1
|
Song Z, Thepsuwan P, Hur WS, Torres M, Wu SA, Wei X, Tushi NJ, Wei J, Ferraresso F, Paton AW, Paton JC, Zheng Z, Zhang K, Fang D, Kastrup CJ, Jaiman S, Flick MJ, Sun S. Regulation of hepatic inclusions and fibrinogen biogenesis by SEL1L-HRD1 ERAD. Nat Commun 2024; 15:9244. [PMID: 39455574 PMCID: PMC11512042 DOI: 10.1038/s41467-024-53639-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Impaired secretion of an essential blood coagulation factor fibrinogen leads to hepatic fibrinogen storage disease (HFSD), characterized by the presence of fibrinogen-positive inclusion bodies and hypofibrinogenemia. However, the molecular mechanisms underlying the biogenesis of fibrinogen in the endoplasmic reticulum (ER) remain unexplored. Here we uncover a key role of SEL1L-HRD1 complex of ER-associated degradation (ERAD) in the formation of aberrant inclusion bodies, and the biogenesis of nascent fibrinogen protein complex in hepatocytes. Acute or chronic deficiency of SEL1L-HRD1 ERAD in the hepatocytes leads to the formation of hepatocellular inclusion bodies. Proteomics studies followed by biochemical assays reveal fibrinogen as a major component of the inclusion bodies. Mechanistically, we show that the degradation of misfolded endogenous fibrinogen Aα, Bβ, and γ chains by SEL1L-HRD1 ERAD is indispensable for the formation of a functional fibrinogen complex in the ER. Providing clinical relevance of these findings, SEL1L-HRD1 ERAD indeed degrades and thereby attenuates the pathogenicity of two disease-causing fibrinogen γ mutants. Together, this study demonstrates an essential role of SEL1L-HRD1 ERAD in fibrinogen biogenesis and provides insight into the pathogenesis of protein-misfolding diseases.
Collapse
Affiliation(s)
- Zhenfeng Song
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Pattaraporn Thepsuwan
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Woosuk Steve Hur
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Mauricio Torres
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Shuangcheng Alivia Wu
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Xiaoqiong Wei
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Nusrat Jahan Tushi
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Juncheng Wei
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Cardiovascular Sciences and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Francesca Ferraresso
- Blood Research Institute, Versiti Blood Center of Wisconsin, Milwaukee, WI, 53226, USA
- Departments of Surgery, Biochemistry, Biomedical Engineering, and Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Adrienne W Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Ze Zheng
- Blood Research Institute, Versiti Blood Center of Wisconsin, Milwaukee, WI, 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Christian J Kastrup
- Blood Research Institute, Versiti Blood Center of Wisconsin, Milwaukee, WI, 53226, USA
- Departments of Surgery, Biochemistry, Biomedical Engineering, and Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Sunil Jaiman
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Matthew James Flick
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Shengyi Sun
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
2
|
Wang YJ, Seibert H, Ahn LY, Schaffer AE, Mu TW. Pharmacological chaperones restore proteostasis of epilepsy-associated GABA A receptor variants. Pharmacol Res 2024; 208:107356. [PMID: 39216838 PMCID: PMC11457296 DOI: 10.1016/j.phrs.2024.107356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Recent advances in genetic diagnosis identified variants in genes encoding GABAA receptors as causative for genetic epilepsy. Here, we selected eight disease-associated variants in the α1 subunit of GABAA receptors causing mild to severe clinical phenotypes and showed that they are loss of function, mainly by reducing the folding and surface trafficking of the α1 protein. Furthermore, we sought client protein-specific pharmacological chaperones to restore the function of pathogenic receptors. Applications of positive allosteric modulators, including Hispidulin and TP003, increase the functional surface expression of the α1 variants. Mechanism of action study demonstrated that they enhance the folding, assembly, and trafficking and reduce the degradation of GABAA variants without activating the unfolded protein response in HEK293T cells and human iPSC-derived neurons. Since these compounds cross the blood-brain barrier, such a pharmacological chaperoning strategy holds great promise to treat genetic epilepsy in a GABAA receptor-specific manner.
Collapse
Affiliation(s)
- Ya-Juan Wang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Hailey Seibert
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Lucie Y Ahn
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ashleigh E Schaffer
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ting-Wei Mu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
3
|
Wright MT, Timalsina B, Garcia Lopez V, Hermanson JN, Garcia S, Plate L. Time-resolved interactome profiling deconvolutes secretory protein quality control dynamics. Mol Syst Biol 2024; 20:1049-1075. [PMID: 39103653 PMCID: PMC11369088 DOI: 10.1038/s44320-024-00058-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
Many cellular processes are governed by protein-protein interactions that require tight spatial and temporal regulation. Accordingly, it is necessary to understand the dynamics of these interactions to fully comprehend and elucidate cellular processes and pathological disease states. To map de novo protein-protein interactions with time resolution at an organelle-wide scale, we developed a quantitative mass spectrometry method, time-resolved interactome profiling (TRIP). We apply TRIP to elucidate aberrant protein interaction dynamics that lead to the protein misfolding disease congenital hypothyroidism. We deconvolute altered temporal interactions of the thyroid hormone precursor thyroglobulin with pathways implicated in hypothyroidism pathophysiology, such as Hsp70-/90-assisted folding, disulfide/redox processing, and N-glycosylation. Functional siRNA screening identified VCP and TEX264 as key protein degradation components whose inhibition selectively rescues mutant prohormone secretion. Ultimately, our results provide novel insight into the temporal coordination of protein homeostasis, and our TRIP method should find broad applications in investigating protein-folding diseases and cellular processes.
Collapse
Affiliation(s)
- Madison T Wright
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37240, USA
| | - Bibek Timalsina
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37240, USA
| | - Valeria Garcia Lopez
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37240, USA
| | - Jake N Hermanson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37240, USA
| | - Sarah Garcia
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37240, USA
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37240, USA.
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37240, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
4
|
Sharninghausen R, Hwang J, Dennison DD, Baldridge RD. Identification of ERAD-dependent degrons for the endoplasmic reticulum lumen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.21.546000. [PMID: 39149235 PMCID: PMC11326120 DOI: 10.1101/2023.06.21.546000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Degrons are minimal protein features that are sufficient to target proteins for degradation. In most cases, degrons allow recognition by components of the cytosolic ubiquitin proteasome system. Currently, all of the identified degrons only function within the cytosol. Using Saccharomyces cerevisiae, we identified the first short linear sequences that function as degrons from the endoplasmic reticulum (ER) lumen. We show that when these degrons are transferred to proteins, they facilitate proteasomal degradation through the ERAD system. These degrons enable degradation of both luminal and integral membrane ER proteins, expanding the types of proteins that can be targeted for degradation in budding yeast and mammalian tissue culture. This discovery provides a framework to target proteins for degradation from the previously unreachable ER lumen and builds toward therapeutic approaches that exploit the highly-conserved ERAD system.
Collapse
Affiliation(s)
- Rachel Sharninghausen
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Jiwon Hwang
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Devon D. Dennison
- Cellular and Molecular Biology Program, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Ryan D. Baldridge
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Hendershot LM, Buck TM, Brodsky JL. The Essential Functions of Molecular Chaperones and Folding Enzymes in Maintaining Endoplasmic Reticulum Homeostasis. J Mol Biol 2024; 436:168418. [PMID: 38143019 DOI: 10.1016/j.jmb.2023.168418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
It has been estimated that up to one-third of the proteins encoded by the human genome enter the endoplasmic reticulum (ER) as extended polypeptide chains where they undergo covalent modifications, fold into their native structures, and assemble into oligomeric protein complexes. The fidelity of these processes is critical to support organellar, cellular, and organismal health, and is perhaps best underscored by the growing number of disease-causing mutations that reduce the fidelity of protein biogenesis in the ER. To meet demands encountered by the diverse protein clientele that mature in the ER, this organelle is populated with a cadre of molecular chaperones that prevent protein aggregation, facilitate protein disulfide isomerization, and lower the activation energy barrier of cis-trans prolyl isomerization. Components of the lectin (glycan-binding) chaperone system also reside within the ER and play numerous roles during protein biogenesis. In addition, the ER houses multiple homologs of select chaperones that can recognize and act upon diverse peptide signatures. Moreover, redundancy helps ensure that folding-compromised substrates are unable to overwhelm essential ER-resident chaperones and enzymes. In contrast, the ER in higher eukaryotic cells possesses a single member of the Hsp70, Hsp90, and Hsp110 chaperone families, even though several homologs of these molecules reside in the cytoplasm. In this review, we discuss specific functions of the many factors that maintain ER quality control, highlight some of their interactions, and describe the vulnerabilities that arise from the absence of multiple members of some chaperone families.
Collapse
Affiliation(s)
- Linda M Hendershot
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States.
| | - Teresa M Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| |
Collapse
|
6
|
Çiftçi YC, Yurtsever Y, Akgül B. Long non-coding RNA-mediated modulation of endoplasmic reticulum stress under pathological conditions. J Cell Mol Med 2024; 28:e18561. [PMID: 39072992 DOI: 10.1111/jcmm.18561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Endoplasmic reticulum (ER) stress, which ensues from an overwhelming protein folding capacity, activates the unfolded protein response (UPR) in an effort to restore cellular homeostasis. As ER stress is associated with numerous diseases, it is highly important to delineate the molecular mechanisms governing the ER stress to gain insight into the disease pathology. Long non-coding RNAs, transcripts with a length of over 200 nucleotides that do not code for proteins, interact with proteins and nucleic acids, fine-tuning the UPR to restore ER homeostasis via various modes of actions. Dysregulation of specific lncRNAs is implicated in the progression of ER stress-related diseases, presenting these molecules as promising therapeutic targets. The comprehensive analysis underscores the importance of understanding the nuanced interplay between lncRNAs and ER stress for insights into disease mechanisms. Overall, this review consolidates current knowledge, identifies research gaps and offers a roadmap for future investigations into the multifaceted roles of lncRNAs in ER stress and associated diseases to shed light on their pivotal roles in the pathogenesis of related diseases.
Collapse
Affiliation(s)
- Yusuf Cem Çiftçi
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Yiğit Yurtsever
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Bünyamin Akgül
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| |
Collapse
|
7
|
Vitali DG, Fonseca D, Carvalho P. The derlin Dfm1 couples retrotranslocation of a folded protein domain to its proteasomal degradation. J Cell Biol 2024; 223:e202308074. [PMID: 38448163 PMCID: PMC11066878 DOI: 10.1083/jcb.202308074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/05/2023] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
Endoplasmic reticulum (ER) proteins are degraded by proteasomes in the cytosol through ER-associated degradation (ERAD). This process involves the retrotranslocation of substrates across the ER membrane, their ubiquitination, and membrane extraction by the Cdc48/Npl4/Ufd1 ATPase complex prior to delivery to proteasomes for degradation. How the presence of a folded luminal domain affects substrate retrotranslocation and this event is coordinated with subsequent ERAD steps remains unknown. Here, using a model substrate with a folded luminal domain, we showed that Cdc48 ATPase activity is sufficient to drive substrate retrotranslocation independently of ERAD membrane components. However, the complete degradation of the folded luminal domain required substrate-tight coupling of retrotranslocation and proteasomal degradation, which was ensured by the derlin Dfm1. Mutations in Dfm1 intramembrane rhomboid-like or cytosolic Cdc48-binding regions resulted in partial degradation of the substrate with accumulation of its folded domain. Our study revealed Dfm1 as a critical regulator of Cdc48-driven retrotranslocation and highlights the importance of coordinating substrate retrotranslocation and degradation during ERAD.
Collapse
Affiliation(s)
- Daniela G. Vitali
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Daniel Fonseca
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Afjadi MN, Dabirmanesh B, Uversky VN. Therapeutic approaches in proteinopathies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:341-388. [PMID: 38811085 DOI: 10.1016/bs.pmbts.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
A family of maladies known as amyloid disorders, proteinopathy, or amyloidosis, are characterized by the accumulation of abnormal protein aggregates containing cross-β-sheet amyloid fibrils in many organs and tissues. Often, proteins that have been improperly formed or folded make up these fibrils. Nowadays, most treatments for amyloid illness focus on managing symptoms rather than curing or preventing the underlying disease process. However, recent advances in our understanding of the biology of amyloid diseases have led to the development of innovative therapies that target the emergence and accumulation of amyloid fibrils. Examples of these treatments include the use of small compounds, monoclonal antibodies, gene therapy, and others. In the end, even if the majority of therapies for amyloid diseases are symptomatic, greater research into the biology behind these disorders is identifying new targets for potential therapy and paving the way for the development of more effective treatments in the future.
