anxiety- and depression-like behaviors. We focused on females because in both humans and rodents, they experience a 2-fold increase in mood disorder prevalence vs. males. Our results showed that young and aged HCM mice displayed echocardiographic characteristics of the heart disease condition, yet only aged HCM females displayed anxiety- and depression-like behaviors. Electrocardiographic parameters of sympathetic nervous system activation were increased in aged HCM females vs. controls and correlated with mood disorder-related symptoms. In addition, when compared with controls, aged HCM females exhibited adrenal gland hypertrophy, reduced volume in mood-related brain regions, and reduced hippocampal signaling proteins, such as brain-derived neurotrophic factor and its downstream targets vs. controls. In conclusion, prolonged systemic HCM stress can lead to development of mood disorders, possibly through inducing structural and functional brain changes, and thus, mood disorders in patients with heart disease should not be considered solely a psychologic or situational condition.-Dossat, A. M., Sanchez-Gonzalez, M. A., Koutnik, A. P., Leitner, S., Ruiz, E. L., Griffin, B., Rosenberg, J. T., Grant, S. C., Fincham, F. D., Pinto, J. R. Kabbaj, M. Pathogenesis of depression- and anxiety-like behavior in an animal model of hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Amanda M Dossat
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, USA
| | - Marcos A Sanchez-Gonzalez
- Division of Clinical and Translational Research, Larkin Community Hospital, South Miami, Florida, USA
| | - Andrew P Koutnik
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, USA
| | - Stefano Leitner
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, USA
| | - Edda L Ruiz
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, USA
| | - Brittany Griffin
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, USA
| | - Jens T Rosenberg
- The National High Magnetic Field Laboratory, Center for Interdisciplinary Magnetic Resonance, Florida State University, Tallahassee, Florida, USA; and
| | - Samuel C Grant
- The National High Magnetic Field Laboratory, Center for Interdisciplinary Magnetic Resonance, Florida State University, Tallahassee, Florida, USA; and
| | - Francis D Fincham
- Family Institute, Florida State University, Tallahassee, Florida, USA
| | - Jose R Pinto
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, USA;
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, USA;
| |
Collapse
|
28
|
Iyngkaran P, Thomas MC, Johnson R, French J, Ilton M, McDonald P, Hare DL, Fatkin D. Contextualizing Genetics for Regional Heart Failure Care. Curr Cardiol Rev 2016; 12:231-42. [PMID: 27280306 PMCID: PMC5011192 DOI: 10.2174/1573403x12666160606123103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/18/2015] [Accepted: 01/11/2016] [Indexed: 12/21/2022] Open
Abstract
Congestive heart failure (CHF) is a chronic and often devastating cardiovascular disorder with no cure. There has been much advancement in the last two decades that has seen improvements in morbidity and mortality. Clinicians have also noted variations in the responses to therapies. More detailed observations also point to clusters of diseases, phenotypic groupings, unusual severity and the rates at which CHF occurs. Medical genetics is playing an increasingly important role in answering some of these observations. This developing field in many respects provides more information than is currently clinically applicable. This includes making sense of the established single gene mutations or uncommon private mutations. In this thematic series which discusses the many factors that could be relevant for CHF care, once established treatments are available in the communities; this section addresses a contextual role for medical genetics.
Collapse
|
29
|
Cho KW, Lee J, Kim Y. Genetic Variations Leading to Familial Dilated Cardiomyopathy. Mol Cells 2016; 39:722-727. [PMID: 27802374 PMCID: PMC5104879 DOI: 10.14348/molcells.2016.0061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 10/21/2016] [Accepted: 10/28/2016] [Indexed: 11/27/2022] Open
Abstract
Cardiomyopathy is a major cause of death worldwide. Based on pathohistological abnormalities and clinical manifestation, cardiomyopathies are categorized into several groups: hypertrophic, dilated, restricted, arrhythmogenic right ventricular, and unclassified. Dilated cardiomyopathy, which is characterized by dilation of the left ventricle and systolic dysfunction, is the most severe and prevalent form of cardiomyopathy and usually requires heart transplantation. Its etiology remains unclear. Recent genetic studies of single gene mutations have provided significant insights into the complex processes of cardiac dysfunction. To date, over 40 genes have been demonstrated to contribute to dilated cardiomyopathy. With advances in genetic screening techniques, novel genes associated with this disease are continuously being identified. The respective gene products can be classified into several functional groups such as sarcomere proteins, structural proteins, ion channels, and nuclear envelope proteins. Nuclear envelope proteins are emerging as potential molecular targets in dilated cardiomyopathy. Because they are not directly associated with contractile force generation and transmission, the molecular pathways through which these proteins cause cardiac muscle disorder remain unclear. However, nuclear envelope proteins are involved in many essential cellular processes. Therefore, integrating apparently distinct cellular processes is of great interest in elucidating the etiology of dilated cardiomyopathy. In this mini review, we summarize the genetic factors associated with dilated cardiomyopathy and discuss their cellular functions.
