1
|
Jiang Y, Zhang H, Chen S, Ewart S, Holloway JW, Arshad H, Karmaus W. Intergenerational association of DNA methylation between parents and offspring. Sci Rep 2024; 14:19812. [PMID: 39191877 DOI: 10.1038/s41598-024-69317-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Early patterning of DNA methylation (DNAm) may play an important role in later disease development. To better understand intergenerational epigenetic inheritance, we investigated the correlation between DNAm in blood in mother-newborn and in father-newborn pairs in the Isle of Wight (IoW) birth cohort. For parent-newborn pairs (n = 48), offspring DNAm was measured in cord blood and the parent's DNAm in whole blood. Mothers' DNAm was analyzed at birth (Guthrie card), age 18, early and late pregnancy respectively, and fathers' DNAm was measured during the mother's pregnancy. Linear regressions were applied to assess the intergenerational correlation of parental DNAm with that of offspring. Among various pairs of mother-newborn and father-newborn DNAm, the pairs where the mothers' DNAm was measured at age 18 years exhibited the highest number of CpGs with significant intergenerational correlation in DNAm, with 1829 CpGs (0.54%) of the 338,526 CpGs studied (FDR < 0.05). Amongst these 1829 CpGs, 986 (54%) are known quantitative trait loci (QTL) for CpG methylation (methQTL). When the mother's DNAm was assessed at early pregnancy, the number of CpGs showing intergenerational correlation was the smallest (384 CpGs, 0.11%). The second smallest number of such CpGs (559 CpGs, 0.17%) was found when investigating DNAm in offspring cord blood and father pairs. The low proportions of intergenerationally correlated CpGs suggest that epigenetic inheritance is limited.
Collapse
Affiliation(s)
- Yu Jiang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA.
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Su Chen
- Department of Mathematical Science, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Susan Ewart
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA.
| |
Collapse
|
2
|
Liu Y, Sun X, Gou Z, Deng Z, Zhang Y, Zhao P, Sun W, Bai Y, Jing Y. Epigenetic modifications in abdominal aortic aneurysms: from basic to clinical. Front Cardiovasc Med 2024; 11:1394889. [PMID: 38895538 PMCID: PMC11183338 DOI: 10.3389/fcvm.2024.1394889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Abdominal Aortic Aneurysm (AAA) is a disease characterized by localized dilation of the abdominal aorta, involving multiple factors in its occurrence and development, ultimately leading to vessel rupture and severe bleeding. AAA has a high mortality rate, and there is a lack of targeted therapeutic drugs. Epigenetic regulation plays a crucial role in AAA, and the treatment of AAA in the epigenetic field may involve a series of related genes and pathways. Abnormal expression of these genes may be a key factor in the occurrence of the disease and could potentially serve as promising therapeutic targets. Understanding the epigenetic regulation of AAA is of significant importance in revealing the mechanisms underlying the disease and identifying new therapeutic targets. This knowledge can contribute to offering AAA patients better clinical treatment options beyond surgery. This review systematically explores various aspects of epigenetic regulation in AAA, including DNA methylation, histone modification, non-coding RNA, and RNA modification. The analysis of the roles of these regulatory mechanisms, along with the identification of relevant genes and pathways associated with AAA, is discussed comprehensively. Additionally, a comprehensive discussion is provided on existing treatment strategies and prospects for epigenetics-based treatments, offering insights for future clinical interventions.
Collapse
Affiliation(s)
- YuChen Liu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - XiaoYun Sun
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Zhen Gou
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - ZhenKun Deng
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - YunRui Zhang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - PingPing Zhao
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Wei Sun
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Yang Bai
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - YuChen Jing
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Belle R, Saraç H, Salah E, Bhushan B, Szykowska A, Roper G, Tumber A, Kriaucionis S, Burgess-Brown N, Schofield CJ, Brown T, Kawamura A. Focused Screening Identifies Different Sensitivities of Human TET Oxygenases to the Oncometabolite 2-Hydroxyglutarate. J Med Chem 2024; 67:4525-4540. [PMID: 38294854 PMCID: PMC10983004 DOI: 10.1021/acs.jmedchem.3c01820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/10/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024]
Abstract
Ten-eleven translocation enzymes (TETs) are Fe(II)/2-oxoglutarate (2OG) oxygenases that catalyze the sequential oxidation of 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine in eukaryotic DNA. Despite their roles in epigenetic regulation, there is a lack of reported TET inhibitors. The extent to which 2OG oxygenase inhibitors, including clinically used inhibitors and oncometabolites, modulate DNA modifications via TETs has been unclear. Here, we report studies on human TET1-3 inhibition by a set of 2OG oxygenase-focused inhibitors, employing both enzyme-based and cellular assays. Most inhibitors manifested similar potencies for TET1-3 and caused increases in cellular 5hmC levels. (R)-2-Hydroxyglutarate, an oncometabolite elevated in isocitrate dehydrogenase mutant cancer cells, showed different degrees of inhibition, with TET1 being less potently inhibited than TET3 and TET2, potentially reflecting the proposed role of TET2 mutations in tumorigenesis. The results highlight the tractability of TETs as drug targets and provide starting points for selective inhibitor design.
Collapse
Affiliation(s)
- Roman Belle
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
- Chemistry
− School of Natural and Environmental Sciences, Bedson Building, Newcastle University, NE1 7RU Newcastle upon Tyne, United Kingdom
| | - Hilal Saraç
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
- Chemistry
− School of Natural and Environmental Sciences, Bedson Building, Newcastle University, NE1 7RU Newcastle upon Tyne, United Kingdom
- Radcliffe
Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Wellcome Trust Centre for Human
Genetics, Roosevelt Drive, OX3 7BN Oxford, United Kingdom
| | - Eidarus Salah
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
- Centre
for Medicines Discovery, University of Oxford, Old Road Campus Research Building,
Roosevelt Drive, OX3 7DQ Oxford, United Kingdom
| | - Bhaskar Bhushan
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
- Radcliffe
Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Wellcome Trust Centre for Human
Genetics, Roosevelt Drive, OX3 7BN Oxford, United Kingdom
| | - Aleksandra Szykowska
- Centre
for Medicines Discovery, University of Oxford, Old Road Campus Research Building,
Roosevelt Drive, OX3 7DQ Oxford, United Kingdom
| | - Grace Roper
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
- Chemistry
− School of Natural and Environmental Sciences, Bedson Building, Newcastle University, NE1 7RU Newcastle upon Tyne, United Kingdom
| | - Anthony Tumber
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
- Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Skirmantas Kriaucionis
- Ludwig
Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, OX3 7DQ Oxford, United Kingdom
| | - Nicola Burgess-Brown
- Centre
for Medicines Discovery, University of Oxford, Old Road Campus Research Building,
Roosevelt Drive, OX3 7DQ Oxford, United Kingdom
| | - Christopher J. Schofield
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
- Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Tom Brown
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Akane Kawamura
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
- Chemistry
− School of Natural and Environmental Sciences, Bedson Building, Newcastle University, NE1 7RU Newcastle upon Tyne, United Kingdom
- Radcliffe
Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Wellcome Trust Centre for Human
Genetics, Roosevelt Drive, OX3 7BN Oxford, United Kingdom
| |
Collapse
|
4
|
Angeloni A, Fissette S, Kaya D, Hammond JM, Gamaarachchi H, Deveson IW, Klose RJ, Li W, Zhang X, Bogdanovic O. Extensive DNA methylome rearrangement during early lamprey embryogenesis. Nat Commun 2024; 15:1977. [PMID: 38438347 PMCID: PMC10912607 DOI: 10.1038/s41467-024-46085-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
DNA methylation (5mC) is a repressive gene regulatory mark widespread in vertebrate genomes, yet the developmental dynamics in which 5mC patterns are established vary across species. While mammals undergo two rounds of global 5mC erasure, teleosts, for example, exhibit localized maternal-to-paternal 5mC remodeling. Here, we studied 5mC dynamics during the embryonic development of sea lamprey, a jawless vertebrate which occupies a critical phylogenetic position as the sister group of the jawed vertebrates. We employed 5mC quantification in lamprey embryos and tissues, and discovered large-scale maternal-to-paternal epigenome remodeling that affects ~30% of the embryonic genome and is predominantly associated with partially methylated domains. We further demonstrate that sequences eliminated during programmed genome rearrangement (PGR), are hypermethylated in sperm prior to the onset of PGR. Our study thus unveils important insights into the evolutionary origins of vertebrate 5mC reprogramming, and how this process might participate in diverse developmental strategies.
