1
|
Ali N, Taher A, Islam N, Sarna NZ, Islam F. Evaluation of the relationship between xanthine oxidase activity and metabolic syndrome in a population group in Bangladesh. Sci Rep 2024; 14:20380. [PMID: 39223331 PMCID: PMC11369145 DOI: 10.1038/s41598-024-71733-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024] Open
Abstract
Xanthine oxidase (XO) is an enzyme that converts hypoxanthine into xanthine and xanthine into uric acid, which is then eliminated by the kidneys. Serum XO has been linked to diabetes, hypertension, liver dysfunction, and cardiovascular diseases. However, limited information exists on the relationship between serum XO activity and MetS. This study aimed to analyze the relationship between XO activity and metabolic syndrome (MetS) and its components in an adult population group in Bangladesh A total of 601 participants aged ≥18 years were included in the study. MetS was defined based on the criteria set by the National Cholesterol Education Program-Adult Treatment Panel III (NCEP-ATP III). Serum XO activity was measured using the enzyme-linked immunosorbent assay (ELISA), while other biochemical parameters were measured using colorimetric methods. The relationship between serum XO and MetS levels was determined through multivariate logistic regression analysis. Serum XO activity was found to be significantly higher in females (6.17 ± 3.77 U/L) as compared to males (4.00 ± 2.77 U/L) (p < 0.001). Furthermore, participants with MetS had significantly higher mean levels of serum XO (5.34 ± 3.39 U/L) than those without MetS (3.86 ± 2.90 U/L) (p < 0.001). The prevalence of MetS and its components, such as blood pressure and blood glucose increased across the XO quartiles (p < 0.001). Regression analysis indicated that XO activity was significantly and independently associated with the prevalence of MetS (at least p < 0.05 for all cases) and its components, including elevated blood pressure, high blood glucose, and low HDL-C (at least p < 0.05 for all cases). In conclusion, individuals with MetS had significantly higher XO levels than those without MetS. Serum XO activity showed an independent association with MetS and some of its components. Therefore, XO might serve as a useful marker of MetS. Prospective studies are needed to determine the underlying mechanisms linking XO and MetS.
Collapse
Affiliation(s)
- Nurshad Ali
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| | - Abu Taher
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Nayeemul Islam
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Nusrat Zaman Sarna
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Farjana Islam
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| |
Collapse
|
2
|
Guo Y, Wei Z, Zhang Y, Cao J. The Effects of trans-10, cis-12 Conjugated Linoleic Acid on the Production Performance of Dairy Cows and the Expression and Transcription Regulation of Lipid Metabolism-Related Genes in Bovine Mammary Epithelial Cells. ACS OMEGA 2024; 9:34161-34174. [PMID: 39130591 PMCID: PMC11308042 DOI: 10.1021/acsomega.4c05532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/13/2024]
Abstract
Dietary fatty acids (FAs) determine the quality of dairy products. The trans-10, cis-12 conjugated linoleic acid (t10c12-CLA) is commonly considered an FA factor leading to milk fat depression syndrome (MFDs) in dairy cow. However, its effect on dairy cow performance and involvement in milk fat metabolism have been insufficiently explored. This study administered 136.17 g/day of rumen-protected CLA (RP-CLA) to dairy cows and found a diminution in milk fat percentage and a trend of increasing milk protein percentage on day 21 postpartum. Lactose content, milk yield, and net energy for lactation were unaffected. In the cell experiments, Oil Red O staining showed a notable increase in lipid droplets. Gene and protein expression analysis showed that 300 μM t10c12-CLA upregulated the expression of CD36, DGAT2, and ADRP, while downregulating the expression of ACACA, FASN, SREBP1, FABP3, FATP3, ACSL4, LPIN1, DGAT1, BTN1A1, XDH, SNAP23, and VAMP4. This provides a possible mechanistic pathway for the contradictory phenomenon of t10c12-CLA reducing milk fat while increasing lipid droplets. Overall, t10c12-CLA, as a long-chain fatty acid, can promote lipid droplet synthesis but may reduce milk fat by inhibiting lipid droplet fusion and secretion, FAs de novo synthesis, and triglyceride biosynthesis.
Collapse
Affiliation(s)
- Yuanyin Guo
- College
of Veterinary Medicine, China Agricultural
University, Beijing 100193, China
| | - Ziang Wei
- College
of Veterinary Medicine, China Agricultural
University, Beijing 100193, China
| | - Yi Zhang
- College
of Animal Science and Technology, China
Agricultural University, Beijing 100193, China
| | - Jie Cao
- College
of Veterinary Medicine, China Agricultural
University, Beijing 100193, China
| |
Collapse
|
3
|
Liu L, Zhang Y, Wang X, Meng H, He Y, Xu X, Xu H, Wei C, Yan X, Tao X, Dang K, Ma P, Guo X, Yang S, Wang J, Li Y. Xanthine oxidase promotes hepatic lipid accumulation through high fat absorption by the small intestine. JHEP Rep 2024; 6:101060. [PMID: 39183731 PMCID: PMC11343055 DOI: 10.1016/j.jhepr.2024.101060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/16/2024] [Accepted: 03/01/2024] [Indexed: 08/27/2024] Open
Abstract
Background & Aims There are no studies investigating the direct effects of elevated xanthine oxidase (XO) on lipid metabolism disorders. Here, we aimed to clarify the role of XO in lipid metabolism in a prospective cohort study and elucidate the underlying mechanisms. Methods The association between serum XO activity and metabolic associated steatotic liver disease (MASLD) was examined in Cox proportional hazard models in a population-based cohort of 3,358 participants (20-75 years) at baseline. In addition, mouse models were used to investigate the underlying mechanism for the association between overexpression of XO and the lipid metabolism disorders. Results After an average 5.8 years of follow up, we found elevated serum XO activity was associated with an increased risk of developing MASLD (hazard ratio [HR]: 2.08; 95% CI: 1.44-3.01; p-trend <0.001). Moreover, serum XO activity was significantly associated with serum triglyceride levels (r = 0.68, p <0.001). We demonstrated that hepatic XO expression increased in liver samples from patients with MASLD. Using tissue-specific Xdh knockin mice, we observed rapid lipid metabolism disorders under a high-fat diet rather than a normal chow diet. We found that XO overexpression promotes the absorption of excess dietary fat in the small intestine. Inhibition of XO also significantly reduced the absorption of fat in mice fed a high-fat diet. Conclusions Our study clarified the association between serum XO activity levels and the development of MASLD in a large population-based prospective cohort study. Furthermore, our mouse models demonstrated that XO overexpression promotes lipid accumulation through mechanisms involving excessive fat absorption by the small intestine. Impact and implications Using a prospective population-based cohort and various animal models, we have identified novel mechanisms by which xanthine oxidase regulates lipid metabolism. Our findings indicate that xanthine oxidase overexpression promotes lipid accumulation by increasing the absorption of excess dietary fat and possibly facilitating lipid transport in vivo. These results could be important for the development of therapies to treat diseases associated with lipid metabolism disorders.
Collapse
Affiliation(s)
- Lin Liu
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Yuntao Zhang
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Xuanyang Wang
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Hongxue Meng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yan He
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Xiaoqing Xu
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Huan Xu
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Chunbo Wei
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Xuemin Yan
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Xinmiao Tao
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Keke Dang
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Pingnan Ma
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Xiaoyu Guo
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Sen Yang
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Jiemei Wang
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Ying Li
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Jin D, Yu X, Wang Q, Chen X, Xiao M, Wang H, Cui Y, Lu W, Ge L, Yao Y, Zhou X, Wu J, Jian S, Yang H, Tao Y, Shen Q. A study of the effect of hypothyroidism during pregnancy on human milk quality based on rheological properties. J Dairy Sci 2024; 107:3400-3412. [PMID: 38135045 DOI: 10.3168/jds.2023-23900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
Hypothyroidism has been found to have an effect on the nutritional composition of human milk during pregnancy. This study aims to explore the combined influence of rheological properties, macronutrient content, particle size, and the zeta potential of milk fat globules, as well as the composition of milk fat globule membrane (MFGM) proteins on the quality of human milk in gestational hypothyroidism. The study revealed that human milk from the group with hypothyroidism during pregnancy (AHM) was less viscoelastic and stable when compared with normal pregnancy group human milk (NHM). Furthermore, the particle size and macronutrient content of NHM were found to be larger than that of AHM. In contrast, the zeta potential of AHM was greater than that of NHM. The sodium dodecyl sulfate-PAGE results disclosed that the composition of MFGM proteins in these 2 groups were generally the same, but the content of AHM was lower than that of NHM. In conclusion, this study confirms that hypothyroidism during pregnancy can have a significant effect on the quality of human milk.
Collapse
Affiliation(s)
- Danping Jin
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Xinyue Yu
- Alberta Institute, Wenzhou Medical University, Wenzhou 325035, China
| | - Qingcheng Wang
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Hangzhou 311199, China
| | - Xi Chen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Min Xiao
- Hangzhou Linping District Maternal and Child Health Care Hospital, Hangzhou, Zhejiang 311113, China
| | - Haifeng Wang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yiwei Cui
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Weibo Lu
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Lijun Ge
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Ying Yao
- Hangzhou Linping District Maternal and Child Health Care Hospital, Hangzhou, Zhejiang 311113, China
| | - Xiaoli Zhou
- Hangzhou Linping District Maternal and Child Health Care Hospital, Hangzhou, Zhejiang 311113, China
| | - Jiahui Wu
- Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Shikai Jian
- Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Huijuan Yang
- College of Standardization, China Jiliang University, Hangzhou 310018, PR China.
| | - Ye Tao
- Hangzhou Linping District Maternal and Child Health Care Hospital, Hangzhou, Zhejiang 311113, China
| | - Qing Shen
- Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China; Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China.
| |
Collapse
|
5
|
Lee HK, Liu C, Hennighausen L. STAT5B SH2 variants disrupt mammary enhancers and the stability of genetic programs during pregnancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592736. [PMID: 38903072 PMCID: PMC11188103 DOI: 10.1101/2024.05.06.592736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
During pregnancy, mammary tissue undergoes expansion and differentiation, leading to lactation, a process regulated by the hormone prolactin through the JAK2-STAT5 pathway. STAT5 activation is key to successful lactation making the mammary gland an ideal experimental system to investigate the impact of human missense mutations on mammary tissue homeostasis. Here, we investigated the effects of two human variants in the STAT5B SH2 domain, which convert tyrosine 665 to either phenylalanine (Y665F) or histidine (Y665H), both shown to activate STAT5B in cell culture. We ported these mutations into the mouse genome and found distinct and divergent functions. Homozygous Stat5bY665H mice failed to form functional mammary tissue, leading to lactation failure, with impaired alveolar development and greatly reduced expression of key differentiation genes. STAT5BY665H failed to recognize mammary enhancers and impeded STAT5A binding. In contrast, mice carrying the Stat5bY665F mutation exhibited abnormal precocious development, accompanied by an early activation of the mammary transcription program and the induction of otherwise silent genetic programs. Physiological adaptation was observed in Stat5bY665H mice as continued exposure to pregnancy hormones led to lactation. In summary, our findings highlight that human STAT5B variants can modulate their response to cytokines and thereby impact mammary homeostasis and lactation.
