1
|
Acimovic I, Gabrielová V, Martínková S, Eid M, Vlažný J, Moravčík P, Hlavsa J, Moráň L, Cakmakci RC, Staňo P, Procházka V, Kala Z, Trnka J, Vaňhara P. Ex-Vivo 3D Cellular Models of Pancreatic Ductal Adenocarcinoma: From Embryonic Development to Precision Oncology. Pancreas 2025; 54:e57-e71. [PMID: 39074056 DOI: 10.1097/mpa.0000000000002393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
ABSTRACT Pancreas is a vital gland of gastrointestinal system with exocrine and endocrine secretory functions, interweaved into essential metabolic circuitries of the human body. Pancreatic ductal adenocarcinoma (PDAC) represents one of the most lethal malignancies, with a 5-year survival rate of 11%. This poor prognosis is primarily attributed to the absence of early symptoms, rapid metastatic dissemination, and the limited efficacy of current therapeutic interventions. Despite recent advancements in understanding the etiopathogenesis and treatment of PDAC, there remains a pressing need for improved individualized models, identification of novel molecular targets, and development of unbiased predictors of disease progression. Here we aim to explore the concept of precision medicine utilizing 3-dimensional, patient-specific cellular models of pancreatic tumors and discuss their potential applications in uncovering novel druggable molecular targets and predicting clinical parameters for individual patients.
Collapse
Affiliation(s)
- Ivana Acimovic
- From the Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno
| | - Viktorie Gabrielová
- From the Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno
| | - Stanislava Martínková
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague
| | - Michal Eid
- Departments of Internal Medicine, Hematology and Oncology
| | | | - Petr Moravčík
- Surgery Clinic, University Hospital Brno, Faculty of Medicine, Masaryk University
| | - Jan Hlavsa
- Surgery Clinic, University Hospital Brno, Faculty of Medicine, Masaryk University
| | | | - Riza Can Cakmakci
- From the Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno
| | - Peter Staňo
- Departments of Internal Medicine, Hematology and Oncology
| | - Vladimír Procházka
- Surgery Clinic, University Hospital Brno, Faculty of Medicine, Masaryk University
| | - Zdeněk Kala
- Surgery Clinic, University Hospital Brno, Faculty of Medicine, Masaryk University
| | - Jan Trnka
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague
| | | |
Collapse
|
2
|
Chen L, Wang N, Zhang T, Zhang F, Zhang W, Meng H, Chen J, Liao Z, Xu X, Ma Z, Xu T, Liu H. Directed differentiation of pancreatic δ cells from human pluripotent stem cells. Nat Commun 2024; 15:6344. [PMID: 39068220 PMCID: PMC11283558 DOI: 10.1038/s41467-024-50611-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
Dysfunction of pancreatic δ cells contributes to the etiology of diabetes. Despite their important role, human δ cells are scarce, limiting physiological studies and drug discovery targeting δ cells. To date, no directed δ-cell differentiation method has been established. Here, we demonstrate that fibroblast growth factor (FGF) 7 promotes pancreatic endoderm/progenitor differentiation, whereas FGF2 biases cells towards the pancreatic δ-cell lineage via FGF receptor 1. We develop a differentiation method to generate δ cells from human stem cells by combining FGF2 with FGF7, which synergistically directs pancreatic lineage differentiation and modulates the expression of transcription factors and SST activators during endoderm/endocrine precursor induction. These δ cells display mature RNA profiles and fine secretory granules, secrete somatostatin in response to various stimuli, and suppress insulin secretion from in vitro co-cultured β cells and mouse β cells upon transplantation. The generation of human pancreatic δ cells from stem cells in vitro would provide an unprecedented cell source for drug discovery and cell transplantation studies in diabetes.
Collapse
Affiliation(s)
- Lihua Chen
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Nannan Wang
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tongran Zhang
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Feng Zhang
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Wei Zhang
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Hao Meng
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Jingyi Chen
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, China
| | - Zhiying Liao
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Xiaopeng Xu
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Zhuo Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Tao Xu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China.
- Guangzhou National Laboratory, Guangzhou, Guangdong, China.
| | - Huisheng Liu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China.
- Guangzhou National Laboratory, Guangzhou, Guangdong, China.
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Kane E, Mak TC, Latreille M. MicroRNA-7 regulates endocrine progenitor delamination and endocrine cell mass in developing pancreatic islets. iScience 2024; 27:110332. [PMID: 39055950 PMCID: PMC11269303 DOI: 10.1016/j.isci.2024.110332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/28/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
β-cell replenishment in patients with diabetes through cadaveric islet transplantation has been successful; however, it requires long-term immunosuppression and suitable islet donors are scarce. Stepwise in vitro differentiation of pluripotent stem cells into β-cells represents a viable alternative, but limitations in our current understanding of in vivo islet endocrine differentiation constrains its clinical use. Here, we show that microRNA-7 (miR-7) is highly expressed in embryonic pancreatic endocrine progenitors. Genetic deletion of the miR-7 gene family in endocrine progenitors leads to reduced islet endocrine cell mass, due to endocrine progenitors failing to delaminate from the epithelial plexus. This is associated with a reduction in neurogenin-3 levels and increased expression of Sry-box transcription factor 9. Further, we observe that a significant number of endocrine progenitors lacking miR-7 differentiate into ductal cells. Our study suggests that increasing miR-7 expression could improve efficiency of in vitro differentiation and augment stem cell-derived β-cell terminal maturity.
Collapse
Affiliation(s)
- Eva Kane
- MRC Laboratory of Medical Sciences, Du Cane Road, London W12 0NN, UK
| | - Tracy C.S. Mak
- MRC Laboratory of Medical Sciences, Du Cane Road, London W12 0NN, UK
| | - Mathieu Latreille
- MRC Laboratory of Medical Sciences, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
4
|
Ashok A, Kalthur G, Kumar A. Degradation meets development: Implications in β-cell development and diabetes. Cell Biol Int 2024; 48:759-776. [PMID: 38499517 DOI: 10.1002/cbin.12155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
Pancreatic development is orchestrated by timely synthesis and degradation of stage-specific transcription factors (TFs). The transition from one stage to another stage is dependent on the precise expression of the developmentally relevant TFs. Persistent expression of particular TF would impede the exit from the progenitor stage to the matured cell type. Intracellular protein degradation-mediated protein turnover contributes to a major extent to the turnover of these TFs and thereby dictates the development of different tissues. Since even subtle changes in the crucial cellular pathways would dramatically impact pancreatic β-cell performance, it is generally acknowledged that the biological activity of these pathways is tightly regulated by protein synthesis and degradation process. Intracellular protein degradation is executed majorly by the ubiquitin proteasome system (UPS) and Lysosomal degradation pathway. As more than 90% of the TFs are targeted to proteasomal degradation, this review aims to examine the crucial role of UPS in normal pancreatic β-cell development and how dysfunction of these pathways manifests in metabolic syndromes such as diabetes. Such understanding would facilitate designing a faithful approach to obtain a therapeutic quality of β-cells from stem cells.
Collapse
Affiliation(s)
- Akshaya Ashok
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India
| | - Guruprasad Kalthur
- Division of Reproductive and Developmental Biology, Department of Reproductive Science, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Anujith Kumar
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
5
|
Mueller LM, Isaacson A, Wilson H, Salowka A, Tay I, Gong M, Elbarbary NS, Raile K, Spagnoli FM. Heterozygous missense variant in GLI2 impairs human endocrine pancreas development. Nat Commun 2024; 15:2483. [PMID: 38509065 PMCID: PMC10954617 DOI: 10.1038/s41467-024-46740-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
Missense variants are the most common type of coding genetic variants. Their functional assessment is fundamental for defining any implication in human diseases and may also uncover genes that are essential for human organ development. Here, we apply CRISPR-Cas9 gene editing on human iPSCs to study a heterozygous missense variant in GLI2 identified in two siblings with early-onset and insulin-dependent diabetes of unknown cause. GLI2 is a primary mediator of the Hedgehog pathway, which regulates pancreatic β-cell development in mice. However, neither mutations in GLI2 nor Hedgehog dysregulation have been reported as cause or predisposition to diabetes. We establish and study a set of isogenic iPSC lines harbouring the missense variant for their ability to differentiate into pancreatic β-like cells. Interestingly, iPSCs carrying the missense variant show altered GLI2 transcriptional activity and impaired differentiation of pancreatic progenitors into endocrine cells. RNASeq and network analyses unveil a crosstalk between Hedgehog and WNT pathways, with the dysregulation of non-canonical WNT signaling in pancreatic progenitors carrying the GLI2 missense variant. Collectively, our findings underscore an essential role for GLI2 in human endocrine development and identify a gene variant that may lead to diabetes.
Collapse
Affiliation(s)
- Laura M Mueller
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Great Maze Pond, London, SE1 9RT, United Kingdom
| | - Abigail Isaacson
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Great Maze Pond, London, SE1 9RT, United Kingdom
| | - Heather Wilson
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Great Maze Pond, London, SE1 9RT, United Kingdom
| | - Anna Salowka
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Great Maze Pond, London, SE1 9RT, United Kingdom
| | - Isabel Tay
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Great Maze Pond, London, SE1 9RT, United Kingdom
| | - Maolian Gong
- Department of Pediatric Endocrinology and Diabetology, Charité, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Charité Medical Faculty, Max-Delbrueck-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Nancy Samir Elbarbary
- Department of Pediatrics, Diabetes and Endocrine Unit, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Klemens Raile
- Department of Pediatric Endocrinology and Diabetology, Charité, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Charité Medical Faculty, Max-Delbrueck-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Francesca M Spagnoli
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Great Maze Pond, London, SE1 9RT, United Kingdom.
| |
Collapse
|
6
|
Dale DJ, Rutan CD, Mastracci TL. Development of the Pancreatic Ducts and Their Contribution to Organogenesis. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024; 239:31-55. [PMID: 39283481 DOI: 10.1007/978-3-031-62232-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The pancreas is a dual-function organ, with exocrine cells that aid in digestion and endocrine cells that regulate glucose homeostasis. These cell types share common progenitors and arise from the embryonic ducts. Early signaling events in the embryonic ducts shape the neonatal, adolescent, and adult exocrine and endocrine pancreas. This chapter discusses recent advances in the tools used to study the ducts and our current understanding of how ductal development contributes to pancreatic organogenesis.
Collapse
Affiliation(s)
- Dorian J Dale
- Department of Biology, Indiana University-Indianapolis, Indianapolis, IN, USA
| | - Caleb D Rutan
- Department of Biology, Indiana University-Indianapolis, Indianapolis, IN, USA
| | - Teresa L Mastracci
- Department of Biology, Indiana University-Indianapolis, Indianapolis, IN, USA.