Collapse
Affiliation(s)
- Allegra Angeloni
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Skye Fissette
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Deniz Kaya
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Jillian M Hammond
- Genomics Pillar, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, NSW, Australia
| | - Hasindu Gamaarachchi
- Genomics Pillar, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, NSW, Australia
- School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Ira W Deveson
- Genomics Pillar, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, NSW, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Xiaotian Zhang
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, USA
- University of Texas Health Science Center, Houston, TX, USA
| | - Ozren Bogdanovic
- Garvan Institute of Medical Research, Sydney, NSW, Australia.
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain.
| |
Collapse
|
5
|
Abstract
DNA methylation is a highly conserved epigenetic modification that plays essential roles in mammalian gene regulation, genome stability and development. Despite being primarily considered a stable and heritable epigenetic silencing mechanism at heterochromatic and repetitive regions, whole genome methylome analysis reveals that DNA methylation can be highly cell-type specific and dynamic within proximal and distal gene regulatory elements during early embryonic development, stem cell differentiation and reprogramming, and tissue maturation. In this Review, we focus on the mechanisms and functions of regulated DNA methylation and demethylation, highlighting how these dynamics, together with crosstalk between DNA methylation and histone modifications at distinct regulatory regions, contribute to mammalian development and tissue maturation. We also discuss how recent technological advances in single-cell and long-read methylome sequencing, along with targeted epigenome-editing, are enabling unprecedented high-resolution and mechanistic dissection of DNA methylome dynamics.
Collapse
Affiliation(s)
- Alex Wei
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hao Wu
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute of Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Skvortsova K, Bertrand S, Voronov D, Duckett PE, Ross SE, Magri MS, Maeso I, Weatheritt RJ, Gómez Skarmeta JL, Arnone MI, Escriva H, Bogdanovic O. Active DNA demethylation of developmental cis-regulatory regions predates vertebrate origins. SCIENCE ADVANCES 2022; 8:eabn2258. [PMID: 36459547 PMCID: PMC10936051 DOI: 10.1126/sciadv.abn2258] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
DNA methylation [5-methylcytosine (5mC)] is a repressive gene-regulatory mark required for vertebrate embryogenesis. Genomic 5mC is tightly regulated through the action of DNA methyltransferases, which deposit 5mC, and ten-eleven translocation (TET) enzymes, which participate in its active removal through the formation of 5-hydroxymethylcytosine (5hmC). TET enzymes are essential for mammalian gastrulation and activation of vertebrate developmental enhancers; however, to date, a clear picture of 5hmC function, abundance, and genomic distribution in nonvertebrate lineages is lacking. By using base-resolution 5mC and 5hmC quantification during sea urchin and lancelet embryogenesis, we shed light on the roles of nonvertebrate 5hmC and TET enzymes. We find that these invertebrate deuterostomes use TET enzymes for targeted demethylation of regulatory regions associated with developmental genes and show that the complement of identified 5hmC-regulated genes is conserved to vertebrates. This work demonstrates that active 5mC removal from regulatory regions is a common feature of deuterostome embryogenesis suggestive of an unexpected deep conservation of a major gene-regulatory module.
Collapse
Affiliation(s)
- Ksenia Skvortsova
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Stephanie Bertrand
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Danila Voronov
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Paul E. Duckett
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, Australia
| | - Samuel E. Ross
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 22, Australia
| | - Marta Silvia Magri
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Ignacio Maeso
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Robert J. Weatheritt
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, Australia
- EMBL Australia, Garvan Institute of Medical Research, Sydney, Australia
| | - Jose Luis Gómez Skarmeta
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Maria Ina Arnone
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Hector Escriva
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Ozren Bogdanovic
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 22, Australia
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| |
Collapse
|
7
|
Abstract
DNA methylation is an epigenetic modification that has consistently been shown to be linked with a variety of human traits and diseases. Because DNA methylation is dynamic and potentially reversible in nature and can reflect environmental exposures and predict the onset of diseases, it has piqued interest as a potential disease biomarker. DNA methylation patterns are more stable than transcriptomic or proteomic patterns, and they are relatively easy to measure to track exposure to different environments and risk factors. Importantly, technologies for DNA methylation quantification have become increasingly cost effective-accelerating new research in the field-and have enabled the development of novel DNA methylation biomarkers. Quite a few DNA methylation-based predictors for a number of traits and diseases already exist. Such predictors show potential for being more accurate than self-reported or measured phenotypes (such as smoking behavior and body mass index) and may even hold potential for applications in clinics. In this review, we will first discuss the advantages and challenges of DNA methylation biomarkers in general. We will then review the current state and future potential of DNA methylation biomarkers in two human traits that show rather consistent alterations in methylome-obesity and smoking. Lastly, we will briefly speculate about the future prospects of DNA methylation biomarkers, and possible ways to achieve them.
Collapse
Affiliation(s)
- Aino Heikkinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sailalitha Bollepalli
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Miina Ollikainen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Svoboda LK, Perera BPU, Morgan RK, Polemi KM, Pan J, Dolinoy DC. Toxicoepigenetics and Environmental Health: Challenges and Opportunities. Chem Res Toxicol 2022; 35:1293-1311. [PMID: 35876266 PMCID: PMC9812000 DOI: 10.1021/acs.chemrestox.1c00445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The rapidly growing field of toxicoepigenetics seeks to understand how toxicant exposures interact with the epigenome to influence disease risk. Toxicoepigenetics is a promising field of environmental health research, as integrating epigenetics into the field of toxicology will enable a more thorough evaluation of toxicant-induced disease mechanisms as well as the elucidation of the role of the epigenome as a biomarker of exposure and disease and possible mediator of exposure effects. Likewise, toxicoepigenetics will enhance our knowledge of how environmental exposures, lifestyle factors, and diet interact to influence health. Ultimately, an understanding of how the environment impacts the epigenome to cause disease may inform risk assessment, permit noninvasive biomonitoring, and provide potential opportunities for therapeutic intervention. However, the translation of research from this exciting field into benefits for human and animal health presents several challenges and opportunities. Here, we describe four significant areas in which we see opportunity to transform the field and improve human health by reducing the disease burden caused by environmental exposures. These include (1) research into the mechanistic role for epigenetic change in environment-induced disease, (2) understanding key factors influencing vulnerability to the adverse effects of environmental exposures, (3) identifying appropriate biomarkers of environmental exposures and their associated diseases, and (4) determining whether the adverse effects of environment on the epigenome and human health are reversible through pharmacologic, dietary, or behavioral interventions. We then highlight several initiatives currently underway to address these challenges.
Collapse
Affiliation(s)
- Laurie K Svoboda
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bambarendage P U Perera
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rachel K Morgan
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Katelyn M Polemi
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Junru Pan
- Department Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
9
|
Gopinathan G, Diekwisch TGH. Epigenetics and Early Development. J Dev Biol 2022; 10:jdb10020026. [PMID: 35735917 PMCID: PMC9225096 DOI: 10.3390/jdb10020026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
The epigenome controls all aspect of eukaryotic development as the packaging of DNA greatly affects gene expression. Epigenetic changes are reversible and do not affect the DNA sequence itself but rather control levels of gene expression. As a result, the science of epigenetics focuses on the physical configuration of chromatin in the proximity of gene promoters rather than on the mechanistic effects of gene sequences on transcription and translation. In the present review we discuss three prominent epigenetic modifications, DNA methylation, histone methylation/acetylation, and the effects of chromatin remodeling complexes. Specifically, we introduce changes to the methylated state of DNA through DNA methyltransferases and DNA demethylases, discuss the effects of histone tail modifications such as histone acetylation and methylation on gene expression and present the functions of major ATPase subunit containing chromatin remodeling complexes. We also introduce examples of how changes in these epigenetic factors affect early development in humans and mice. In summary, this review provides an overview over the most important epigenetic mechanisms and provides examples of the dramatic effects of epigenetic changes in early mammalian development.