Collapse
Affiliation(s)
- Hye Kyung Lee
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
6
|
Gonçalves PL, Diniz H, Tavares I, Dória S, Dong J, Kyriss M, Fairbanks L, Oliveira JP. Kidney Failure Secondary to Hereditary Xanthinuria due to a Homozygous Deletion of the XDH Gene in the Absence of Overt Kidney Stone Disease. Nephron Clin Pract 2024; 148:578-583. [PMID: 38527446 DOI: 10.1159/000536248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/08/2024] [Indexed: 03/27/2024] Open
Abstract
Hereditary xanthinuria (HXAN) is a rare metabolic disorder that results from mutations in either the xanthine dehydrogenase (XDH) or the molybdenum cofactor sulfurase genes (MOCOS), respectively defining HXAN type I and type II. Hypouricemia, hypouricosuria, and abnormally high plasma and urine levels of xanthine, causing susceptibility to xanthine nephrolithiasis and deposition of xanthine crystals in tissues, are the metabolic hallmarks of HXAN. Several pathogenic variants in the XDH gene have so far been identified in patients with HXAN type I, but the clinical phenotype associated with the whole deletion of the human XDH gene is unknown. Herein, we report the case of a woman diagnosed with HXAN, whose molecular genetic testing revealed a homozygous microdeletion involving the XDH gene. Distinctive features of her medical history were the diagnosis of arterial hypertension and microalbuminuria at 22 years of age; a single pregnancy at the age of 25, complicated by proteinuria and transient kidney function deterioration in the third trimester; unexplained severe hypouricemia incidentally discovered during pregnancy; inability to breastfeed her newborn daughter due to primary agalactia; chronic kidney disease (CKD) stage 3 diagnosed at age 35; and progression to end-stage kidney disease over the next 12 years. Protocol noninvasive laboratory and imaging investigation was not informative as to the cause of CKD. This is the first description of the clinical phenotype associated with a natural knockout of the human XDH gene. Despite the lack of kidney histopathology data, the striking similarities with the phenotypes exhibited by comparable murine models validate the latter as useful sources of mechanistic insights for the pathogenesis of the human disease, supporting the hypothesis that the absence of xanthine dehydrogenase activity might represent a susceptibility factor for chronic tubulointerstitial nephritis, even in patients without kidney stones.
Collapse
Affiliation(s)
| | - Hugo Diniz
- Department of Nephrology, São João University Hospital Centre, Porto, Portugal
| | - Isabel Tavares
- Department of Nephrology, São João University Hospital Centre, Porto, Portugal
- Group of Research and Development in Nephrology and Infectious Diseases, i3S - Institute for Health Research and Innovation, University of Porto, Porto, Portugal
- Department of Medicine, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Sofia Dória
- Unit of Genetics, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Juan Dong
- PreventionGenetics, LLC, an Exact Sciences Co., Marshfield, Wisconsin, USA
| | - McKenna Kyriss
- PreventionGenetics, LLC, an Exact Sciences Co., Marshfield, Wisconsin, USA
| | - Lynette Fairbanks
- Purine Research Laboratory, Viapath, St Thomas' Hospital, London, UK
| | - João Paulo Oliveira
- Group of Research and Development in Nephrology and Infectious Diseases, i3S - Institute for Health Research and Innovation, University of Porto, Porto, Portugal
- Unit of Genetics, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
- Service of Medical Genetics, São João University Hospital Centre, Porto, Portugal
| |
Collapse
|
7
|
Dissanayake LV, Kravtsova O, Lowe M, McCrorey MK, Van Beusecum JP, Palygin O, Staruschenko A. The presence of xanthine dehydrogenase is crucial for the maturation of the rat kidneys. Clin Sci (Lond) 2024; 138:269-288. [PMID: 38358003 DOI: 10.1042/cs20231144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/24/2024] [Accepted: 02/14/2024] [Indexed: 02/16/2024]
Abstract
The development of the kidney involves essential cellular processes, such as cell proliferation and differentiation, which are led by interactions between multiple signaling pathways. Xanthine dehydrogenase (XDH) catalyzes the reaction producing uric acid in the purine catabolism, which plays a multifaceted role in cellular metabolism. Our previous study revealed that the genetic ablation of the Xdh gene in rats leads to smaller kidneys, kidney damage, decline of renal functions, and failure to thrive. Rats, unlike humans, continue their kidney development postnatally. Therefore, we explored whether XDH plays a critical role in kidney development using SS-/- rats during postnatal development phase. XDH expression was significantly increased from postnatal day 5 to 15 in wild-type but not homozygote rat kidneys. The transcriptomic profile of renal tissue revealed several dysregulated pathways due to the lack of Xdh expression with the remodeling in inflammasome, purinergic signaling, and redox homeostasis. Further analysis suggested that lack of Xdh affects kidney development, likely via dysregulation of epidermal growth factor and its downstream STAT3 signaling. The present study showed that Xdh is essential for kidney maturation. Our data, alongside the previous research, suggests that loss of Xdh function leads to developmental issues, rendering them vulnerable to kidney diseases in adulthood.
Collapse
Affiliation(s)
- Lashodya V Dissanayake
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida; Tampa, FL 33602, U.S.A
| | - Olha Kravtsova
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida; Tampa, FL 33602, U.S.A
| | - Melissa Lowe
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida; Tampa, FL 33602, U.S.A
| | - Marice K McCrorey
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, U.S.A
| | - Justin P Van Beusecum
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, U.S.A
- Ralph H. Johnson Veterans Affairs Healthcare System, Charleston, SC 29403, U.S.A
| | - Oleg Palygin
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, U.S.A
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, U.S.A
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida; Tampa, FL 33602, U.S.A
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL 33602, U.S.A
- James A. Haley Veterans' Hospital, Tampa, FL 33612, U.S.A
| |
Collapse
|
8
|
Martin Carli JF, Dzieciatkowska M, Hernandez TL, Monks J, McManaman JL. Comparative proteomic analysis of human milk fat globules and paired membranes and mouse milk fat globules identifies core cellular systems contributing to mammary lipid trafficking and secretion. Front Mol Biosci 2023; 10:1259047. [PMID: 38169886 PMCID: PMC10759240 DOI: 10.3389/fmolb.2023.1259047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction: Human milk delivers critical nutritional and immunological support to human infants. Milk fat globules (MFGs) and their associated membranes (MFGMs) contain the majority of milk lipids and many bioactive components that contribute to neonatal development and health, yet their compositions have not been fully defined, and the mechanisms responsible for formation of these structures remain incompletely understood. Methods: In this study, we used untargeted mass spectrometry to quantitatively profile the protein compositions of freshly obtained MFGs and their paired, physically separated MFGM fractions from 13 human milk samples. We also quantitatively profiled the MFG protein compositions of 9 pooled milk samples from 18 lactating mouse dams. Results: We identified 2,453 proteins and 2,795 proteins in the majority of human MFG and MFGM samples, respectively, and 1,577 proteins in mouse MFGs. Using paired analyses of protein abundance in MFGMs compared to MFGs (MFGM-MFG; 1% FDR), we identified 699 proteins that were more highly abundant in MFGMs (MFGM-enriched), and 201 proteins that were less abundant in MFGMs (cytoplasmic). MFGM-enriched proteins comprised membrane systems (apical plasma membrane and multiple vesicular membranes) hypothesized to be responsible for lipid and protein secretion and components of membrane transport and signaling systems. Cytoplasmic proteins included ribosomal and proteasomal systems. Comparing abundance between human and mouse MFGs, we found a positive correlation (R 2 = 0.44, p < 0.0001) in the relative abundances of 1,279 proteins that were found in common across species. Discussion: Comparative pathway enrichment analyses between human and mouse samples reveal similarities in membrane trafficking and signaling pathways involved in milk fat secretion and identify potentially novel immunological components of MFGs. Our results advance knowledge of the composition and relative quantities of proteins in human and mouse MFGs in greater detail, provide a quantitative profile of specifically enriched human MFGM proteins, and identify core cellular systems involved in milk lipid secretion.
Collapse
Affiliation(s)
- Jayne F. Martin Carli
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Teri L. Hernandez
- College of Nursing, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jenifer Monks
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - James L. McManaman
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
9
|
Li L, Zhou H, Wang J, Li J, Lyu X, Wang W, Luo C, Huang H, Zhou D, Chen X, Xu L, Li P. Metabolic switch from glycogen to lipid in the liver maintains glucose homeostasis in neonatal mice. J Lipid Res 2023; 64:100440. [PMID: 37826876 PMCID: PMC10568567 DOI: 10.1016/j.jlr.2023.100440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 10/14/2023] Open
Abstract
Neonates strive to acquire energy when the continuous transplacental nutrient supply ceases at birth, whereas milk consumption takes hours to start. Using murine models, we report the metabolic switches in the first days of life, with an unexpected discovery of glucose as the universal fuel essential for neonatal life. Blood glucose quickly drops as soon as birth, but immediately rebounds even before suckling and maintains stable afterward. Meanwhile, neonatal liver undergoes drastic metabolic changes, from extensive glycogenolysis before suckling to dramatically induced fatty acid oxidation (FAO) and gluconeogenesis after milk suckling. Unexpectedly, blocking hepatic glycogenolysis only caused a transient hypoglycemia before milk suckling without causing lethality. Limiting lipid supply in milk (low-fat milk, [LFM]) using Cidea-/- mice, however, led to a chronic and severe hypoglycemia and consequently claimed neonatal lives. While fat replenishment rescued LFM-caused neonatal lethality, the rescue effects were abolished by blocking FAO or gluconeogenesis, pointing to a funneling of lipids and downstream metabolites into glucose as the essential fuel. Finally, glucose administration also rescued LFM-caused neonatal lethality, independent on FAO or gluconeogenesis. Therefore, our results show that the liver works as an energy conversion center to maintain blood glucose homeostasis in neonates, providing theoretical basis for managing infant hypoglycemia.
Collapse
Affiliation(s)
- Liangkui Li
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China
| | - Haoyu Zhou
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jinhui Wang
- The Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Jiaxin Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xuchao Lyu
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wenshan Wang
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Chengting Luo
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - He Huang
- The Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Dawang Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaowei Chen
- College of Future Technology, Peking University, Beijing, China
| | - Li Xu
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China.
| | - Peng Li
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China; The Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Fini MA, Monks JA, Li M, Gerasimovskaya E, Paucek P, Wang K, Frid MG, Pugliese SC, Bratton D, Yu YR, Irwin D, Karin M, Wright RM, Stenmark KR. Macrophage Xanthine Oxidoreductase Links LPS Induced Lung Inflammatory Injury to NLRP3 Inflammasome Expression and Mitochondrial Respiration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.550055. [PMID: 37502951 PMCID: PMC10370167 DOI: 10.1101/2023.07.21.550055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) remain poorly treated inflammatory lung disorders. Both reactive oxygen species (ROS) and macrophages are involved in the pathogenesis of ALI/ARDS. Xanthine oxidoreductase (XOR) is an ROS generator that plays a central role in the inflammation that contributes to ALI. To elucidate the role of macrophage-specific XOR in endotoxin induced ALI, we developed a conditional myeloid specific XOR knockout in mice. Myeloid specific ablation of XOR in LPS insufflated mice markedly attenuated lung injury demonstrating the essential role of XOR in this response. Macrophages from myeloid specific XOR knockout exhibited loss of inflammatory activation and increased expression of anti-inflammatory genes/proteins. Transcriptional profiling of whole lung tissue of LPS insufflated XOR fl/fl//LysM-Cre mice demonstrated an important role for XOR in expression and activation of the NLRP3 inflammasome and acquisition of a glycolytic phenotype by inflammatory macrophages. These results identify XOR as an unexpected link between macrophage redox status, mitochondrial respiration and inflammatory activation.
Collapse
|
11
|
Lopdell TJ. Using QTL to Identify Genes and Pathways Underlying the Regulation and Production of Milk Components in Cattle. Animals (Basel) 2023; 13:ani13050911. [PMID: 36899768 PMCID: PMC10000085 DOI: 10.3390/ani13050911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Milk is a complex liquid, and the concentrations of many of its components are under genetic control. Many genes and pathways are known to regulate milk composition, and the purpose of this review is to highlight how the discoveries of quantitative trait loci (QTL) for milk phenotypes can elucidate these pathways. The main body of this review focuses primarily on QTL discovered in cattle (Bos taurus) as a model species for the biology of lactation, and there are occasional references to sheep genetics. The following section describes a range of techniques that can be used to help identify the causative genes underlying QTL when the underlying mechanism involves the regulation of gene expression. As genotype and phenotype databases continue to grow and diversify, new QTL will continue to be discovered, and although proving the causality of underlying genes and variants remains difficult, these new data sets will further enhance our understanding of the biology of lactation.