Collapse
Affiliation(s)
- Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Vladimir N Uversky
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Pushchino, Moscow, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
9
|
Kok M, Hartnett-Scott K, Happe CL, MacDonald ML, Aizenman E, Brodsky JL. The expression system influences stability, maturation efficiency, and oligomeric properties of the potassium-chloride co-transporter KCC2. Neurochem Int 2024; 174:105695. [PMID: 38373478 PMCID: PMC10923169 DOI: 10.1016/j.neuint.2024.105695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024]
Abstract
The neuron-specific K+/Cl- co-transporter 2, KCC2, which is critical for brain development, regulates γ-aminobutyric acid-dependent inhibitory neurotransmission. Consistent with its function, mutations in KCC2 are linked to neurodevelopmental disorders, including epilepsy, schizophrenia, and autism. KCC2 possesses 12 transmembrane spans and forms an intertwined dimer. Based on its complex architecture and function, reduced cell surface expression and/or activity have been reported when select disease-associated mutations are present in the gene encoding the protein, SLC12A5. These data suggest that KCC2 might be inherently unstable, as seen for other complex polytopic ion channels, thus making it susceptible to cellular quality control pathways that degrade misfolded proteins. To test these hypotheses, we examined KCC2 stability and/or maturation in five model systems: yeast, HEK293 cells, primary rat neurons, and rat and human brain synaptosomes. Although studies in yeast revealed that KCC2 is selected for endoplasmic reticulum-associated degradation (ERAD), experiments in HEK293 cells supported a more subtle role for ERAD in maintaining steady-state levels of KCC2. Nevertheless, this system allowed for an analysis of KCC2 glycosylation in the ER and Golgi, which serves as a read-out for transport through the secretory pathway. In turn, KCC2 was remarkably stable in primary rat neurons, suggesting that KCC2 folds efficiently in more native systems. Consistent with these data, the mature glycosylated form of KCC2 was abundant in primary rat neurons as well as in rat and human brain. Together, this work details the first insights into the influence that the cellular and membrane environments have on several fundamental KCC2 properties, acknowledges the advantages and disadvantages of each system, and helps set the stage for future experiments to assess KCC2 in a normal or disease setting.
Collapse
Affiliation(s)
- Morgan Kok
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Karen Hartnett-Scott
- Department of Neurobiology and the Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cassandra L Happe
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Matthew L MacDonald
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Elias Aizenman
- Department of Neurobiology and the Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Naeimzadeh Y, Tajbakhsh A, Fallahi J. Understanding the prion-like behavior of mutant p53 proteins in triple-negative breast cancer pathogenesis: The current therapeutic strategies and future directions. Heliyon 2024; 10:e26260. [PMID: 38390040 PMCID: PMC10881377 DOI: 10.1016/j.heliyon.2024.e26260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/20/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Breast cancer (BC) is viewed as a significant public health issue and is the primary cause of cancer-related deaths among women worldwide. Triple-negative breast cancer (TNBC) is a particularly aggressive subtype that predominantly affects young premenopausal women. The tumor suppressor p53 playsa vital role in the cellular response to DNA damage, and its loss or mutations are commonly present in many cancers, including BC. Recent evidence suggests that mutant p53 proteins can aggregate and form prion-like structures, which may contribute to the pathogenesis of different types of malignancies, such as BC. This review provides an overview of BC molecular subtypes, the epidemiology of TNBC, and the role of p53 in BC development. We also discuss the potential implications of prion-like aggregation in BC and highlight future research directions. Moreover, a comprehensive analysis of the current therapeutic approaches targeting p53 aggregates in BC treatment is presented. Strategies including small molecules, chaperone inhibitors, immunotherapy, CRISPR-Cas9, and siRNA are discussed, along with their potential benefits and drawbacks. The use of these approaches to inhibit p53 aggregation and degradation represents a promising target for cancer therapy. Future investigations into the efficacy of these approaches against various p53 mutations or binding to non-p53 proteins should be conducted to develop more effective and personalized therapies for BC treatment.
Collapse
Affiliation(s)
- Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran
| |
Collapse
|
11
|
Ruf M, Cunningham S, Wandersee A, Brox R, Achenbach S, Strobel J, Hackstein H, Schneider S. SERPINC1 c.1247dupC: a novel SERPINC1 gene mutation associated with familial thrombosis results in a secretion defect and quantitative antithrombin deficiency. Thromb J 2024; 22:19. [PMID: 38347553 PMCID: PMC10860291 DOI: 10.1186/s12959-024-00589-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Antithrombin (AT) is an important anticoagulant in hemostasis. We describe here the characterization of a novel AT mutation associated with clinically relevant thrombosis. A pair of sisters with confirmed type I AT protein deficiency was genetically analyzed on suspicion of an inherited SERPINC1 mutation. A frameshift mutation, c.1247dupC, was identified and the effect of this mutation was examined on the cellular and molecular level. METHODS Plasmids for the expression of wild-type (WT) and mutated SERPINC1 coding sequence (CDS) fused to green fluorescent protein (GFP) or hemagglutinin (HA) tag were transfected into HEK293T cells. Subcellular localization and secretion of the respective fusion proteins were analyzed by confocal laser scanning microscopy and Western blot. RESULTS The c.1247dupC mutation results in a frameshift in the CDS of the SERPINC1 gene and a subsequently altered amino acid sequence (p.Ser417LysfsTer48). This alteration affects the C-terminus of the AT antigen and results in impaired secretion as confirmed by GFP- and HA-tagged mutant AT analyzed in HEK293T cells. CONCLUSION The p.Ser417LysfsTer48 mutation leads to impaired secretion, thus resulting in a quantitative AT deficiency. This is in line with the type I AT deficiency observed in the patients.
Collapse
Affiliation(s)
- Maximilian Ruf
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Sarah Cunningham
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Alexandra Wandersee
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Regine Brox
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Susanne Achenbach
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Julian Strobel
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Holger Hackstein
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Sabine Schneider
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Krankenhausstr. 12, 91054, Erlangen, Germany.
| |
Collapse
|
12
|
Zhang PP, Benske TM, Ahn LY, Schaffer AE, Paton JC, Paton AW, Mu TW, Wang YJ. Adapting the endoplasmic reticulum proteostasis rescues epilepsy-associated NMDA receptor variants. Acta Pharmacol Sin 2024; 45:282-297. [PMID: 37803141 PMCID: PMC10789767 DOI: 10.1038/s41401-023-01172-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/17/2023] [Indexed: 10/08/2023] Open
Abstract
The GRIN genes encoding N-methyl-D-aspartate receptor (NMDAR) subunits are remarkably intolerant to variation. Many pathogenic NMDAR variants result in their protein misfolding, inefficient assembly, reduced surface expression, and impaired function on neuronal membrane, causing neurological disorders including epilepsy and intellectual disability. Here, we investigated the proteostasis maintenance of NMDARs containing epilepsy-associated variations in the GluN2A subunit, including M705V and A727T. In the transfected HEK293T cells, we showed that the two variants were targeted to the proteasome for degradation and had reduced functional surface expression. We demonstrated that the application of BIX, a known small molecule activator of an HSP70 family chaperone BiP (binding immunoglobulin protein) in the endoplasmic reticulum (ER), dose-dependently enhanced the functional surface expression of the M705V and A727T variants in HEK293T cells. Moreover, BIX (10 μM) increased the surface protein levels of the M705V variant in human iPSC-derived neurons. We revealed that BIX promoted folding, inhibited degradation, and enhanced anterograde trafficking of the M705V variant by modest activation of the IRE1 pathway of the unfolded protein response. Our results suggest that adapting the ER proteostasis network restores the folding, trafficking, and function of pathogenic NMDAR variants, representing a potential treatment for neurological disorders resulting from NMDAR dysfunction.
Collapse
Affiliation(s)
- Pei-Pei Zhang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Taylor M Benske
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Lucie Y Ahn
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Ashleigh E Schaffer
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Adrienne W Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Ting-Wei Mu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Ya-Juan Wang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
13
|
Porter A, Vorndran HE, Marciszyn A, Mutchler SM, Subramanya AR, Kleyman TR, Hendershot LM, Brodsky JL, Buck TM. Excess dietary sodium partially restores salt and water homeostasis caused by loss of the endoplasmic reticulum molecular chaperone, GRP170, in the mouse nephron. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.13.575426. [PMID: 38260467 PMCID: PMC10802592 DOI: 10.1101/2024.01.13.575426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The maintenance of fluid and electrolyte homeostasis by the kidney requires proper folding and trafficking of ion channels and transporters in kidney epithelia. Each of these processes requires a specific subset of a diverse class of proteins termed molecular chaperones. One such chaperone is GRP170, which is an Hsp70-like, endoplasmic reticulum (ER)-localized chaperone that plays roles in protein quality control and protein folding in the ER. We previously determined that loss of GRP170 in the mouse nephron leads to hypovolemia, electrolyte imbalance, and rapid weight loss. In addition, GRP170-deficient mice develop an AKI-like phenotype, typified by tubular injury, elevation of clinical kidney injury markers, and induction of the unfolded protein response (UPR). By using an inducible GRP170 knockout cellular model, we confirmed that GRP170 depletion induces the UPR, triggers an apoptotic response, and disrupts protein homeostasis. Based on these data, we hypothesized that UPR induction underlies hyponatremia and volume depletion in rodents, but that these and other phenotypes might be rectified by supplementation with high salt. To test this hypothesis, control and GRP170 tubule-specific knockout mice were provided with a diet containing 8% sodium chloride. We discovered that sodium supplementation improved electrolyte imbalance and reduced clinical kidney injury markers, but was unable to restore weight or tubule integrity. These results are consistent with UPR induction contributing to the kidney injury phenotype in the nephron-specific GR170 knockout model, and that the role of GRP170 in kidney epithelia is essential to both maintain electrolyte balance and cellular protein homeostasis.
Collapse
Affiliation(s)
- Aidan Porter
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
- Division of Pediatric Nephrology, University of Pittsburgh, Pittsburgh, PA
| | - Hannah E. Vorndran
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Allison Marciszyn
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Stephanie M. Mutchler
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Arohan R. Subramanya
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA
| | - Thomas R. Kleyman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA
| | - Linda M. Hendershot
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 30105
| | - Jeffrey L. Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Teresa M. Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
14
|
Daskivich GJ, Brodsky JL. The generation of detergent-insoluble clipped fragments from an ERAD substrate in mammalian cells. Sci Rep 2023; 13:21508. [PMID: 38057493 PMCID: PMC10700608 DOI: 10.1038/s41598-023-48769-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
Proteostasis ensures the proper synthesis, folding, and trafficking of proteins and is required for cellular and organellar homeostasis. This network also oversees protein quality control within the cell and prevents accumulation of aberrant proteins, which can lead to cellular dysfunction and disease. For example, protein aggregates irreversibly disrupt proteostasis and can exert gain-of-function toxic effects. Although this process has been examined in detail for cytosolic proteins, how endoplasmic reticulum (ER)-tethered, aggregation-prone proteins are handled is ill-defined. To determine how a membrane protein with a cytoplasmic aggregation-prone domain is routed for ER-associated degradation (ERAD), we analyzed a new model substrate, TM-Ubc9ts. In yeast, we previously showed that TM-Ubc9ts ERAD requires Hsp104, which is absent in higher cells. In transient and stable HEK293 cells, we now report that TM-Ubc9ts degradation is largely proteasome-dependent, especially at elevated temperatures. In contrast to yeast, clipped TM-Ubc9ts polypeptides, which are stabilized upon proteasome inhibition, accumulate and are insoluble at elevated temperatures. TM-Ubc9ts cleavage is independent of the intramembrane protease RHBDL4, which clips other classes of ERAD substrates. These studies highlight an unappreciated mechanism underlying the degradation of aggregation-prone substrates in the ER and invite further work on other proteases that contribute to ERAD.