Collapse
|
10
|
Shirane K. The dynamic chromatin landscape and mechanisms of DNA methylation during mouse germ cell development. Gene 2022; 97:3-14. [PMID: 35431282 DOI: 10.1266/ggs.21-00069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Epigenetic marks including DNA methylation (DNAme) play a critical role in the transcriptional regulation of genes and retrotransposons. Defects in DNAme are detected in infertility, imprinting disorders and congenital diseases in humans, highlighting the broad importance of this epigenetic mark in both development and disease. While DNAme in terminally differentiated cells is stably propagated following cell division by the maintenance DNAme machinery, widespread erasure and subsequent de novo establishment of this epigenetic mark occur early in embryonic development as well as in germ cell development. Combined with deep sequencing, low-input methods that have been developed in the past several years have enabled high-resolution and genome-wide mapping of both DNAme and histone post-translational modifications (PTMs) in rare cell populations including developing germ cells. Epigenome studies using these novel methods reveal an unprecedented view of the dynamic chromatin landscape during germ cell development. Furthermore, integrative analysis of chromatin marks in normal germ cells and in those deficient in chromatin-modifying enzymes uncovers a critical interplay between histone PTMs and de novo DNAme in the germline. This review discusses work on mechanisms of the erasure and subsequent de novo DNAme in mouse germ cells as well as the outstanding questions relating to the regulation of the dynamic chromatin landscape in germ cells.
Collapse
Affiliation(s)
- Kenjiro Shirane
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University
| |
Collapse
|
11
|
Dubey R, Prabhakar PK, Gupta J. Epigenetics: key to improve delayed wound healing in type 2 diabetes. Mol Cell Biochem 2022; 477:371-383. [PMID: 34739665 DOI: 10.1007/s11010-021-04285-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/23/2021] [Indexed: 12/13/2022]
Abstract
Diabetes-related delayed wound healing is a multifactorial, nuanced, and intertwined complication that causes substantial clinical morbidity. The etiology of diabetes and its related microvascular complications is affected by genes, diet, and lifestyle factors. Epigenetic modifications such as DNA methylation, histone modifications, and post-transcriptional RNA regulation (microRNAs) are subsequently recognized as key facilitators of the complicated interaction between genes and the environment. Current research suggests that diabetes-persuaded dysfunction of epigenetic pathways, which results in changed expression of genes in target cells and cause diabetes-related complications including cardiomyopathy, nephropathy, retinopathy, delayed wound healing, etc., which are foremost drivers to diabetes-related adverse outcomes. In this paper, we discuss the role of epigenetic mechanisms in controlling tissue repair, angiogenesis, and expression of growth factors, as well as recent findings that show the alteration of epigenetic events during diabetic wound healing.
Collapse
Affiliation(s)
- Rupal Dubey
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University (LPU), Jalandhar-Delhi G.T. Road, 144411, Phagwara, Punjab, India
| | - Pranav Kumar Prabhakar
- Department of Medical Laboratory Sciences, School of Physiotherapy and Paramedical Sciences, Lovely Professional University, 144411, Phagwara, Punjab, India
| | - Jeena Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University (LPU), Jalandhar-Delhi G.T. Road, 144411, Phagwara, Punjab, India.
| |
Collapse
|
12
|
Tost J. Current and Emerging Technologies for the Analysis of the Genome-Wide and Locus-Specific DNA Methylation Patterns. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:395-469. [DOI: 10.1007/978-3-031-11454-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Dean W. Pathways of DNA Demethylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:211-238. [DOI: 10.1007/978-3-031-11454-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Svoboda LK, Ishikawa T, Dolinoy DC. Developmental toxicant exposures and sex-specific effects on epigenetic programming and cardiovascular health across generations. ENVIRONMENTAL EPIGENETICS 2022; 8:dvac017. [PMID: 36325489 PMCID: PMC9600458 DOI: 10.1093/eep/dvac017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/12/2022] [Accepted: 10/01/2022] [Indexed: 05/15/2023]
Abstract
Despite substantial strides in diagnosis and treatment, cardiovascular diseases (CVDs) continue to represent the leading cause of death in the USA and around the world, resulting in significant morbidity and loss of productive years of life. It is increasingly evident that environmental exposures during early development can influence CVD risk across the life course. CVDs exhibit marked sexual dimorphism, but how sex interacts with environmental exposures to affect cardiovascular health is a critical and understudied area of environmental health. Emerging evidence suggests that developmental exposures may have multi- and transgenerational effects on cardiovascular health, with potential sex differences; however, further research in this important area is urgently needed. Lead (Pb), phthalate plasticizers, and perfluoroalkyl substances (PFAS) are ubiquitous environmental contaminants with numerous adverse human health effects. Notably, recent evidence suggests that developmental exposure to each of these toxicants has sex-specific effects on cardiovascular outcomes, but the underlying mechanisms, and their effects on future generations, require further investigation. This review article will highlight the role for the developmental environment in influencing cardiovascular health across generations, with a particular emphasis on sex differences and epigenetic mechanisms. In particular, we will focus on the current evidence for adverse multi and transgenerational effects of developmental exposures to Pb, phthalates, and PFAS and highlight areas where further research is needed.
Collapse
Affiliation(s)
- Laurie K Svoboda
- *Correspondence address. Environmental Health Sciences, University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA. Tel: +734-764-2032; E-mail:
| | - Tomoko Ishikawa
- Environmental Health Sciences, University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Dana C Dolinoy
- Environmental Health Sciences, University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
- Nutritional Sciences, University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| |
Collapse
|
15
|
Epigenetic Mechanisms of Paternal Stress in Offspring Development and Diseases. Int J Genomics 2021; 2021:6632719. [PMID: 33532485 PMCID: PMC7837765 DOI: 10.1155/2021/6632719] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/28/2020] [Accepted: 01/08/2021] [Indexed: 01/10/2023] Open
Abstract
The major biological function of the sperm cell is to transmit the paternal genetic and epigenetic information to the embryo as well as the following offspring. Sperm has a unique epigenome. An increasing body of epidemiological study supports that paternal stress induced by environmental exposures and lifestyle can modulate the sperm epigenome (including histone modification, DNA methylation, and noncoding RNA expression), sperm-egg fusion, embryo development, and offspring health. Based on the existing literature, we have summarized the paternal exposure on sperm epigenome along with the representative phenotypes of offspring and the possible mechanism involved.
Collapse
|
16
|
Mulholland CB, Nishiyama A, Ryan J, Nakamura R, Yiğit M, Glück IM, Trummer C, Qin W, Bartoschek MD, Traube FR, Parsa E, Ugur E, Modic M, Acharya A, Stolz P, Ziegenhain C, Wierer M, Enard W, Carell T, Lamb DC, Takeda H, Nakanishi M, Bultmann S, Leonhardt H. Recent evolution of a TET-controlled and DPPA3/STELLA-driven pathway of passive DNA demethylation in mammals. Nat Commun 2020; 11:5972. [PMID: 33235224 PMCID: PMC7686362 DOI: 10.1038/s41467-020-19603-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Genome-wide DNA demethylation is a unique feature of mammalian development and naïve pluripotent stem cells. Here, we describe a recently evolved pathway in which global hypomethylation is achieved by the coupling of active and passive demethylation. TET activity is required, albeit indirectly, for global demethylation, which mostly occurs at sites devoid of TET binding. Instead, TET-mediated active demethylation is locus-specific and necessary for activating a subset of genes, including the naïve pluripotency and germline marker Dppa3 (Stella, Pgc7). DPPA3 in turn drives large-scale passive demethylation by directly binding and displacing UHRF1 from chromatin, thereby inhibiting maintenance DNA methylation. Although unique to mammals, we show that DPPA3 alone is capable of inducing global DNA demethylation in non-mammalian species (Xenopus and medaka) despite their evolutionary divergence from mammals more than 300 million years ago. Our findings suggest that the evolution of Dppa3 facilitated the emergence of global DNA demethylation in mammals.