Collapse
|
12
|
Pan S, Guo Y, Yu W, Hong F, Qiao X, Zhang J, Xu P, Zhai Y. Environmental chemical TCPOBOP disrupts milk lipid homeostasis during pregnancy and lactation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114463. [PMID: 38321682 DOI: 10.1016/j.ecoenv.2022.114463] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 02/08/2024]
Abstract
Humans are exposed to different kinds of environmental contaminants or drugs throughout their lifetimes. The widespread presence of these compounds has raised concerns about the consequent adverse effects on lactating women. The constitutive androstane receptor (CAR, Nr1i3) is known as a xenobiotic sensor for environmental pollution or drugs. In this study, the model environmental chemical 1, 4-bis [2-(3, 5-dichloropyridyloxy)] benzene, TCPOBOP (TC), which is a highly specific agonist of CAR, was used to investigate the effects of exogenous exposure on lactation function and offspring health in mice. The results revealed that TC exposure decreased the proliferation of mammary epithelial cells during pregnancy. This deficiency further compromised lobular-alveolar structures, resulting in alveolar cell apoptosis, as well as premature stoppage of the lactation cycle and aberrant lactation. Furthermore, TC exposure significantly altered the size and number of milk lipid droplets, suggesting that TC exposure inhibits milk lipid synthesis. Additionally, TC exposure interfered with the milk lipid metabolism network, resulting in the inability of TC-exposed mice to efficiently secrete nutrients and feed their offspring. These findings demonstrated that restricted synthesis and secretion of milk lipids would indirectly block mammary gland form and function, which explained the possible reasons for lactation failure and retarded offspring growth.
Collapse
Affiliation(s)
- Shijia Pan
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Yuan Guo
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Wen Yu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Fan Hong
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Xiaoxiao Qiao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Jia Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Pengfei Xu
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Yonggong Zhai
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
13
|
Kusano T, Nishino T, Okamoto K, Hille R, Nishino T. The mechanism and significance of the conversion of xanthine dehydrogenase to xanthine oxidase in mammalian secretory gland cells. Redox Biol 2022; 59:102573. [PMID: 36525890 PMCID: PMC9760657 DOI: 10.1016/j.redox.2022.102573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The conversion of xanthine dehydrogenase (XDH) to xanthine oxidase (XO) occurs only in mammalian species. In fresh bovine milk, the enzyme exists predominantly as the oxidase form, in contrast to various normal organs where it is found primarily as the dehydrogenase: the mechanism of conversion to the oxidase in milk remains obscure. A systematic search for the essential factors for conversion from XDH to XO has been performed within fresh bovine milk using the highly purified dehydrogenase form after removal endogenous oxidase form by fractionation analysis. We find that conversion to the oxidase form requires four components under air: lactoperoxidase (LPO), XDH, SCN-, and substrate hypoxanthine or xanthine; the contribution of sulfhydryl oxidase appears to be minor. Disulfide bond formation between Cys-535 and Cys-995 is principally involved in the conversion, consistent with the result obtained from previous work with transgenic mice. In vitro reconstitution of LPO and SCN- results in synergistic conversion of the dehydrogenase to the oxidase the presence of xanthine, indicating the conversion is autocatalytic. Milk from an LPO knockout mouse contains a significantly greater proportion of the dehydrogenase form of the enzyme, although some oxidase form is also present, indicating that LPO contributes principally to the conversion, but that sulfhydryl oxidase (SO) may also be involved to a minor extent. All the components XDH/LPO/SCN- are necessary to inhibit bacterial growth in the presence of xanthine through disulfide bond formation in bacterial protein(s) required for replication, as part of an innate immunity system in mammals. Human GTEx Data suggest that mRNA of XDH and LPO are highly co-expressed in the salivary gland, mammary gland, mucosa of the airway and lung alveoli, and we have confirmed these human GTEx Data experimentally in mice. We discuss the possible roles of these components in the propagation of SARS-CoV-2 in these human cell types.
Collapse
Affiliation(s)
- Teruo Kusano
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-Ku, Tokyo, Japan
| | - Tomoko Nishino
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-Ku, Tokyo, Japan
| | - Ken Okamoto
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-Ku, Tokyo, Japan
| | - Russ Hille
- Department of Biochemistry, University of California, Riverside, USA
| | - Takeshi Nishino
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-Ku, Tokyo, Japan.
| |
Collapse
|
14
|
Monks J, Orlicky DJ, Libby AE, Dzieciatkowska M, Ladinsky MS, McManaman JL. Perilipin-2 promotes lipid droplet-plasma membrane interactions that facilitate apocrine lipid secretion in secretory epithelial cells of the mouse mammary gland. Front Cell Dev Biol 2022; 10:958566. [PMID: 36158190 PMCID: PMC9500548 DOI: 10.3389/fcell.2022.958566] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022] Open
Abstract
Secretory epithelial cells (sMEC) in mammary glands of lactating animals secrete lipids by a novel apocrine mechanism in which cytoplasmic lipid droplets (LD) contact and are enveloped by elements of the apical plasma membrane (APM) before being released into the lumen of the gland as membrane bound structures. The molecular properties of LD-APM contacts and the mechanisms regulating LD membrane envelopment and secretion are not fully understood. Perilipin-2 (Plin2) is a constitutive LD protein that has been proposed to tether LD to the APM through formation of a complex with the transmembrane protein, butyrophilin1a1 (BTN) and the redox enzyme, xanthine oxidoreductase (XOR). Using mice lacking Plin2 and physiological inhibition of apocrine lipid secretion, we demonstrate that LD-APM contact and envelopment are mechanistically distinct steps that they are differentially regulated by Plin2 and independent of LD secretion. We find that Plin2 is not required for formation of LD-APM contacts. However, it increases the percentage of LD that contact the APM and mediates enlargement of the LD-APM contact zone as LD undergo membrane envelopment. The effects of Plin2 LD-APM interactions are associated with increased abundances of BTN, XOR and Cidea, which are implicated as mediators of LD-APM contact formation, on membranes surrounding secreted LD, and with promotion of glycocalyx remodeling at LD-APM contact sites. We propose that Plin2 does not directly mediate contact between LD and the APM but acts by enhancing molecular interactions that stabilize LD-APM contacts and govern membrane envelopment of LD during apocrine lipid secretion. Plin2 does not appear to significantly affect the lipid content of milk in fully lactating animals, but it does increase lipid secretion at the onset of lactation in primaparous dams, which suggest a role in facilitating apocrine lipid secretion in sMEC during their initial transition to a secretory phenotype.
Collapse
Affiliation(s)
- Jenifer Monks
- Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Graduate Program in Integrated Physiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - David J. Orlicky
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Andrew E. Libby
- Graduate Program in Integrated Physiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Monica Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Mark S. Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - James L. McManaman
- Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Graduate Program in Integrated Physiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
15
|
Dissanayake LV, Zietara A, Levchenko V, Spires DR, Angulo MB, El-Meanawy A, Geurts AM, Dwinell MR, Palygin O, Staruschenko A. Lack of xanthine dehydrogenase leads to a remarkable renal decline in a novel hypouricemic rat model. iScience 2022; 25:104887. [PMID: 36039296 PMCID: PMC9418856 DOI: 10.1016/j.isci.2022.104887] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/20/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022] Open
Abstract
Uric acid (UA) is the final metabolite in purine catabolism in humans. Previous studies have shown that the dysregulation of UA homeostasis is detrimental to cardiovascular and kidney health. The Xdh gene encodes for the Xanthine Oxidoreductase enzyme group, responsible for producing UA. To explore how hypouricemia can lead to kidney damage, we created a rat model with the genetic ablation of the Xdh gene on the Dahl salt-sensitive rat background (SSXdh−/−). SSXdh−/− rats lacked UA and exhibited impairment in growth and survival. This model showed severe kidney injury with increased interstitial fibrosis, glomerular damage, crystal formation, and an inability to control electrolyte balance. Using a multi-omics approach, we highlighted that lack of Xdh leads to increased oxidative stress, renal cell proliferation, and inflammation. Our data reveal that the absence of Xdh leads to kidney damage and functional decline by the accumulation of purine metabolites in the kidney and increased oxidative stress. A novel rat model of hypouricemia was created by the gene ablation of the Xdh gene The SSXdh-/- rat showed a failure to thrive, kidney injury, and functional decline Multi-omics revealed increased inflammation and oxidative stress in SSXdh-/- rats
Collapse
|
16
|
Glycoproteomic and Lipidomic Characterization of Industrially Produced Whey Protein Phospholipid Concentrate with Emphasis on Antimicrobial Xanthine Oxidase, Oxylipins and Small Milk Fat Globules. DAIRY 2022. [DOI: 10.3390/dairy3020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This work investigates the composition of whey protein phospholipid concentrate (WPPC), an underutilized dairy stream, and reveals that it is a source of many bioactive compounds that can benefit the immune system and gut health. Our glycoproteomics approach uncovered that proteins derived from the milk fat globule membrane (MFGM) represent 23% of the total protein relative abundance and identified 85 N-glycans. Released sialic acid, an additional marker of glycosylation, ranged from 1.2 to 2% of the total weight. Xanthine oxidase, a glycosylated marker of MFG bioactivity, was found in high abundance and displayed higher antimicrobial activity than bovine milk, despite its similar fat and solids content. An average MFG diameter of 2.64 ± 0.01 µm was found in liquid WPPC, compared to 4.78 ± 0.13 µm in bovine milk, which likely explains the unusually high presence of glycosylated membrane-bound proteins and phospholipids, whose total fatty acids accounted for 20% of the WPPC total fatty acid pool. Free and bound oxylipins (mainly derived from linoleic acid) were also identified, together with other less abundant anti-inflammatory lipid mediators derived from eicosapentaenoic acid and docosahexaenoic acid. Our study demonstrates that WPPC represents a promising starting material for bioactive compound extraction and a functional vehicle for the delivery of small MFGs.
Collapse
|
17
|
Dai W, White R, Liu J, Liu H. Organelles coordinate milk production and secretion during lactation: Insights into mammary pathologies. Prog Lipid Res 2022; 86:101159. [PMID: 35276245 DOI: 10.1016/j.plipres.2022.101159] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 12/15/2022]
Abstract
The mammary gland undergoes a spectacular series of changes during its development and maintains a remarkable capacity to remodel and regenerate during progression through the lactation cycle. This flexibility of the mammary gland requires coordination of multiple processes including cell proliferation, differentiation, regeneration, stress response, immune activity, and metabolic changes under the control of diverse cellular and hormonal signaling pathways. The lactating mammary epithelium orchestrates synthesis and apical secretion of macromolecules including milk lipids, milk proteins, and lactose as well as other minor nutrients that constitute milk. Knowledge about the subcellular compartmentalization of these metabolic and signaling events, as they relate to milk production and secretion during lactation, is expanding. Here we review how major organelles (endoplasmic reticulum, Golgi apparatus, mitochondrion, lysosome, and exosome) within mammary epithelial cells collaborate to initiate, mediate, and maintain lactation, and how study of these organelles provides insight into options to maintain mammary/breast health.