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Diabetes and Metabolic Disease, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
7
|
Goyal P, Malviya R. Stem Cell Therapy for the Management of Type 1 Diabetes: Advances and Perspectives. Endocr Metab Immune Disord Drug Targets 2024; 24:549-561. [PMID: 37861029 DOI: 10.2174/0118715303256582230919093535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/20/2023] [Accepted: 08/25/2023] [Indexed: 10/21/2023]
Abstract
Due to insulin resistance and excessive blood sugar levels, type 1 diabetes mellitus (T1DM) is characterized by pancreatic cell loss. This condition affects young people at a higher rate than any other chronic autoimmune disease. Regardless of the method, exogenous insulin cannot substitute for insulin produced by a healthy pancreas. An emerging area of medicine is pancreatic and islet transplantation for type 1 diabetics to restore normal blood sugar regulation. However, there are still obstacles standing in the way of the widespread use of these therapies, including very low availability of pancreatic and islets supplied from human organ donors, challenging transplantation conditions, high expenses, and a lack of easily accessible methods. Efforts to improve Type 1 Diabetes treatment have been conducted in response to the disease's increasing prevalence. Type 1 diabetes may one day be treated with stem cell treatment. Stem cell therapy has proven to be an effective treatment for type 1 diabetes. Recent progress in stem cell-based diabetes treatment is summarised, and the authors show how to isolate insulin-producing cells (IPCs) from a variety of progenitor cells.
Collapse
Affiliation(s)
- Priyanshi Goyal
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
8
|
Yang ZZ, Parchem RJ. The role of noncoding RNAs in pancreatic birth defects. Birth Defects Res 2023; 115:1785-1808. [PMID: 37066622 PMCID: PMC10579456 DOI: 10.1002/bdr2.2178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/19/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023]
Abstract
Congenital defects in the pancreas can cause severe health issues such as pancreatic cancer and diabetes which require lifelong treatment. Regenerating healthy pancreatic cells to replace malfunctioning cells has been considered a promising cure for pancreatic diseases including birth defects. However, such therapies are currently unavailable in the clinic. The developmental gene regulatory network underlying pancreatic development must be reactivated for in vivo regeneration and recapitulated in vitro for cell replacement therapy. Thus, understanding the mechanisms driving pancreatic development will pave the way for regenerative therapies. Pancreatic progenitor cells are the precursors of all pancreatic cells which use epigenetic changes to control gene expression during differentiation to generate all of the distinct pancreatic cell types. Epigenetic changes involving DNA methylation and histone modifications can be controlled by noncoding RNAs (ncRNAs). Indeed, increasing evidence suggests that ncRNAs are indispensable for proper organogenesis. Here, we summarize recent insight into the role of ncRNAs in the epigenetic regulation of pancreatic development. We further discuss how disruptions in ncRNA biogenesis and expression lead to developmental defects and diseases. This review summarizes in vivo data from animal models and in vitro studies using stem cell differentiation as a model for pancreatic development.
Collapse
Affiliation(s)
- Ziyue Zoey Yang
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Ronald J Parchem
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
9
|
Fei L, Zhang K, Poddar N, Hautaniemi S, Sahu B. Single-cell epigenome analysis identifies molecular events controlling direct conversion of human fibroblasts to pancreatic ductal-like cells. Dev Cell 2023; 58:1701-1715.e8. [PMID: 37751683 DOI: 10.1016/j.devcel.2023.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/13/2023] [Accepted: 08/16/2023] [Indexed: 09/28/2023]
Abstract
Cell fate can be reprogrammed by ectopic expression of lineage-specific transcription factors (TFs). However, the exact cell state transitions during transdifferentiation are still poorly understood. Here, we have generated pancreatic exocrine cells of ductal epithelial identity from human fibroblasts using a set of six TFs. We mapped the molecular determinants of lineage dynamics using a factor-indexing method based on single-nuclei multiome sequencing (FI-snMultiome-seq) that enables dissecting the role of each individual TF and pool of TFs in cell fate conversion. We show that transition from mesenchymal fibroblast identity to epithelial pancreatic exocrine fate involves two deterministic steps: an endodermal progenitor state defined by activation of HHEX with FOXA2 and SOX17 and a temporal GATA4 activation essential for the maintenance of pancreatic cell fate program. Collectively, our data suggest that transdifferentiation-although being considered a direct cell fate conversion method-occurs through transient progenitor states orchestrated by stepwise activation of distinct TFs.
Collapse
Affiliation(s)
- Liangru Fei
- Applied Tumor Genomics Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, Helsinki 00014, Finland
| | - Kaiyang Zhang
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, Helsinki 00014, Finland
| | - Nikita Poddar
- Applied Tumor Genomics Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, Helsinki 00014, Finland
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, Helsinki 00014, Finland
| | - Biswajyoti Sahu
- Applied Tumor Genomics Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, Helsinki 00014, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Haartmaninkatu 8, Helsinki 00014, Finland; Medicum, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, Helsinki 00014, Finland; Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Gaustadelléen 21, 0349 Oslo, Norway.
| |
Collapse
|
10
|
Sionov RV, Ahdut-HaCohen R. A Supportive Role of Mesenchymal Stem Cells on Insulin-Producing Langerhans Islets with a Specific Emphasis on The Secretome. Biomedicines 2023; 11:2558. [PMID: 37761001 PMCID: PMC10527322 DOI: 10.3390/biomedicines11092558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Type 1 Diabetes (T1D) is a chronic autoimmune disease characterized by a gradual destruction of insulin-producing β-cells in the endocrine pancreas due to innate and specific immune responses, leading to impaired glucose homeostasis. T1D patients usually require regular insulin injections after meals to maintain normal serum glucose levels. In severe cases, pancreas or Langerhans islet transplantation can assist in reaching a sufficient β-mass to normalize glucose homeostasis. The latter procedure is limited because of low donor availability, high islet loss, and immune rejection. There is still a need to develop new technologies to improve islet survival and implantation and to keep the islets functional. Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic progenitor cells with high plasticity that can support human pancreatic islet function both in vitro and in vivo and islet co-transplantation with MSCs is more effective than islet transplantation alone in attenuating diabetes progression. The beneficial effect of MSCs on islet function is due to a combined effect on angiogenesis, suppression of immune responses, and secretion of growth factors essential for islet survival and function. In this review, various aspects of MSCs related to islet function and diabetes are described.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ronit Ahdut-HaCohen
- Department of Medical Neurobiology, Institute of Medical Research, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
- Department of Science, The David Yellin Academic College of Education, Jerusalem 9103501, Israel
| |
Collapse
|
11
|
Marstrand-Daucé L, Lorenzo D, Chassac A, Nicole P, Couvelard A, Haumaitre C. Acinar-to-Ductal Metaplasia (ADM): On the Road to Pancreatic Intraepithelial Neoplasia (PanIN) and Pancreatic Cancer. Int J Mol Sci 2023; 24:9946. [PMID: 37373094 PMCID: PMC10298625 DOI: 10.3390/ijms24129946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Adult pancreatic acinar cells show high plasticity allowing them to change in their differentiation commitment. Pancreatic acinar-to-ductal metaplasia (ADM) is a cellular process in which the differentiated pancreatic acinar cells transform into duct-like cells. This process can occur as a result of cellular injury or inflammation in the pancreas. While ADM is a reversible process allowing pancreatic acinar regeneration, persistent inflammation or injury can lead to the development of pancreatic intraepithelial neoplasia (PanIN), which is a common precancerous lesion that precedes pancreatic ductal adenocarcinoma (PDAC). Several factors can contribute to the development of ADM and PanIN, including environmental factors such as obesity, chronic inflammation and genetic mutations. ADM is driven by extrinsic and intrinsic signaling. Here, we review the current knowledge on the cellular and molecular biology of ADM. Understanding the cellular and molecular mechanisms underlying ADM is critical for the development of new therapeutic strategies for pancreatitis and PDAC. Identifying the intermediate states and key molecules that regulate ADM initiation, maintenance and progression may help the development of novel preventive strategies for PDAC.
Collapse
Affiliation(s)
- Louis Marstrand-Daucé
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
| | - Diane Lorenzo
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
| | - Anaïs Chassac
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
- Department of Pathology, Bichat Hospital, Université Paris Cité, 75018 Paris, France
| | - Pascal Nicole
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
| | - Anne Couvelard
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
- Department of Pathology, Bichat Hospital, Université Paris Cité, 75018 Paris, France
| | - Cécile Haumaitre
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
| |
Collapse
|
12
|
Sasaki S, Miyatsuka T. Heterogeneity of Islet Cells during Embryogenesis and Differentiation. Diabetes Metab J 2023; 47:173-184. [PMID: 36631992 PMCID: PMC10040626 DOI: 10.4093/dmj.2022.0324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/31/2022] [Indexed: 01/13/2023] Open
Abstract
Diabetes is caused by insufficient insulin secretion due to β-cell dysfunction and/or β-cell loss. Therefore, the restoration of functional β-cells by the induction of β-cell differentiation from embryonic stem (ES) and induced-pluripotent stem (iPS) cells, or from somatic non-β-cells, may be a promising curative therapy. To establish an efficient and feasible method for generating functional insulin-producing cells, comprehensive knowledge of pancreas development and β-cell differentiation, including the mechanisms driving cell fate decisions and endocrine cell maturation is crucial. Recent advances in single-cell RNA sequencing (scRNA-seq) technologies have opened a new era in pancreas development and diabetes research, leading to clarification of the detailed transcriptomes of individual insulin-producing cells. Such extensive high-resolution data enables the inference of developmental trajectories during cell transitions and gene regulatory networks. Additionally, advancements in stem cell research have not only enabled their immediate clinical application, but also has made it possible to observe the genetic dynamics of human cell development and maturation in a dish. In this review, we provide an overview of the heterogeneity of islet cells during embryogenesis and differentiation as demonstrated by scRNA-seq studies on the developing and adult pancreata, with implications for the future application of regenerative medicine for diabetes.
Collapse
Affiliation(s)
- Shugo Sasaki
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takeshi Miyatsuka
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Sagamihara, Japan
- Corresponding author: Takeshi Miyatsuka https://orcid.org/0000-0003-2618-3450 Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan E-mail:
| |
Collapse
|
13
|
Cell Replacement Therapy for Type 1 Diabetes Patients: Potential Mechanisms Leading to Stem-Cell-Derived Pancreatic β-Cell Loss upon Transplant. Cells 2023; 12:cells12050698. [PMID: 36899834 PMCID: PMC10000642 DOI: 10.3390/cells12050698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Cell replacement therapy using stem-cell-derived insulin-producing β-like cells (sBCs) has been proposed as a practical cure for patients with type one diabetes (T1D). sBCs can correct diabetes in preclinical animal models, demonstrating the promise of this stem cell-based approach. However, in vivo studies have demonstrated that most sBCs, similarly to cadaveric human islets, are lost upon transplantation due to ischemia and other unknown mechanisms. Hence, there is a critical knowledge gap in the current field concerning the fate of sBCs upon engraftment. Here we review, discuss effects, and propose additional potential mechanisms that could contribute toward β-cell loss in vivo. We summarize and highlight some of the literature on phenotypic loss in β-cells under both steady, stressed, and diseased diabetic conditions. Specifically, we focus on β-cell death, dedifferentiation into progenitors, trans-differentiation into other hormone-expressing cells, and/or interconversion into less functional β-cell subtypes as potential mechanisms. While current cell replacement therapy efforts employing sBCs carry great promise as an abundant cell source, addressing the somewhat neglected aspect of β-cell loss in vivo will further accelerate sBC transplantation as a promising therapeutic modality that could significantly enhance the life quality of T1D patients.