Collapse
Affiliation(s)
- Grant J Daskivich
- A320 Langley Hall, Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Jeffrey L Brodsky
- A320 Langley Hall, Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
15
|
Cheng Q, Hu X, Zhang X, Yang D, Zhao G, Sun L, Jiang M, Yang L, Cai J, Wang B, Zhang M, Han F, Li Y, Nie H. N-glycosylation at N57/100/110 affects CD44s localization, function and stability in hepatocellular carcinoma. Eur J Cell Biol 2023; 102:151360. [PMID: 37703748 DOI: 10.1016/j.ejcb.2023.151360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/23/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
The glycosylation levels of proteins in cancer cells are closely related to cancer invasion and migration. CD44 is a transmembrane glycoprotein that is significantly overexpressed in a variety of tumor cells and has been proven to promote the migration and motility of cancer cells, but the effect of its N-glycosylation modification on CD44 protein function in tumors is less studied. Here, we investigated the effect of six N-glycan chains (N25/57/100/110/120/255) on CD44s localization, function and stability in hepatocarcinoma cells. When the six sites were mutated, we found that CD44s lost its membrane localization in Huh7 and MHCC-97H cells. On this basis, we identified three glycosylation sites on CD44s (N57, N100 and N110) that played key roles in intracellular localization. When N57, N100 and N110 were mutated together, CD44 localized to the cytoplasm, while another three-site mutant (N25/N120/N255) was still anchored to the membrane. In addition, the ability of CD44-N57Q/N100Q/N110Q to promote the metastasis and invasion of Huh7 and 97H cells was weakened compared with that of CD44-N25Q/N120Q/N255Q. Furthermore, CD44-N57Q/N100Q/N110Q accumulated abnormally in the ER, and a high level of the ER stress (ERS) marker BiP was detected at the same time compared with wild-type CD44. When the lysosome inhibitor CQ was added, the content of mutant protein that triggered ERS significantly increased, which indicated that the degradation mode of CD44-N57Q/N100Q/N110Q after ERS was mainly through the lysosomal pathway (ERLAD). The results revealed that the N-glycosylation sites N57, N100 and N110 mutated on CD44s affected its function and degraded it by lysosomes after triggering ERS. These findings provide data for new studies on ER-related degradation, further promote the study of the glycan chain function of CD44 and furnish new ideas for the treatment of liver cancer metastasis.
Collapse
Affiliation(s)
- Qixiang Cheng
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Xibo Hu
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Xiaoqing Zhang
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China; Hebei Normal University of Science & Technology, Qinhuangdao, Hebei 066004, China
| | - Depeng Yang
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Guiping Zhao
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Liping Sun
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Meiyi Jiang
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Lijun Yang
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Jialing Cai
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Bing Wang
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Mengmeng Zhang
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Fang Han
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Yu Li
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| | - Huan Nie
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
16
|
Nguyen NH, Sarangi S, McChesney EM, Sheng S, Durrant JD, Porter AW, Kleyman TR, Pitluk ZW, Brodsky JL. Genome mining yields putative disease-associated ROMK variants with distinct defects. PLoS Genet 2023; 19:e1011051. [PMID: 37956218 PMCID: PMC10695394 DOI: 10.1371/journal.pgen.1011051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/04/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023] Open
Abstract
Bartter syndrome is a group of rare genetic disorders that compromise kidney function by impairing electrolyte reabsorption. Left untreated, the resulting hyponatremia, hypokalemia, and dehydration can be fatal, and there is currently no cure. Bartter syndrome type II specifically arises from mutations in KCNJ1, which encodes the renal outer medullary potassium channel, ROMK. Over 40 Bartter syndrome-associated mutations in KCNJ1 have been identified, yet their molecular defects are mostly uncharacterized. Nevertheless, a subset of disease-linked mutations compromise ROMK folding in the endoplasmic reticulum (ER), which in turn results in premature degradation via the ER associated degradation (ERAD) pathway. To identify uncharacterized human variants that might similarly lead to premature degradation and thus disease, we mined three genomic databases. First, phenotypic data in the UK Biobank were analyzed using a recently developed computational platform to identify individuals carrying KCNJ1 variants with clinical features consistent with Bartter syndrome type II. In parallel, we examined genomic data in both the NIH TOPMed and ClinVar databases with the aid of Rhapsody, a verified computational algorithm that predicts mutation pathogenicity and disease severity. Subsequent phenotypic studies using a yeast screen to assess ROMK function-and analyses of ROMK biogenesis in yeast and human cells-identified four previously uncharacterized mutations. Among these, one mutation uncovered from the two parallel approaches (G228E) destabilized ROMK and targeted it for ERAD, resulting in reduced cell surface expression. Another mutation (T300R) was ERAD-resistant, but defects in channel activity were apparent based on two-electrode voltage clamp measurements in X. laevis oocytes. Together, our results outline a new computational and experimental pipeline that can be applied to identify disease-associated alleles linked to a range of other potassium channels, and further our understanding of the ROMK structure-function relationship that may aid future therapeutic strategies to advance precision medicine.
Collapse
Affiliation(s)
- Nga H. Nguyen
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Srikant Sarangi
- Paradigm4, Inc., Waltham, Massachusetts, United States of America
| | - Erin M. McChesney
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Shaohu Sheng
- Renal-Electrolyte Division, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jacob D. Durrant
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Aidan W. Porter
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Thomas R. Kleyman
- Renal-Electrolyte Division, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | | | - Jeffrey L. Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
17
|
Mann MJ, Melendez-Suchi C, Sukhoplyasova M, Flory AR, Carson Irvine M, Iyer AR, Vorndran H, Guerriero CJ, Brodsky JL, Hendershot LM, Buck TM. Loss of Grp170 results in catastrophic disruption of endoplasmic reticulum functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563191. [PMID: 37905119 PMCID: PMC10614942 DOI: 10.1101/2023.10.19.563191] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
GRP170, a product of the Hyou1 gene, is required for mouse embryonic development, and its ablation in kidney nephrons leads to renal failure. Unlike most chaperones, GRP170 is the lone member of its chaperone family in the ER lumen. However, the cellular requirement for GRP170, which both binds non-native proteins and acts as nucleotide exchange factor for BiP, is poorly understood. Here, we report on the isolation of embryonic fibroblasts from mice in which LoxP sites were engineered in the Hyou1 loci ( Hyou1 LoxP/LoxP ). A doxycycline-regulated Cre recombinase was also stably introduced into these cells. Induction of Cre resulted in excision of Hyou1 and depletion of Grp170 protein, culminating in apoptotic cell death. As Grp170 levels fell we observed increased steady-state binding of BiP to a client, slowed degradation of a misfolded BiP substrate, and BiP accumulation in NP40-insoluble fractions. Consistent with disrupted BiP functions, we observed reactivation of BiP storage pools and induction of the unfolded protein response (UPR) in futile attempts to provide compensatory increases in ER chaperones and folding enzymes. Together, these results provide insights into the cellular consequences of controlled Grp170 loss and insights into mutations in the Hyou1 locus and human disease.
Collapse
|
18
|
Xue M, Lin Z, Zhang T, Cheng ZJ, Lin R, Guo B, Zeng Y, Hu F, Li F, Zheng P, Huang H, Li N, Zhao Q, Sun B, Tang X. ERC-BiP Functional Protein Pathway for Assessing Endoplasmic Reticulum Stress Induced by SARS-CoV-2 Replication after Cell Invasion. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2023; 2023:7253779. [PMID: 37849973 PMCID: PMC10578982 DOI: 10.1155/2023/7253779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/24/2023] [Accepted: 09/15/2023] [Indexed: 10/19/2023]
Abstract
Background SARS-CoV-2 induces apoptosis and amplifies the immune response by continuously stressing the endoplasmic reticulum (ER) after invading cells. This study aimed to establish a protein-metabolic pathway associated with ER dysfunction based on the invasion mechanism of SARS-CoV-2. Methods This study included 17 healthy people and 46 COVID-19 patients, including 38 mild patients and 8 severe patients. Proteomics and metabolomics were measured in the patient plasma collected at admission and one week after admission. The patients were further divided into the aggravation and remission groups based on disease progression within one week of admission. Results Cross-sectional comparison showed that endoplasmic reticulum molecular chaperone-binding immunoglobulin protein (ERC-BiP), angiotensinogen (AGT), ceramide acid (Cer), and C-reactive protein (CRP) levels were significantly increased in COVID-19 patients, while the sphingomyelin (SM) level was significantly decreased (P < 0.05). In addition, longitudinal comparative analysis found that the temporal fold changes of ERC-BiP, AGT, Cer, CRP, and SM were significantly different between the patients in the aggravation and remission groups (P < 0.05). ERC-BiP, AGT, and Cer levels were significantly increased in aggravation patients, while SM was significantly decreased (P < 0.05). Meanwhile, ERC-BiP was significantly correlated with AGT (r = 0.439; P < 0.001). Conclusions ERC-BiP can be used as a core index to reflect the degree of ER stress in COVID-19 patients, which is of great value for evaluating the functional state of cells. A functional pathway for AGT/ERC-BiP/glycolysis can directly assess the activation of unfolded protein reactions. The ERC-BiP pathway is closer to the intracellular replication pathway of SARS-CoV-2 and may help in the development of predictive protocols for COVID-19 exacerbation.
Collapse
Affiliation(s)
- Mingshan Xue
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
- Guangzhou Laboratory, XingDaoHuanBei Road, Guangzhou International Bio-Island, Guangzhou 510005, Guangdong Province, China
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, China
| | - Zhiwei Lin
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, China
| | - Teng Zhang
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
| | - Zhangkai J. Cheng
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, China
| | - Runpei Lin
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, China
| | - Baojun Guo
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, China
- School of Medicine, Henan University, Kaifeng 475000, Henan, China
| | - Yifeng Zeng
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, China
| | - Fengyu Hu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
| | - Feng Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
| | - Peiyan Zheng
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, China
| | - Huimin Huang
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, China
| | - Ning Li
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, China
| | - Qi Zhao
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
| | - Baoqing Sun
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, China
| | - Xiaoping Tang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
- Guangzhou Laboratory, XingDaoHuanBei Road, Guangzhou International Bio-Island, Guangzhou 510005, Guangdong Province, China
| |
Collapse
|
19
|
Kim M, McDonald EF, Sabusap CMP, Timalsina B, Joshi D, Hong JS, Rab A, Sorscher EJ, Plate L. Elexacaftor/VX-445-mediated CFTR interactome remodeling reveals differential correction driven by mutation-specific translational dynamics. J Biol Chem 2023; 299:105242. [PMID: 37690692 PMCID: PMC10579539 DOI: 10.1016/j.jbc.2023.105242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023] Open
Abstract
Cystic fibrosis (CF) is one of the most prevalent lethal genetic diseases with over 2000 identified mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Pharmacological chaperones such as lumacaftor (VX-809), tezacaftor (VX-661), and elexacaftor (VX-445) treat mutation-induced defects by stabilizing CFTR and are called correctors. These correctors improve proper folding and thus facilitate processing and trafficking to increase the amount of functional CFTR on the cell surface. Yet, CFTR variants display differential responses to each corrector. Here, we report that variants P67L and L206W respond similarly to VX-809 but divergently to VX-445 with P67L exhibiting little rescue when treated with VX-445. We investigate the underlying cellular mechanisms of how CFTR biogenesis is altered by correctors in these variants. Affinity purification-mass spectrometry multiplexed with isobaric tandem mass tags was used to quantify CFTR protein-protein interaction changes between variants P67L and L206W. VX-445 facilitates unique proteostasis factor interactions especially in translation, folding, and degradation pathways in a CFTR variant-dependent manner. A number of these interacting proteins knocked down by siRNA, such as ribosomal subunit proteins, moderately rescued fully glycosylated P67L. Importantly, these knockdowns sensitize P67L to VX-445 and further enhance the trafficking correction of this variant. Partial inhibition of protein translation also mildly sensitizes P67L CFTR to VX-445 correction, supporting a role for translational dynamics in the rescue mechanism of VX-445. Our results provide a better understanding of VX-445 biological mechanism of action and reveal cellular targets that may sensitize nonresponsive CFTR variants to known and available correctors.