Collapse
Affiliation(s)
- Wenting Dai
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Robin White
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Jianxin Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hongyun Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
18
|
Lu Y, Zhou T, Xu C, Wang R, Feng D, Li J, Wang X, Kong Y, Hu G, Kong X, Lu P. Occludin is a target of Src kinase and promotes lipid secretion by binding to BTN1a1 and XOR. PLoS Biol 2022; 20:e3001518. [PMID: 35041644 PMCID: PMC8797263 DOI: 10.1371/journal.pbio.3001518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 01/28/2022] [Accepted: 12/19/2021] [Indexed: 11/29/2022] Open
Abstract
Lipid droplets (LDs) have increasingly been recognized as an essential organelle for eukaryotes. Although the biochemistry of lipid synthesis and degradation is well characterized, the regulation of LD dynamics, including its formation, maintenance, and secretion, is poorly understood. Here, we report that mice lacking Occludin (Ocln) show defective lipid metabolism. We show that LDs were larger than normal along its biogenesis and secretion pathway in Ocln null mammary cells. This defect in LD size control did not result from abnormal lipid synthesis or degradation; rather, it was because of secretion failure during the lactation stage. We found that OCLN was located on the LD membrane and was bound to essential regulators of lipid secretion, including BTN1a1 and XOR, in a C-terminus–dependent manner. Finally, OCLN was a phosphorylation target of Src kinase, whose loss causes lactation failure. Together, we demonstrate that Ocln is a downstream target of Src kinase and promotes LD secretion by binding to BTN1a1 and XOR. Lipid droplets are an essential eukaryotic organelle, but how they are secreted has remained unclear. This study shows that the tight junction protein Occludin is a phosphorylation target of Src kinase; Occludin binds to BTN1A1 and XOR to facilitate lipid droplet secretion in mammary epithelial cells.
Collapse
Affiliation(s)
- Yunzhe Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Tao Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chongshen Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rui Wang
- Molecular Imaging Core Facility, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Deyi Feng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jiyong Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xu Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yu Kong
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Guohong Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiangyin Kong
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pengfei Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- * E-mail:
| |
Collapse
|
19
|
Kozlov AP. Mammalian tumor-like organs. 1. The role of tumor-like normal organs and atypical tumor organs in the evolution of development (carcino-evo-devo). Infect Agent Cancer 2022; 17:2. [PMID: 35012580 PMCID: PMC8751115 DOI: 10.1186/s13027-021-00412-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/23/2021] [Indexed: 12/24/2022] Open
Abstract
Background Earlier I hypothesized that hereditary tumors might participate in the evolution of multicellular organisms. I formulated the hypothesis of evolution by tumor neofunctionalization, which suggested that the evolutionary role of hereditary tumors might consist in supplying evolving multicellular organisms with extra cell masses for the expression of evolutionarily novel genes and the origin of new cell types, tissues, and organs. A new theory—the carcino-evo-devo theory—has been developed based on this hypothesis. Main text My lab has confirmed several non-trivial predictions of this theory. Another non-trivial prediction is that evolutionarily new organs if they originated from hereditary tumors or tumor-like structures, should recapitulate some tumor features in their development. This paper reviews the tumor-like features of evolutionarily novel organs. It turns out that evolutionarily new organs such as the eutherian placenta, mammary gland, prostate, the infantile human brain, and hoods of goldfishes indeed have many features of tumors. I suggested calling normal organs, which have many tumor features, the tumor-like organs. Conclusion Tumor-like organs might originate from hereditary atypical tumor organs and represent the part of carcino-evo-devo relationships, i.e., coevolution of normal and neoplastic development. During subsequent evolution, tumor-like organs may lose the features of tumors and the high incidence of cancer and become normal organs without (or with almost no) tumor features.
Collapse
Affiliation(s)
- A P Kozlov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 3, Gubkina Street, Moscow, Russia, 117971. .,Peter the Great St. Petersburg Polytechnic University, 29, Polytekhnicheskaya Street, St. Petersburg, Russia, 195251.
| |
Collapse
|
20
|
Jeong J, Kadegowda AKG, Meyer TJ, Jenkins LM, Dinan JC, Wysolmerski JJ, Weigert R, Mather IH. The butyrophilin 1a1 knockout mouse revisited: Ablation of Btn1a1 leads to concurrent cell death and renewal in the mammary epithelium during lactation. FASEB Bioadv 2021; 3:971-997. [PMID: 34938960 PMCID: PMC8664049 DOI: 10.1096/fba.2021-00059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 01/28/2023] Open
Abstract
Butyrophilin 1A1 (BTN1A1) is implicated in the secretion of lipid droplets from mammary epithelial cells as a membrane receptor, which forms a secretion complex with the redox enzyme, xanthine oxidoreductase (XDH). The first evidence that BTN1A1 functions in this process was the generation of Btn1a1 -/- mouse lines, in which lipid secretion was disrupted and large unstable droplets were released into alveolar spaces with fragmented surface membranes. We have revisited one of these mutant mouse lines using RNAseq and proteomic analysis to assess the consequences of ablating the Btn1a1 gene on the expression of other genes and proteins. Disruption of intact Btn1a1 protein expression led to a large build-up of Xdh in the cytoplasm, induction of acute phase response genes and Lif-activation of Stat3 phosphorylation. At peak lactation, approx. 10% of the cells were dying, as assessed by TUNEL-analysis of nuclear DNA. Possible cell death pathways included expression of caspase 8 and activated caspase 3, autophagy, Slc5a8-mediated inactivation of survivin (Birc5), and pStat3-mediated lysosomal lysis, the latter of which is the principal death route in involuting wild type cells. Milk secretion was prolonged by renewal of the secretory epithelium, as evidenced by the upregulation of Ki67 in approx. 10% of cell nuclei and expression of cyclins and Fos/Jun. These data highlight the plasticity of the mammary epithelium and the importance of functional BTN1A1 expression for maintenance of terminally differentiated secretory cells and optimal milk production throughout lactation.
Collapse
Affiliation(s)
- Jaekwang Jeong
- Department of Animal and Avian SciencesUniversity of MarylandCollege ParkMarylandUSA
- Present address:
Section of Endocrinology and MetabolismDepartment of Internal MedicineYale University School of MedicineNew HavenConnecticut06520USA
| | - Anil K. G. Kadegowda
- Department of Animal and Avian SciencesUniversity of MarylandCollege ParkMarylandUSA
- Present address:
Department of Animal SciencesUniversity of Agricultural Sciences DharwadHubliKarnataka580005India
| | - Thomas J. Meyer
- CCR Collaborative Bioinformatics ResourceNational Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
- Advanced Biomedical Computational ScienceFrederick National Laboratory for Cancer ResearchFrederickMarylandUSA
| | - Lisa M. Jenkins
- Laboratory of Cell BiologyNational Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Jerry C. Dinan
- Laboratory of Cell BiologyNational Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - John J. Wysolmerski
- Department of Internal MedicineYale University School of MedicineNew HavenConnecticutUSA
| | - Roberto Weigert
- Laboratory of Cellular and Molecular BiologyCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Ian H. Mather
- Department of Animal and Avian SciencesUniversity of MarylandCollege ParkMarylandUSA
- Laboratory of Cellular and Molecular BiologyCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
21
|
Evolution of milk oligosaccharides: Origin and selectivity of the ratio of milk oligosaccharides to lactose among mammals. Biochim Biophys Acta Gen Subj 2021; 1866:130012. [PMID: 34536507 DOI: 10.1016/j.bbagen.2021.130012] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND The carbohydrate fraction of mammalian milk is constituted of lactose and oligosaccharides, most of which contain a lactose unit at their reducing ends. Although lactose is the predominant saccharide in the milk of most eutherians, oligosaccharides significantly predominate over lactose in the milk of monotremes and marsupials. SCOPE OF REVIEW This review describes the most likely process by which lactose and milk oligosaccharides were acquired during the evolution of mammals and the mechanisms by which these saccharides are digested and absorbed by the suckling neonates. MAJOR CONCLUSIONS During the evolution of mammals, c-type lysozyme evolved to α-lactalbumin. This permitted the biosynthesis of lactose by modulating the substrate specificity of β4galactosyltransferase 1, thus enabling the concomitant biosynthesis of milk oligosaccharides through the activities of several glycosyltransferases using lactose as an acceptor. In most eutherian mammals the digestion of lactose to glucose and galactose is achieved through the action of intestinal lactase (β-galactosidase), which is located within the small intestinal brush border. This enzyme, however, is absent in neonatal monotremes and macropod marsupials. It has therefore been proposed that in these species the absorption of milk oligosaccharides is achieved by pinocytosis or endocytosis, after which digestion occurs through the actions of several lysosomal acid glycosidases. This process would enable the milk oligosaccharides of monotremes and marsupials to be utilized as a significant energy source for the suckling neonates. GENERAL SIGNIFICANCE The evolution and significance of milk oligosaccharides is discussed in relation to the evolution of mammals.
Collapse
|
22
|
Influence of xanthine oxidoreductase inhibitor, topiroxostat, on body weight of diabetic obese mice. Nutr Diabetes 2021; 11:12. [PMID: 33850106 PMCID: PMC8044114 DOI: 10.1038/s41387-021-00155-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/17/2021] [Accepted: 03/30/2021] [Indexed: 11/09/2022] Open
Abstract
Plasma xanthine oxidoreductase (XOR) activity is high in metabolic disorders such as diabetic mellitus, obesity, or overweight. Thus, this study investigated whether the XOR inhibitor, topiroxostat, affected body weight. Male db/db mice were fed standard diets with or without topiroxostat for 4 weeks. Body weight and food intake were constantly monitored, along with monitoring plasma biochemical markers, including insulin and XOR activity. Additionally, hepatic hypoxanthine and XOR activity were also documented. Single regression analysis was performed to determine the mechanism. Topiroxostat treatment suppressed weight gain relative to the vehicle without any impact on food intake. However, the weight of fat pads and hepatic and muscle triglyceride content did not change. Topiroxostat decreased the plasma uric acid and increased hepatic hypoxanthine in response to the inhibition of XOR activity. Plasma ketone body and free fatty acid were also increased. Moreover, fat weight was weakly associated with plasma XOR activity in the diabetic state and was negatively associated with ketone body by topiroxostat. These results suggested that topiroxostat amplified the burning of lipids and the salvage pathway, resulting in predisposing the body toward catabolism. The inhibition of plasma XOR activity may contribute to weight loss.
Collapse
|
23
|
Shibuya S, Watanabe K, Ozawa Y, Shimizu T. Xanthine Oxidoreductase-Mediated Superoxide Production Is Not Involved in the Age-Related Pathologies in Sod1-Deficient Mice. Int J Mol Sci 2021; 22:3542. [PMID: 33805516 PMCID: PMC8037342 DOI: 10.3390/ijms22073542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/21/2022] Open
Abstract
Reactive oxygen species (ROS) metabolism is regulated by the oxygen-mediated enzyme reaction and antioxidant mechanism within cells under physiological conditions. Xanthine oxidoreductase (XOR) exhibits two inter-convertible forms (xanthine oxidase (XO) and xanthine dehydrogenase (XDH)), depending on the substrates. XO uses oxygen as a substrate and generates superoxide (O2•-) in the catalytic pathway of hypoxanthine. We previously showed that superoxide dismutase 1 (SOD1) loss induced various aging-like pathologies via oxidative damage due to the accumulation of O2•- in mice. However, the pathological contribution of XO-derived O2•- production to aging-like tissue damage induced by SOD1 loss remains unclear. To investigate the pathological significance of O2•- derived from XOR in Sod1-/- mice, we generated Sod1-null and XO-type- or XDH-type-knock-in (KI) double-mutant mice. Neither XO-type- nor XDH-type KI mutants altered aging-like phenotypes, such as anemia, fatty liver, muscle atrophy, and bone loss, in Sod1-/- mice. Furthermore, allopurinol, an XO inhibitor, or apocynin, a nicotinamide adenine dinucleotide phosphate oxidase (NOX) inhibitor, failed to improve aging-like tissue degeneration and ROS accumulation in Sod1-/- mice. These results showed that XOR-mediated O2•- production is relatively uninvolved in the age-related pathologies in Sod1-/- mice.
Collapse
Affiliation(s)
- Shuichi Shibuya
- Aging Stress Response Research Project Team, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan; (S.S.); (K.W.)
| | - Kenji Watanabe
- Aging Stress Response Research Project Team, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan; (S.S.); (K.W.)
| | - Yusuke Ozawa
- Department of Endocrinology, Hematology, and Geriatrics, Chiba University Graduate School of Medicine, Chiba, Chiba 260-8670, Japan;
| | - Takahiko Shimizu
- Aging Stress Response Research Project Team, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan; (S.S.); (K.W.)