Collapse
Affiliation(s)
- Christopher B Mulholland
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Atsuya Nishiyama
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Joel Ryan
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Ryohei Nakamura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Merve Yiğit
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Ivo M Glück
- Physical Chemistry, Department of Chemistry, Center for Nanoscience, Nanosystems Initiative Munich and Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Carina Trummer
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Weihua Qin
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Michael D Bartoschek
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Franziska R Traube
- Center for Integrated Protein Science (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Edris Parsa
- Center for Integrated Protein Science (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Enes Ugur
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Miha Modic
- The Francis Crick Institute and UCL Queen Square Institute of Neurology, London, UK
| | - Aishwarya Acharya
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Paul Stolz
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Christoph Ziegenhain
- Department of Biology II, Anthropology and Human Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Michael Wierer
- Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Wolfgang Enard
- Department of Biology II, Anthropology and Human Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Thomas Carell
- Center for Integrated Protein Science (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Center for Nanoscience, Nanosystems Initiative Munich and Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Sebastian Bultmann
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| | - Heinrich Leonhardt
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| |
Collapse
|
17
|
Wu CY, Zhang B, Kim H, Anderson SK, Miller JS, Cichocki F. Ascorbic Acid Promotes KIR Demethylation during Early NK Cell Differentiation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:1513-1523. [PMID: 32759296 PMCID: PMC7484163 DOI: 10.4049/jimmunol.2000212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/12/2020] [Indexed: 12/28/2022]
Abstract
Variegated expression of killer Ig-like receptors (KIR) in human NK cells is a stochastic process exclusive to subsets of mature NK cells and CD8+ T cells. Allele-specific KIR expression is maintained by DNA methylation within the proximal promoter regions. Because KIR genes are densely methylated in NK cell progenitors, there is an implied stage of human NK cell development in which DNA demethylation takes place to allow for active transcription. When and how this process occurs is unknown. In this study, we show that KIR proximal promoters are densely methylated in less mature CD56bright NK cells and are progressively demethylated in CD56dim NK cells as they mature and acquire KIR. We hypothesized that ten-eleven translocation (TET) enzymes, which oxidize 5mC on DNA could mediate KIR promoter demethylation. The catalytic efficiency of TET enzymes is known to be enhanced by ascorbic acid. We found that the addition of ascorbic acid to ex vivo culture of sorted CD56bright NK cells increased the frequency of KIR expression in a dose-dependent manner and facilitated demethylation of proximal promoters. A marked enrichment of the transcription factor Runx3 as well as TET2 and TET3 was observed within proximal KIR promoters in CD56bright NK cells cultured with ascorbic acid. Additionally, overexpression of TET3 and Runx3 promoted KIR expression in CD56bright NK cells and NK-92 cells. Our results show that KIR promoter demethylation can be induced in CD56bright, and this process is facilitated by ascorbic acid.
Collapse
Affiliation(s)
- Cheng-Ying Wu
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455; and
| | - Bin Zhang
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455; and
| | - Hansol Kim
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455; and
| | - Stephen K Anderson
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Jeffrey S Miller
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455; and
| | - Frank Cichocki
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455; and
| |
Collapse
|
18
|
Enhancer DNA methylation: implications for gene regulation. Essays Biochem 2020; 63:707-715. [PMID: 31551326 DOI: 10.1042/ebc20190030] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/08/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022]
Abstract
DNA methylation involves the addition of a methyl group to the fifth carbon of the pyrimidine cytosine ring (5-methylcytosine, 5mC). 5mC is widespread in vertebrate genomes where it is predominantly found within CpG dinucleotides. In mammals, 5mC participates in long-term silencing processes such as X-chromosome inactivation, genomic imprinting, somatic silencing of germline genes, and silencing of repetitive DNA elements. The evidence for 5mC as a dynamic gene-regulatory mechanism is mostly limited to specific examples, and is far from being completely understood. Recent work from diverse model systems suggests that 5mC might not always act as a dominant repressive mechanism and that hypermethylated promoters and enhancers can be permissive to transcription in vivo and in vitro. In this review, we discuss the links between 5mC and enhancer activity, and evaluate the role of this biochemical mechanism in various biological contexts.
Collapse
|
19
|
Wang J, Huang J, Shi G. Retrotransposons in pluripotent stem cells. CELL REGENERATION 2020; 9:4. [PMID: 32588192 PMCID: PMC7306833 DOI: 10.1186/s13619-020-00046-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022]
Abstract
Transposable elements constitute about half of the mammalian genome, and can be divided into two classes: the class I (retrotransposons) and the class II (DNA transposons). A few hundred types of retrotransposons, which are dynamic and stage specific, have been annotated. The copy numbers and genomic locations are significantly varied in species. Retrotransposons are active in germ cells, early embryos and pluripotent stem cells (PSCs) correlated with low levels of DNA methylation in epigenetic regulation. Some key pluripotency transcriptional factors (such as OCT4, SOX2, and NANOG) bind retrotransposons and regulate their activities in PSCs, suggesting a vital role of retrotransposons in pluripotency maintenance and self-renewal. In response to retrotransposons transposition, cells employ a number of silencing mechanisms, such as DNA methylation and histone modification. This review summarizes expression patterns, functions, and regulation of retrotransposons in PSCs and early embryonic development.
Collapse
Affiliation(s)
- Jingwen Wang
- School of Life Sciences, SunYat-sen University, Guangzhou, 510275, P. R. China
| | - Junjiu Huang
- School of Life Sciences, SunYat-sen University, Guangzhou, 510275, P. R. China. .,Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510275, China. .,Key Laboratory of Reproductive Medicine of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| | - Guang Shi
- School of Life Sciences, SunYat-sen University, Guangzhou, 510275, P. R. China.
| |
Collapse
|
20
|
Saini AK, Saini R, Bansode H, Singh A, Singh L. Stem Cells: A Review Encompassing the Literature with a Special Focus on the Side-Lined Miraculous Panacea; Pre-Morula Stem Cells. Curr Stem Cell Res Ther 2020; 15:379-387. [PMID: 32160851 DOI: 10.2174/1574888x15666200311141731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/03/2020] [Accepted: 02/12/2020] [Indexed: 11/22/2022]
Abstract
Stem cells are the undifferentiated cells in the body that possess the ability to differentiate and give rise to any type of cells in the body. In recent years, there has been a growing interest in therapies involving stem cells as different treatment methods got developed. Depending on the source, there are two major kinds of stem cells, embryonic and adult stem cells. The former type is found in the embryo at the different developmental stages before the implantation and excels the latter owing to pluripotency. On the premise of the attributes of stem cells, they are touted as the "panacea for all ills" and are extensively sought for their potential therapeutic roles. There are a lot of robust pieces of evidence that have proved to cure the different ailments in the body like Huntington disease, Parkinson's disease, and Spinal cord injury with stem cell therapy but associated with adverse effects like immune rejection and teratoma formation. In this regard, the pre-morula (isolated at an early pre-morula stage) stem cells (PMSCs) are one of its kind of embryonic stem cells that are devoid of the aforementioned adverse effects. Taking the beneficial factor into account, they are being used for the treatment of disorders like Cerebral palsy, Parkinson's disorder, Aplastic anemia, Multiple sclerosis and many more. However, it is still illegal to use stem cells in the abovementioned disorders. This review encompasses different stem cells and emphasizes on PMSCs for their uniqueness in therapy as no other previously published literature reviews have taken these into consideration. Later in the review, current regulatory aspects related to stem cells are also considered.