Collapse
Affiliation(s)
- Minsoo Kim
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA; Program in Chemical and Physical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Eli Fritz McDonald
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Bibek Timalsina
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Disha Joshi
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Jeong S Hong
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Andras Rab
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Eric J Sorscher
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
20
|
Parkkinen I, Their A, Asghar MY, Sree S, Jokitalo E, Airavaara M. Pharmacological Regulation of Endoplasmic Reticulum Structure and Calcium Dynamics: Importance for Neurodegenerative Diseases. Pharmacol Rev 2023; 75:959-978. [PMID: 37127349 DOI: 10.1124/pharmrev.122.000701] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023] Open
Abstract
The endoplasmic reticulum (ER) is the largest organelle of the cell, composed of a continuous network of sheets and tubules, and is involved in protein, calcium (Ca2+), and lipid homeostasis. In neurons, the ER extends throughout the cell, both somal and axodendritic compartments, and is highly important for neuronal functions. A third of the proteome of a cell, secreted and membrane-bound proteins, are processed within the ER lumen and most of these proteins are vital for neuronal activity. The brain itself is high in lipid content, and many structural lipids are produced, in part, by the ER. Cholesterol and steroid synthesis are strictly regulated in the ER of the blood-brain barrier protected brain cells. The high Ca2+ level in the ER lumen and low cytosolic concentration is needed for Ca2+-based intracellular signaling, for synaptic signaling and Ca2+ waves, and for preparing proteins for correct folding in the presence of high Ca2+ concentrations to cope with the high concentrations of extracellular milieu. Particularly, ER Ca2+ is controlled in axodendritic areas for proper neurito- and synaptogenesis and synaptic plasticity and remodeling. In this review, we cover the physiologic functions of the neuronal ER and discuss it in context of common neurodegenerative diseases, focusing on pharmacological regulation of ER Ca2+ Furthermore, we postulate that heterogeneity of the ER, its protein folding capacity, and ensuring Ca2+ regulation are crucial factors for the aging and selective vulnerability of neurons in various neurodegenerative diseases. SIGNIFICANCE STATEMENT: Endoplasmic reticulum (ER) Ca2+ regulators are promising therapeutic targets for degenerative diseases for which efficacious drug therapies do not exist. The use of pharmacological probes targeting maintenance and restoration of ER Ca2+ can provide restoration of protein homeostasis (e.g., folding of complex plasma membrane signaling receptors) and slow down the degeneration process of neurons.
Collapse
Affiliation(s)
- Ilmari Parkkinen
- Neuroscience Center (I.P., A.T., M.A.), Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy (I.P., M.A.), Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (M.Y.A., S.S., E.J.), and Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Sciences (E.J.), University of Helsinki, Helsinki, Finland
| | - Anna Their
- Neuroscience Center (I.P., A.T., M.A.), Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy (I.P., M.A.), Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (M.Y.A., S.S., E.J.), and Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Sciences (E.J.), University of Helsinki, Helsinki, Finland
| | - Muhammad Yasir Asghar
- Neuroscience Center (I.P., A.T., M.A.), Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy (I.P., M.A.), Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (M.Y.A., S.S., E.J.), and Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Sciences (E.J.), University of Helsinki, Helsinki, Finland
| | - Sreesha Sree
- Neuroscience Center (I.P., A.T., M.A.), Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy (I.P., M.A.), Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (M.Y.A., S.S., E.J.), and Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Sciences (E.J.), University of Helsinki, Helsinki, Finland
| | - Eija Jokitalo
- Neuroscience Center (I.P., A.T., M.A.), Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy (I.P., M.A.), Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (M.Y.A., S.S., E.J.), and Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Sciences (E.J.), University of Helsinki, Helsinki, Finland
| | - Mikko Airavaara
- Neuroscience Center (I.P., A.T., M.A.), Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy (I.P., M.A.), Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (M.Y.A., S.S., E.J.), and Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Sciences (E.J.), University of Helsinki, Helsinki, Finland
| |
Collapse
|
21
|
Nguyen NH, Sarangi S, McChesney EM, Sheng S, Porter AW, Kleyman TR, Pitluk ZW, Brodsky JL. Genome mining yields new disease-associated ROMK variants with distinct defects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539609. [PMID: 37214976 PMCID: PMC10197530 DOI: 10.1101/2023.05.05.539609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bartter syndrome is a group of rare genetic disorders that compromise kidney function by impairing electrolyte reabsorption. Left untreated, the resulting hyponatremia, hypokalemia, and dehydration can be fatal. Although there is no cure for this disease, specific genes that lead to different Bartter syndrome subtypes have been identified. Bartter syndrome type II specifically arises from mutations in the KCNJ1 gene, which encodes the renal outer medullary potassium channel, ROMK. To date, over 40 Bartter syndrome-associated mutations in KCNJ1 have been identified. Yet, their molecular defects are mostly uncharacterized. Nevertheless, a subset of disease-linked mutations compromise ROMK folding in the endoplasmic reticulum (ER), which in turn results in premature degradation via the ER associated degradation (ERAD) pathway. To identify uncharacterized human variants that might similarly lead to premature degradation and thus disease, we mined three genomic databases. First, phenotypic data in the UK Biobank were analyzed using a recently developed computational platform to identify individuals carrying KCNJ1 variants with clinical features consistent with Bartter syndrome type II. In parallel, we examined ROMK genomic data in both the NIH TOPMed and ClinVar databases with the aid of a computational algorithm that predicts protein misfolding and disease severity. Subsequent phenotypic studies using a high throughput yeast screen to assess ROMK function-and analyses of ROMK biogenesis in yeast and human cells-identified four previously uncharacterized mutations. Among these, one mutation uncovered from the two parallel approaches (G228E) destabilized ROMK and targeted it for ERAD, resulting in reduced protein expression at the cell surface. Another ERAD-targeted ROMK mutant (L320P) was found in only one of the screens. In contrast, another mutation (T300R) was ERAD-resistant, but defects in ROMK activity were apparent after expression and two-electrode voltage clamp measurements in Xenopus oocytes. Together, our results outline a new computational and experimental pipeline that can be applied to identify disease-associated alleles linked to a range of other potassium channels, and further our understanding of the ROMK structure-function relationship that may aid future therapeutic strategies. Author Summary Bartter syndrome is a rare genetic disorder characterized by defective renal electrolyte handing, leading to debilitating symptoms and, in some patients, death in infancy. Currently, there is no cure for this disease. Bartter syndrome is divided into five types based on the causative gene. Bartter syndrome type II results from genetic variants in the gene encoding the ROMK protein, which is expressed in the kidney and assists in regulating sodium, potassium, and water homeostasis. Prior work established that some disease-associated ROMK mutants misfold and are destroyed soon after their synthesis in the endoplasmic reticulum (ER). Because a growing number of drugs have been identified that correct defective protein folding, we wished to identify an expanded cohort of similarly misshapen and unstable disease-associated ROMK variants. To this end, we developed a pipeline that employs computational analyses of human genome databases with genetic and biochemical assays. Next, we both confirmed the identity of known variants and uncovered previously uncharacterized ROMK variants associated with Bartter syndrome type II. Further analyses indicated that select mutants are targeted for ER-associated degradation, while another mutant compromises ROMK function. This work sets-the-stage for continued mining for ROMK loss of function alleles as well as other potassium channels, and positions select Bartter syndrome mutations for correction using emerging pharmaceuticals.
Collapse
|
22
|
Sontag EM, Morales-Polanco F, Chen JH, McDermott G, Dolan PT, Gestaut D, Le Gros MA, Larabell C, Frydman J. Nuclear and cytoplasmic spatial protein quality control is coordinated by nuclear-vacuolar junctions and perinuclear ESCRT. Nat Cell Biol 2023; 25:699-713. [PMID: 37081164 DOI: 10.1038/s41556-023-01128-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/14/2023] [Indexed: 04/22/2023]
Abstract
Effective protein quality control (PQC), essential for cellular health, relies on spatial sequestration of misfolded proteins into defined inclusions. Here we reveal the coordination of nuclear and cytoplasmic spatial PQC. Cytoplasmic misfolded proteins concentrate in a cytoplasmic juxtanuclear quality control compartment, while nuclear misfolded proteins sequester into an intranuclear quality control compartment (INQ). Particle tracking reveals that INQ and the juxtanuclear quality control compartment converge to face each other across the nuclear envelope at a site proximal to the nuclear-vacuolar junction marked by perinuclear ESCRT-II/III protein Chm7. Strikingly, convergence at nuclear-vacuolar junction contacts facilitates VPS4-dependent vacuolar clearance of misfolded cytoplasmic and nuclear proteins, the latter entailing extrusion of nuclear INQ into the vacuole. Finding that nuclear-vacuolar contact sites are cellular hubs of spatial PQC to facilitate vacuolar clearance of nuclear and cytoplasmic inclusions highlights the role of cellular architecture in proteostasis maintenance.
Collapse
Affiliation(s)
- Emily M Sontag
- Department of Biology, Stanford University, Stanford, CA, USA.
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA.
| | | | - Jian-Hua Chen
- Department of Anatomy, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Gerry McDermott
- Department of Anatomy, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Patrick T Dolan
- Department of Biology, Stanford University, Stanford, CA, USA
- Quantitative Virology and Evolution Unit, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Daniel Gestaut
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Mark A Le Gros
- Department of Anatomy, School of Medicine, University of California San Francisco, San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Carolyn Larabell
- Department of Anatomy, School of Medicine, University of California San Francisco, San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
23
|
Jolly RD, Perrott MR, Alley MR, Hunter SA, Pas A, Beard H, Hemsley KM, Greaves G. A lower motor neuron disease in takahē ( Porphyrio hochstetteri) is an endoplasmic reticulum storage disease. N Z Vet J 2023:1-8. [PMID: 36938644 DOI: 10.1080/00480169.2023.2190549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
AIMS To investigate the pathogenesis of a disease in takahē with intracytoplasmic inclusion bodies in lower motor neurons. METHODS Four cases aged between 5 and 12 years, from three different wildlife sanctuaries in New Zealand were examined. Of these, only one had signs of spinal dysfunction in the form of paresis. Stained paraffin sections of tissues were examined by light microscopy and immunostained sections of the ventral horn of the spinal cord by confocal microscopy. Epoxy resin sections of the bird with spinal dysfunction were examined by electron microscopy. RESULTS Two types of inclusion bodies were noted, but only in motor neurons of the ventral spinal cord and brain stem. These were large globoid eosinophilic bodies up to 5 µm in diameter, and yellow/brown granular inclusions mostly at the pole of the cell. The globoid bodies stained with Luxol fast blue but not with periodic acid Schiff (PAS), or Sudan black. The granular inclusions stained with Luxol fast blue, PAS and Sudan black. Both bodies were slightly autofluorescent. On electron microscopy the globoid bodies had an even electron-dense texture and were bound by a membrane. Beneath the membrane were large numbers of small intraluminal vesicles. The smaller granular bodies were more heterogeneous, irregularly rounded and membrane-bound accumulations of granular electron-dense material, often with electron-lucent vacuoles. Others were more vesicular but contained varying amounts of electron-dense material. The large globoid bodies did not immunostain for lysosomal markers lysosomal associated protein 1 (LAMP1) or cathepsin D so they were not lysosomal. The small granular bodies stained for cathepsin D by a chromogenic method. A kindred matrix analysis showed two cases to be as closely related as first cousins, and another case was almost as closely related to one of them, but the fourth bird was unrelated to any other. CONCLUSIONS It was concluded that this was an endoplasmic reticulum storage disease due to a specific protein misfolding within endoplasmic reticulum. It was rationalised that the two types of inclusions reflected the same aetiology, but that misfolded protein in the smaller granular bodies had entered the lysosomal system via endoplasmic reticulum autophagy. Although the cause was unclear, it most likely had a genetic aetiology or predisposition and, as such, has clinical relevance.
Collapse
Affiliation(s)
- R D Jolly
- Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - M R Perrott
- Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - M R Alley
- Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - S A Hunter
- Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - A Pas
- New Zealand Centre for Conservation Medicine, Auckland Zoo, Auckland, New Zealand
| | - H Beard
- Childhood Dementia Research Group, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - K M Hemsley
- Childhood Dementia Research Group, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - G Greaves
- Department of Conservation, Wellington, New Zealand
| |
Collapse
|
24
|
Nguyen NH, Brodsky JL. The cellular pathways that maintain the quality control and transport of diverse potassium channels. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194908. [PMID: 36638864 PMCID: PMC9908860 DOI: 10.1016/j.bbagrm.2023.194908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
Potassium channels are multi-subunit transmembrane proteins that permit the selective passage of potassium and play fundamental roles in physiological processes, such as action potentials in the nervous system and organismal salt and water homeostasis, which is mediated by the kidney. Like all ion channels, newly translated potassium channels enter the endoplasmic reticulum (ER) and undergo the error-prone process of acquiring post-translational modifications, folding into their native conformations, assembling with other subunits, and trafficking through the secretory pathway to reach their final destinations, most commonly the plasma membrane. Disruptions in these processes can result in detrimental consequences, including various human diseases. Thus, multiple quality control checkpoints evolved to guide potassium channels through the secretory pathway and clear potentially toxic, aggregation-prone misfolded species. We will summarize current knowledge on the mechanisms underlying potassium channel quality control in the secretory pathway, highlight diseases associated with channel misfolding, and suggest potential therapeutic routes.