- Department of Endocrinology, Hematology, and Geriatrics, Chiba University Graduate School of Medicine, Chiba, Chiba 260-8670, Japan;
| |
Collapse
|
24
|
Hao Y, Lee HJ, Baraboo M, Burch K, Maurer T, Somarelli JA, Conant GC. Baby Genomics: Tracing the Evolutionary Changes That Gave Rise to Placentation. Genome Biol Evol 2021; 12:35-47. [PMID: 32053193 PMCID: PMC7144826 DOI: 10.1093/gbe/evaa026] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2020] [Indexed: 12/12/2022] Open
Abstract
It has long been challenging to uncover the molecular mechanisms behind striking morphological innovations such as mammalian pregnancy. We studied the power of a robust comparative orthology pipeline based on gene synteny to address such problems. We inferred orthology relations between human genes and genes from each of 43 other vertebrate genomes, resulting in ∼18,000 orthologous pairs for each genome comparison. By identifying genes that first appear coincident with origin of the placental mammals, we hypothesized that we would define a subset of the genome enriched for genes that played a role in placental evolution. We thus pinpointed orthologs that appeared before and after the divergence of eutherian mammals from marsupials. Reinforcing previous work, we found instead that much of the genetic toolkit of mammalian pregnancy evolved through the repurposing of preexisting genes to new roles. These genes acquired regulatory controls for their novel roles from a group of regulatory genes, many of which did in fact originate at the appearance of the eutherians. Thus, orthologs appearing at the origin of the eutherians are enriched in functions such as transcriptional regulation by Krüppel-associated box-zinc-finger proteins, innate immune responses, keratinization, and the melanoma-associated antigen protein class. Because the cellular mechanisms of invasive placentae are similar to those of metastatic cancers, we then used our orthology inferences to explore the association between placenta invasion and cancer metastasis. Again echoing previous work, we find that genes that are phylogenetically older are more likely to be implicated in cancer development.
Collapse
Affiliation(s)
- Yue Hao
- Bioinformatics Research Center, North Carolina State University
| | - Hyuk Jin Lee
- Division of Biological Sciences, University of Missouri-Columbia
| | | | | | | | - Jason A Somarelli
- Duke Cancer Institute, Duke University Medical Center.,Department of Medicine, Duke University School of Medicine
| | - Gavin C Conant
- Bioinformatics Research Center, North Carolina State University.,Division of Animal Sciences, University of Missouri-Columbia.,Program in Genetics, North Carolina State University.,Department of Biological Sciences, North Carolina State University
| |
Collapse
|
25
|
Ishii T, Kumagae T, Wakui H, Urate S, Tanaka S, Abe E, Suzuki T, Yamaji T, Kinguchi S, Kobayashi R, Haruhara K, Nakamura T, Kobayashi S, Tamura K. Tissue xanthine oxidoreductase activity in a mouse model of aristolochic acid nephropathy. FEBS Open Bio 2021; 11:507-518. [PMID: 33448693 PMCID: PMC7876505 DOI: 10.1002/2211-5463.13083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 12/02/2020] [Accepted: 12/24/2020] [Indexed: 01/09/2023] Open
Abstract
Xanthine oxidoreductase (XOR) is a critical enzyme in purine metabolism and uric acid production, and its levels are reported to increase during stress, thereby promoting organ damage. Herein, we investigated the activity of XOR in a mouse model of aristolochic acid I (AA)-induced nephropathy, a type of nephrotoxic chronic kidney disease (CKD). A persistent decrease in renal function was observed in mice up to 4 weeks after 4 weeks of AA (2.5 mg kg-1 ) administration. Renal histology revealed an increase in tubular interstitial fibrosis over time. Although AA administration did not change XOR activity in the plasma, heart, liver, or muscle, XOR activity was persistently increased in renal tissue. Our results suggest that the renal tissue-specific increase in XOR activity is involved in the progression of tubulo-interstitial disorders, specifically fibrosis.
Collapse
Affiliation(s)
- Takeo Ishii
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Kanagawa, Japan.,Department of Medicine, Yokohama Daiichi Hospital, Kanagawa, Japan
| | - Tomohiro Kumagae
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Kanagawa, Japan.,Department of General Internal Medicine, Shonan Kamakura General Hospital, Kanagawa, Japan
| | - Hiromichi Wakui
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Shingo Urate
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Shohei Tanaka
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Eriko Abe
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Toru Suzuki
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Takahiro Yamaji
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Sho Kinguchi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Ryu Kobayashi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Kotaro Haruhara
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Takashi Nakamura
- Medical Affairs Department, Sanwa Kagaku Kenkusho., Co., Ltd, Aichi, Japan
| | - Shuzo Kobayashi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Kanagawa, Japan.,Department of General Internal Medicine, Shonan Kamakura General Hospital, Kanagawa, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| |
Collapse
|
26
|
Cayre S, Faraldo MM, Bardin S, Miserey-Lenkei S, Deugnier MA, Goud B. RAB6 GTPase regulates mammary secretory function by controlling the activation of STAT5. Development 2020; 147:dev.190744. [PMID: 32895290 PMCID: PMC7561474 DOI: 10.1242/dev.190744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
Abstract
The Golgi-associated RAB GTPases, RAB6A and RAB6A', regulate anterograde and retrograde transport pathways from and to the Golgi. In vitro, RAB6A/A' control several cellular functions including cell division, migration, adhesion and polarity. However, their role remains poorly described in vivo Here, we generated BlgCre; Rab6a F/F mice presenting a specific deletion of Rab6a in the mammary luminal secretory lineage during gestation and lactation. Rab6a loss severely impaired the differentiation, maturation and maintenance of the secretory tissue, compromising lactation. The mutant epithelium displayed a decreased activation of STAT5, a key regulator of the lactogenic process primarily governed by prolactin. Data obtained with a mammary epithelial cell line suggested that defective STAT5 activation might originate from a perturbed transport of the prolactin receptor, altering its membrane expression and signaling cascade. Despite the major functional defects observed upon Rab6a deletion, the polarized organization of the mammary epithelial bilayer was preserved. Altogether, our data reveal a crucial role for RAB6A/A' in the lactogenic function of the mammary gland and suggest that the trafficking pathways controlled by RAB6A/A' depend on cell-type specialization and tissue context.
Collapse
Affiliation(s)
- Surya Cayre
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, Paris F-75005, France
| | - Marisa M Faraldo
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, Paris F-75005, France.,INSERM, Paris F-75013, France
| | - Sabine Bardin
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, Paris F-75005, France
| | - Stéphanie Miserey-Lenkei
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, Paris F-75005, France
| | - Marie-Ange Deugnier
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, Paris F-75005, France .,INSERM, Paris F-75013, France
| | - Bruno Goud
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, Paris F-75005, France
| |
Collapse
|
27
|
Abstract
Milk-secreting epithelial cells of the mammary gland are functionally specialized for the synthesis and secretion of large quantities of neutral lipids, a major macronutrient in milk from most mammals. Milk lipid synthesis and secretion are hormonally regulated and secretion occurs by a unique apocrine mechanism. Neutral lipids are synthesized and packaged into perilipin-2 (PLIN2) coated cytoplasmic lipid droplets within specialized cisternal domains of rough endoplasmic reticulum (ER). Continued lipid synthesis by ER membrane enzymes and lipid droplet fusion contribute to the large size of these cytoplasmic lipid droplets (5–15 μm in diameter). Lipid droplets are directionally trafficked within the epithelial cell to the apical plasma membrane. Upon contact, a molecular docking complex assembles to tether the droplet to the plasma membrane and facilitate its membrane envelopment. This docking complex consists of the transmembrane protein, butyrophilin, the cytoplasmic housekeeping protein, xanthine dehydrogenase/oxidoreductase, the lipid droplet coat proteins, PLIN2, and cell death-inducing DFFA-like effector A. Interactions of mitochondria, Golgi, and secretory vesicles with docked lipid droplets have also been reported and may supply membrane phospholipids, energy, or scaffold cytoskeleton for apocrine secretion of the lipid droplet. Final secretion of lipid droplets into the milk occurs in response to oxytocin-stimulated contraction of myoepithelial cells that surround milk-secreting epithelial cells. The mechanistic details of lipid droplet release are unknown at this time. The final secreted milk fat globule consists of a triglyceride core coated with a phospholipid monolayer and various coat proteins, fully encased in a membrane bilayer.
Collapse
Affiliation(s)
- Jenifer Monks
- Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mark S Ladinsky
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - James L McManaman
- Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
28
|
Brink LR, Herren AW, McMillen S, Fraser K, Agnew M, Roy N, Lönnerdal B. Omics analysis reveals variations among commercial sources of bovine milk fat globule membrane. J Dairy Sci 2020; 103:3002-3016. [DOI: 10.3168/jds.2019-17179] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/01/2019] [Indexed: 11/19/2022]
|
29
|
Gao J, Liu X, Zhang B, Mao Q, Zhang Z, Zou Q, Dai X, Wang S. Design, synthesis and biological evaluation of 1-alkyl-5/6-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)-1H-indole-3-carbonitriles as novel xanthine oxidase inhibitors. Eur J Med Chem 2020; 190:112077. [DOI: 10.1016/j.ejmech.2020.112077] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/11/2020] [Accepted: 01/16/2020] [Indexed: 12/17/2022]
|
30
|
Zhao L, Ke H, Xu H, Wang GD, Zhang H, Zou L, Xiang S, Li M, Peng L, Zhou M, Li L, Ao L, Yang Q, Shen CKJ, Yi P, Wang L, Jiao B. TDP-43 facilitates milk lipid secretion by post-transcriptional regulation of Btn1a1 and Xdh. Nat Commun 2020; 11:341. [PMID: 31953403 PMCID: PMC6969145 DOI: 10.1038/s41467-019-14183-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 12/13/2019] [Indexed: 12/31/2022] Open
Abstract
Milk lipid secretion is a critical process for the delivery of nutrition and energy from parent to offspring. However, the underlying molecular mechanism is less clear. Here we report that TDP-43, a RNA-binding protein, underwent positive selection in the mammalian lineage. Furthermore, TDP-43 gene (Tardbp) loss induces accumulation of large lipid droplets and severe lipid secretion deficiency in mammary epithelial cells to outside alveolar lumens, eventually resulting in lactation failure and pup starvation within three weeks postpartum. In human milk samples from lactating women, the expression levels of TDP-43 is positively correlated with higher milk output. Mechanistically, TDP-43 exerts post-transcriptional regulation of Btn1a1 and Xdh mRNA stability, which are required for the secretion of lipid droplets from epithelial cells to the lumen. Taken together, our results highlights the critical role of TDP-43 in milk lipid secretion, providing a potential strategy for the screening and intervention of clinical lactation insufficiency. Milk lipid secretion is a critical process for the delivery of nutrition and energy from parent to offspring. Here the authors found that TDP-43, a RNA-binding protein, is required for milk lipid secretion by post-transcriptional regulation of Btn1a1 and Xdh mRNA stability.