Collapse
|
14
|
Abstract
Pancreatic ductal adenocarcinomas are distinguished by their robust desmoplasia, or fibroinflammatory response. Dominated by non-malignant cells, the mutated epithelium must therefore combat, cooperate with or co-opt the surrounding cells and signalling processes in its microenvironment. It is proposed that an invasive pancreatic ductal adenocarcinoma represents the coordinated evolution of malignant and non-malignant cells and mechanisms that subvert and repurpose normal tissue composition, architecture and physiology to foster tumorigenesis. The complex kinetics and stepwise development of pancreatic cancer suggests that it is governed by a discrete set of organizing rules and principles, and repeated attempts to target specific components within the microenvironment reveal self-regulating mechanisms of resistance. The histopathological and genetic progression models of the transforming ductal epithelium must therefore be considered together with a programme of stromal progression to create a comprehensive picture of pancreatic cancer evolution. Understanding the underlying organizational logic of the tumour to anticipate and pre-empt the almost inevitable compensatory mechanisms will be essential to eradicate the disease.
Collapse
Affiliation(s)
- Sunil R Hingorani
- Division of Hematology and Oncology, Department of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
- Pancreatic Cancer Center of Excellence, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
15
|
Bele S, Wokasch AS, Gannon M. Epigenetic modulation of cell fate during pancreas development. TRENDS IN DEVELOPMENTAL BIOLOGY 2023; 16:1-27. [PMID: 38873037 PMCID: PMC11173269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Epigenetic modifications to DNA and its associated proteins affect cell plasticity and cell fate restrictions throughout embryonic development. Development of the vertebrate pancreas is characterized by initial is an over-lapping expression of a set of transcriptional regulators in a defined region of the posterior foregut endoderm that collectively promote pancreas progenitor specification and proliferation. As development progresses, these transcription factors segregate into distinct pancreatic lineages, with some being maintained in specific subsets of terminally differentiated pancreas cell types throughout adulthood. Here we describe the progressive stages and cell fate restrictions that occur during pancreas development and the relevant known epigenetic regulatory events that drive the dynamic expression patterns of transcription factors that regulate pancreas development. In addition, we highlight how changes in epigenetic marks can affect susceptibility to pancreas diseases (such as diabetes), adult pancreas cell plasticity, and the ability to derive replacement insulin-producing β cells for the treatment of diabetes.
Collapse
Affiliation(s)
- Shilpak Bele
- Department of Medicine, Vanderbilt University Medical Center, 2213 Garland Avenue, Nashville, TN, 37232, USA
| | - Anthony S. Wokasch
- Department of Cell and Developmental Biology, Vanderbilt University, 2213 Garland Avenue, Nashville, TN, 37232, USA
| | - Maureen Gannon
- Department of Medicine, Vanderbilt University Medical Center, 2213 Garland Avenue, Nashville, TN, 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, 2213 Garland Avenue, Nashville, TN, 37232, USA
- Department of Veterans Affairs Tennessee Valley Authority, Research Division, 1310 24 Avenue South, Nashville, TN, 37212, USA
- Department of Molecular Physiology and Biophysics, 2213 Garland Avenue, Nashville, TN, 37232, USA
| |
Collapse
|
16
|
Ebrahim N, Shakirova K, Dashinimaev E. PDX1 is the cornerstone of pancreatic β-cell functions and identity. Front Mol Biosci 2022; 9:1091757. [PMID: 36589234 PMCID: PMC9798421 DOI: 10.3389/fmolb.2022.1091757] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Diabetes has been a worldwide healthcare problem for many years. Current methods of treating diabetes are still largely directed at symptoms, aiming to control the manifestations of the pathology. This creates an overall need to find alternative measures that can impact on the causes of the disease, reverse diabetes, or make it more manageable. Understanding the role of key players in the pathogenesis of diabetes and the related β-cell functions is of great importance in combating diabetes. PDX1 is a master regulator in pancreas organogenesis, the maturation and identity preservation of β-cells, and of their role in normal insulin function. Mutations in the PDX1 gene are correlated with many pancreatic dysfunctions, including pancreatic agenesis (homozygous mutation) and MODY4 (heterozygous mutation), while in other types of diabetes, PDX1 expression is reduced. Therefore, alternative approaches to treat diabetes largely depend on knowledge of PDX1 regulation, its interaction with other transcription factors, and its role in obtaining β-cells through differentiation and transdifferentiation protocols. In this article, we review the basic functions of PDX1 and its regulation by genetic and epigenetic factors. Lastly, we summarize different variations of the differentiation protocols used to obtain β-cells from alternative cell sources, using PDX1 alone or in combination with various transcription factors and modified culture conditions. This review shows the unique position of PDX1 as a potential target in the genetic and cellular treatment of diabetes.
Collapse
Affiliation(s)
- Nour Ebrahim
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia,Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Ksenia Shakirova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Erdem Dashinimaev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia,Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia,*Correspondence: Erdem Dashinimaev,
| |
Collapse
|
17
|
Verhoeff K, Cuesta-Gomez N, Jasra I, Marfil-Garza B, Dadheech N, Shapiro AMJ. Optimizing Generation of Stem Cell-Derived Islet Cells. Stem Cell Rev Rep 2022; 18:2683-2698. [PMID: 35639237 DOI: 10.1007/s12015-022-10391-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2022] [Indexed: 02/06/2023]
Abstract
Islet transplantation is a highly effective treatment for select patients with type 1 diabetes. Unfortunately, current use is limited to those with brittle disease due to donor limitations and immunosuppression requirements. Discovery of factors for induction of pluripotent stem cells from adult somatic cells into a malleable state has reinvigorated the possibility of autologous-based regenerative cell therapies. Similarly, recent progress in allogeneic human embryonic stem cell islet products is showing early success in clinical trials. Describing safe and standardized differentiation protocols with clear pathways to optimize yield and minimize off-target growth is needed to efficiently move the field forward. This review discusses current islet differentiation protocols with a detailed break-down of differentiation stages to guide step-wise controlled generation of functional islet products.
Collapse
Affiliation(s)
- Kevin Verhoeff
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Nerea Cuesta-Gomez
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Ila Jasra
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Braulio Marfil-Garza
- National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City, and CHRISTUS-LatAm Hub - Excellence and Innovation Center, Monterrey, Mexico
| | - Nidheesh Dadheech
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - A M James Shapiro
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.
- 1-002 Li Ka Shing Centre for Health Research Innovation, 112 St. NW & 87 Ave NW, Edmonton, Alberta, T6G 2E1, Canada.
| |
Collapse
|
18
|
Ramachandran J, Zhou W, Bardenhagen AE, Nasr T, Yates ER, Zorn AM, Ji H, Vokes SA. Hedgehog regulation of epithelial cell state and morphogenesis in the larynx. eLife 2022; 11:e77055. [PMID: 36398878 PMCID: PMC9718526 DOI: 10.7554/elife.77055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 11/18/2022] [Indexed: 11/19/2022] Open
Abstract
The larynx enables speech while regulating swallowing and respiration. Larynx function hinges on the laryngeal epithelium which originates as part of the anterior foregut and undergoes extensive remodeling to separate from the esophagus and form vocal folds that interface with the adjacent trachea. Here we find that sonic hedgehog (SHH) is essential for epithelial integrity in the mouse larynx as well as the anterior foregut. During larynx-esophageal separation, low Shh expression marks specific domains of actively remodeling epithelium that undergo an epithelial-to-mesenchymal transition (EMT) characterized by the induction of N-Cadherin and movement of cells out of the epithelial layer. Consistent with a role for SHH signaling in regulating this process, Shh mutants undergo an abnormal EMT throughout the anterior foregut and larynx, marked by a cadherin switch, movement out of the epithelial layer and cell death. Unexpectedly, Shh mutant epithelial cells are replaced by a new population of FOXA2-negative cells that likely derive from adjacent pouch tissues and form a rudimentary epithelium. These findings have important implications for interpreting the etiology of HH-dependent birth defects within the foregut. We propose that SHH signaling has a default role in maintaining epithelial identity throughout the anterior foregut and that regionalized reductions in SHH trigger epithelial remodeling.
Collapse
Affiliation(s)
- Janani Ramachandran
- Department of Molecular Biosciences, The University of Texas at AustinAustinUnited States
| | - Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public HealthBaltimoreUnited States
| | - Anna E Bardenhagen
- Department of Molecular Biosciences, The University of Texas at AustinAustinUnited States
| | - Talia Nasr
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, and Perinatal Institute, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
- Department of Pediatrics, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Ellen R Yates
- Department of Molecular Biosciences, The University of Texas at AustinAustinUnited States
| | - Aaron M Zorn
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, and Perinatal Institute, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
- Department of Pediatrics, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public HealthBaltimoreUnited States
| | - Steven A Vokes
- Department of Molecular Biosciences, The University of Texas at AustinAustinUnited States
| |
Collapse
|
19
|
Duque M, Amorim JP, Bessa J. Ptf1a function and transcriptional cis-regulation, a cornerstone in vertebrate pancreas development. FEBS J 2022; 289:5121-5136. [PMID: 34125483 PMCID: PMC9545688 DOI: 10.1111/febs.16075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/23/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022]
Abstract
Vertebrate pancreas organogenesis is a stepwise process regulated by a complex network of signaling and transcriptional events, progressively steering the early endoderm toward pancreatic fate. Many crucial players of this process have been identified, including signaling pathways, cis-regulatory elements, and transcription factors (TFs). Pancreas-associated transcription factor 1a (PTF1A) is one such TF, crucial for pancreas development. PTF1A mutations result in dramatic pancreatic phenotypes associated with severe complications, such as neonatal diabetes and impaired food digestion due to exocrine pancreatic insufficiency. Here, we present a brief overview of vertebrate pancreas development, centered on Ptf1a function and transcriptional regulation, covering similarities and divergences in three broadly studied organisms: human, mouse and zebrafish.
Collapse
Affiliation(s)
- Marta Duque
- Instituto de Biologia Molecular e Celular (IBMC)Universidade do PortoPortugal
- Instituto de Investigação e Inovação em Saúde (i3S)Universidade do PortoPortugal
- Doctoral program in Molecular and Cell Biology (MCbiology)Instituto de Ciências Biomédicas Abel Salazar (ICBAS)Universidade do PortoPortugal
| | - João Pedro Amorim
- Instituto de Biologia Molecular e Celular (IBMC)Universidade do PortoPortugal
- Instituto de Investigação e Inovação em Saúde (i3S)Universidade do PortoPortugal
- Doctoral program in Molecular and Cell Biology (MCbiology)Instituto de Ciências Biomédicas Abel Salazar (ICBAS)Universidade do PortoPortugal
| | - José Bessa
- Instituto de Biologia Molecular e Celular (IBMC)Universidade do PortoPortugal
- Instituto de Investigação e Inovação em Saúde (i3S)Universidade do PortoPortugal
| |
Collapse
|
20
|
Jin W, Jiang W. Stepwise differentiation of functional pancreatic β cells from human pluripotent stem cells. CELL REGENERATION 2022; 11:24. [PMID: 35909206 PMCID: PMC9339430 DOI: 10.1186/s13619-022-00125-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/13/2022] [Indexed: 12/15/2022]
Abstract
Pancreatic β cells differentiated from stem cells provide promise for cell replacement therapy of diabetes. Human pluripotent stem cells could be differentiated into definitive endoderm, followed by pancreatic progenitors, and then subjected to endocrinal differentiation and maturation in a stepwise fashion. Many achievements have been made in making pancreatic β cells from human pluripotent stem cells in last two decades, and a couple of phase I/II clinical trials have just been initiated. Here, we overview the major progresses in differentiating pancreatic β cells from human pluripotent stem cells with the focus on recent technical advances in each differentiation stage, and briefly discuss the current limitations as well.