Collapse
Affiliation(s)
- Nga H Nguyen
- Department of Biological Sciences, University of Pittsburgh, A320 Langley Hall, Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, A320 Langley Hall, Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA.
| |
Collapse
|
25
|
Kim M, McDonald EF, Sabusap CMP, Timalsina B, Joshi D, Hong JS, Rab A, Sorscher EJ, Plate L. Elexacaftor/VX-445-mediated CFTR interactome remodeling reveals differential correction driven by mutation-specific translational dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.04.527134. [PMID: 36778339 PMCID: PMC9915750 DOI: 10.1101/2023.02.04.527134] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cystic fibrosis (CF) is one of the most prevalent lethal genetic diseases with over 2000 identified mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Pharmacological chaperones such as Lumacaftor (VX-809), Tezacaftor (VX-661) and Elexacaftor (VX-445) treat mutation-induced defects by stabilizing CFTR and are called correctors. These correctors improve proper folding and thus facilitate processing and trafficking to increase the amount of functional CFTR on the cell surface. Yet, CFTR variants display differential responses to each corrector. Here, we report variants P67L and L206W respond similarly to VX-809 but divergently to VX-445 with P67L exhibiting little rescue when treated with VX-445. We investigate the underlying cellular mechanisms of how CFTR biogenesis is altered by correctors in these variants. Affinity purification-mass spectrometry (AP-MS) multiplexed with isobaric Tandem Mass Tags (TMT) was used to quantify CFTR protein-protein interaction changes between variants P67L and L206W. VX-445 facilitates unique proteostasis factor interactions especially in translation, folding, and degradation pathways in a CFTR variant-dependent manner. A number of these interacting proteins knocked down by siRNA, such as ribosomal subunit proteins, moderately rescued fully glycosylated P67L. Importantly, these knock-downs sensitize P67L to VX-445 and further enhance the correction of this variant. Our results provide a better understanding of VX-445 biological mechanism of action and reveal cellular targets that may sensitize unresponsive CFTR variants to known and available correctors.
Collapse
Affiliation(s)
- Minsoo Kim
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States of America
- Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN, United States of America
| | - Eli Fritz McDonald
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States of America
| | | | - Bibek Timalsina
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States of America
| | - Disha Joshi
- Department of Pediatrics, Emory University, Atlanta, GA, United States of America
| | - Jeong S. Hong
- Department of Pediatrics, Emory University, Atlanta, GA, United States of America
| | - Andras Rab
- Department of Pediatrics, Emory University, Atlanta, GA, United States of America
| | - Eric J. Sorscher
- Department of Pediatrics, Emory University, Atlanta, GA, United States of America
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States of America
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| |
Collapse
|
26
|
Chen G, Wei T, Ju F, Li H. Protein quality control and aggregation in the endoplasmic reticulum: From basic to bedside. Front Cell Dev Biol 2023; 11:1156152. [PMID: 37152279 PMCID: PMC10154544 DOI: 10.3389/fcell.2023.1156152] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Endoplasmic reticulum (ER) is the largest membrane-bound compartment in all cells and functions as a key regulator in protein biosynthesis, lipid metabolism, and calcium balance. Mammalian endoplasmic reticulum has evolved with an orchestrated protein quality control system to handle defective proteins and ensure endoplasmic reticulum homeostasis. Nevertheless, the accumulation and aggregation of misfolded proteins in the endoplasmic reticulum may occur during pathological conditions. The inability of endoplasmic reticulum quality control system to clear faulty proteins and aggregates from the endoplasmic reticulum results in the development of many human disorders. The efforts to comprehensively understand endoplasmic reticulum quality control network and protein aggregation will benefit the diagnostics and therapeutics of endoplasmic reticulum storage diseases. Herein, we overview recent advances in mammalian endoplasmic reticulum protein quality control system, describe protein phase transition model, and summarize the approaches to monitor protein aggregation. Moreover, we discuss the therapeutic applications of enhancing endoplasmic reticulum protein quality control pathways in endoplasmic reticulum storage diseases.
Collapse
Affiliation(s)
- Guofang Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tingyi Wei
- Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai, China
| | - Furong Ju
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Sha Tin, Hong kong SAR, China
| | - Haisen Li
- School of Life Sciences, Fudan University, Shanghai, China
- AoBio Medical, Shanghai, China
- *Correspondence: Haisen Li,
| |
Collapse
|
27
|
Sagarika P, Yadav K, Sahi C. Volleying plasma membrane proteins from birth to death: Role of J-domain proteins. Front Mol Biosci 2022; 9:1072242. [PMID: 36589230 PMCID: PMC9798423 DOI: 10.3389/fmolb.2022.1072242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
The function, stability, and turnover of plasma membrane (PM) proteins are crucial for cellular homeostasis. Compared to soluble proteins, quality control of plasma membrane proteins is extremely challenging. Failure to meet the high quality control standards is detrimental to cellular and organismal health. J-domain proteins (JDPs) are among the most diverse group of chaperones that collaborate with other chaperones and protein degradation machinery to oversee cellular protein quality control (PQC). Although fragmented, the available literature from different models, including yeast, mammals, and plants, suggests that JDPs assist PM proteins with their synthesis, folding, and trafficking to their destination as well as their degradation, either through endocytic or proteasomal degradation pathways. Moreover, some JDPs interact directly with the membrane to regulate the stability and/or functionality of proteins at the PM. The deconvoluted picture emerging is that PM proteins are relayed from one JDP to another throughout their life cycle, further underscoring the versatility of the Hsp70:JDP machinery in the cell.
Collapse
|
28
|
White C, Bader C, Teter K. The manipulation of cell signaling and host cell biology by cholera toxin. Cell Signal 2022; 100:110489. [PMID: 36216164 PMCID: PMC10082135 DOI: 10.1016/j.cellsig.2022.110489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/01/2022] [Indexed: 11/03/2022]
Abstract
Vibrio cholerae colonizes the small intestine and releases cholera toxin into the extracellular space. The toxin binds to the apical surface of the epithelium, is internalized into the host endomembrane system, and escapes into the cytosol where it activates the stimulatory alpha subunit of the heterotrimeric G protein by ADP-ribosylation. This initiates a cAMP-dependent signaling pathway that stimulates chloride efflux into the gut, with diarrhea resulting from the accompanying osmotic movement of water into the intestinal lumen. G protein signaling is not the only host system manipulated by cholera toxin, however. Other cellular mechanisms and signaling pathways active in the intoxication process include endocytosis through lipid rafts, retrograde transport to the endoplasmic reticulum, the endoplasmic reticulum-associated degradation system for protein delivery to the cytosol, the unfolded protein response, and G protein de-activation through degradation or the function of ADP-ribosyl hydrolases. Although toxin-induced chloride efflux is thought to be an irreversible event, alterations to these processes could facilitate cellular recovery from intoxication. This review will highlight how cholera toxin exploits signaling pathways and other cell biology events to elicit a diarrheal response from the host.
Collapse
Affiliation(s)
- Christopher White
- Burnett School of Biomedical Sciences, 12722 Research Parkway, University of Central Florida, Orlando, FL 32826, USA.
| | - Carly Bader
- Burnett School of Biomedical Sciences, 12722 Research Parkway, University of Central Florida, Orlando, FL 32826, USA.
| | - Ken Teter
- Burnett School of Biomedical Sciences, 12722 Research Parkway, University of Central Florida, Orlando, FL 32826, USA.
| |
Collapse
|
29
|
Weinberg J, Gaur M, Swaroop A, Taylor A. Proteostasis in aging-associated ocular disease. Mol Aspects Med 2022; 88:101157. [PMID: 36459837 PMCID: PMC9742340 DOI: 10.1016/j.mam.2022.101157] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022]
Abstract
Vision impairment has devastating consequences for the quality of human life. The cells and tissues associated with the visual process must function throughout one's life span and maintain homeostasis despite exposure to a variety of insults. Maintenance of the proteome is termed proteostasis, and is vital for normal cellular functions, especially at an advanced age. Here we describe basic aspects of proteostasis, from protein synthesis and folding to degradation, and discuss the current status of the field with a particular focus on major age-related eye diseases: age-related macular degeneration, cataract, and glaucoma. Our intent is to allow vision scientists to determine where and how to harness the proteostatic machinery for extending functional homeostasis in the aging retina, lens, and trabecular meshwork. Several common themes have emerged despite these tissues having vastly different metabolisms. Continued exposure to insults, including chronic stress with advancing age, increases proteostatic burden and reduces the fidelity of the degradation machineries including the ubiquitin-proteasome and the autophagy-lysosome systems that recognize and remove damaged proteins. This "double jeopardy" results in an exponential accumulation of cytotoxic proteins with advancing age. We conclude with a discussion of the challenges in maintaining an appropriate balance of protein synthesis and degradation pathways, and suggest that harnessing proteostatic capacities should provide new opportunities to design interventions for attenuating age-related eye diseases before they limit sight.
Collapse
Affiliation(s)
- Jasper Weinberg
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA
| | - Mohita Gaur
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Allen Taylor
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA.
| |
Collapse
|
30
|
Ghelichkhani F, Gonzalez FA, Kapitonova MA, Schaefer-Ramadan S, Liu J, Cheng R, Rozovsky S. Selenoprotein S: A versatile disordered protein. Arch Biochem Biophys 2022; 731:109427. [PMID: 36241082 PMCID: PMC10026367 DOI: 10.1016/j.abb.2022.109427] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022]
Abstract
Selenoprotein S (selenos) is a small, intrinsically disordered membrane protein that is associated with various cellular functions, such as inflammatory processes, cellular stress response, protein quality control, and signaling pathways. It is primarily known for its contribution to the ER-associated degradation (ERAD) pathway, which governs the extraction of misfolded proteins or misassembled protein complexes from the ER to the cytosol for degradation by the proteasome. However, selenos's other cellular roles in signaling are equally vital, including the control of transcription factors and cytokine levels. Consequently, genetic polymorphisms of selenos are associated with increased risk for diabetes, dyslipidemia, and cardiovascular diseases, while high expression levels correlate with poor prognosis in several cancers. Its inhibitory role in cytokine secretion is also exploited by viruses. Since selenos binds multiple protein complexes, however, its specific contributions to various cellular pathways and diseases have been difficult to establish. Thus, the precise cellular functions of selenos and their interconnectivity have only recently begun to emerge. This review aims to summarize recent insights into the structure, interactome, and cellular roles of selenos.