Collapse
Affiliation(s)
- Aryendu K Saini
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kanpur, U.P., India
| | - Rakesh Saini
- Department of Pharmacy, Chaudhary Sughar Singh College of Pharmacy, Etawah, U.P., India
| | - Himanshu Bansode
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kanpur, U.P., India
| | - Anurag Singh
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kanpur, U.P., India
| | - Lalita Singh
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kanpur, U.P., India
| |
Collapse
|
21
|
Dion C, Roche S, Laberthonnière C, Broucqsault N, Mariot V, Xue S, Gurzau AD, Nowak A, Gordon CT, Gaillard MC, El-Yazidi C, Thomas M, Schlupp-Robaglia A, Missirian C, Malan V, Ratbi L, Sefiani A, Wollnik B, Binetruy B, Salort Campana E, Attarian S, Bernard R, Nguyen K, Amiel J, Dumonceaux J, Murphy JM, Déjardin J, Blewitt ME, Reversade B, Robin JD, Magdinier F. SMCHD1 is involved in de novo methylation of the DUX4-encoding D4Z4 macrosatellite. Nucleic Acids Res 2019; 47:2822-2839. [PMID: 30698748 PMCID: PMC6451109 DOI: 10.1093/nar/gkz005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/26/2018] [Accepted: 01/03/2019] [Indexed: 12/11/2022] Open
Abstract
The DNA methylation epigenetic signature is a key determinant during development. Rules governing its establishment and maintenance remain elusive especially at repetitive sequences, which account for the majority of methylated CGs. DNA methylation is altered in a number of diseases including those linked to mutations in factors that modify chromatin. Among them, SMCHD1 (Structural Maintenance of Chromosomes Hinge Domain Containing 1) has been of major interest following identification of germline mutations in Facio-Scapulo-Humeral Dystrophy (FSHD) and in an unrelated developmental disorder, Bosma Arhinia Microphthalmia Syndrome (BAMS). By investigating why germline SMCHD1 mutations lead to these two different diseases, we uncovered a role for this factor in de novo methylation at the pluripotent stage. SMCHD1 is required for the dynamic methylation of the D4Z4 macrosatellite upon reprogramming but seems dispensable for methylation maintenance. We find that FSHD and BAMS patient's cells carrying SMCHD1 mutations are both permissive for DUX4 expression, a transcription factor whose regulation has been proposed as the main trigger for FSHD. These findings open new questions as to what is the true aetiology for FSHD, the epigenetic events associated with the disease thus calling the current model into question and opening new perspectives for understanding repetitive DNA sequences regulation.
Collapse
Affiliation(s)
- Camille Dion
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France
| | - Stéphane Roche
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France
| | | | - Natacha Broucqsault
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France
| | - Virginie Mariot
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, 30 Guilford Street, London WC1N 1EH, UK
| | - Shifeng Xue
- Institute of Molecular and Cell Biology, A*STAR, Singapore. Institute of Medical Biology, A*STAR, Singapore
| | - Alexandra D Gurzau
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; The Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Agnieszka Nowak
- Institut de Génétique Humaine UMR9002 CNRS-Université de Montpellier. France
| | - Christopher T Gordon
- Laboratory of Embryology and Genetics of Human Malformation, INSERM UMR 1163, Institut Imagine, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
| | | | - Claire El-Yazidi
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France
| | - Morgane Thomas
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France
| | - Andrée Schlupp-Robaglia
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France.,Département de Génétique Médicale et Biologie Cellulaire, AP-HM, Hôpital de la Timone enfants, Marseille, France.,Centre de ressources biologiques, AP-HM, Hôpital de la Timone enfants, Marseille, France
| | - Chantal Missirian
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France.,Département de Génétique Médicale et Biologie Cellulaire, AP-HM, Hôpital de la Timone enfants, Marseille, France
| | - Valérie Malan
- Laboratory of Embryology and Genetics of Human Malformation, INSERM UMR 1163, Institut Imagine, Paris, France.,Département de Génétique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Liham Ratbi
- Centre de Génomique Humaine et Genopath, Faculté de Médecine et de Pharmacie, Université Mohammed V, 10100 Rabat, Morocco
| | - Abdelaziz Sefiani
- Centre de Génomique Humaine et Genopath, Faculté de Médecine et de Pharmacie, Université Mohammed V, 10100 Rabat, Morocco
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Campus Göttingen, 37073 Göttingen, Germany
| | - Bernard Binetruy
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France
| | - Emmanuelle Salort Campana
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France.,Centre de références pour les maladies neuromusculaires et la SLA, AP-HM, Hôpital de la Timone, Marseille, France
| | - Shahram Attarian
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France.,Centre de références pour les maladies neuromusculaires et la SLA, AP-HM, Hôpital de la Timone, Marseille, France
| | - Rafaelle Bernard
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France.,Département de Génétique Médicale et Biologie Cellulaire, AP-HM, Hôpital de la Timone enfants, Marseille, France
| | - Karine Nguyen
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France.,Département de Génétique Médicale et Biologie Cellulaire, AP-HM, Hôpital de la Timone enfants, Marseille, France
| | - Jeanne Amiel
- Laboratory of Embryology and Genetics of Human Malformation, INSERM UMR 1163, Institut Imagine, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France.,Département de Génétique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Julie Dumonceaux
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, 30 Guilford Street, London WC1N 1EH, UK
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; The Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Jérôme Déjardin
- Institut de Génétique Humaine UMR9002 CNRS-Université de Montpellier. France
| | - Marnie E Blewitt
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; The Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Bruno Reversade
- Institute of Molecular and Cell Biology, A*STAR, Singapore. Institute of Medical Biology, A*STAR, Singapore.,Department of Paediatrics, National University of Singapore, Singapore, Singapore.,Medical Genetics Department, Koç University School of Medicine (KUSOM), Istanbul, Turkey.,Reproductive Biology Laboratory, Academic Medical Center (AMC), Amsterdam-Zuidoost, The Netherlands
| | - Jérôme D Robin
- Aix Marseille Univ, INSERM MMG, Nerve and Muscle Department, Marseille, France
| | | |
Collapse
|
22
|
de Mendoza A, Lister R, Bogdanovic O. Evolution of DNA Methylome Diversity in Eukaryotes. J Mol Biol 2019:S0022-2836(19)30659-X. [PMID: 31726061 DOI: 10.1016/j.jmb.2019.11.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/23/2022]
Abstract
Cytosine DNA methylation (5mC) is a widespread base modification in eukaryotic genomes with critical roles in transcriptional regulation. In recent years, our understanding of 5mC has changed because of advances in 5mC detection techniques that allow mapping of this mark on the whole genome scale. Profiling DNA methylomes from organisms across the eukaryotic tree of life has reshaped our views on the evolution of 5mC. In this review, we explore the macroevolution of 5mC in major eukaryotic groups, and then focus on recent advances made in animals. Genomic 5mC patterns as well as the mechanisms of 5mC deposition tend to be evolutionary labile across large phylogenetic distances; however, some common patterns are starting to emerge. Within the animal kingdom, 5mC diversity has proven to be much greater than anticipated. For example, a previously held common view that genome hypermethylation is a trait exclusive to vertebrates has recently been challenged. Also, data from genome-wide studies are starting to yield insights into the potential roles of 5mC in invertebrate cis regulation. Here we provide an evolutionary perspective of both the well-known and enigmatic roles of 5mC across the eukaryotic tree of life.