Collapse
|
21
|
Silva IBB, Kimura CH, Colantoni VP, Sogayar MC. Stem cells differentiation into insulin-producing cells (IPCs): recent advances and current challenges. Stem Cell Res Ther 2022; 13:309. [PMID: 35840987 PMCID: PMC9284809 DOI: 10.1186/s13287-022-02977-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 06/19/2022] [Indexed: 11/10/2022] Open
Abstract
Type 1 diabetes mellitus (T1D) is a chronic disease characterized by an autoimmune destruction of insulin-producing β-pancreatic cells. Although many advances have been achieved in T1D treatment, current therapy strategies are often unable to maintain perfect control of glycemic levels. Several studies are searching for new and improved methodologies for expansion of β-cell cultures in vitro to increase the supply of these cells for pancreatic islets replacement therapy. A promising approach consists of differentiation of stem cells into insulin-producing cells (IPCs) in sufficient number and functional status to be transplanted. Differentiation protocols have been designed using consecutive cytokines or signaling modulator treatments, at specific dosages, to activate or inhibit the main signaling pathways that control the differentiation of induced pluripotent stem cells (iPSCs) into pancreatic β-cells. Here, we provide an overview of the current approaches and achievements in obtaining stem cell-derived β-cells and the numerous challenges, which still need to be overcome to achieve this goal. Clinical translation of stem cells-derived β-cells for efficient maintenance of long-term euglycemia remains a major issue. Therefore, research efforts have been directed to the final steps of in vitro differentiation, aiming at production of functional and mature β-cells and integration of interdisciplinary fields to generate efficient cell therapy strategies capable of reversing the clinical outcome of T1D.
Collapse
Affiliation(s)
- Isaura Beatriz Borges Silva
- Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of São Paulo, São Paulo, SP, 05360-130, Brazil.,Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Camila Harumi Kimura
- Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of São Paulo, São Paulo, SP, 05360-130, Brazil
| | - Vitor Prado Colantoni
- Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of São Paulo, São Paulo, SP, 05360-130, Brazil.,Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Mari Cleide Sogayar
- Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of São Paulo, São Paulo, SP, 05360-130, Brazil. .,Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
22
|
Dang Le Q, Rodprasert W, Kuncorojakti S, Pavasant P, Osathanon T, Sawangmake C. In vitro generation of transplantable insulin-producing cells from canine adipose-derived mesenchymal stem cells. Sci Rep 2022; 12:9127. [PMID: 35650303 PMCID: PMC9160001 DOI: 10.1038/s41598-022-13114-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/20/2022] [Indexed: 11/27/2022] Open
Abstract
Canine mesenchymal stem cells (cMSCs) have potential applications for regenerative therapy, including the generation of insulin-producing cells (IPCs) for studying and treating diabetes. In this study, we established a useful protocol for generating IPCs from canine adipose mesenchymal stem cells (cAD-MSCs). Subsequently, in vitro preservation of pluronic F127-coated alginate (ALGPA)-encapsulated cAD-MSC-derived IPCs was performed to verify ready-to-use IPCs. IPCs were induced from cAD-MSCs with the modulated three-stepwise protocol. The first step of definitive endoderm (DE) induction showed that the cooperation of Chir99021 and Activin A created the effective production of Sox17-expressed DE cells. The second step for pancreatic endocrine (PE) progenitor induction from DE indicated that the treatment with taurine, retinoic acid, FGF2, EGF, TGFβ inhibitor, dorsomorphin, nicotinamide, and DAPT showed the significant upregulation of the pancreatic endocrine precursor markers Pdx1 and Ngn3. The last step of IPC production, the combination of taurine, nicotinamide, Glp-1, forskolin, PI3K inhibitor, and TGFβ inhibitor, yielded efficiently functional IPCs from PE precursors. Afterward, the maintenance of ALGPA-encapsulated cAD-MSC-derived IPCs with VSCBIC-1, a specialized medium, enhanced IPC properties. Conclusion, the modulated three-stepwise protocol generates the functional IPCs. Together, the encapsulation of cAD-MSC-derived IPCs and the cultivation with VSCBIC-1 enrich the maturation of generated IPCs.
Collapse
Affiliation(s)
- Quynh Dang Le
- International Program of Veterinary Science and Technology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Watchareewan Rodprasert
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Suryo Kuncorojakti
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Prasit Pavasant
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Regenerative Dentistry (CERD), Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thanaphum Osathanon
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chenphop Sawangmake
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
- Center of Excellence in Regenerative Dentistry (CERD), Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
23
|
Li X, He J, Xie K. Molecular signaling in pancreatic ductal metaplasia: emerging biomarkers for detection and intervention of early pancreatic cancer. Cell Oncol (Dordr) 2022; 45:201-225. [PMID: 35290607 DOI: 10.1007/s13402-022-00664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 11/27/2022] Open
Abstract
Pancreatic ductal metaplasia (PDM) is the transformation of potentially various types of cells in the pancreas into ductal or ductal-like cells, which eventually replace the existing differentiated somatic cell type(s). PDM is usually triggered by and manifests its ability to adapt to environmental stimuli and genetic insults. The development of PDM to atypical hyperplasia or dysplasia is an important risk factor for pancreatic intraepithelial neoplasia (PanIN) and pancreatic ductal adenocarcinoma (PDA). Recent studies using genetically engineered mouse models, cell lineage tracing, single-cell sequencing and others have unraveled novel cellular and molecular insights in PDM formation and evolution. Those novel findings help better understand the cellular origins and functional significance of PDM and its regulation at cellular and molecular levels. Given that PDM represents the earliest pathological changes in PDA initiation and development, translational studies are beginning to define PDM-associated cell and molecular biomarkers that can be used to screen and detect early PDA and to enable its effective intervention, thereby truly and significantly reducing the dreadful mortality rate of PDA. This review will describe recent advances in the understanding of PDM biology with a focus on its underlying cellular and molecular mechanisms, and in biomarker discovery with clinical implications for the management of pancreatic regeneration and tumorigenesis.
Collapse
Affiliation(s)
- Xiaojia Li
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, 510006, China
- Department of Pathology, The South China University of Technology School of Medicine, Guangzhou, China
| | - Jie He
- Institute of Digestive Diseases Research, The South China University of Technology School of Medicine, Guangzhou, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, 510006, China.
- Department of Pathology, The South China University of Technology School of Medicine, Guangzhou, China.
| |
Collapse
|
24
|
|
25
|
Li S, Xie K. Ductal metaplasia in pancreas. Biochim Biophys Acta Rev Cancer 2022; 1877:188698. [DOI: 10.1016/j.bbcan.2022.188698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 02/07/2023]
|
26
|
Kumari A, Li L, Ermilov AN, Franks NE, Dlugosz AA, Allen BL, Mistretta CM. Hedgehog (HH) pathway endogenous antagonist HHIP: unique lingual expression in filiform papillae during homeostasis and ectopic in fungiform papillae during HH signaling inhibition. Dev Dyn 2022; 251:1175-1195. [PMID: 35048440 DOI: 10.1002/dvdy.456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/19/2021] [Accepted: 12/19/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Hedgehog (HH) signaling is essential for homeostasis in gustatory fungiform papillae (FP) and taste buds. However, activities of HH antagonists in these tissues remain unexplored. We investigated a potential role for HH-interacting protein (HHIP), an endogenous pathway antagonist, in regulating HH signaling during taste organ homeostasis. We found a restricted pattern of Hhip-expressing cells in the anterior epithelium of each nongustatory filiform papilla (FILIF) only. To test for roles in antagonism of HH signaling, we investigated HHIP after pathway inhibition with SMO inhibition via sonidegib and Smo deletion, Gli2 deletion/suppression, or with chorda tympani/lingual nerve cut. RESULTS In all approaches, the HHIP expression pattern was retained in FILIF suggesting HH-independent regulation of HHIP. Remarkably, after pathway inhibition, HHIP expression was detected also in the conical, FILIF-like atypical FP. We found a close association of de novo expression of HHIP in atypical FP with loss of Gli1+, HH-responding cells. Further, we report that PTCH1 is another potential HH antagonist in FILIF that co-localizes with HHIP. CONCLUSIONS After HH pathway inhibition the ectopic expression of HHIP correlates with a FILIF-like morphology in atypical FP and we propose that localized expression of the HH antagonist HHIP regulates pathway inhibition to maintain FILIF during tongue homeostasis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Archana Kumari
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America.,Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, New Jersey, United States of America
| | - Libo Li
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alexandre N Ermilov
- Department of Dermatology, Michigan Medicine, Ann Arbor, Michigan, United States of America
| | - Nicole E Franks
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Andrzej A Dlugosz
- Department of Dermatology, Michigan Medicine, Ann Arbor, Michigan, United States of America.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Benjamin L Allen
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Charlotte M Mistretta
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
27
|
Mehta V, Hopson PE, Smadi Y, Patel SB, Horvath K, Mehta DI. Development of the human pancreas and its exocrine function. Front Pediatr 2022; 10:909648. [PMID: 36245741 PMCID: PMC9557127 DOI: 10.3389/fped.2022.909648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/11/2022] [Indexed: 11/25/2022] Open
Abstract
The pancreas has both endocrine and exocrine function and plays an important role in digestion and glucose control. Understanding the development of the pancreas, grossly and microscopically, and the genetic factors regulating it provides further insight into clinical problems that arise when these processes fail. Animal models of development are known to have inherent issues when understanding human development. Therefore, in this review, we focus on human studies that have reported gross and microscopic development including acinar-, ductal-, and endocrine cells and the neural network. We review the genes and transcription factors involved in organ formation using data from animal models to bridge current understanding where necessary. We describe the development of exocrine function in the fetus and postnatally. A deeper review of the genes involved in pancreatic formation allows us to describe the development of the different groups (proteases, lipids, and amylase) of enzymes during fetal life and postnatally and describe the genetic defects. We discuss the constellation of gross anatomical, as well as microscopic defects that with genetic mutations lead to pancreatic insufficiency and disease states.