Collapse
Affiliation(s)
- Farid Ghelichkhani
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Fabio A Gonzalez
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Mariia A Kapitonova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | | | - Jun Liu
- Enlaza Therapeutics, 11099 N. Torrey Pines Rd, suite 290, La Jolla, CA, 92037, USA
| | - Rujin Cheng
- NGM Biopharmaceuticals, Inc., 333 Oyster Point Blvd, South San Francisco, CA, 94080, USA
| | - Sharon Rozovsky
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
31
|
Zhang X, Young C, Morishita Y, Kim K, Kabil OO, Clarke OB, Di Jeso B, Arvan P. Defective Thyroglobulin: Cell Biology of Disease. Int J Mol Sci 2022; 23:13605. [PMID: 36362390 PMCID: PMC9657758 DOI: 10.3390/ijms232113605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
The primary functional units of the thyroid gland are follicles of various sizes comprised of a monolayer of epithelial cells (thyrocytes) surrounding an apical extracellular cavity known as the follicle lumen. In the normal thyroid gland, the follicle lumen is filled with secreted protein (referred to as colloid), comprised nearly exclusively of thyroglobulin with a half-life ranging from days to weeks. At the cellular boundary of the follicle lumen, secreted thyroglobulin becomes iodinated, resulting from the coordinated activities of enzymes localized to the thyrocyte apical plasma membrane. Thyroglobulin appearance in evolution is essentially synchronous with the appearance of the follicular architecture of the vertebrate thyroid gland. Thyroglobulin is the most highly expressed thyroid gene and represents the most abundantly expressed thyroid protein. Wildtype thyroglobulin protein is a large and complex glycoprotein that folds in the endoplasmic reticulum, leading to homodimerization and export via the classical secretory pathway to the follicle lumen. However, of the hundreds of human thyroglobulin genetic variants, most exhibit increased susceptibility to misfolding with defective export from the endoplasmic reticulum, triggering hypothyroidism as well as thyroidal endoplasmic reticulum stress. The human disease of hypothyroidism with defective thyroglobulin (either homozygous, or compound heterozygous) can be experimentally modeled in thyrocyte cell culture, or in whole animals, such as mice that are readily amenable to genetic manipulation. From a combination of approaches, it can be demonstrated that in the setting of thyroglobulin misfolding, thyrocytes under chronic continuous ER stress exhibit increased susceptibility to cell death, with interesting cell biological and pathophysiological consequences.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48105, USA
| | - Crystal Young
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Yoshiaki Morishita
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University, Nagakute 480-1195, Japan
| | - Kookjoo Kim
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Omer O. Kabil
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Natural Sciences, Lindenwood University, Saint Charles, MO 63301, USA
| | - Oliver B. Clarke
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Bruno Di Jeso
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
32
|
Bakhos-Douaihy D, Seaayfan E, Frachon N, Demaretz S, Kömhoff M, Laghmani K. Diacidic Motifs in the Carboxyl Terminus Are Required for ER Exit and Translocation to the Plasma Membrane of NKCC2. Int J Mol Sci 2022; 23:ijms232112761. [PMID: 36361553 PMCID: PMC9656672 DOI: 10.3390/ijms232112761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022] Open
Abstract
Mutations in the apical Na-K-2Cl co-transporter, NKCC2, cause type I Bartter syndrome (BS1), a life-threatening kidney disease. We have previously demonstrated that the BS1 variant Y998X, which deprives NKCC2 from its highly conserved dileucine-like motifs, compromises co-transporter surface delivery through ER retention mechanisms. However, whether these hydrophobic motifs are sufficient for anterograde trafficking of NKCC2 remains to be determined. Interestingly, sequence analysis of NKCC2 C-terminus revealed the presence of consensus di-acidic (D/E-X-D/E) motifs, 949EEE951 and 1019DAELE1023, located upstream and downstream of BS1 mutation Y998X, respectively. Di-acidic codes are involved in ER export of proteins through interaction with COPII budding machinery. Importantly, whereas mutating 949EEE951 motif to 949AEA951 had no effect on NKCC2 processing, mutating 1019DAE1021 to 1019AAA1021 heavily impaired complex-glycosylation and cell surface expression of the cotransporter in HEK293 and OKP cells. Most importantly, triple mutation of D, E and E residues of 1019DAELE1023 to 1019AAALA1023 almost completely abolished NKCC2 complex-glycosylation, suggesting that this mutant failed to exit the ER. Cycloheximide chase analysis demonstrated that the absence of the terminally glycosylated form of 1019AAALA1023 was caused by defects in NKCC2 maturation. Accordingly, co-immunolocalization experiments revealed that 1019AAALA1023 was trapped in the ER. Finally, overexpression of a dominant negative mutant of Sar1-GTPase abolished NKCC2 maturation and cell surface expression, clearly indicating that NKCC2 export from the ER is COPII-dependent. Hence, our data indicate that in addition to the di-leucine like motifs, NKCC2 uses di-acidic exit codes for export from the ER through the COPII-dependent pathway. We propose that any naturally occurring mutation of NKCC2 interfering with this pathway could form the molecular basis of BS1.
Collapse
Affiliation(s)
- Dalal Bakhos-Douaihy
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- CNRS-ERL8228, F-75006 Paris, France
| | - Elie Seaayfan
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- CNRS-ERL8228, F-75006 Paris, France
| | - Nadia Frachon
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- CNRS-ERL8228, F-75006 Paris, France
| | - Sylvie Demaretz
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- CNRS-ERL8228, F-75006 Paris, France
| | - Martin Kömhoff
- Division of Pediatric Nephrology and Transplantation, University Children’s Hospital, Philipps-University, 35043 Marburg, Germany
| | - Kamel Laghmani
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- CNRS-ERL8228, F-75006 Paris, France
- Correspondence:
| |
Collapse
|
33
|
Liu P, Zu F, Chen H, Yin X, Tan X. Exosomal DNAJB11 promotes the development of pancreatic cancer by modulating the EGFR/MAPK pathway. Cell Mol Biol Lett 2022; 27:87. [PMID: 36209075 PMCID: PMC9548179 DOI: 10.1186/s11658-022-00390-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/19/2022] [Indexed: 12/02/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a malignant tumor with invasive and metastatic characteristics and poor prognosis. Intracellular protein homeostasis is associated with invasion and metastasis of pancreatic cancer, but the specific molecular mechanism remains unclear. Our previous studies have revealed that DNAJB11, a key protein in protein homeostasis, is secreted by exosomes in the supernatant of dissociated pancreatic cancer cells with high metastasis. The results from transcriptome sequencing and co-immunoprecipitation (Co-IP)-based liquid chromatography with tandem mass spectrometry (LC–MS/MS) showed that depletion of DNAJB11 levels could increase HSPA5 expression and induce endoplasmic reticulum stress through the PRKR-like endoplasmic reticulum kinase signaling pathway in pancreatic cancer cells. Furthermore, exosomal DNAJB11 promoted cell development of PC cells in vitro and in vivo. In addition, exosomal DNAJB11 could regulate the expression of EGFR and activate the downstream MAPK signaling pathway. Clinical blood samples were collected to evaluate the potential of exosome DNAJB11 as a diagnostic biomarker and therapeutic target for the treatment of pancreatic cancer. This study could provide a new theoretical basis and potential molecular targets for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Peng Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Diagnostic and Therapeutic Center of Pancreatic Diseases of Liaoning Province, Shenyang, 110004, China
| | - Fuqiang Zu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Diagnostic and Therapeutic Center of Pancreatic Diseases of Liaoning Province, Shenyang, 110004, China
| | - Hui Chen
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xiaoli Yin
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Xiaodong Tan
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China. .,Diagnostic and Therapeutic Center of Pancreatic Diseases of Liaoning Province, Shenyang, 110004, China.
| |
Collapse
|
34
|
Parys JB, Van Coppenolle F. Sec61 complex/translocon: The role of an atypical ER Ca 2+-leak channel in health and disease. Front Physiol 2022; 13:991149. [PMID: 36277220 PMCID: PMC9582130 DOI: 10.3389/fphys.2022.991149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/20/2022] [Indexed: 11/02/2023] Open
Abstract
The heterotrimeric Sec61 protein complex forms the functional core of the so-called translocon that forms an aqueous channel in the endoplasmic reticulum (ER). The primary role of the Sec61 complex is to allow protein import in the ER during translation. Surprisingly, a completely different function in intracellular Ca2+ homeostasis has emerged for the Sec61 complex, and the latter is now accepted as one of the major Ca2+-leak pathways of the ER. In this review, we first discuss the structure of the Sec61 complex and focus on the pharmacology and regulation of the Sec61 complex as a Ca2+-leak channel. Subsequently, we will pay particular attention to pathologies that are linked to Sec61 mutations, such as plasma cell deficiency and congenital neutropenia. Finally, we will explore the relevance of the Sec61 complex as a Ca2+-leak channel in various pathophysiological (ER stress, apoptosis, ischemia-reperfusion) and pathological (type 2 diabetes, cancer) settings.
Collapse
Affiliation(s)
- Jan B. Parys
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Leuven, Belgium
| | - Fabien Van Coppenolle
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Groupement Hospitalier EST, Department of Cardiology, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
35
|
Wang YJ, Di XJ, Mu TW. Quantitative interactome proteomics identifies a proteostasis network for GABA A receptors. J Biol Chem 2022; 298:102423. [PMID: 36030824 PMCID: PMC9493394 DOI: 10.1016/j.jbc.2022.102423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022] Open
Abstract
Gamma-aminobutyric acid type A (GABAA) receptors are the primary inhibitory neurotransmitter-gated ion channels in the mammalian central nervous system. Maintenance of GABAA receptor protein homeostasis (proteostasis) in cells utilizing its interacting proteins is essential for the function of GABAA receptors. However, how the proteostasis network orchestrates GABAA receptor biogenesis in the endoplasmic reticulum is not well understood. Here, we employed a proteomics-based approach to systematically identify the interactomes of GABAA receptors. We carried out a quantitative immunoprecipitation-tandem mass spectrometry analysis utilizing stable isotope labeling by amino acids in cell culture. Furthermore, we performed comparative proteomics by using both WT α1 subunit and a misfolding-prone α1 subunit carrying the A322D variant as the bait proteins. We identified 125 interactors for WT α1-containing receptors, 105 proteins for α1(A322D)-containing receptors, and 54 overlapping proteins within these two interactomes. Our bioinformatics analysis identified potential GABAA receptor proteostasis network components, including chaperones, folding enzymes, trafficking factors, and degradation factors, and we assembled a model of their potential involvement in the cellular folding, degradation, and trafficking pathways for GABAA receptors. In addition, we verified endogenous interactions between α1 subunits and selected interactors by using coimmunoprecipitation in mouse brain homogenates. Moreover, we showed that TRIM21 (tripartite motif containing-21), an E3 ubiquitin ligase, positively regulated the degradation of misfolding-prone α1(A322D) subunits selectively. This study paves the way for understanding the molecular mechanisms as well as fine-tuning of GABAA receptor proteostasis to ameliorate related neurological diseases such as epilepsy.
Collapse
Affiliation(s)
- Ya-Juan Wang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| | - Xiao-Jing Di
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Ting-Wei Mu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| |
Collapse
|
36
|
Badawi S, Mohamed FE, Alkhofash NR, John A, Ali A, Ali BR. Characterization of ACE2 naturally occurring missense variants: impact on subcellular localization and trafficking. Hum Genomics 2022; 16:35. [PMID: 36056420 PMCID: PMC9438391 DOI: 10.1186/s40246-022-00411-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/01/2022] [Indexed: 02/08/2023] Open
Abstract
Background Human angiotensin-converting enzyme 2 (ACE2), a type I transmembrane receptor physiologically acting as a carboxypeptidase enzyme within the renin-angiotensin system (RAS), is a critical mediator of infection by several severe acute respiratory syndrome (SARS) corona viruses. For instance, it has been demonstrated that ACE2 is the primary receptor for the SARS-CoV-2 entry to many human cells through binding to the viral spike S protein. Consequently, genetic variability in ACE2 gene has been suggested to contribute to the variable clinical manifestations in COVID-19. Many of those genetic variations result in missense variants within the amino acid sequence of ACE2. The potential effects of those variations on binding to the spike protein have been speculated and, in some cases, demonstrated experimentally. However, their effects on ACE2 protein folding, trafficking and subcellular targeting have not been established. Results In this study we aimed to examine the potential effects of 28 missense variants (V801G, D785N, R768W, I753T, L731F, L731I, I727V, N720D, R710H, R708W, S692P, E668K, V658I, N638S, A627V, F592L, G575V, A501T, I468V, M383I, G173S, N159S, N149S, D38E, N33D, K26R, I21T, and S19P) distributed across the ACE2 receptor domains on its subcellular trafficking and targeting through combinatorial approach involving in silico analysis and experimental subcellular localization analysis. Our data show that none of the studied missense variants (including 3 variants predicted to be deleterious R768W, G575V, and G173S) has a significant effect on ACE2 intracellular trafficking and subcellular targeting to the plasma membrane. Conclusion Although the selected missense variants display no significant change in ACE2 trafficking and subcellular localization, this does not rule out their effect on viral susceptibility and severity. Further studies are required to investigate the effect of ACE2 variants on its expression, binding, and internalization which might explain the variable clinical manifestations associated with the infection. Supplementary Information The online version contains supplementary material available at 10.1186/s40246-022-00411-1.
Collapse
Affiliation(s)
- Sally Badawi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Feda E Mohamed
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Nesreen R Alkhofash
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Anne John
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Amanat Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates. .,Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.
| |
Collapse
|
37
|
Mann MJ, Flory AR, Oikonomou C, Hayes CA, Melendez-Suchi C, Hendershot LM. Identification of two rate-limiting steps in the degradation of partially folded immunoglobulin light chains. Front Cell Dev Biol 2022; 10:924848. [PMID: 36072336 PMCID: PMC9441772 DOI: 10.3389/fcell.2022.924848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Antibody monomers are produced from two immunoglobulin heavy chains and two light chains that are folded and assembled in the endoplasmic reticulum This process is assisted and monitored by components of the endoplasmic reticulum quality control machinery; an outcome made more fraught by the unusual genetic machinations employed to produce a seemingly unlimited antibody repertoire. Proper functioning of the adaptive immune system is as dependent on the success of this operation, as it is on the ability to identify and degrade those molecules that fail to reach their native state. In this study, two rate-limiting steps were identified in the degradation of a non-secreted κ light chain. Both focus on the constant domain (CL), which has evolved to fold rapidly and very stably to serve as a catalyst for the folding of the heavy chain CH1 domain. The first hurdle is the reduction of the disulfide bond in the CL domain, which is required for retrotranslocation to the cytosol. In spite of being reduced, the CL domain retains structure, giving rise to the second rate-limiting step, the unfolding of this domain at the proteasome, which results in a stalled degradation intermediate.