Collapse
Affiliation(s)
- Kae Won Cho
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheon-an 31151,
Korea
| | - Jongsung Lee
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419,
Korea
| | - Youngjo Kim
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheon-an 31151,
Korea
| |
Collapse
|
30
|
Westfall MV. Contribution of Post-translational Phosphorylation to Sarcomere-Linked Cardiomyopathy Phenotypes. Front Physiol 2016; 7:407. [PMID: 27683560 PMCID: PMC5021686 DOI: 10.3389/fphys.2016.00407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 08/30/2016] [Indexed: 01/24/2023] Open
Abstract
Secondary shifts develop in post-translational phosphorylation of sarcomeric proteins in multiple animal models of inherited cardiomyopathy. These signaling alterations together with the primary mutation are predicted to contribute to the overall cardiac phenotype. As a result, identification and integration of post-translational myofilament signaling responses are identified as priorities for gaining insights into sarcomeric cardiomyopathies. However, significant questions remain about the nature and contribution of post-translational phosphorylation to structural remodeling and cardiac dysfunction in animal models and human patients. This perspective essay discusses specific goals for filling critical gaps about post-translational signaling in response to these inherited mutations, especially within sarcomeric proteins. The discussion focuses primarily on pre-clinical analysis of animal models and defines challenges and future directions in this field.
Collapse
|
31
|
Novel Biomarkers and Treatments of Cardiac Diseases. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1315627. [PMID: 26989677 PMCID: PMC4773528 DOI: 10.1155/2016/1315627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 12/24/2015] [Indexed: 12/01/2022]
|
32
|
|
33
|
Cardiac myosin binding protein C regulates postnatal myocyte cytokinesis. Proc Natl Acad Sci U S A 2015; 112:9046-51. [PMID: 26153423 DOI: 10.1073/pnas.1511004112] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Homozygous cardiac myosin binding protein C-deficient (Mybpc(t/t)) mice develop dramatic cardiac dilation shortly after birth; heart size increases almost twofold. We have investigated the mechanism of cardiac enlargement in these hearts. Throughout embryogenesis myocytes undergo cell division while maintaining the capacity to pump blood by rapidly disassembling and reforming myofibrillar components of the sarcomere throughout cell cycle progression. Shortly after birth, myocyte cell division ceases. Cardiac MYBPC is a thick filament protein that regulates sarcomere organization and rigidity. We demonstrate that many Mybpc(t/t) myocytes undergo an additional round of cell division within 10 d postbirth compared with their wild-type counterparts, leading to increased numbers of mononuclear myocytes. Short-hairpin RNA knockdown of Mybpc3 mRNA in wild-type mice similarly extended the postnatal window of myocyte proliferation. However, adult Mybpc(t/t) myocytes are unable to fully regenerate the myocardium after injury. MYBPC has unexpected inhibitory functions during postnatal myocyte cytokinesis and cell cycle progression. We suggest that human patients with homozygous MYBPC3-null mutations develop dilated cardiomyopathy, coupled with myocyte hyperplasia (increased cell number), as observed in Mybpc(t/t) mice. Human patients, with heterozygous truncating MYBPC3 mutations, like mice with similar mutations, have hypertrophic cardiomyopathy. However, the mechanism leading to hypertrophic cardiomyopathy in heterozygous MYBPC3(+/-) individuals is myocyte hypertrophy (increased cell size), whereas the mechanism leading to cardiac dilation in homozygous Mybpc3(-/-) mice is primarily myocyte hyperplasia.