Collapse
Affiliation(s)
- Vijay Mehta
- Center for Digestive Health and Nutrition, Arnold Palmer Hospital for Children, Orlando, FL, United States
| | - Puanani E Hopson
- Department of Children Center, Pediatric and Adolescent Medicine, Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Yamen Smadi
- Center for Digestive Health and Nutrition, Arnold Palmer Hospital for Children, Orlando, FL, United States
| | - Samit B Patel
- Pediatric Gastroenterology and Nutrition of Tampa Bay, Tampa Bay, FL, United States
| | - Karoly Horvath
- Center for Digestive Health and Nutrition, Arnold Palmer Hospital for Children, Orlando, FL, United States
| | - Devendra I Mehta
- Center for Digestive Health and Nutrition, Arnold Palmer Hospital for Children, Orlando, FL, United States
| |
Collapse
|
28
|
D’Agosto S, Pezzini F, Veghini L, Delfino P, Fiorini C, Temgue Tane GD, Del Curatolo A, Vicentini C, Ferrari G, Pasini D, Andreani S, Lupo F, Fiorini E, Lorenzon G, Lawlor RT, Rusev B, Malinova A, Luchini C, Milella M, Sereni E, Pea A, Bassi C, Bailey P, Scarpa A, Bria E, Corbo V. Loss of FGFR4 promotes the malignant phenotype of PDAC. Oncogene 2022; 41:4371-4384. [PMID: 35963908 PMCID: PMC9481460 DOI: 10.1038/s41388-022-02432-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 01/29/2023]
Abstract
Transcriptomic analyses of pancreatic ductal adenocarcinoma (PDAC) have identified two major epithelial subtypes with distinct biology and clinical behaviours. Here, we aimed to clarify the role of FGFR1 and FGFR4 in the definition of aggressive PDAC phenotypes. We found that the expression of FGFR4 is exclusively detected in epithelial cells, significantly elevated in the classical PDAC subtype, and associates with better outcomes. In highly aggressive basal-like/squamous PDAC, reduced FGFR4 expression aligns with hypermethylation of the gene and lower levels of histone marks associated with active transcription in its regulatory regions. Conversely, FGFR1 has more promiscuous expression in both normal and malignant pancreatic tissues and is strongly associated with the EMT phenotype but not with the basal-like cell lineage. Regardless of the genetic background, the increased proliferation of FGFR4-depleted PDAC cells correlates with hyperactivation of the mTORC1 pathway both in vitro and in vivo. Downregulation of FGFR4 in classical cell lines invariably leads to the enrichment of basal-like/squamous gene programs and is associated with either partial or full switch of phenotype. In sum, we show that endogenous levels of FGFR4 limit the malignant phenotype of PDAC cells. Finally, we propose FGFR4 as a valuable marker for the stratification of PDAC patients.
Collapse
Affiliation(s)
- Sabrina D’Agosto
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy ,grid.510779.d0000 0004 9414 6915Present Address: Human Technopole, Milan, Italy
| | - Francesco Pezzini
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Lisa Veghini
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Pietro Delfino
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Claudia Fiorini
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Gael D. Temgue Tane
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Anais Del Curatolo
- grid.411475.20000 0004 1756 948XARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Caterina Vicentini
- grid.411475.20000 0004 1756 948XARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Giorgia Ferrari
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Davide Pasini
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Silvia Andreani
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Francesca Lupo
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Elena Fiorini
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Giulia Lorenzon
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Rita T. Lawlor
- grid.411475.20000 0004 1756 948XARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Borislav Rusev
- grid.411475.20000 0004 1756 948XARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Antonia Malinova
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Claudio Luchini
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Michele Milella
- grid.411475.20000 0004 1756 948XDepartment of Medicine, Section of Oncology, University and Hospital Trust of Verona, Verona, Italy
| | - Elisabetta Sereni
- grid.411475.20000 0004 1756 948XDepartment of Surgery, University and Hospital Trust of Verona, “Pancreas Institute”, Verona, Italy
| | - Antonio Pea
- grid.411475.20000 0004 1756 948XDepartment of Surgery, University and Hospital Trust of Verona, “Pancreas Institute”, Verona, Italy
| | - Claudio Bassi
- grid.411475.20000 0004 1756 948XDepartment of Surgery, University and Hospital Trust of Verona, “Pancreas Institute”, Verona, Italy
| | - Peter Bailey
- grid.8756.c0000 0001 2193 314XInstitute of Cancer Sciences, University of Glasgow, Glasgow, UK ,grid.23636.320000 0000 8821 5196Cancer Research UK Beatson Institute, Glasgow, UK ,grid.7700.00000 0001 2190 4373Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Aldo Scarpa
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy ,grid.411475.20000 0004 1756 948XARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Emilio Bria
- grid.411075.60000 0004 1760 4193Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy ,grid.8142.f0000 0001 0941 3192Section of Medical Oncology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Vincenzo Corbo
- grid.411475.20000 0004 1756 948XDepartment of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy ,grid.411475.20000 0004 1756 948XARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| |
Collapse
|
29
|
Malinova A, Veghini L, Real FX, Corbo V. Cell Lineage Infidelity in PDAC Progression and Therapy Resistance. Front Cell Dev Biol 2021; 9:795251. [PMID: 34926472 PMCID: PMC8675127 DOI: 10.3389/fcell.2021.795251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/15/2021] [Indexed: 12/23/2022] Open
Abstract
Infidelity to cell fate occurs when differentiated cells lose their original identity and either revert to a more multipotent state or transdifferentiate into a different cell type, either within the same embryonic lineage or in an entirely different one. Whilst in certain circumstances, such as in wound repair, this process is beneficial, it can be hijacked by cancer cells to drive disease initiation and progression. Cell phenotype switching has been shown to also serve as a mechanism of drug resistance in some epithelial cancers. In pancreatic ductal adenocarcinoma (PDAC), the role of lineage infidelity and phenotype switching is still unclear. Two consensus molecular subtypes of PDAC have been proposed that mainly reflect the existence of cell lineages with different degrees of fidelity to pancreatic endodermal precursors. Indeed, the classical subtype of PDAC is characterised by the expression of endodermal lineage specifying transcription factors, while the more aggressive basal-like/squamous subtype is defined by epigenetic downregulation of endodermal genes and alterations in chromatin modifiers. Here, we summarise the current knowledge of mechanisms (genetic and epigenetic) of cell fate switching in PDAC and discuss how pancreatic organoids might help increase our understanding of both cell-intrinsic and cell-extrinsic factors governing lineage infidelity during the distinct phases of PDAC evolution.
Collapse
Affiliation(s)
- Antonia Malinova
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Lisa Veghini
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Francisco X. Real
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre, Madrid, Spain
- CIBERONC, Madrid, Spain
- Department de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Vincenzo Corbo
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- ARC-Net Research Centre, University of Verona, Verona, Italy
| |
Collapse
|
30
|
Alvarez Fallas ME, Pedraza-Arevalo S, Cujba AM, Manea T, Lambert C, Morrugares R, Sancho R. Stem/progenitor cells in normal physiology and disease of the pancreas. Mol Cell Endocrinol 2021; 538:111459. [PMID: 34543699 PMCID: PMC8573583 DOI: 10.1016/j.mce.2021.111459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 03/19/2021] [Accepted: 09/13/2021] [Indexed: 02/08/2023]
Abstract
Though embryonic pancreas progenitors are well characterised, the existence of stem/progenitor cells in the postnatal mammalian pancreas has been long debated, mainly due to contradicting results on regeneration after injury or disease in mice. Despite these controversies, sequencing advancements combined with lineage tracing and organoid technologies indicate that homeostatic and trigger-induced regenerative responses in mice could occur. The presence of putative progenitor cells in the adult pancreas has been proposed during homeostasis and upon different stress challenges such as inflammation, tissue damage and oncogenic stress. More recently, single cell transcriptomics has revealed a remarkable heterogeneity in all pancreas cell types, with some cells showing the signature of potential progenitors. In this review we provide an overview on embryonic and putative adult pancreas progenitors in homeostasis and disease, with special emphasis on in vitro culture systems and scRNA-seq technology as tools to address the progenitor nature of different pancreatic cells.
Collapse
Affiliation(s)
- Mario Enrique Alvarez Fallas
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Sergio Pedraza-Arevalo
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Ana-Maria Cujba
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Teodora Manea
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Christopher Lambert
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Rosario Morrugares
- Instituto Maimonides de Investigacion Biomedica de Cordoba (IMIBIC), Cordoba, Spain; Departamento de Biologia Celular, Fisiologia e Inmunologia, Universidad de Cordoba, Cordoba, Spain; Hospital Universitario Reina Sofia, Cordoba, Spain
| | - Rocio Sancho
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, London, UK; Department of Medicine III, University Hospital Carl Gustav Carus, Dresden, Germany.
| |
Collapse
|
31
|
Loss of TBX3 enhances pancreatic progenitor generation from human pluripotent stem cells. Stem Cell Reports 2021; 16:2617-2627. [PMID: 34653400 PMCID: PMC8580886 DOI: 10.1016/j.stemcr.2021.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/11/2022] Open
Abstract
Tbx3 has been identified as a regulator of liver development in the mouse, but its function in human liver development remains unknown. TBX3 mutant human pluripotent stem cell (PSC) lines were generated using CRISPR/Cas9 genome editing. TBX3 loss led to impaired liver differentiation and an upregulation of pancreatic gene expression, including PDX1, during a hepatocyte differentiation protocol. Other pancreatic genes, including NEUROG3 and NKX2.2, displayed more open chromatin in the TBX3 mutant hepatoblasts. Using a pancreatic differentiation protocol, cells lacking TBX3 generated more pancreatic progenitors and had an enhanced pancreatic gene expression signature at the expense of hepatic gene expression. These data highlight a potential role of TBX3 in regulating hepatic and pancreatic domains during foregut patterning, with implications for enhancing the generation of pancreatic progenitors from PSCs. TBX3 null PSCs have impaired hepatocyte differentiation capacity TBX3 null hepatocytes have aberrant expression of pancreatic genes, including PDX1 TBX3 null PSCs have enhanced differentiation capacity into pancreatic progenitors Loss of TBX3 leads to increased chromatin accessibility of many pancreatic genes
Collapse
|
32
|
Nihad M, Shenoy P S, Bose B. Cell therapy research for Diabetes: Pancreatic β cell differentiation from pluripotent stem cells. Diabetes Res Clin Pract 2021; 181:109084. [PMID: 34673084 DOI: 10.1016/j.diabres.2021.109084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022]
Abstract
Human pluripotent stem cells (PSCs), both embryonic and induced pluripotent stem cells (iPSCs), have been differentiated into pancreatic β isletsin vitrofor more than a decade. The idea is to get enough β cells for cell transplantation for diabetics. Finding a standard cell therapy for diabetes is essential because of the logarithmic increase in the global population of people with diabetes and the insufficient availability of the human cadaveric pancreas. Moreover, with better insights into developmental biology, thein vitroβ cell differentiation protocols have depended on thein vivoβ cell organogenesis. Various protocols for pancreatic β cell differentiation have been developed. Such protocols are based on the modulation of cell signalling pathways with growth factors, small molecules, RNAi approaches, directed differentiation using transcription factors, genome editing. Growth factor free differentiation protocols, epigenetic modulations, 3D differentiation approaches, and encapsulation strategies have also been reported for better glycemic control and endocrine modulations. Here, we have reviewed various aforementionedin vitroβ cell differentiation protocols from human PSCs, their respective comparisons, challenges, past, present, and future. The literature has been reviewed primarily from PubMed from the year 2000 till date using the mentioned keywords.