Collapse
Affiliation(s)
- Alex de Mendoza
- ARC CoE Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia; Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia.
| | - Ryan Lister
- ARC CoE Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia; Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
| | - Ozren Bogdanovic
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
23
|
Tuscher JJ, Day JJ. Multigenerational epigenetic inheritance: One step forward, two generations back. Neurobiol Dis 2019; 132:104591. [PMID: 31470104 DOI: 10.1016/j.nbd.2019.104591] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/22/2019] [Accepted: 08/26/2019] [Indexed: 02/08/2023] Open
Abstract
Modifications to DNA and histone proteins serve a critical regulatory role in the developing and adult brain, and over a decade of research has established the importance of these "epigenetic" modifications in a wide variety of brain functions across the lifespan. Epigenetic patterns orchestrate gene expression programs that establish the phenotypic diversity of various cellular classes in the central nervous system, play a key role in experience-dependent gene regulation in the adult brain, and are commonly implicated in neurodevelopmental, psychiatric, and neurodegenerative disease states. In addition to these established roles, emerging evidence indicates that epigenetic information can potentially be transmitted to offspring, giving rise to inter- and trans-generational epigenetic inheritance phenotypes. However, our understanding of the cellular events that participate in this information transfer is incomplete, and the ability of this transfer to overcome complete epigenetic reprogramming during embryonic development is highly controversial. This review explores the existing literature on multigenerational epigenetic mechanisms in the central nervous system. First, we focus on the cellular mechanisms that may perpetuate or counteract this type of information transfer, and consider how epigenetic modification in germline and somatic cells regulate important aspects of cellular and organismal development. Next, we review the potential phenotypes resulting from ancestral experiences that impact gene regulatory modifications, including how these changes may give rise to unique metabolic phenotypes. Finally, we discuss several caveats and technical limitations that influence multigenerational epigenetic effects. We argue that studies reporting multigenerational epigenetic changes impacting the central nervous system must be interpreted with caution, and provide suggestions for how epigenetic information transfer can be mechanistically disentangled from genetic and environmental influences on brain function.
Collapse
Affiliation(s)
- Jennifer J Tuscher
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Jeremy J Day
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
24
|
Xavier MJ, Roman SD, Aitken RJ, Nixon B. Transgenerational inheritance: how impacts to the epigenetic and genetic information of parents affect offspring health. Hum Reprod Update 2019; 25:518-540. [DOI: 10.1093/humupd/dmz017] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/19/2019] [Accepted: 04/04/2019] [Indexed: 12/18/2022] Open
Abstract
Abstract
BACKGROUND
A defining feature of sexual reproduction is the transmission of genomic information from both parents to the offspring. There is now compelling evidence that the inheritance of such genetic information is accompanied by additional epigenetic marks, or stable heritable information that is not accounted for by variations in DNA sequence. The reversible nature of epigenetic marks coupled with multiple rounds of epigenetic reprogramming that erase the majority of existing patterns have made the investigation of this phenomenon challenging. However, continual advances in molecular methods are allowing closer examination of the dynamic alterations to histone composition and DNA methylation patterns that accompany development and, in particular, how these modifications can occur in an individual’s germline and be transmitted to the following generation. While the underlying mechanisms that permit this form of transgenerational inheritance remain unclear, it is increasingly apparent that a combination of genetic and epigenetic modifications plays major roles in determining the phenotypes of individuals and their offspring.
OBJECTIVE AND RATIONALE
Information pertaining to transgenerational inheritance was systematically reviewed focusing primarily on mammalian cells to the exclusion of inheritance in plants, due to inherent differences in the means by which information is transmitted between generations. The effects of environmental factors and biological processes on both epigenetic and genetic information were reviewed to determine their contribution to modulating inheritable phenotypes.
SEARCH METHODS
Articles indexed in PubMed were searched using keywords related to transgenerational inheritance, epigenetic modifications, paternal and maternal inheritable traits and environmental and biological factors influencing transgenerational modifications. We sought to clarify the role of epigenetic reprogramming events during the life cycle of mammals and provide a comprehensive review of how the genomic and epigenomic make-up of progenitors may determine the phenotype of its descendants.
OUTCOMES
We found strong evidence supporting the role of DNA methylation patterns, histone modifications and even non-protein-coding RNA in altering the epigenetic composition of individuals and producing stable epigenetic effects that were transmitted from parents to offspring, in both humans and rodent species. Multiple genomic domains and several histone modification sites were found to resist demethylation and endure genome-wide reprogramming events. Epigenetic modifications integrated into the genome of individuals were shown to modulate gene expression and activity at enhancer and promoter domains, while genetic mutations were shown to alter sequence availability for methylation and histone binding. Fundamentally, alterations to the nuclear composition of the germline in response to environmental factors, ageing, diet and toxicant exposure have the potential to become hereditably transmitted.
WIDER IMPLICATIONS
The environment influences the health and well-being of progeny by working through the germline to introduce spontaneous genetic mutations as well as a variety of epigenetic changes, including alterations in DNA methylation status and the post-translational modification of histones. In evolutionary terms, these changes create the phenotypic diversity that fuels the fires of natural selection. However, rather than being adaptive, such variation may also generate a plethora of pathological disease states ranging from dominant genetic disorders to neurological conditions, including spontaneous schizophrenia and autism.
Collapse
Affiliation(s)
- Miguel João Xavier
- Reproductive Science Group, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Shaun D Roman
- Reproductive Science Group, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Chemical Biology and Clinical Pharmacology, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - R John Aitken
- Reproductive Science Group, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Brett Nixon
- Reproductive Science Group, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
25
|
Skvortsova K, Tarbashevich K, Stehling M, Lister R, Irimia M, Raz E, Bogdanovic O. Retention of paternal DNA methylome in the developing zebrafish germline. Nat Commun 2019; 10:3054. [PMID: 31296860 PMCID: PMC6624265 DOI: 10.1038/s41467-019-10895-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/31/2019] [Indexed: 01/08/2023] Open
Abstract
Two waves of DNA methylation reprogramming occur during mammalian embryogenesis; during preimplantation development and during primordial germ cell (PGC) formation. However, it is currently unclear how evolutionarily conserved these processes are. Here we characterise the DNA methylomes of zebrafish PGCs at four developmental stages and identify retention of paternal epigenetic memory, in stark contrast to the findings in mammals. Gene expression profiling of zebrafish PGCs at the same developmental stages revealed that the embryonic germline is defined by a small number of markers that display strong developmental stage-specificity and that are independent of DNA methylation-mediated regulation. We identified promoters that are specifically targeted by DNA methylation in somatic and germline tissues during vertebrate embryogenesis and that are frequently misregulated in human cancers. Together, these detailed methylome and transcriptome maps of the zebrafish germline provide insight into vertebrate DNA methylation reprogramming and enhance our understanding of the relationships between germline fate acquisition and oncogenesis.
Collapse
Affiliation(s)
- Ksenia Skvortsova
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Katsiaryna Tarbashevich
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, Münster, 48149, Germany
| | - Martin Stehling
- Flow Cytometry Unit, Max-Planck-Institute for Molecular Biomedicine, Roentgenstraße 20, 48149, Münster, Germany
| | - Ryan Lister
- ARC CoE Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
- Molecular Medicine Division, Harry Perkins Institute of Medical Research, Perth, WA, 6009, Australia
| | - Manuel Irimia
- Centre for Genomic Regulation, The Barcelona Institute for Science and Technology, Barcelona, 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, 08002, Spain
- ICREA, Barcelona, 08010, Spain
| | - Erez Raz
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, Münster, 48149, Germany
| | - Ozren Bogdanovic
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2010, Australia.
| |
Collapse
|
26
|
Wang X, Bhandari RK. DNA methylation dynamics during epigenetic reprogramming of medaka embryo. Epigenetics 2019; 14:611-622. [PMID: 31010368 DOI: 10.1080/15592294.2019.1605816] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Post-fertilization epigenome reprogramming erases epigenetic marks transmitted through gametes and establishes new marks during mid-blastula stages. The mouse embryo undergoes dynamic DNA methylation reprogramming after fertilization, while in zebrafish, the paternal DNA methylation pattern is maintained throughout the early embryogenesis and the maternal genome is reprogrammed in a pattern similar to that of sperm during the mid-blastula transition. Here, we show DNA methylation dynamics in medaka embryos, the biomedical model fish, during epigenetic reprogramming of embryonic genome. The sperm genome was hypermethylated and the oocyte genome hypomethylated prior to fertilization. After fertilization, the methylation marks of sperm genome were erased within the first cell cycle and embryonic genome remained hypomethylated from the zygote until 16-cell stage. The DNA methylation level gradually increased from 16-cell stage through the gastrula. The 5-hydroxymethylation (5hmC) levels showed an opposite pattern to DNA methylation (5-mC). The mRNA levels for DNA methyltransferase (DNMT) 1 remained high in oocytes and maintained the same level through late blastula stage and was reduced thereafter. DNMT3BB.1 mRNA levels increased prior to remethylation. The mRNA levels for ten-eleven translocation methylcytosine dioxygenases (TET2 & TET3) were detected in sperm and embryos at cleavage stages, whereas TET1 and TET3 mRNAs decreased during gastrulation. The pattern of genome methylation in medaka was identical to mammalian genome methylation but not to zebrafish. The present study suggests that a medaka embryo resets its DNA methylation pattern by active demethylation and by a gradual remethylation similar to mammals.