Collapse
|
34
|
Ono S. Regulation of structure and function of sarcomeric actin filaments in striated muscle of the nematode Caenorhabditis elegans. Anat Rec (Hoboken) 2015; 297:1548-59. [PMID: 25125169 DOI: 10.1002/ar.22965] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 02/26/2014] [Accepted: 02/26/2014] [Indexed: 02/01/2023]
Abstract
The nematode Caenorhabditis elegans has been used as a valuable system to study structure and function of striated muscle. The body wall muscle of C. elegans is obliquely striated muscle with highly organized sarcomeric assembly of actin, myosin, and other accessory proteins. Genetic and molecular biological studies in C. elegans have identified a number of genes encoding structural and regulatory components for the muscle contractile apparatuses, and many of them have counterparts in mammalian cardiac and skeletal muscles or striated muscles in other invertebrates. Applicability of genetics, cell biology, and biochemistry has made C. elegans an excellent system to study mechanisms of muscle contractility and assembly and maintenance of myofibrils. This review focuses on the regulatory mechanisms of structure and function of actin filaments in the C. elegans body wall muscle. Sarcomeric actin filaments in C. elegans muscle are associated with the troponin-tropomyosin system that regulates the actin-myosin interaction. Proteins that bind to the side and ends of actin filaments support ordered assembly of thin filaments. Furthermore, regulators of actin dynamics play important roles in initial assembly, growth, and maintenance of sarcomeres. The knowledge acquired in C. elegans can serve as bases to understand the basic mechanisms of muscle structure and function.
Collapse
Affiliation(s)
- Shoichiro Ono
- Department of Pathology, Emory University, Atlanta, Georgia; Department of Cell Biology, Emory University, Atlanta, Georgia
| |
Collapse
|
35
|
Barefield D, Kumar M, Gorham J, Seidman JG, Seidman CE, de Tombe PP, Sadayappan S. Haploinsufficiency of MYBPC3 exacerbates the development of hypertrophic cardiomyopathy in heterozygous mice. J Mol Cell Cardiol 2015; 79:234-43. [PMID: 25463273 PMCID: PMC4642280 DOI: 10.1016/j.yjmcc.2014.11.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/10/2014] [Accepted: 11/17/2014] [Indexed: 01/01/2023]
Abstract
Mutations in MYBPC3, the gene encoding cardiac myosin binding protein-C (cMyBP-C), account for ~40% of hypertrophic cardiomyopathy (HCM) cases. Most pathological MYBPC3 mutations encode truncated protein products not found in tissue. Reduced protein levels occur in symptomatic heterozygous human HCM carriers, suggesting haploinsufficiency as an underlying mechanism of disease. However, we do not know if reduced cMyBP-C content results from, or initiates the development of HCM. In previous studies, heterozygous (HET) mice with a MYBPC3 C'-terminal truncation mutation and normal cMyBP-C levels show altered contractile function prior to any overt hypertrophy. Therefore, this study aimed to test whether haploinsufficiency occurs, with decreased cMyBP-C content, following cardiac stress and whether the functional impairment in HET MYBPC3 hearts leads to worsened disease progression. To address these questions, transverse aortic constriction (TAC) was performed on three-month-old wild-type (WT) and HET MYBPC3-truncation mutant mice and then characterized at 4 and 12weeks post-surgery. HET-TAC mice showed increased hypertrophy and reduced ejection fraction compared to WT-TAC mice. At 4weeks post-surgery, HET myofilaments showed significantly reduced cMyBP-C content. Functionally, HET-TAC cardiomyocytes showed impaired force generation, higher Ca(2+) sensitivity, and blunted length-dependent increase in force generation. RNA sequencing revealed several differentially regulated genes between HET and WT groups, including regulators of remodeling and hypertrophic response. Collectively, these results demonstrate that haploinsufficiency occurs in HET MYBPC3 mutant carriers following stress, causing, in turn, reduced cMyBP-C content and exacerbating the development of dysfunction at myofilament and whole-heart levels.
Collapse
Affiliation(s)
- David Barefield
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
| | - Mohit Kumar
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
| | - Joshua Gorham
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | | | - Pieter P de Tombe
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
| | - Sakthivel Sadayappan
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA.
| |
Collapse
|