Collapse
Affiliation(s)
- Limin Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, 650223, Kunming, China
| | - Hao Ke
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, 650223, Kunming, China
| | - Haibo Xu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, 650223, Kunming, China
| | - Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, China
| | - Honglei Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
| | - Li Zou
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
| | - Shu Xiang
- The First Hospital of Kunming, Calmette International Hospital, 650011, Kunming, China
| | - Mengyuan Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, 401120, Chongqing, China
| | - Li Peng
- Yubei District Maternal and Child Health Care Hospital, 401120, Chongqing, China
| | - Mingfang Zhou
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, 401120, Chongqing, China
| | - Lingling Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China.,School of Life Sciences, University of Science and Technology of China, 230026, Hefei, China
| | - Lei Ao
- Kunming Angel Women's and Children's Hospital, 650032, Kunming, China
| | - Qin Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
| | - Che-Kun James Shen
- Institute of Molecular Biology, Academia Sinica, 11529, Taipei, Nankang, Taiwan
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, 401120, Chongqing, China.
| | - Lu Wang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, 650091, Kunming, China.
| | - Baowei Jiao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, China. .,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China.
| |
Collapse
|
31
|
Formation and degradation of lipid droplets in human adipocytes and the expression of aldehyde oxidase (AOX). Cell Tissue Res 2019; 379:45-62. [DOI: 10.1007/s00441-019-03152-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AbstractLipid droplet (LD) binding proteins in mammary glands and in adipocytes were previously compared and striking similar sets of these specific proteins demonstrated. Xanthine oxidoreductase (XOR) together with perilipins and the lactating mammary gland protein butyrophilin play an important role in the secretion process of LDs into milk ducts. In contrast, in adipose tissue and in adipocytes, mainly perilipins have been described. Moreover, XOR was reported in mouse adipose tissue and adipocyte culture cells as “novel regulator of adipogenesis”. This obvious coincidence of protein sets prompted us to revisit the formation of LDs in human-cultured adipocytes in more detail with special emphasis on the possibility of a LD association of XOR. We demonstrate by electron and immunoelectron microscopy new structural details on LD formation in adipocytes. Surprisingly, by immunological and proteomic analysis, we identify in contrast to previous data showing the enzyme XOR, predominantly the expression of aldehyde oxidase (AOX). AOX could be detected tightly linked to LDs when adipocytes were treated with starvation medium. In addition, the majority of cells show an enormous interconnected, tubulated mitochondria network. Here, we discuss that (1) XOR is involved—together with perilipins—in the secretion of LDs in alveolar epithelial cells of the lactating mammary gland and is important in the transcytosis pathway of capillary endothelial cells. (2) In cells, where LDs are not secreted, XOR cannot be detected at the protein level, whereas in contrast in these cases, AOX is often present. We detect AOX in adipocytes together with perilipins and find evidence that these proteins might direct LDs to mitochondria. Finally, we here report for the first time the exclusive and complementary localization of XOR and AOX in diverse cell types.
Collapse
|
32
|
Targeted knock-in mice expressing the oxidase-fixed form of xanthine oxidoreductase favor tumor growth. Nat Commun 2019; 10:4904. [PMID: 31659168 PMCID: PMC6817904 DOI: 10.1038/s41467-019-12565-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/13/2019] [Indexed: 12/17/2022] Open
Abstract
Xanthine oxidoreductase has been implicated in cancer. Nonetheless, the role played by its two convertible forms, xanthine dehydrogenase (XDH) and oxidase (XO) during tumorigenesis is not understood. Here we produce XDH-stable and XO-locked knock-in (ki) mice to address this question. After tumor transfer, XO ki mice show strongly increased tumor growth compared to wild type (WT) and XDH ki mice. Hematopoietic XO expression is responsible for this effect. After macrophage depletion, tumor growth is reduced. Adoptive transfer of XO-ki macrophages in WT mice increases tumor growth. In vitro, XO ki macrophages produce higher levels of reactive oxygen species (ROS) responsible for the increased Tregs observed in the tumors. Blocking ROS in vivo slows down tumor growth. Collectively, these results indicate that the balance of XO/XDH plays an important role in immune surveillance of tumor development. Strategies that inhibit the XO form specifically may be valuable in controlling cancer growth. The roles of the convertible forms, xanthine dehydrogenase (XDH) and xanthine oxidase (XO) during tumorigenesis is not known. Here, the authors develop XDH-stable and XO-locked knock-in (ki) mice and show increased tumor growth in XO ki mice, via macrophage-mediated immunoregulatory responses.
Collapse
|
33
|
Funcke JB, Scherer PE. Beyond adiponectin and leptin: adipose tissue-derived mediators of inter-organ communication. J Lipid Res 2019; 60:1648-1684. [PMID: 31209153 PMCID: PMC6795086 DOI: 10.1194/jlr.r094060] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/17/2019] [Indexed: 01/10/2023] Open
Abstract
The breakthrough discoveries of leptin and adiponectin more than two decades ago led to a widespread recognition of adipose tissue as an endocrine organ. Many more adipose tissue-secreted signaling mediators (adipokines) have been identified since then, and much has been learned about how adipose tissue communicates with other organs of the body to maintain systemic homeostasis. Beyond proteins, additional factors, such as lipids, metabolites, noncoding RNAs, and extracellular vesicles (EVs), released by adipose tissue participate in this process. Here, we review the diverse signaling mediators and mechanisms adipose tissue utilizes to relay information to other organs. We discuss recently identified adipokines (proteins, lipids, and metabolites) and briefly outline the contributions of noncoding RNAs and EVs to the ever-increasing complexities of adipose tissue inter-organ communication. We conclude by reflecting on central aspects of adipokine biology, namely, the contribution of distinct adipose tissue depots and cell types to adipokine secretion, the phenomenon of adipokine resistance, and the capacity of adipose tissue to act both as a source and sink of signaling mediators.
Collapse
Affiliation(s)
- Jan-Bernd Funcke
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Philipp E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
34
|
AHMANE N, ATMANI-KILANI D, CHAHER N, AYOUNI K, RAHMANI-BERBOUCHA M, DA COSTA G, DEBBACHE-BENAIDA N, RICHARD T, ATMANI D. Identification of bioactive compounds from Fraxinus angustifolia extracts with anti- NADH oxidase activity of bovine milk xanthine oxidoreductase. Turk J Biol 2019; 43:133-147. [PMID: 31410081 PMCID: PMC6667094 DOI: 10.3906/biy-1810-26] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Fraxinus angustifolia leaves and bark are used in traditional medicine against various inflammatory-related pathologies incumbent to reactive oxygen species (ROS) generation by the NADH oxidase activity of enzymes such as xanthine oxidoreductase (XOR). This study was designed to investigate the in vitro and in vivo inhibitory activities of this enzyme by Fraxinus angustifolia extracts. The leaf organic phase of ethyl acetate (LFA) and its bark aqueous counterpart (BFA) showed the strongest anti-NADH oxidase activity in vitro (IC50 = 38.51 and 42.04 µg mL-1, respectively). They consequently suppressed superoxide generation both enzymatically (53% and 19%, respectively) and nonenzymatically (34% and 19%, respectively). These results were corroborated in vivo, with high antiNADH oxidase potential of the leaves and bark extracts (75.32% and 51.32%, respectively) concomitant with moderate hypouricemic activities (36.84% and 38.59%, respectively). Bio-guided fractionation led to the identification, by LC-DAD-MS/MS, of esculin and calcelarioside in bark and kaempferol glucoside in leaves as the main compounds responsible for the anti-NADH oxidase activity of XOR. These results plead in favor of the use of F. angustifolia as a source of potentially interesting therapeutic substances.
Collapse
Affiliation(s)
- Nadjia AHMANE
- Laboratory of Applied Biochemistry, Faculty of Nature and Life Sciences, University of Béjaïa
,
06000
,
Algeria
| | - Dina ATMANI-KILANI
- Laboratory of Applied Biochemistry, Faculty of Nature and Life Sciences, University of Béjaïa
,
06000
,
Algeria
| | - Nassima CHAHER
- Laboratory of Applied Biochemistry, Faculty of Nature and Life Sciences, University of Béjaïa
,
06000
,
Algeria
| | - Karima AYOUNI
- Laboratory of Applied Biochemistry, Faculty of Nature and Life Sciences, University of Béjaïa
,
06000
,
Algeria
| | - Meriem RAHMANI-BERBOUCHA
- Laboratory of Applied Biochemistry, Faculty of Nature and Life Sciences, University of Béjaïa
,
06000
,
Algeria
| | - Grégory DA COSTA
- University of Bordeaux, Research Unit of Oenology
,
Villenave d'Ornon
,
France
| | - Nadjet DEBBACHE-BENAIDA
- Laboratory of Applied Biochemistry, Faculty of Nature and Life Sciences, University of Béjaïa
,
06000
,
Algeria
| | - Tristan RICHARD
- University of Bordeaux, Research Unit of Oenology
,
Villenave d'Ornon
,
France
| | - Djebbar ATMANI
- Laboratory of Applied Biochemistry, Faculty of Nature and Life Sciences, University of Béjaïa
,
06000
,
Algeria
| |
Collapse
|
35
|
Mather IH, Masedunskas A, Chen Y, Weigert R. Symposium review: Intravital imaging of the lactating mammary gland in live mice reveals novel aspects of milk-lipid secretion. J Dairy Sci 2019; 102:2760-2782. [PMID: 30471915 PMCID: PMC7094374 DOI: 10.3168/jds.2018-15459] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/21/2018] [Indexed: 12/22/2022]
Abstract
Milk fat comprises membrane-coated droplets of neutral lipid, which constitute the predominant source of lipids for survival of the suckling neonate. From the perspective of the dairy industry, they are the basis for the manufacture of butter and essential ingredients in the production of cheese, yogurt, and specialty dairy produce. To provide mechanistic insight into the assembly and secretion of lipid droplets during lactation, we developed novel intravital imaging techniques using transgenic mice, which express fluorescently tagged marker proteins. The number 4 mammary glands were surgically prepared under a deep plane of anesthesia and the exposed glands positioned as a skin flap with intact vascular supply on the stage of a laser-scanning confocal microscope. Lipid droplets were stained by prior exposure of the glands to hydrophobic fluorescent BODIPY (boron-dipyrromethene) dyes and their formation and secretion monitored by time-lapse subcellular microscopy over periods of 1 to 2 h. Droplets were transported to the cell apex by directed (superdiffusive) motion at relatively slow and intermittent rates (0-2 µm/min). Regardless of size, droplets grew by numerous fusion events during transport and as they were budding from the cell enveloped by apical membranes. Surprisingly, droplet secretion was not constitutive but required an injection of oxytocin to induce contraction of the myoepithelium with subsequent release of droplets into luminal spaces. These novel results are discussed in the context of the current paradigm for milk fat synthesis and secretion and as a template for future innovations in the dairy industry.
Collapse
Affiliation(s)
- Ian H Mather
- Department of Animal and Avian Sciences, University of Maryland, College Park 20742; National Cancer Institute and National Institute of Craniofacial and Dental Research, National Institutes of Health, Bethesda, MD 20892.
| | - Andrius Masedunskas
- National Cancer Institute and National Institute of Craniofacial and Dental Research, National Institutes of Health, Bethesda, MD 20892
| | - Yun Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21205
| | - Roberto Weigert
- National Cancer Institute and National Institute of Craniofacial and Dental Research, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
36
|
Emerging Role of Purine Metabolizing Enzymes in Brain Function and Tumors. Int J Mol Sci 2018; 19:ijms19113598. [PMID: 30441833 PMCID: PMC6274932 DOI: 10.3390/ijms19113598] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022] Open
Abstract
The growing evidence of the involvement of purine compounds in signaling, of nucleotide imbalance in tumorigenesis, the discovery of purinosome and its regulation, cast new light on purine metabolism, indicating that well known biochemical pathways may still surprise. Adenosine deaminase is important not only to preserve functionality of immune system but also to ensure a correct development and function of central nervous system, probably because its activity regulates the extracellular concentration of adenosine and therefore its function in brain. A lot of work has been done on extracellular 5′-nucleotidase and its involvement in the purinergic signaling, but also intracellular nucleotidases, which regulate the purine nucleotide homeostasis, play unexpected roles, not only in tumorigenesis but also in brain function. Hypoxanthine guanine phosphoribosyl transferase (HPRT) appears to have a role in the purinosome formation and, therefore, in the regulation of purine synthesis rate during cell cycle with implications in brain development and tumors. The final product of purine catabolism, uric acid, also plays a recently highlighted novel role. In this review, we discuss the molecular mechanisms underlying the pathological manifestations of purine dysmetabolisms, focusing on the newly described/hypothesized roles of cytosolic 5′-nucleotidase II, adenosine kinase, adenosine deaminase, HPRT, and xanthine oxidase.