Collapse
Affiliation(s)
- Xuegeng Wang
- a Department of Biology , University of North Carolina Greensboro , Greensboro , NC , USA
| | - Ramji Kumar Bhandari
- a Department of Biology , University of North Carolina Greensboro , Greensboro , NC , USA
| |
Collapse
|
27
|
Yang J, Ryan DJ, Lan G, Zou X, Liu P. In vitro establishment of expanded-potential stem cells from mouse pre-implantation embryos or embryonic stem cells. Nat Protoc 2019; 14:350-378. [PMID: 30617351 DOI: 10.1038/s41596-018-0096-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Molecular and embryology studies have demonstrated that mouse pre-implantation embryo development is a process of progressive cell fate determination. At the time of implantation, three cell lineages are present in the developing blastocyst: the trophectoderm (TE), the epiblast (Epi) and the primitive endoderm (PrE). From these early embryo cells, trophoblast stem (TS) cells, embryonic stem (ES) cells and extra-embryonic endoderm stem (XEN) cells can be derived. Recently, we derived stem cells with blastomere-like features from mouse cleavage-stage embryos, which we named expanded-potential stem cells (EPSCs). Here, we provide detailed protocols that describe how to establish EPSCs from single eight-cell-stage blastomeres or whole eight-cell pre-implantation mouse embryos, or by conversion of mouse ES cells or induced pluripotent stem (iPS) cells reprogrammed from fibroblasts. It takes 2-3 weeks to derive EPSCs from each cell source. The EPSCs derived from these protocols can differentiate into all embryonic and extra-embryonic lineages when implanted into chimeras. Furthermore, bona fide TS and XEN cell lines can be derived from EPSCs in vitro.
Collapse
Affiliation(s)
- Jian Yang
- Wellcome Trust Sanger Institute, Hinxton, UK.
| | | | - Guocheng Lan
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Xiangang Zou
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Pentao Liu
- Wellcome Trust Sanger Institute, Hinxton, UK. .,Li Ka Shing Faculty of Medicine, Stem Cell and Regenerative Medicine Consortium, School of Biomedical Sciences, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
28
|
Kuehner JN, Bruggeman EC, Wen Z, Yao B. Epigenetic Regulations in Neuropsychiatric Disorders. Front Genet 2019; 10:268. [PMID: 31019524 PMCID: PMC6458251 DOI: 10.3389/fgene.2019.00268] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/11/2019] [Indexed: 12/14/2022] Open
Abstract
Precise genetic and epigenetic spatiotemporal regulation of gene expression is critical for proper brain development, function and circuitry formation in the mammalian central nervous system. Neuronal differentiation processes are tightly regulated by epigenetic mechanisms including DNA methylation, histone modifications, chromatin remodelers and non-coding RNAs. Dysregulation of any of these pathways is detrimental to normal neuronal development and functions, which can result in devastating neuropsychiatric disorders, such as depression, schizophrenia and autism spectrum disorders. In this review, we focus on the current understanding of epigenetic regulations in brain development and functions, as well as their implications in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Janise N Kuehner
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Emily C Bruggeman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States.,Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
29
|
Sasaki K, Hara S, Yamakami R, Sato Y, Hasegawa S, Kono T, Morohaku K, Obata Y. Ectopic expression of DNA methyltransferases DNMT3A2 and DNMT3L leads to aberrant hypermethylation and postnatal lethality in mice. Mol Reprod Dev 2019; 86:614-623. [PMID: 30834655 PMCID: PMC6718006 DOI: 10.1002/mrd.23137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/30/2019] [Accepted: 02/11/2019] [Indexed: 11/11/2022]
Abstract
DNA methylation is generally known to inactivate gene expression. The DNA methyltransferases (DNMTs), DNMT3A and DNMT3B, catalyze somatic cell lineage-specific DNA methylation, while DNMT3A and DNMT3L catalyze germ cell lineage-specific DNA methylation. How such lineage- and gene-specific DNA methylation patterns are created remains to be elucidated. To better understand the regulatory mechanisms underlying DNA methylation, we generated transgenic mice that constitutively expressed DNMT3A and DNMT3L, and analyzed DNA methylation, gene expression, and their subsequent impact on ontogeny. All transgenic mice were born normally but died within 20 weeks accompanied with cardiac hypertrophy. Several genes were repressed in the hearts of transgenic mice compared with those in wild-type mice. CpG islands of these downregulated genes were highly methylated in the transgenic mice. This abnormal methylation occurred in the perinatal stage. Conversely, monoallelic DNA methylation at imprinted loci was faithfully maintained in all transgenic mice, except H19. Thus, the loci preferred by DNMT3A and DNMT3L differ between somatic and germ cell lineages.
Collapse
Affiliation(s)
- Keisuke Sasaki
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Satoshi Hara
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Reina Yamakami
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Yusuke Sato
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Saki Hasegawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Tomohiro Kono
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Kanako Morohaku
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Yayoi Obata
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
30
|
Parker MJ, Weigele PR, Saleh L. Insights into the Biochemistry, Evolution, and Biotechnological Applications of the Ten-Eleven Translocation (TET) Enzymes. Biochemistry 2019; 58:450-467. [PMID: 30571101 DOI: 10.1021/acs.biochem.8b01185] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A tight link exists between patterns of DNA methylation at carbon 5 of cytosine and differential gene expression in mammalian tissues. Indeed, aberrant DNA methylation results in various human diseases, including neurologic and immune disorders, and contributes to the initiation and progression of various cancers. Proper DNA methylation depends on the fidelity and control of the underlying mechanisms that write, maintain, and erase these epigenetic marks. In this Perspective, we address one of the key players in active demethylation: the ten-eleven translocation enzymes or TETs. These enzymes belong to the Fe2+/α-ketoglutarate-dependent dioxygenase superfamily and iteratively oxidize 5-methylcytosine (5mC) in DNA to produce 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine. The latter three bases may convey additional layers of epigenetic information in addition to being intermediates in active demethylation. Despite the intense interest in understanding the physiological roles TETs play in active demethylation and cell regulation, less has been done, in comparison, to illuminate details of the chemistry and factors involved in regulating the three-step oxidation mechanism. Herein, we focus on what is known about the biochemical features of TETs and explore questions whose answers will lead to a more detailed understanding of the in vivo modus operandi of these enzymes. We also summarize the membership and evolutionary history of the TET/JBP family and highlight the prokaryotic homologues as a reservoir of potentially diverse functionalities awaiting discovery. Finally, we spotlight sequencing methods that utilize TETs for mapping 5mC and its oxidation products in genomic DNA and comment on possible improvements in these approaches.