Collapse
Affiliation(s)
- Muhammad Nihad
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Pincode-575 018, Karnataka, India
| | - Sudheer Shenoy P
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Pincode-575 018, Karnataka, India
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Pincode-575 018, Karnataka, India.
| |
Collapse
|
33
|
Siehler J, Blöchinger AK, Meier M, Lickert H. Engineering islets from stem cells for advanced therapies of diabetes. Nat Rev Drug Discov 2021; 20:920-940. [PMID: 34376833 DOI: 10.1038/s41573-021-00262-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2021] [Indexed: 12/20/2022]
Abstract
Diabetes mellitus is a metabolic disorder that affects more than 460 million people worldwide. Type 1 diabetes (T1D) is caused by autoimmune destruction of β-cells, whereas type 2 diabetes (T2D) is caused by a hostile metabolic environment that leads to β-cell exhaustion and dysfunction. Currently, first-line medications treat the symptomatic insulin resistance and hyperglycaemia, but do not prevent the progressive decline of β-cell mass and function. Thus, advanced therapies need to be developed that either protect or regenerate endogenous β-cell mass early in disease progression or replace lost β-cells with stem cell-derived β-like cells or engineered islet-like clusters. In this Review, we discuss the state of the art of stem cell differentiation and islet engineering, reflect on current and future challenges in the area and highlight the potential for cell replacement therapies, disease modelling and drug development using these cells. These efforts in stem cell and regenerative medicine will lay the foundations for future biomedical breakthroughs and potentially curative treatments for diabetes.
Collapse
Affiliation(s)
- Johanna Siehler
- Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany.,Technical University of Munich, Medical Faculty, Munich, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Anna Karolina Blöchinger
- Technical University of Munich, Medical Faculty, Munich, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Matthias Meier
- Technical University of Munich, Medical Faculty, Munich, Germany.,Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Heiko Lickert
- Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany. .,Technical University of Munich, Medical Faculty, Munich, Germany. .,German Center for Diabetes Research (DZD), Neuherberg, Germany. .,Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
34
|
Pierreux CE. Shaping the thyroid: From peninsula to de novo lumen formation. Mol Cell Endocrinol 2021; 531:111313. [PMID: 33961919 DOI: 10.1016/j.mce.2021.111313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 01/06/2023]
Abstract
A challenging and stimulating question in biology deals with the formation of organs from groups of undifferentiated progenitor cells. Most epithelial organs indeed derive from the endodermal monolayer and evolve into various shape and tridimensional organization adapted to their specialized adult function. Thyroid organogenesis is no exception. In most mammals, it follows a complex and sequential process initiated from the endoderm and leading to the development of a multitude of independent closed spheres equipped and optimized for the synthesis, storage and production of thyroid hormones. The first sign of thyroid organogenesis is visible as a thickening of the anterior foregut endoderm. This group of thyroid progenitors then buds and detaches from the foregut to migrate caudally and then laterally. Upon reaching their final destination in the upper neck region on both sides of the trachea, thyroid progenitors mix with C cell progenitors and finally organize into hormone-producing thyroid follicles. Intrinsic and extrinsic factors controlling thyroid organogenesis have been identified in several species, but the fundamental cellular processes are not sufficiently considered. This review focuses on the cellular aspects of the key morphogenetic steps during thyroid organogenesis and highlights similarities and common mechanisms with developmental steps elucidated in other endoderm-derived organs, despite different final architecture and functions.
Collapse
|
35
|
Dumasia NP, Khanna AP, Pethe PS. Sonic hedgehog signals hinder the transcriptional network necessary for pancreatic endoderm formation from human embryonic stem cells. Genes Cells 2021; 26:282-297. [PMID: 33599359 DOI: 10.1111/gtc.12839] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 02/05/2023]
Abstract
Hedgehog morphogens govern multiple aspects of pancreas organogenesis and functioning with diverse outcomes across species. Although most current differentiation protocols repress Sonic hedgehog (SHH) signals during in vitro endocrine specification, the role and mechanisms through which the SHH pathway antagonizes pancreas development during in vitro human embryonic stem (hES) cell differentiation remain unclear. We modulated SHH signaling at transitory stages of hES cell-derived pancreatic progenitors and analyzed the effect on cellular fate decisions. We identify the Hedgehog pathway as a negative regulator of pancreatic endoderm formation through up-regulation of a set of pancreatobiliary markers required for ductal specification, including SOX17, FOXA2, HNF1β, HNF6, PDX1, and SOX9. Surprisingly, active Hedgehog signals impeded a group of pancreatic epithelium markers, including HNF4α, HHEX, PAX6, and PTF1α. To understand how SHH signals repress the transcription of these specific markers, we analyzed Polycomb group proteins. We found differential expression of Polycomb Repressive Complex 1 subunit, BMI1 upon Shh pathway modulation in the pancreatic progenitors. Ectopic activation of Sonic hedgehog results in over-expression of BMI1 and its associated repressive histone mark, H2AK119Ub1, in the multipotent progenitors. Our data suggest that Sonic hedgehog restricts the pancreatic differentiation program by limiting progenitor cells acquiring pancreatic epithelial fates and instead promotes pancreatobiliary differentiation. We further provide mechanistic cues of an association between Hedgehog signaling and epigenetic silencers during pancreatic lineage decisions.
Collapse
Affiliation(s)
- Niloufer P Dumasia
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (deemed to-be) University, Mumbai, India
| | - Aparna P Khanna
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (deemed to-be) University, Mumbai, India
- Centre for Computational Biology & Translational Research, Amity Institute of Biotechnology (AIB), Amity University, Mumbai, India
| | - Prasad S Pethe
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International University, Pune, India
| |
Collapse
|
36
|
Amorim JP, Gali-Macedo A, Marcelino H, Bordeira-Carriço R, Naranjo S, Rivero-Gil S, Teixeira J, Galhardo M, Marques J, Bessa J. A Conserved Notochord Enhancer Controls Pancreas Development in Vertebrates. Cell Rep 2021; 32:107862. [PMID: 32640228 PMCID: PMC7355232 DOI: 10.1016/j.celrep.2020.107862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/06/2020] [Accepted: 06/09/2020] [Indexed: 12/31/2022] Open
Abstract
The notochord is an evolutionary novelty in vertebrates that functions as an important signaling center during development. Notochord ablation in chicken has demonstrated that it is crucial for pancreas development; however, the molecular mechanism has not been fully described. Here, we show that in zebrafish, the loss of function of nog2, a Bmp antagonist expressed in the notochord, impairs β cell differentiation, compatible with the antagonistic role of Bmp in β cell differentiation. In addition, we show that nog2 expression in the notochord is induced by at least one notochord enhancer and its loss of function reduces the number of pancreatic progenitors and impairs β cell differentiation. Tracing Nog2 diffusion, we show that Nog2 emanates from the notochord to the pancreas progenitor domain. Finally, we find a notochord enhancer in human and mice Nog genomic landscapes, suggesting that the acquisition of a Nog notochord enhancer occurred early in the vertebrate phylogeny and contributes to the development of complex organs like the pancreas.
Collapse
Affiliation(s)
- João Pedro Amorim
- i3S (Instituto de Investigação e Inovação em Saúde), Universidade do Porto, Porto, Portugal; IBMC (Instituto de Biologia Molecular e Celular), Universidade do Porto, Porto, Portugal
| | - Ana Gali-Macedo
- i3S (Instituto de Investigação e Inovação em Saúde), Universidade do Porto, Porto, Portugal; IBMC (Instituto de Biologia Molecular e Celular), Universidade do Porto, Porto, Portugal
| | - Hugo Marcelino
- i3S (Instituto de Investigação e Inovação em Saúde), Universidade do Porto, Porto, Portugal; IBMC (Instituto de Biologia Molecular e Celular), Universidade do Porto, Porto, Portugal
| | - Renata Bordeira-Carriço
- i3S (Instituto de Investigação e Inovação em Saúde), Universidade do Porto, Porto, Portugal; IBMC (Instituto de Biologia Molecular e Celular), Universidade do Porto, Porto, Portugal
| | - Silvia Naranjo
- CABD (Centro Andaluz de Biología del Desarrollo), Universidad Pablo de Olavide, Seville, Spain
| | - Solangel Rivero-Gil
- CABD (Centro Andaluz de Biología del Desarrollo), Universidad Pablo de Olavide, Seville, Spain
| | - Joana Teixeira
- i3S (Instituto de Investigação e Inovação em Saúde), Universidade do Porto, Porto, Portugal; IBMC (Instituto de Biologia Molecular e Celular), Universidade do Porto, Porto, Portugal
| | - Mafalda Galhardo
- i3S (Instituto de Investigação e Inovação em Saúde), Universidade do Porto, Porto, Portugal; CIBIO (Centro de Investigação em Biodiversidade e Recursos Genéticos), Universidade do Porto, Vairão, Portugal
| | - Joana Marques
- i3S (Instituto de Investigação e Inovação em Saúde), Universidade do Porto, Porto, Portugal; IBMC (Instituto de Biologia Molecular e Celular), Universidade do Porto, Porto, Portugal
| | - José Bessa
- i3S (Instituto de Investigação e Inovação em Saúde), Universidade do Porto, Porto, Portugal; IBMC (Instituto de Biologia Molecular e Celular), Universidade do Porto, Porto, Portugal.
| |
Collapse
|
37
|
Dissecting FGF Signalling to Target Cellular Crosstalk in Pancreatic Cancer. Cells 2021; 10:cells10040847. [PMID: 33918004 PMCID: PMC8068358 DOI: 10.3390/cells10040847] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/25/2021] [Accepted: 04/04/2021] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis with a 5 year survival rate of less than 8%, and is predicted to become the second leading cause of cancer-related death by 2030. Alongside late detection, which impacts upon surgical treatment, PDAC tumours are challenging to treat due to their desmoplastic stroma and hypovascular nature, which limits the effectiveness of chemotherapy and radiotherapy. Pancreatic stellate cells (PSCs), which form a key part of this stroma, become activated in response to tumour development, entering into cross-talk with cancer cells to induce tumour cell proliferation and invasion, leading to metastatic spread. We and others have shown that Fibroblast Growth Factor Receptor (FGFR) signalling can play a critical role in the interactions between PDAC cells and the tumour microenvironment, but it is clear that the FGFR signalling pathway is not acting in isolation. Here we describe our current understanding of the mechanisms by which FGFR signalling contributes to PDAC progression, focusing on its interaction with other pathways in signalling networks and discussing the therapeutic approaches that are being developed to try and improve prognosis for this terrible disease.
Collapse
|
38
|
Abstract
Pancreatic islet beta cells (β-cells) synthesize and secrete insulin in response to rising glucose levels and thus are a prime target in both major forms of diabetes. Type 1 diabetes ensues due to autoimmune destruction of β-cells. On the other hand, the prevailing insulin resistance and hyperglycemia in type 2 diabetes (T2D) elicits a compensatory response from β-cells that involves increases in β-cell mass and function. However, the sustained metabolic stress results in β-cell failure, characterized by severe β-cell dysfunction and loss of β-cell mass. Dynamic changes to β-cell mass also occur during pancreatic development that involves extensive growth and morphogenesis. These orchestrated events are triggered by multiple signaling pathways, including those representing the transforming growth factor β (TGF-β) superfamily. TGF-β pathway ligands play important roles during endocrine pancreas development, β-cell proliferation, differentiation, and apoptosis. Furthermore, new findings are suggestive of TGF-β's role in regulation of adult β-cell mass and function. Collectively, these findings support the therapeutic utility of targeting TGF-β in diabetes. Summarizing the role of the various TGF-β pathway ligands in β-cell development, growth and function in normal physiology, and during diabetes pathogenesis is the topic of this mini-review.