Collapse
Affiliation(s)
- Melissa J. Mann
- St Jude Children’s Research Hospital, Memphis, TN, United States
| | - Ashley R. Flory
- St Jude Children’s Research Hospital, Memphis, TN, United States
| | - Christina Oikonomou
- St Jude Children’s Research Hospital, Memphis, TN, United States
- University of Tennessee Health Science Center, Memphis, TN, United States
| | | | | | - Linda M. Hendershot
- St Jude Children’s Research Hospital, Memphis, TN, United States
- University of Tennessee Health Science Center, Memphis, TN, United States
- *Correspondence: Linda M. Hendershot,
| |
Collapse
|
38
|
Restoring TRAILR2/DR5-Mediated Activation of Apoptosis upon Endoplasmic Reticulum Stress as a Therapeutic Strategy in Cancer. Int J Mol Sci 2022; 23:ijms23168987. [PMID: 36012252 PMCID: PMC9409255 DOI: 10.3390/ijms23168987] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
The uncontrolled proliferation of malignant cells in growing tumors results in the generation of different stressors in the tumor microenvironment, such as nutrient shortage, hypoxia and acidosis, among others, that disrupt endoplasmic reticulum (ER) homeostasis and may lead to ER stress. As a response to ER stress, both normal and tumor cells launch a set of signaling pathways known as the unfolded protein response (UPR) to restore ER proteostasis and maintain cell viability and function. However, under sustained ER stress, an apoptotic cell death process can be induced and this has been the subject of different review articles, although the role of the TRAIL-R2/DR5-activated extrinsic pathway of apoptosis has not yet been thoroughly summarized. In this Review, we provide an updated overview of the molecular mechanisms regulating cell fate decisions in tumor cells undergoing ER stress and discuss the role of the tumor necrosis factor (TNF)-related apoptosis-inducing ligand receptor 2 (TRAIL-R2/DR5) in the final outcome of UPR signaling. Particularly, we focus on the mechanisms controlling cellular FLICE-like inhibitory protein (FLIP) levels in tumor cells undergoing ER stress, which may represent a potential target for therapeutic intervention in cancer.
Collapse
|
39
|
Wang L, Li J, Wang Q, Ge MX, Ji J, Liu D, Wang Z, Cao Y, Zhang Y, Zhang ZR. TMUB1 is an endoplasmic reticulum-resident escortase that promotes the p97-mediated extraction of membrane proteins for degradation. Mol Cell 2022; 82:3453-3467.e14. [PMID: 35961308 DOI: 10.1016/j.molcel.2022.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 05/15/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023]
Abstract
Membrane protein clients of endoplasmic reticulum (ER)-associated degradation must be retrotranslocated from the ER membrane by the AAA-ATPase p97 for proteasomal degradation. Before direct engagement with p97, client transmembrane domains (TMDs) that have partially or fully crossed the membrane must be constantly shielded to avoid non-native interactions. How client TMDs are seamlessly escorted from the membrane to p97 is unknown. Here, we identified ER-anchored TMUB1 as a TMD-specific escortase. TMUB1 interacts with the TMD of clients within the membrane and holds ∼10-14 residues of a hydrophobic sequence that is exposed out of membrane, using its transmembrane and cytosolic regions, respectively. The ubiquitin-like domain of TMUB1 recruits p97, which can pull client TMDs from bound TMUB1 into the cytosol. The disruption of TMUB1 escortase activity impairs retrotranslocation and stabilizes retrotranslocating intermediates of client proteins within the ER membrane. Thus, TMUB1 promotes TMD segregation by safeguarding the TMD movement from the membrane to p97.
Collapse
Affiliation(s)
- Linhan Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jiqiang Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Qingchen Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Man-Xi Ge
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jia Ji
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Di Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyuan Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yang Cao
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zai-Rong Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
40
|
Kumar A, Mathew V, Stirling PC. Nuclear protein quality control in yeast: the latest INQuiries. J Biol Chem 2022; 298:102199. [PMID: 35760103 PMCID: PMC9305344 DOI: 10.1016/j.jbc.2022.102199] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 06/07/2022] [Accepted: 06/19/2022] [Indexed: 11/29/2022] Open
Abstract
The nucleus is a highly organized organelle with an intricate substructure of chromatin, RNAs, and proteins. This environment represents a challenge for maintaining protein quality control, since non-native proteins may interact inappropriately with other macromolecules and thus interfere with their function. Maintaining a healthy nuclear proteome becomes imperative during times of stress, such as upon DNA damage, heat shock, or starvation, when the proteome must be remodeled to effect cell survival. This is accomplished with the help of nuclear-specific chaperones, degradation pathways, and specialized structures known as protein quality control (PQC) sites that sequester proteins to help rapidly remodel the nuclear proteome. In this review, we focus on the current knowledge of PQC sites in Saccharomyces cerevisiae, particularly on a specialized nuclear PQC site called the intranuclear quality control site, a poorly understood nuclear inclusion that coordinates dynamic proteome triage decisions in yeast.
Collapse
Affiliation(s)
- Arun Kumar
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, Canada; Dept. of Medical Genetics, University of British Columbia, Vancouver Canada
| | - Veena Mathew
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, Canada
| | - Peter C Stirling
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, Canada; Dept. of Medical Genetics, University of British Columbia, Vancouver Canada.
| |
Collapse
|
41
|
Costa Catta-Preta CM, Cézar de Azevedo-Martins A, de Souza W, Motta MCM. Effect of the endoplasmic reticulum stressor tunicamycin in Angomonas deanei heat-shock protein expression and on the association with the endosymbiotic bacterium. Exp Cell Res 2022; 417:113162. [PMID: 35460679 DOI: 10.1016/j.yexcr.2022.113162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/04/2022] [Accepted: 04/16/2022] [Indexed: 01/01/2023]
Abstract
The endoplasmic reticulum (ER) presents unique properties to establishing bacterium symbiosis in eukaryotic cells since it synthesizes and glycosylates essential molecules like proteins and lipids. Tunicamycin (TM) is an antibiotic that inhibits the first step in the N-linked glycosylation in eukaryotes and has been used as an ER stress inducer to activate the Unfolded Protein Response (UPR). Mutualistic symbiosis in trypanosomatids is characterized by structural adaptations and intense metabolic exchanges, thus we investigated the effects of TM in the association between Angomonas deanei and its symbiotic bacterium, through ultrastructural and proteomic approaches. Cells treated with the inhibitor showed a decrease in proliferation, enlargement of the ER and Golgi cisternae and an increased distance between the symbiont and the ER. TM proved to be an important tool to better understand ER stress in trypanosomatids, since changes in protein composition were observed in the host protozoan, especially the expression of the Hsp90 chaperone. Furthermore, data obtained indicates the importance of the ER for the adaptation and maintenance of symbiotic associations between prokaryotes and eukaryotes, considering that this organelle has recognized importance in the biogenesis and division of cell structures.
Collapse
Affiliation(s)
- Carolina Moura Costa Catta-Preta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21491-590, Rio de Janeiro, RJ, Brazil
| | - Allan Cézar de Azevedo-Martins
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21491-590, Rio de Janeiro, RJ, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21491-590, Rio de Janeiro, RJ, Brazil; Centro Nacional de Biologia Estrutural e Bioimagem, RJ, Brazil
| | - Maria Cristina M Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21491-590, Rio de Janeiro, RJ, Brazil; Centro Nacional de Biologia Estrutural e Bioimagem, RJ, Brazil.
| |
Collapse
|
42
|
González A, Calfío C, Churruca M, Maccioni RB. Glucose metabolism and AD: evidence for a potential diabetes type 3. Alzheimers Res Ther 2022; 14:56. [PMID: 35443732 PMCID: PMC9022265 DOI: 10.1186/s13195-022-00996-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/27/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Alzheimer's disease is the most prevalent cause of dementia in the elderly. Neuronal death and synaptic dysfunctions are considered the main hallmarks of this disease. The latter could be directly associated to an impaired metabolism. In particular, glucose metabolism impairment has demonstrated to be a key regulatory element in the onset and progression of AD, which is why nowadays AD is considered the type 3 diabetes. METHODS We provide a thread regarding the influence of glucose metabolism in AD from three different perspectives: (i) as a regulator of the energy source, (ii) through several metabolic alterations, such as insulin resistance, that modify peripheral signaling pathways that influence activation of the immune system (e.g., insulin resistance, diabetes, etc.), and (iii) as modulators of various key post-translational modifications for protein aggregation, for example, influence on tau hyperphosphorylation and other important modifications, which determine its self-aggregating behavior and hence Alzheimer's pathogenesis. CONCLUSIONS In this revision, we observed a 3 edge-action in which glucose metabolism impairment is acting in the progression of AD: as blockade of energy source (e.g., mitochondrial dysfunction), through metabolic dysregulation and post-translational modifications in key proteins, such as tau. Therefore, the latter would sustain the current hypothesis that AD is, in fact, the novel diabetes type 3.
Collapse
Affiliation(s)
- Andrea González
- Laboratory of Neurosciences and Functional Medicine, International Center for Biomedicine (ICC), Avda. Vitacura 3568, D 511-512, Vitacura, Santiago, Chile
- Faculty of Sciences, University of Chile, Las Encinas 3370, Ñuñoa, Santiago, Chile
| | - Camila Calfío
- Laboratory of Neurosciences and Functional Medicine, International Center for Biomedicine (ICC), Avda. Vitacura 3568, D 511-512, Vitacura, Santiago, Chile
- Faculty of Sciences, University of Chile, Las Encinas 3370, Ñuñoa, Santiago, Chile
| | - Macarena Churruca
- Laboratory of Neurosciences and Functional Medicine, International Center for Biomedicine (ICC), Avda. Vitacura 3568, D 511-512, Vitacura, Santiago, Chile
| | - Ricardo B Maccioni
- Laboratory of Neurosciences and Functional Medicine, International Center for Biomedicine (ICC), Avda. Vitacura 3568, D 511-512, Vitacura, Santiago, Chile.
- Faculty of Sciences, University of Chile, Las Encinas 3370, Ñuñoa, Santiago, Chile.
- Department of Neurology, Faculty of Medicine East Campus Hospital Salvador, University of Chile, Salvador 486, Providencia, Santiago, Chile.
| |
Collapse
|
43
|
Christianson JC, Carvalho P. Order through destruction: how ER-associated protein degradation contributes to organelle homeostasis. EMBO J 2022; 41:e109845. [PMID: 35170763 PMCID: PMC8922271 DOI: 10.15252/embj.2021109845] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/09/2022] [Accepted: 01/25/2022] [Indexed: 12/24/2022] Open
Abstract
The endoplasmic reticulum (ER) is a large, dynamic, and multifunctional organelle. ER protein homeostasis is essential for the coordination of its diverse functions and depends on ER-associated protein degradation (ERAD). The latter process selects target proteins in the lumen and membrane of the ER, promotes their ubiquitination, and facilitates their delivery into the cytosol for degradation by the proteasome. Originally characterized for a role in the degradation of misfolded proteins and rate-limiting enzymes of sterol biosynthesis, the many branches of ERAD now appear to control the levels of a wider range of substrates and influence more broadly the organization and functions of the ER, as well as its interactions with adjacent organelles. Here, we discuss recent mechanistic advances in our understanding of ERAD and of its consequences for the regulation of ER functions.