Collapse
|
37
|
Lee H, Padhi E, Hasegawa Y, Larke J, Parenti M, Wang A, Hernell O, Lönnerdal B, Slupsky C. Compositional Dynamics of the Milk Fat Globule and Its Role in Infant Development. Front Pediatr 2018; 6:313. [PMID: 30460213 PMCID: PMC6232911 DOI: 10.3389/fped.2018.00313] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/02/2018] [Indexed: 12/17/2022] Open
Abstract
Human milk is uniquely optimized for the needs of the developing infant. Its composition is complex and dynamic, driven primarily by maternal genetics, and to a lesser extent by diet and environment. One important component that is gaining attention is the milk fat globule (MFG). The MFG is composed of a triglyceride-rich core surrounded by a tri-layer membrane, also known as the milk fat globule membrane (MFGM) that originates from mammary gland epithelia. The MFGM is enriched with glycerophospholipids, sphingolipids, cholesterol, and proteins, some of which are glycosylated, and are known to exert numerous biological roles. Mounting evidence suggests that the structure of the MFG and bioactive components of the MFGM may benefit the infant by aiding in the structural and functional maturation of the gut through the provision of essential nutrients and/or regulating various cellular events during infant growth and immune education. Further, antimicrobial peptides and surface carbohydrate moieties surrounding the MFG might have a pivotal role in shaping gut microbial populations, which in turn may promote protection against immune and inflammatory diseases early in life. This review seeks to: (1) understand the components of the MFG, as well as maternal factors including genetic and lifestyle factors that influence its characteristics; (2) examine the potential role of this milk component on the intestinal immune system; and (3) delineate the mechanistic roles of the MFG in infant intestinal maturation and establishment of the microbiota in the alimentary canal.
Collapse
Affiliation(s)
- Hanna Lee
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Emily Padhi
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Yu Hasegawa
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Jules Larke
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Mariana Parenti
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Aidong Wang
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Olle Hernell
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Carolyn Slupsky
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| |
Collapse
|
38
|
Fatima I, Zafar H, Khan KM, Saad SM, Javaid S, Perveen S, Choudhary MI. Synthesis, molecular docking and xanthine oxidase inhibitory activity of 5-aryl-1H-tetrazoles. Bioorg Chem 2018; 79:201-211. [DOI: 10.1016/j.bioorg.2018.04.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 04/20/2018] [Accepted: 04/24/2018] [Indexed: 10/17/2022]
|
39
|
Yang D, Huynh H, Wan Y. Milk lipid regulation at the maternal-offspring interface. Semin Cell Dev Biol 2018; 81:141-148. [PMID: 29051053 PMCID: PMC5916746 DOI: 10.1016/j.semcdb.2017.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/12/2017] [Indexed: 12/19/2022]
Abstract
Milk lipids provide a large proportion of energy, nutrients, essential fatty acids, and signaling molecules for the newborns, the synthesis of which is a tightly controlled process. Dysregulated milk lipid production and composition may be detrimental to the growth, development, health and survival of the newborns. Many genetically modified animal models have contributed to our understanding of milk lipid regulation in the lactating mammary gland. In this review, we discuss recent advances in our knowledge of the mechanisms that control milk lipid biosynthesis and secretion during lactation, and how maternal genetic and dietary defects impact milk lipid composition and consequently offspring traits.
Collapse
Affiliation(s)
- Dengbao Yang
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - HoangDinh Huynh
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yihong Wan
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
40
|
Furuhashi M, Matsumoto M, Tanaka M, Moniwa N, Murase T, Nakamura T, Ohnishi H, Saitoh S, Shimamoto K, Miura T. Plasma Xanthine Oxidoreductase Activity as a Novel Biomarker of Metabolic Disorders in a General Population. Circ J 2018; 82:1892-1899. [DOI: 10.1253/circj.cj-18-0082] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine
| | - Megumi Matsumoto
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine
| | - Marenao Tanaka
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine
| | - Norihito Moniwa
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine
| | | | | | - Hirofumi Ohnishi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine
- Department of Public Health, Sapporo Medical University School of Medicine
| | - Shigeyuki Saitoh
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine
- Department of Nursing, Division of Medical and Behavioral Subjects, Sapporo Medical University School of Health Sciences
| | | | - Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine
| |
Collapse
|
41
|
|
42
|
Th-POK regulates mammary gland lactation through mTOR-SREBP pathway. PLoS Genet 2018; 14:e1007211. [PMID: 29420538 PMCID: PMC5821406 DOI: 10.1371/journal.pgen.1007211] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 02/21/2018] [Accepted: 01/21/2018] [Indexed: 12/22/2022] Open
Abstract
The Th-inducing POK (Th-POK, also known as ZBTB7B or cKrox) transcription factor is a key regulator of lineage commitment of immature T cell precursors. It is yet unclear the physiological functions of Th-POK besides helper T cell differentiation. Here we show that Th-POK is restrictedly expressed in the luminal epithelial cells in the mammary glands that is upregulated at late pregnancy and lactation. Lineage restrictedly expressed Th-POK exerts distinct biological functions in the mammary epithelial cells and T cells in a tissue-specific manner. Th-POK is not required for mammary epithelial cell fate determination. Mammary gland morphogenesis in puberty and alveologenesis in pregnancy are phenotypically normal in the Th-POK-deficient mice. However, Th-POK-deficient mice are defective in triggering the onset of lactation upon parturition with large cellular lipid droplets retained within alveolar epithelial cells. As a result, Th-POK knockout mice are unable to efficiently secret milk lipid and to nurse the offspring. Such defect is mainly attributed to the malfunctioned mammary epithelial cells, but not the tissue microenvironment in the Th-POK deficient mice. Th-POK directly regulates expression of insulin receptor substrate-1 (IRS-1) and insulin-induced Akt-mTOR-SREBP signaling. Th-POK deficiency compromises IRS-1 expression and Akt-mTOR-SREBP signaling in the lactating mammary glands. Conversely, insulin induces Th-POK expression. Thus, Th-POK functions as an important feed-forward regulator of insulin signaling in mammary gland lactation.
Collapse
|
43
|
A proteomic characterization shows differences in the milk fat globule membrane of buffalo and bovine milk. FOOD BIOSCI 2017. [DOI: 10.1016/j.fbio.2017.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
44
|
Masedunskas A, Chen Y, Stussman R, Weigert R, Mather IH. Kinetics of milk lipid droplet transport, growth, and secretion revealed by intravital imaging: lipid droplet release is intermittently stimulated by oxytocin. Mol Biol Cell 2017; 28:935-946. [PMID: 28179456 PMCID: PMC5385942 DOI: 10.1091/mbc.e16-11-0776] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/13/2017] [Accepted: 02/01/2017] [Indexed: 12/21/2022] Open
Abstract
The lipid droplet (LD) fraction of milk has attracted special attention because it supplies preformed lipids for neonatal development, and the assembled LDs are secreted by a unique apocrine mechanism. Because many aspects of this key process remain uncharacterized, we developed a facile method for the intravital imaging of mammary cells in transgenic mice that express fluorescently tagged marker proteins. Using these techniques, we describe the first kinetic analysis of LD growth and secretion at peak lactation in real time. LD transit from basal to apical regions was slow (0-2 μm/min) and frequently intermittent. Droplets grew by the fusion of preexisting droplets, with no restriction on the size of fusogenic partners. Most droplet expansion took several hours and occurred in apical nucleation centers, either close to or in association with the apical surface. Droplets even continued to expand as they were emerging from the cell. Contrary to expectations, LDs attached to the apical plasma membrane but still associated with the cytoplasm were released after oxytocin-mediated contraction of the myoepithelium. Thus milk LD secretion is an intermittently regulated process. This novel procedure will have broad application for investigating trafficking events within the mammary epithelium in real time.
Collapse
Affiliation(s)
- Andrius Masedunskas
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.,Intracellular Membrane Trafficking Section, National Institute of Craniofacial and Dental Research, National Institutes of Health, Bethesda, MD 20892
| | - Yun Chen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.,Intracellular Membrane Trafficking Section, National Institute of Craniofacial and Dental Research, National Institutes of Health, Bethesda, MD 20892
| | - Rebecca Stussman
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.,Intracellular Membrane Trafficking Section, National Institute of Craniofacial and Dental Research, National Institutes of Health, Bethesda, MD 20892
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.,Intracellular Membrane Trafficking Section, National Institute of Craniofacial and Dental Research, National Institutes of Health, Bethesda, MD 20892
| | - Ian H Mather
- Intracellular Membrane Trafficking Section, National Institute of Craniofacial and Dental Research, National Institutes of Health, Bethesda, MD 20892 .,Intracellular Membrane Trafficking Section, National Institute of Craniofacial and Dental Research, National Institutes of Health, Bethesda, MD 20892.,Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742
| |
Collapse
|
45
|
Wooding FBP, Mather IH. Ultrastructural and immunocytochemical evidence for the reorganisation of the milk fat globule membrane after secretion. Cell Tissue Res 2017; 367:283-295. [PMID: 27677271 PMCID: PMC5269472 DOI: 10.1007/s00441-016-2505-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 09/07/2016] [Indexed: 11/29/2022]
Abstract
This paper reports a detailed ultrastructural and immunocytochemical investigation of the structure of the milk fat globule membrane (MFGM) in a variety of species. The process follows the same pattern in all mammals so far investigated. The initial (or primary) MFGM immediately on release from the mammary cell is a continuous unit membrane with a thin underlying layer of cytoplasmic origin and a monolayer of phospholipid separating it from the core lipid. This structure changes rapidly as the milk fat globule (MFG) moves into the alveolar lumen. The unit membrane plus the underlying layer of cytoplasm modifies drastically into discontinuous patches and networks. These are superimposed upon a continuous apparently structureless sheet of electron dense material stabilising the MFG and similar to that which bounded the lipid in the cell. The underlying layer of the patches increases in electron density and immunocytochemistry demonstrates localisation of MFGM proteins in this layer. In four species, the dense material shows ordered paracrystalline molecular arrays in section and en face views. All the arrays show the same basic pattern and unit size as determined by optical diffraction. Similar patches, networks and arrays are present on the surface of expressed MFG. Negative staining of lipid-extracted expressed MFGs shows similar patches and networks of membrane. These also occasionally show the crystalline arrays and label with MFGM protein antibodies. Similar networks and strands of plasma membrane on the MFG surface are shown by our CLSM examination of unfixed expressed MFG from mice genetically modified to express a fluorescent molecule as a normal plasma membrane constituent.
Collapse
Affiliation(s)
- F B Peter Wooding
- Physiology Neuroscience and Development Department, Cambridge University, Cambridge, CB2 3EG, UK.
| | - Ian H Mather
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD20742, USA
| |
Collapse
|
46
|
Naseri D, Asasi K, Karimi I. Similar developmental fluctuations of hepato-renal xanthine oxidoreductase gene expression and xanthine oxidase activity in layer and broiler chicken embryos. Br Poult Sci 2016; 58:144-150. [PMID: 27924639 DOI: 10.1080/00071668.2016.1268250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
1. Xanthine oxidase (XO) has many physiological functions associated with the synthesis of both antioxidant (uric acid: UA) and numerous oxidants (e.g. H2O2), which makes it an important regulator of the cellular redox potential involving organogenesis. The ontogenetic study of hepatic and renal XO makes a better understanding of the putative role of this enzyme in the development of these tissues. 2. Developmental changes of gene expression of xanthine oxidoreductase (XOR), XO activity and UA content of liver and kidney tissues in both broiler and layer chicken embryos were examined during incubation d 14-21. 3. In both strains, hepatic XOR gene expression peaked on d 21 while renal XOR gene expression did not change. 4. The XO activity was higher in kidney than liver in both strains. Hepatic XO activity of both strains peaked on d 18 and thereafter was decreased on d 21. Renal XO activity peaked on d 18 and from then on did not show any significant changes until d 21 in both strains. 5. The UA content was higher in kidney vs. liver in both strains. The hepatic and renal UA values of the both strains increased significantly from d 14 to d 21. 6. The present results showed dissimilar behaviour of XOR gene expression, XO activity and UA content of liver and kidney tissues in both broiler and layer chicken embryos.