Collapse
Affiliation(s)
- Ji-Hyun Lee
- Cell Growth and Metabolism Section, Diabetes, Endocrinology & Obesity Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Clinical Research Center, Bethesda, MD, USA
| | - Ji-Hyeon Lee
- Cell Growth and Metabolism Section, Diabetes, Endocrinology & Obesity Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Clinical Research Center, Bethesda, MD, USA
| | - Sushil G Rane
- Cell Growth and Metabolism Section, Diabetes, Endocrinology & Obesity Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Clinical Research Center, Bethesda, MD, USA
- Correspondence: Sushil G. Rane, PhD, Cell Growth and Metabolism Section, Diabetes, Endocrinology and Obesity Branch, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Clinical Research Center, Building 10, CRC-West 5-5940, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
39
|
Pethe PS, Dumasia NP, Bhartiya D. Effect of Sonic hedgehog pathway inhibition on PDX1 expression during pancreatic differentiation of human embryonic stem cells. Mol Biol Rep 2021; 48:1615-1623. [PMID: 33484392 DOI: 10.1007/s11033-021-06147-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Differentiation processes for generating pancreatic progenitors from pluripotent stem cells inhibit Sonic hedgehog signaling through synthetic antagonists. However, the effect of sonic hedgehog inhibition in differentiating human embryonic stem cells remains unclear. The primary aim of this study was to understand the effect of Sonic hedgehog inhibition on key pancreas-specific transcription factors during differentiation of human embryonic stem cells towards a pancreatic lineage. We differentiated human embryonic stem (ES) cells towards the pancreatic progenitor stage. To analyze the effect of Sonic hedgehog inhibition, we differentiated human ES cells in the presence or absence of pathway antagonist, cyclopamine, using the same concentration (0.25 µM) as reported earlier. Changes in gene expression between the groups were examined by quantitative reverse-transcription PCR and immunoblot analyses. Surprisingly, we found that expression of key transcription factors, PDX1 and SOX9, was not majorly affected by inhibition of Sonic hedgehog signals. Effects of inhibiting Hedgehog signals on pancreas-specific markers in differentiating human embryonic stem cells were analyzed in the study. We identified that the expression of pancreas-specific PDX1 and SOX9 was not affected by the Sonic hedgehog pathway in pancreatic progenitor populations from human ES cells. Thus, the restrictive nature of Hedgehog signaling during the early stages of pancreas formation could be facilitated through a transcriptional network beyond PDX1 and SOX9.
Collapse
Affiliation(s)
- Prasad S Pethe
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, J.M. Street, Parel, Mumbai, 400 012, India.
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International University (SIU), Lavale, Mulshi, Pune, 412 115, India.
| | - Niloufer P Dumasia
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to-be) University, Mumbai, 400 056, India
| | - Deepa Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, J.M. Street, Parel, Mumbai, 400 012, India
| |
Collapse
|
40
|
Sim EZ, Shiraki N, Kume S. Recent progress in pancreatic islet cell therapy. Inflamm Regen 2021; 41:1. [PMID: 33402224 PMCID: PMC7784351 DOI: 10.1186/s41232-020-00152-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/15/2020] [Indexed: 01/10/2023] Open
Abstract
Human pluripotent stem cells (PSCs), including human embryonic stem cells and induced pluripotent stem cells, are promising cell sources in regenerating pancreatic islets through in vitro directed differentiation. Recent progress in this research field has made it possible to generate glucose-responsive pancreatic islet cells from PSCs. Single-cell RNA sequencing techniques have been applied to analyze PSC-derived endocrine beta-cells, which are then compared with human islets. This has led to the identification of novel signaling pathways and molecules involved in lineage commitment during pancreatic differentiation and maturation processes. Single-cell transcriptomics are also used to construct a detailed map of in vivo endocrine differentiation of developing mouse embryos to study pancreatic islet development. Mimicking those occurring in vivo, it was reported that differentiating PSCs can generate similar islet cell structures, while metabolomics analysis highlighted key components involved in PSC-derived pancreatic islet cell function, providing information for the improvement of in vitro pancreatic maturation procedures. In addition, cell transplantation into diabetic animal models, together with the cell delivery system, is studied to ensure the therapeutic potentials of PSC-derived pancreatic islet cells. Combined with gene-editing technology, the engineered mutation-corrected PSC lines originated from diabetes patients could be differentiated into functional pancreatic islet cells, suggesting possible autologous cell therapy in the future. These PSC-derived pancreatic islet cells are a potential tool for studies of disease modeling and drug testing. Herein, we outlined the directed differentiation procedures of PSC-derived pancreatic islet cells, novel findings through transcriptome and metabolome studies, and recent progress in disease modeling.
Collapse
Affiliation(s)
- Erinn Zixuan Sim
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Nobuaki Shiraki
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Shoen Kume
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
| |
Collapse
|
41
|
Dumasia NP, Pethe PS. Pancreas development and the Polycomb group protein complexes. Mech Dev 2020; 164:103647. [PMID: 32991980 DOI: 10.1016/j.mod.2020.103647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/02/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023]
Abstract
The dual nature of pancreatic tissue permits both endocrine and exocrine functions. Enzymatic secretions by the exocrine pancreas help digestive processes while the pancreatic hormones regulate glucose homeostasis and energy metabolism. Pancreas organogenesis is defined by a conserved array of signaling pathways that act on common gut progenitors to bring about the generation of diverse cell types. Multiple cellular processes characterize development of the mature organ. These processes are mediated by signaling pathways that regulate lineage-specific transcription factors and chromatin modifications guiding long-term gene expression programs. The chromatin landscape is altered chiefly by DNA or histone modifications, chromatin remodelers, and non-coding RNAs. Amongst histone modifiers, several studies have identified Polycomb group (PcG) proteins as crucial determinants mediating transcriptional repression of genes involved in developmental processes. Although PcG-mediated chromatin modifications define cellular transitions and influence cell identity of multipotent progenitors, much remains to be understood regarding coordination between extracellular signals and their impact on Polycomb functions during the pancreas lineage progression. In this review, we discuss interactions between sequence-specific DNA binding proteins and chromatin regulators underlying pancreas development and insulin producing β-cells, with particular focus on Polycomb group proteins. Understanding such basic molecular mechanisms would improve current strategies for stem cell-based differentiation while also help elucidate the pathogenesis of several pancreas-related maladies, including diabetes and pancreatic cancer.
Collapse
Affiliation(s)
- Niloufer P Dumasia
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (deemed to-be) University, Mumbai 400 056, India
| | - Prasad S Pethe
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International University, Lavale, Pune 412 115, India.
| |
Collapse
|
42
|
Liu J, Song G, Meng T, Zhao G, Si S. The effect of gestational diabetes on identification of key genes and pathways in human umbilical vein endothelial cell by integrated bioinformatics analysis. J OBSTET GYNAECOL 2020; 41:881-887. [PMID: 33228420 DOI: 10.1080/01443615.2020.1819211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Maternal diabetes may lead to long-term risks for the offspring. The study aims at identifying the potential crucial genes and pathways associated with foetal metabolism and malformation of gestational diabetes mellitus (GDM). Gene Expression Series 49524 and 87295 were downloaded from Gene Expression Omnibus database, including eight from GDM and eight from non-GDM. A total of 35 differentially expressed genes were identified. Gene ontology functional annotation and signalling pathway analyses were performed. Four hub genes were identified by protein-protein interaction network: SHH, E2F1, STAT1, and HOXA9. The four hub genes were assessed by western blot and real-time quantitative PCR in clinical samples. The results of this data mining and integration help to reveal the pathophysiologic and molecular mechanism imprinted in primary umbilical cord-derived cells from GDM offspring. These genes and pathways identified are potential stratification biomarkers and provide further insight for developing therapeutic intervention for the offspring of diabetic mothers.Impact statementWhat is already known on this subject? Maternal diabetes may lead to long-term risks for the offspring. A high glucose environment might change the umbilical cord expression of genes implicated in foetal metabolism and development. However, underlying molecular mechanisms have not been investigated thoroughly.What do the results of this study add? GO functional annotation showed that the biological functions of differentially expressed genes mainly involved in metanephros development, salivary gland morphogenesis, fat cell differentiation, vasculogenesis, muscle cell proliferation, heart morphogenesis and Wnt signalling pathway. Signalling pathway analyses found that these differentially expressed genes mainly implicated in the apoptosis, cell cycle, Hedgehog, P53, and NOTCH signalling pathway. Four hub genes were identified by protein-protein interaction network: SHH, E2F1, STAT1 and HOXA9.What are the implications of these findings for clinical practice and/or further research? The genes and pathways identified in the present study are potential stratification biomarkers and provide further insight for developing therapeutic intervention for the offspring of diabetic mothers.
Collapse
Affiliation(s)
- Jing Liu
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Guang Song
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tao Meng
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ge Zhao
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Si Si
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
43
|
Garcia PE, Scales MK, Allen BL, Pasca di Magliano M. Pancreatic Fibroblast Heterogeneity: From Development to Cancer. Cells 2020; 9:E2464. [PMID: 33198201 PMCID: PMC7698149 DOI: 10.3390/cells9112464] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is characterized by an extensive fibroinflammatory microenvironment that accumulates from the onset of disease progression. Cancer-associated fibroblasts (CAFs) are a prominent cellular component of the stroma, but their role during carcinogenesis remains controversial, with both tumor-supporting and tumor-restraining functions reported in different studies. One explanation for these contradictory findings is the heterogeneous nature of the fibroblast populations, and the different roles each subset might play in carcinogenesis. Here, we review the current literature on the origin and function of pancreatic fibroblasts, from the developing organ to the healthy adult pancreas, and throughout the initiation and progression of PDA. We also discuss clinical approaches to targeting fibroblasts in PDA.
Collapse
Affiliation(s)
- Paloma E. Garcia
- Program in Molecular and Cellular Pathology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Michael K. Scales
- Department of Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.S.); (B.L.A.)
| | - Benjamin L. Allen
- Department of Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.S.); (B.L.A.)
- Rogel Cancer Center, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marina Pasca di Magliano
- Department of Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.S.); (B.L.A.)
- Rogel Cancer Center, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
44
|
Tian JL, Gomeshtapeh FI. Potential Roles of O-GlcNAcylation in Primary Cilia- Mediated Energy Metabolism. Biomolecules 2020; 10:biom10111504. [PMID: 33139642 PMCID: PMC7693894 DOI: 10.3390/biom10111504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 12/26/2022] Open
Abstract
The primary cilium, an antenna-like structure on most eukaryotic cells, functions in transducing extracellular signals into intracellular responses via the receptors and ion channels distributed along it membrane. Dysfunction of this organelle causes an array of human diseases, known as ciliopathies, that often feature obesity and diabetes; this indicates the primary cilia's active role in energy metabolism, which it controls mainly through hypothalamic neurons, preadipocytes, and pancreatic β-cells. The nutrient sensor, O-GlcNAc, is widely involved in the regulation of energy homeostasis. Not only does O-GlcNAc regulate ciliary length, but it also modifies many components of cilia-mediated metabolic signaling pathways. Therefore, it is likely that O-GlcNAcylation (OGN) plays an important role in regulating energy homeostasis in primary cilia. Abnormal OGN, as seen in cases of obesity and diabetes, may play an important role in primary cilia dysfunction mediated by these pathologies.