Collapse
Affiliation(s)
- John C Christianson
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesBotnar Research CentreUniversity of OxfordOxfordUK
| | - Pedro Carvalho
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|
44
|
Yeast red pigment, protein aggregates, and amyloidoses: a review. Cell Tissue Res 2022; 388:211-223. [PMID: 35258715 DOI: 10.1007/s00441-022-03609-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 02/26/2022] [Indexed: 11/02/2022]
Abstract
Estimating the amyloid level in yeast Saccharomyces, we found out that the red pigment (product of polymerization of aminoimidazole ribotide) accumulating in ade1 and ade2 mutants leads to drop of the amyloid content. We demonstrated in vitro that fibrils of several proteins grown in the presence of the red pigment stop formation at the protofibril stage and form stable aggregates due to coalescence. Also, the red pigment inhibits reactive oxygen species accumulation in cells. This observation suggests that red pigment is involved in oxidative stress response. We developed an approach to identify the proteins whose aggregation state depends on prion (amyloid) or red pigment presence. These sets of proteins overlap and in both cases involve many different chaperones. Red pigment binds amyloids and is supposed to prevent chaperone-mediated prion propagation. An original yeast-Drosophila model was offered to estimate the red pigment effect on human proteins involved in neurodegeneration. As yeast cells are a natural feed of Drosophila, we could compare the data on transgenic flies fed on red and white yeast cells. Red pigment inhibits aggregation of human Amyloid beta and α-synuclein expressed in yeast cells. In the brain of transgenic flies, the red pigment diminishes amyloid beta level and the area of neurodegeneration. An improvement in memory and viability accompanied these changes. In transgenic flies expressing human α-synuclein, the pigment leads to a decreased death rate of dopaminergic neurons and improves mobility. The obtained results demonstrate yeast red pigment potential for the treatment of neurodegenerative diseases.
Collapse
|
45
|
Abstract
The proteostasis network (PN) regulates protein synthesis, folding, and degradation and is critical for the health and function of all cells. The PN has been extensively studied in the context of aging and age-related diseases, and loss of proteostasis is regarded as a major contributor to many age-associated disorders. In contrast to somatic tissues, an important feature of germ cells is their ability to maintain a healthy proteome across generations. Accumulating evidence has now revealed multiple layers of PN regulation that support germ cell function, determine reproductive capacity during aging, and prioritize reproduction at the expense of somatic health. Here, we review recent insights into these different modes of regulation and their implications for reproductive and somatic aging.
Collapse
|
46
|
Reggiori F, Molinari M. ER-phagy: mechanisms, regulation and diseases connected to the lysosomal clearance of the endoplasmic reticulum. Physiol Rev 2022; 102:1393-1448. [PMID: 35188422 PMCID: PMC9126229 DOI: 10.1152/physrev.00038.2021] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
ER-phagy (reticulo-phagy) defines the degradation of portions of the endoplasmic reticulum (ER) within lysosomes or vacuoles. It is part of the self-digestion (i.e., auto-phagic) programs recycling cytoplasmic material and organelles, which rapidly mobilize metabolites in cells confronted with nutrient shortage. Moreover, selective clearance of ER subdomains participates to the control of ER size and activity during ER stress, the re-establishment of ER homeostasis after ER stress resolution and the removal of ER parts, in which aberrant and potentially cytotoxic material has been segregated. ER-phagy relies on the individual and/or concerted activation of the ER-phagy receptors, ER peripheral or integral membrane proteins that share the presence of LC3/Atg8-binding motifs in their cytosolic domains. ER-phagy involves the physical separation of portions of the ER from the bulk ER network, and their delivery to the endolysosomal/vacuolar catabolic district. This last step is accomplished by a variety of mechanisms including macro-ER-phagy (in which ER fragments are sequestered by double-membrane autophagosomes that eventually fuse with lysosomes/vacuoles), micro-ER-phagy (in which ER fragments are directly engulfed by endosomes/lysosomes/vacuoles), or direct fusion of ER-derived vesicles with lysosomes/vacuoles. ER-phagy is dysfunctional in specific human diseases and its regulators are subverted by pathogens, highlighting its crucial role for cell and organism life.
Collapse
Affiliation(s)
- Fulvio Reggiori
- Department of Biomedical Sciences of Cells & Systems, grid.4830.fUniversity of Groningen, Netherlands
| | - Maurizio Molinari
- Protein Folding and Quality Control, grid.7722.0Institute for Research in Biomedicine, Bellinzona, Switzerland
| |
Collapse
|
47
|
Non-proteolytic ubiquitylation in cellular signaling and human disease. Commun Biol 2022; 5:114. [PMID: 35136173 PMCID: PMC8826416 DOI: 10.1038/s42003-022-03060-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/18/2022] [Indexed: 12/18/2022] Open
Abstract
Ubiquitylation is one of the most common post-translational modifications (PTMs) of proteins that frequently targets substrates for proteasomal degradation. However it can also result in non-proteolytic events which play important functions in cellular processes such as intracellular signaling, membrane trafficking, DNA repair and cell cycle. Emerging evidence demonstrates that dysfunction of non-proteolytic ubiquitylation is associated with the development of multiple human diseases. In this review, we summarize the current knowledge and the latest concepts on how non-proteolytic ubiquitylation pathways are involved in cellular signaling and in disease-mediating processes. Our review, may advance our understanding of the non-degradative ubiquitylation process. Evanthia Pangou and co-authors review recent insights into the important roles of non-proteolytic ubiquitylation in cellular signaling as well as in physiology and disease.
Collapse
|
48
|
Nakatsukasa K, Wigge S, Takano Y, Kawarasaki T, Kamura T, Brodsky JL. A positive genetic selection for transmembrane domain mutations in HRD1 underscores the importance of Hrd1 complex integrity during ERAD. Curr Genet 2022; 68:227-242. [PMID: 35041076 PMCID: PMC9036396 DOI: 10.1007/s00294-022-01227-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 11/26/2022]
Abstract
Misfolded proteins in the endoplasmic reticulum (ER) are retrotranslocated to the cytosol for ubiquitination and degradation by the proteasome. During this process, known as ER-associated degradation (ERAD), the ER-embedded Hrd1 ubiquitin ligase plays a central role in recognizing, ubiquitinating, and retrotranslocating scores of lumenal and integral membrane proteins. To better define the mechanisms underlying Hrd1 function in Saccharomyces cerevisiae, several model substrates have been developed. One substrate is Sec61-2, a temperature sensitive allele of the Sec61 translocation channel. Cells expressing Sec61-2 grow at 25 °C because the protein is stable, but sec61-2 yeast are inviable at 38 °C because the mutated protein is degraded in a Hrd1-dependent manner. Therefore, deleting HRD1 stabilizes Sec61-2 and hence sec61-2hrd1∆ double mutants are viable at 38 °C. This unique phenotype allowed us to perform a non-biased screen for loss-of-function alleles in HRD1. Based on its importance in mediating substrate retrotranslocation, the screen was also developed to focus on mutations in sequences encoding Hrd1's transmembrane-rich domain. Ultimately, a group of recessive mutations was identified in HRD1, including an ensemble of destabilizing mutations that resulted in the delivery of Hrd1 to the ERAD pathway. A more stable mutant resided in a buried transmembrane domain, yet the Hrd1 complex was disrupted in yeast expressing this mutant. Together, these data confirm the importance of Hrd1 complex integrity during ERAD, suggest that allosteric interactions between transmembrane domains regulate Hrd1 complex formation, and provide the field with new tools to define the dynamic interactions between ERAD components during substrate retrotranslocation.
Collapse
Affiliation(s)
- Kunio Nakatsukasa
- Graduate School of Science, Nagoya City University, Yamanohata 1, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8501, Japan.
| | - Sylvia Wigge
- Department of Biological Sciences, University of Pittsburgh, A320 Langley Hall, Pittsburgh, PA, 15260, USA
| | - Yuki Takano
- Graduate School of Science, Nagoya City University, Yamanohata 1, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8501, Japan
| | - Tomoyuki Kawarasaki
- Graduate School of Science, Nagoya City University, Yamanohata 1, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8501, Japan
| | - Takumi Kamura
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, A320 Langley Hall, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
49
|
Li S, Kong J, Yu L, Liu Q. Abnormally decreased renal Klotho is linked to endoplasmic reticulum-associated degradation in mice. Int J Med Sci 2022; 19:321-330. [PMID: 35165517 PMCID: PMC8795804 DOI: 10.7150/ijms.68137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
Aim: Endoplasmic reticulum-associated degradation (ERAD), which involves degradation of improperly folded proteins retained in the ER, is implicated in various diseases including chronic kidney disease. This study is aimed to determine the role of ERAD in Klotho deficiency of mice and human kidney tubular epithelial cells (HK-2) with renal interstitial fibrosis (RIF). Methods: Following establishment of a mouse RIF model by unilateral ureteral obstruction (UUO), a specific ERAD inhibitor, Eeyarestatin I (EerI), was administered to experimental animals by intraperitoneal injection. Serum and kidney samples were collected for analysis 10 days after operation. Soluble Klotho levels were measured by enzyme-linked immunosorbent assay, while the degree of kidney injury was assessed by renal histopathology. Renal Klotho expression was determined by quantitative real-time PCR, immunohistochemical and western blotting analyses. ERAD and unfolded protein response (UPR) were evaluated by detecting associated components such as Derlin-1, glucose-regulated protein 78 (GRP78), activating transcription factor 4 (ATF4) and protein disulfide isomerase (PDI). HK-2 cells were exposed to transforming growth factor (TGF)-β1 with or without EerI, and expressions of related proteins including Klotho, Derlin-1, GRP78, ATF4 and PDI were determined by western blotting analyses. Results: UUO induced severe kidney injuries and RIF. Klotho expression in both serum and kidney tissue was obviously downregulated, while Derlin-1 was notably upregulated, indicating that ERAD was activated to potentially degrade improperly folded Klotho protein in this model. Intriguingly, treatment with EerI led to significantly increased Klotho expression, especially soluble (functional) Klotho. Furthermore, specific inhibition of ERAD increased expression of GRP78, ATF4 and PDI compared with the UUO group. The consistent results in vitro were also obtained in TGF-β1-treated HK-2 cells exposed to EerI. These observations suggest that UPR was remarkably enhanced in the presence of ERAD inhibition and compensated for excess improperly folded proteins, subsequently contributing to the additional production of mature Klotho protein. Conclusion: ERAD is involved in Klotho deficiency in RIF and its specific inhibition significantly promoted Klotho expression, possibly through enhanced UPR. This may represent a novel regulatory mechanism and new therapeutic target for reversing Klotho deficiency.
Collapse
Affiliation(s)
- ShaSha Li
- Clinical Research & Lab Centre, Affiliated Kunshan Hospital of Jiangsu University, 91 Qianjin West Road, Kunshan, Jiangsu, 215300, China
| | - JiaWei Kong
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, 91 Qianjin West Road, Kunshan, Jiangsu, 215300, China
| | - LiXia Yu
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, 91 Qianjin West Road, Kunshan, Jiangsu, 215300, China
| | - QiFeng Liu
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, 91 Qianjin West Road, Kunshan, Jiangsu, 215300, China
| |
Collapse
|
50
|
SLC26A9 is selected for endoplasmic reticulum associated degradation (ERAD) via Hsp70-dependent targeting of the soluble STAS domain. Biochem J 2021; 478:4203-4220. [PMID: 34821356 PMCID: PMC8826537 DOI: 10.1042/bcj20210644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022]
Abstract
SLC26A9, a member of the solute carrier protein family, transports chloride ions across various epithelia. SLC26A9 also associates with other ion channels and transporters linked to human health, and in some cases these heterotypic interactions are essential to support the biogenesis of both proteins. Therefore, understanding how this complex membrane protein is initially folded might provide new therapeutic strategies to overcome deficits in the function of SLC26A9 partners, one of which is associated with Cystic Fibrosis. To this end, we developed a novel yeast expression system for SLC26A9. This facile system has been used extensively with other ion channels and transporters to screen for factors that oversee protein folding checkpoints. As commonly observed for other channels and transporters, we first noted that a substantial fraction of SLC26A9 is targeted for endoplasmic reticulum associated degradation (ERAD), which destroys folding-compromised proteins in the early secretory pathway. We next discovered that ERAD selection requires the Hsp70 chaperone, which can play a vital role in ERAD substrate selection. We then created SLC26A9 mutants and found that the transmembrane-rich domain of SLC26A9 was quite stable, whereas the soluble cytosolic STAS domain was responsible for Hsp70-dependent ERAD. To support data obtained in the yeast model, we were able to recapitulate Hsp70-facilitated ERAD of the STAS domain in human tissue culture cells. These results indicate that a critical barrier to nascent membrane protein folding can reside within a specific soluble domain, one that is monitored by components associated with the ERAD machinery.
Collapse
|