Collapse
Affiliation(s)
- D Naseri
- a Poultry Diseases Research Center, Avian Medicine Section, Department of Clinical Studies , School of Veterinary Medicine, Shiraz University , Shiraz , Iran
| | - K Asasi
- a Poultry Diseases Research Center, Avian Medicine Section, Department of Clinical Studies , School of Veterinary Medicine, Shiraz University , Shiraz , Iran
| | - I Karimi
- b Laboratory of Molecular and Cellular Biology 1214, Department of Basic Veterinary Sciences, School of Veterinary Medicine , Razi University , Kermanshah , Iran.,c Department of Biology, Faculty of Science , Razi University , Kermanshah , Iran
| |
Collapse
|
47
|
Honvo-Houéto E, Henry C, Chat S, Layani S, Truchet S. The endoplasmic reticulum and casein-containing vesicles contribute to milk fat globule membrane. Mol Biol Cell 2016; 27:2946-64. [PMID: 27535430 PMCID: PMC5042581 DOI: 10.1091/mbc.e16-06-0364] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/03/2016] [Indexed: 12/28/2022] Open
Abstract
The endoplasmic reticulum and the secretory vesicles contribute to the formation of the milk fat globule membrane. In addition, lipid raft microdomains may play a role in the transport and/or secretion of the milk fat globule, and SNARE proteins appear to coordinate membrane exchanges during milk product secretion. During lactation, mammary epithelial cells secrete huge amounts of milk from their apical side. The current view is that caseins are secreted by exocytosis, whereas milk fat globules are released by budding, enwrapped by the plasma membrane. Owing to the number and large size of milk fat globules, the membrane surface needed for their release might exceed that of the apical plasma membrane. A large-scale proteomics analysis of both cytoplasmic lipid droplets and secreted milk fat globule membranes was used to decipher the cellular origins of the milk fat globule membrane. Surprisingly, differential analysis of protein profiles of these two organelles strongly suggest that, in addition to the plasma membrane, the endoplasmic reticulum and the secretory vesicles contribute to the milk fat globule membrane. Analysis of membrane-associated and raft microdomain proteins reinforces this possibility and also points to a role for lipid rafts in milk product secretion. Our results provide evidence for a significant contribution of the endoplasmic reticulum to the milk fat globule membrane and a role for SNAREs in membrane dynamics during milk secretion. These novel aspects point to a more complex model for milk secretion than currently envisioned.
Collapse
Affiliation(s)
- Edith Honvo-Houéto
- INRA, UR1196 Génomique et Physiologie de la Lactation, F-78352 Jouy-en-Josas Cedex, France
| | - Céline Henry
- INRA, UMR1319, MICALIS, PAPPSO, F-78352 Jouy-en-Josas Cedex, France
| | - Sophie Chat
- INRA, UR1196 Génomique et Physiologie de la Lactation, F-78352 Jouy-en-Josas Cedex, France
| | - Sarah Layani
- INRA, UR1196 Génomique et Physiologie de la Lactation, F-78352 Jouy-en-Josas Cedex, France
| | - Sandrine Truchet
- INRA, UR1196 Génomique et Physiologie de la Lactation, F-78352 Jouy-en-Josas Cedex, France
| |
Collapse
|
48
|
Monks J, Dzieciatkowska M, Bales ES, Orlicky DJ, Wright RM, McManaman JL. Xanthine oxidoreductase mediates membrane docking of milk-fat droplets but is not essential for apocrine lipid secretion. J Physiol 2016; 594:5899-5921. [PMID: 27357166 PMCID: PMC5063925 DOI: 10.1113/jp272390] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 06/14/2016] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Xanthine oxidoreductase (XOR) modulates milk lipid secretion and lactation initiation. XOR is required for butyrophilin1a1 clustering in the membrane during milk lipid secretion. XOR mediates apical membrane reorganization during milk lipid secretion. Loss of XOR delays milk fat globule secretion. XOR loss alters the proteome of milk fat globules. ABSTRACT Apocrine secretion is utilized by epithelial cells of exocrine glands. These cells bud off membrane-bound particles into the lumen of the gland, losing a portion of the cytoplasm in the secretion product. The lactating mammary gland secretes milk lipid by this mechanism, and xanthine oxidoreductase (XOR) has long been thought to be functionally important. We generated mammary-specific XOR knockout (MGKO) mice, expecting lactation to fail. Histology of the knockout glands showed very large lipid droplets enclosed in the mammary alveolar cells, but milk analysis showed that these large globules were secreted. Butyrophilin, a membrane protein known to bind to XOR, was clustered at the point of contact of the cytoplasmic lipid droplet with the apical plasma membrane, in the wild-type gland but not in the knockout, suggesting that XOR mediates 'docking' to this membrane. Secreted milk fat globules were isolated from mouse milk of wild-type and XOR MGKO dams, and subjected to LC-MS/MS for analysis of protein component. Proteomic results showed that loss of XOR leads to an increase in cytoplasmic, cytoskeletal, Golgi apparatus and lipid metabolism proteins associated with the secreted milk fat globule. Association of XOR with the lipid droplet results in membrane docking and more efficient retention of cytoplasmic components by the secretory cell. Loss of XOR then results in a reversion to a more rudimentary, less efficient, apocrine secretion mechanism, but does not prevent milk fat globule secretion.
Collapse
Affiliation(s)
- Jenifer Monks
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, 80045, USA.
| | - Monika Dzieciatkowska
- Biochemistry Department, School of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, 80045, USA
| | - Elise S Bales
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, 80045, USA
| | - David J Orlicky
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, 80045, USA
| | | | - James L McManaman
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, 80045, USA
| |
Collapse
|
49
|
Ma X, Wang W, Bittner F, Schmidt N, Berkey R, Zhang L, King H, Zhang Y, Feng J, Wen Y, Tan L, Li Y, Zhang Q, Deng Z, Xiong X, Xiao S. Dual and Opposing Roles of Xanthine Dehydrogenase in Defense-Associated Reactive Oxygen Species Metabolism in Arabidopsis. THE PLANT CELL 2016; 28:1108-26. [PMID: 27152019 PMCID: PMC4904670 DOI: 10.1105/tpc.15.00880] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 04/20/2016] [Accepted: 05/03/2016] [Indexed: 05/18/2023]
Abstract
While plants produce reactive oxygen species (ROS) for stress signaling and pathogen defense, they need to remove excessive ROS induced during stress responses in order to minimize oxidative damage. How can plants fine-tune this balance and meet such conflicting needs? Here, we show that XANTHINE DEHYDROGENASE1 (XDH1) in Arabidopsis thaliana appears to play spatially opposite roles to serve this purpose. Through a large-scale genetic screen, we identified three missense mutations in XDH1 that impair XDH1's enzymatic functions and consequently affect the powdery mildew resistance mediated by RESISTANCE TO POWDERY MILDEW8 (RPW8) in epidermal cells and formation of xanthine-enriched autofluorescent objects in mesophyll cells. Further analyses revealed that in leaf epidermal cells, XDH1 likely functions as an oxidase, along with the NADPH oxidases RbohD and RbohF, to generate superoxide, which is dismutated into H2O2 The resulting enrichment of H2O2 in the fungal haustorial complex within infected epidermal cells helps to constrain the haustorium, thereby contributing to RPW8-dependent and RPW8-independent powdery mildew resistance. By contrast, in leaf mesophyll cells, XDH1 carries out xanthine dehydrogenase activity to produce uric acid in local and systemic tissues to scavenge H2O2 from stressed chloroplasts, thereby protecting plants from stress-induced oxidative damage. Thus, XDH1 plays spatially specified dual and opposing roles in modulation of ROS metabolism during defense responses in Arabidopsis.
Collapse
Affiliation(s)
- Xianfeng Ma
- Institute of Biosciences and Biotechnology Research and Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20850 Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Changsha 410128, China Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenming Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Florian Bittner
- Department of Plant Biology, Braunschweig University of Technology, 38106 Braunschweig, Germany
| | - Nadine Schmidt
- Department of Plant Biology, Braunschweig University of Technology, 38106 Braunschweig, Germany
| | - Robert Berkey
- Institute of Biosciences and Biotechnology Research and Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20850
| | - Lingli Zhang
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Harlan King
- Institute of Biosciences and Biotechnology Research and Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20850
| | - Yi Zhang
- Institute of Biosciences and Biotechnology Research and Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20850
| | - Jiayue Feng
- Institute of Biosciences and Biotechnology Research and Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20850 College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yinqiang Wen
- Institute of Biosciences and Biotechnology Research and Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20850 College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Liqiang Tan
- Institute of Biosciences and Biotechnology Research and Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20850
| | - Yue Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742
| | - Qiong Zhang
- Institute of Biosciences and Biotechnology Research and Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20850
| | - Ziniu Deng
- Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Changsha 410128, China
| | - Xingyao Xiong
- Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Changsha 410128, China The Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shunyuan Xiao
- Institute of Biosciences and Biotechnology Research and Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20850
| |
Collapse
|
50
|
Battelli MG, Polito L, Bortolotti M, Bolognesi A. Xanthine oxidoreductase in cancer: more than a differentiation marker. Cancer Med 2016; 5:546-57. [PMID: 26687331 PMCID: PMC4799950 DOI: 10.1002/cam4.601] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/05/2015] [Accepted: 11/08/2015] [Indexed: 12/17/2022] Open
Abstract
Human xanthine oxidoreductase (XOR) catalyzes the last two steps of purine catabolism and is present in two interconvertible forms, which may utilize O2 or NAD(+) as electron acceptors. In addition to uric acid, XOR products may comprise reactive oxygen and nitrogen species that have many biologic effects, including inflammation, endothelial dysfunction, and cytotoxicity, as well as mutagenesis and induction of proliferation. XOR is strictly modulated at the transcriptional and post-translational levels, and its expression and activity are highly variable in cancer. Xanthine oxidoreductase (XOR) expression has been negatively associated with a high malignity grade and a worse prognosis in neoplasms of the breast, liver, gastrointestinal tract, and kidney, which normally express a high level of XOR protein. However, the level of XOR expression may be associated with a worse outcome in cancer of low XOR-expressing cells, in relation to the inflammatory response elicited through the tissue damage induced by tumor growth. Xanthine oxidoreductase (XOR) has been implicated in the process of oncogenesis either directly because it is able to catalyze the metabolic activation of carcinogenic substances or indirectly through the action of XOR-derived reactive oxygen and nitrogen species. The role of uric acid is characterized by both oxidant and antioxidant action; thus, it is still debatable whether control of uricemia may be helpful to improve the outcomes of tumor illness.
Collapse
Affiliation(s)
- Maria Giulia Battelli
- Department of Experimental, Diagnostic and Specialty Medicine – DIMESAlma Mater Studiorum – University of Bologna, General Pathology UnitVia S. Giacomo 1440126BolognaItaly
| | - Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine – DIMESAlma Mater Studiorum – University of Bologna, General Pathology UnitVia S. Giacomo 1440126BolognaItaly
| | - Massimo Bortolotti
- Department of Experimental, Diagnostic and Specialty Medicine – DIMESAlma Mater Studiorum – University of Bologna, General Pathology UnitVia S. Giacomo 1440126BolognaItaly
| | - Andrea Bolognesi
- Department of Experimental, Diagnostic and Specialty Medicine – DIMESAlma Mater Studiorum – University of Bologna, General Pathology UnitVia S. Giacomo 1440126BolognaItaly
| |
Collapse
|