Collapse
Affiliation(s)
- Jie L. Tian
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Correspondence: ; Tel.: +1-706-583-5551
| | | |
Collapse
|
45
|
Single-cell patterning and axis characterization in the murine and human definitive endoderm. Cell Res 2020; 31:326-344. [PMID: 33106598 DOI: 10.1038/s41422-020-00426-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022] Open
Abstract
Defining the precise regionalization of specified definitive endoderm progenitors is critical for understanding the mechanisms underlying the generation and regeneration of respiratory and digestive organs, yet the patterning of endoderm progenitors remains unresolved, particularly in humans. We performed single-cell RNA sequencing on endoderm cells during the early somitogenesis stages in mice and humans. We developed molecular criteria to define four major endoderm regions (foregut, lip of anterior intestinal portal, midgut, and hindgut) and their developmental pathways. We identified the cell subpopulations in each region and their spatial distributions and characterized key molecular features along the body axes. Dorsal and ventral pancreatic progenitors appear to originate from the midgut population and follow distinct pathways to develop into an identical cell type. Finally, we described the generally conserved endoderm patterning in humans and clear differences in dorsal cell distribution between species. Our study comprehensively defines single-cell endoderm patterning and provides novel insights into the spatiotemporal process that drives establishment of early endoderm domains.
Collapse
|
46
|
Ho WJ, Jaffee EM, Zheng L. The tumour microenvironment in pancreatic cancer - clinical challenges and opportunities. Nat Rev Clin Oncol 2020; 17:527-540. [PMID: 32398706 PMCID: PMC7442729 DOI: 10.1038/s41571-020-0363-5] [Citation(s) in RCA: 671] [Impact Index Per Article: 134.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2020] [Indexed: 12/17/2022]
Abstract
Metastatic pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid tumours despite the use of multi-agent conventional chemotherapy regimens. Such poor outcomes have fuelled ongoing efforts to exploit the tumour microenvironment (TME) for therapy, but strategies aimed at deconstructing the surrounding desmoplastic stroma and targeting the immunosuppressive pathways have largely failed. In fact, evidence has now shown that the stroma is multi-faceted, which illustrates the complexity of exploring features of the TME as isolated targets. In this Review, we describe ways in which the PDAC microenvironment has been targeted and note the current understanding of the clinical outcomes that have unexpectedly contradicted preclinical observations. We also consider the more sophisticated therapeutic strategies under active investigation - multi-modal treatment approaches and exploitation of biologically integrated targets - which aim to remodel the TME against PDAC.
Collapse
Affiliation(s)
- Won Jin Ho
- Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Pancreatic Cancer Center for Clinical Research and Care, and The Bloomberg-Kimmel Institute for Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth M Jaffee
- Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Pancreatic Cancer Center for Clinical Research and Care, and The Bloomberg-Kimmel Institute for Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Zheng
- Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Pancreatic Cancer Center for Clinical Research and Care, and The Bloomberg-Kimmel Institute for Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
47
|
Bardot ES, Hadjantonakis AK. Mouse gastrulation: Coordination of tissue patterning, specification and diversification of cell fate. Mech Dev 2020; 163:103617. [PMID: 32473204 PMCID: PMC7534585 DOI: 10.1016/j.mod.2020.103617] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022]
Abstract
During mouse embryonic development a mass of pluripotent epiblast tissue is transformed during gastrulation to generate the three definitive germ layers: endoderm, mesoderm, and ectoderm. During gastrulation, a spatiotemporally controlled sequence of events results in the generation of organ progenitors and positions them in a stereotypical fashion throughout the embryo. Key to the correct specification and differentiation of these cell fates is the establishment of an axial coordinate system along with the integration of multiple signals by individual epiblast cells to produce distinct outcomes. These signaling domains evolve as the anterior-posterior axis is established and the embryo grows in size. Gastrulation is initiated at the posteriorly positioned primitive streak, from which nascent mesoderm and endoderm progenitors ingress and begin to diversify. Advances in technology have facilitated the elaboration of landmark findings that originally described the epiblast fate map and signaling pathways required to execute those fates. Here we will discuss the current state of the field and reflect on how our understanding has shifted in recent years.
Collapse
Affiliation(s)
- Evan S Bardot
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
48
|
Dettmer R, Cirksena K, Münchhoff J, Kresse J, Diekmann U, Niwolik I, Buettner FFR, Naujok O. FGF2 Inhibits Early Pancreatic Lineage Specification during Differentiation of Human Embryonic Stem Cells. Cells 2020; 9:cells9091927. [PMID: 32825270 PMCID: PMC7565644 DOI: 10.3390/cells9091927] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023] Open
Abstract
Growth factors are important regulators during organ development. For many vertebrates (but not humans) it is known how they contribute to the formation and expansion of PDX1-positive cells during pancreas organogenesis. Here, the effects of the fibroblast growth factors FGF2, FGF7, FGF10, and epidermal growth factor (EGF) on pancreas development in humans were assessed by using human pluripotent stem cells (hPSCs). During this, FGF2 was identified as a potent anti-pancreatic factor whereas FGF7, FGF10, and EGF increased the cell mass while retaining PDX1-positivity. FGF2 increased the expression of the anti-pancreatic factor sonic hedgehog (SHH) while suppressing PDX1 in a dose-dependent manner. Differentiating cells secreted SHH to the medium and we interrogated the cells’ secretome during differentiation to globally examine the composition of secreted signaling factors. Members of the TGF-beta-, Wnt-, and FGF-pathways were detected. FGF17 showed a suppressive anti-pancreatic effect comparable to FGF2. By inhibition of specific branches of FGF-receptor signaling, we allocated the SHH-induction by FGF2 to MEK/ERK-signaling and the anti-pancreatic effect of FGF2 to the receptor variant FGFR1c or 3c. Altogether, we report findings on the paracrine activity of differentiating hPSCs during generation of pancreatic progenitors. These observations suggest a different role for FGF2 in humans compared to animal models of pancreas organogenesis.
Collapse
|
49
|
Bukys MA, Mihas A, Finney K, Sears K, Trivedi D, Wang Y, Oberholzer J, Jensen J. High-Dimensional Design-Of-Experiments Extracts Small-Molecule-Only Induction Conditions for Dorsal Pancreatic Endoderm from Pluripotency. iScience 2020; 23:101346. [PMID: 32745983 PMCID: PMC7398937 DOI: 10.1016/j.isci.2020.101346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 04/15/2020] [Accepted: 07/02/2020] [Indexed: 01/27/2023] Open
Abstract
The derivation of endoderm and descendant organs, such as pancreas, liver, and intestine, impacts disease modeling and regenerative medicine. Use of TGF-β signaling agonism is a common method for induction of definitive endoderm from pluripotency. By using a data-driven, High-Dimensional Design of Experiments (HD-DoE)-based methodology to address multifactorial problems in directed differentiation, we found instead that optimal conditions demanded BMP antagonism and retinoid input leading to induction of dorsal foregut endoderm (DFE). We demonstrate that pancreatic identity can be rapidly, and robustly, induced from DFE and that such cells are of dorsal pancreatic identity. The DFE population was highly competent to differentiate into both stomach organoids and pancreatic tissue types and able to generate fetal-type β cells through two subsequent differentiation steps using only small molecules. This alternative, rapid, and low-cost basis for generating pancreatic insulin-producing cells may have impact for the development of cell-based therapies for diabetes. Method development for addressing multifactorial problems in directed differentiation Generation of endodermal populations without the use of TGF-β agonism Small-molecule-based pancreatic differentiation protocol
Collapse
Affiliation(s)
- Michael A Bukys
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Alexander Mihas
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Krystal Finney
- Trailhead Biosystems Inc, 10000 Cedar Avenue, Cleveland, OH, USA; Cleveland Clinic, Cleveland, OH 44195, USA
| | - Katie Sears
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Divya Trivedi
- Trailhead Biosystems Inc, 10000 Cedar Avenue, Cleveland, OH, USA; Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yong Wang
- Division of Transplantation, University of Virginia, Charlottesville, VA 22903, USA
| | - Jose Oberholzer
- Division of Transplantation, University of Virginia, Charlottesville, VA 22903, USA
| | - Jan Jensen
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Trailhead Biosystems Inc, 10000 Cedar Avenue, Cleveland, OH, USA; Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
50
|
Garcia PE, Adoumie M, Kim EC, Zhang Y, Scales MK, El-Tawil YS, Shaikh AZ, Wen HJ, Bednar F, Allen BL, Wellik DM, Crawford HC, Pasca di Magliano M. Differential Contribution of Pancreatic Fibroblast Subsets to the Pancreatic Cancer Stroma. Cell Mol Gastroenterol Hepatol 2020; 10:581-599. [PMID: 32454112 PMCID: PMC7399194 DOI: 10.1016/j.jcmgh.2020.05.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Although the healthy pancreas consists mostly of epithelial cells, pancreatic cancer and the precursor lesions known as pancreatic intraepithelial neoplasia, are characterized by an extensive accumulation of fibroinflammatory stroma that includes a substantial and heterogeneous fibroblast population. The cellular origin of fibroblasts within the stroma has not been determined. Here, we show that the Gli1 and Hoxb6 markers label distinct fibroblast populations in the healthy mouse pancreas. We then set out to determine whether these distinct fibroblast populations expanded during carcinogenesis. METHODS We developed genetically engineered models using a dual-recombinase approach that allowed us to induce pancreatic cancer formation through codon-optimized Flp recombinase-driven epithelial recombination of Kirsten rat sarcoma viral oncogene homolog while labeling Gli1+ or Hoxb6+ fibroblasts in an inducible manner. By using these models, we lineage-traced these 2 fibroblast populations during the process of carcinogenesis. RESULTS Although in the healthy pancreas Gli1+ fibroblasts and Hoxb6+ fibroblasts are present in similar numbers, they contribute differently to the stroma in carcinogenesis. Namely, Gli1+ fibroblasts expand dramatically, whereas Hoxb6+ cells do not. CONCLUSIONS Fibroblasts present in the healthy pancreas expand during carcinogenesis, but with a different prevalence for different subtypes. Here, we compared Gli1+ and Hoxb6+ fibroblasts and found only Gli1+ expanded to contribute to the stroma during pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Paloma E Garcia
- Program in Molecular and Cellular Pathology, University of Michigan, Ann Arbor, Michigan
| | - Maeva Adoumie
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Esther C Kim
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan; Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Michael K Scales
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Yara S El-Tawil
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Amara Z Shaikh
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Hui-Ju Wen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Filip Bednar
- Department of Surgery, University of Michigan, Ann Arbor, Michigan; Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Ben L Allen
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Deneen M Wellik
- Department of Cellular and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Howard C Crawford
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan; Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, Michigan; Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|