Collapse
Affiliation(s)
- Mackenzie J Parker
- Research Department , New England Biolabs, Inc. , 240 County Road , Ipswich , Massachusetts 01938 , United States
| | - Peter R Weigele
- Research Department , New England Biolabs, Inc. , 240 County Road , Ipswich , Massachusetts 01938 , United States
| | - Lana Saleh
- Research Department , New England Biolabs, Inc. , 240 County Road , Ipswich , Massachusetts 01938 , United States
| |
Collapse
|
31
|
Kwon J, Li YH, Jo YJ, Oh Y, Namgoong S, Kim NH. Inhibition of MEK1/2 and GSK3 (2i system) affects blastocyst quality and early differentiation of porcine parthenotes. PeerJ 2019; 6:e5840. [PMID: 30643672 PMCID: PMC6327883 DOI: 10.7717/peerj.5840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/28/2018] [Indexed: 02/06/2023] Open
Abstract
Inhibition of both MEK1/2 and glycogen synthase kinase-3 (GSK3; 2i system) facilitates the maintenance of naïve stemness for embryonic stem cells in various mammalian species. However, the effect of the inhibition of the 2i system on porcine early embryogenesis is unknown. We investigated the effect of the 2i system on early embryo development, expression of pluripotency-related genes, and epigenetic modifications. Inhibition of MEK1/2 (by PD0325901) and/or GSK3 (by CHIR99021) did not alter the developmental potential of porcine parthenogenetic embryos, but improved blastocyst quality, as judged by the blastocyst cell number, diameter, and reduction in the number of apoptotic cells. The expression levels of octamer-binding transcription factor 4 and SOX2, the primary transcription factors that maintain embryonic pluripotency, were significantly increased by 2i treatments. Epigenetic modification-related gene expression was altered upon 2i treatment. The collective results indicate that the 2i system in porcine embryos improved embryo developmental potential and blastocyst quality by regulating epigenetic modifications and pluripotency-related gene expression.
Collapse
Affiliation(s)
- Jeongwoo Kwon
- Department of Animal Sciences, Chungbuk National University, Cheongju, Chungcheongbuk-do, Republic of Korea
| | - Ying-Hua Li
- Department of Animal Sciences, Agricultural College, Yanbian University, Yanji, China
| | - Yu-Jin Jo
- Department of Animal Sciences, Chungbuk National University, Cheongju, Chungcheongbuk-do, Republic of Korea
| | - YoungJin Oh
- Genetic Engineering, Cheongchungbuk-do Veterinary Service Laboratory, Cheongju, Cheongchungbuk-do, Republic of Korea
| | - Suk Namgoong
- Department of Animal Sciences, Chungbuk National University, Cheongju, Chungcheongbuk-do, Republic of Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju, Chungcheongbuk-do, Republic of Korea
| |
Collapse
|
32
|
Pennings S, Revuelta A, McLaughlin KA, Abd Hadi NA, Petchreing P, Ottaviano R, Meehan RR. Dynamics and Mechanisms of DNA Methylation Reprogramming. EPIGENETICS AND REGENERATION 2019:19-45. [DOI: 10.1016/b978-0-12-814879-2.00002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
33
|
Tajbakhsh J. Covisualization of Global DNA Methylation/Hydroxymethylation and Protein Biomarkers for Ultrahigh-Definition Epigenetic Phenotyping of Stem Cells. Methods Mol Biol 2019; 2150:79-92. [PMID: 31768817 DOI: 10.1007/7651_2019_276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DNA methylation and DNA hydroxymethylation are genomic-scale key regulatory modifications in cellular differentiation and are skewed in complex diseases. Therefore, analyzing the nuclear distribution of globally methylated and hydroxymethylated DNA in conjunction with relevant cellular components, such as protein biomarkers, may well add cell-by-cell-specific spatial and temporal information to quantitative molecular data for the discovery of signaling networks in stem cell differentiation and their exploitation in the therapeutic reprogramming of cells. Fluorescence imaging provides an optical approach that has become an essential tool in this context. The in situ fluorescent covisualization of globally methylated and hydroxymethylated DNA (5-methylcytosine = 5mC, 5-hydroxymethylcytosine = 5hmC), global DNA (gDNA), and proteins can be challenging, as the immunofluorescence detection of 5mC and 5hmC sites requires thorough denaturing of double-stranded DNA for antigen retrieval. The protocol we present overcomes this obstacle through optimization of the necessary cell processing to delineate cytosine variants and gDNA while preserving the three-dimensional (3-D) structure of the cells and in connection the immunostaining of protein biomarkers and DNA counterstaining, making it suitable for ultrahigh definition (UHD) imaging of single cells by confocal and super-resolution microscopy, 3-D visualization, and high-content cytometry.
Collapse
|
34
|
Marshall KL, Wang J, Ji T, Rivera RM. The effects of biological aging on global DNA methylation, histone modification, and epigenetic modifiers in the mouse germinal vesicle stage oocyte. Anim Reprod 2018; 15:1253-1267. [PMID: 34221140 PMCID: PMC8203117 DOI: 10.21451/1984-3143-ar2018-0087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A cultural trend in developed countries is favoring a delay in maternal age at first childbirth.
In mammals fertility and chronological age show an inverse correlation. Oocyte quality is
a contributing factor to this multifactorial phenomenon that may be influenced by age-related
changes in the oocyte epigenome. Based on previous reports, we hypothesized that advanced
maternal age would lead to alterations in the oocyte’s epigenome. We tested our hypothesis
by determining protein levels of various epigenetic modifications and modifiers in fully-grown
(≥70 µm), germinal vesicle (GV) stage oocytes of young (10-13 weeks) and aged
(69-70 weeks) mice. Our results demonstrate a significant increase in protein amounts of
the maintenance DNA methyltransferase DNMT1 (P = 0.003) and a trend toward increased global
DNA methylation (P = 0.09) with advanced age. MeCP2, a methyl DNA binding domain protein, recognizes
methylated DNA and induces chromatin compaction and silencing. We hypothesized that chromatin
associated MeCP2 would be increased similarly to DNA methylation in oocytes of aged female
mice. However, we detected a significant decrease (P = 0.0013) in protein abundance of MeCP2
between GV stage oocytes from young and aged females. Histone posttranslational modifications
can also alter chromatin conformation. Di-methylation of H3K9 (H3K9me2) is associated with
permissive heterochromatin while acetylation of H4K5 (H4K5ac) is associated with euchromatin.
Our results indicate a trend toward decreasing H3K9me2 (P = 0.077) with advanced female age
and no significant differences in levels of H4K5ac. These data demonstrate that physiologic
aging affects the mouse oocyte epigenome and provide a better understanding of the mechanisms
underlying the decrease in oocyte quality and reproductive potential of aged females.
Collapse
Affiliation(s)
- Kira Lynn Marshall
- Division of Animal Sciences.,Reproductive Sciences, San Diego Zoo Global Institute for Conservation Research, San Pasqual Valley Rd
| | | | | | | |
Collapse
|
35
|
Diken E, Linke M, Baumgart J, Eshkind L, Strand D, Strand S, Zechner U. Superovulation Influences Methylation Reprogramming and Delays Onset of DNA Replication in Both Pronuclei of Mouse Zygotes. Cytogenet Genome Res 2018; 156:95-105. [DOI: 10.1159/000493779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2018] [Indexed: 01/13/2023] Open
Abstract
Although an essential component of assisted reproductive technologies, ovarian stimulation, or superovulation, may interfere with the epigenetic reprogramming machinery during early embryogenesis and gametogenesis. To investigate the possible impact of superovulation particularly on the methylation reprogramming process directly after fertilization, we performed immunofluorescence staining of pronuclear (PN) stage embryos with antibodies against 5mC and 5hmC. PN stage embryos obtained by superovulation displayed an increased incidence of abnormal methylation and hydroxymethylation patterns in both maternal and paternal pronuclear DNA. Subsequent single-cell RT-qPCR analyses of the Tet1, Tet2, and Tet3 genes revealed no significant expression differences between PN stage embryos from spontaneously and superovulated matings that could be causative for the abnormal methylation and hydroxymethylation patterns. To analyze the possible contribution of TET-independent replication-associated demethylation mechanisms, we then determined the 5mC and 5hmC levels of PN stage mouse embryos using immunofluorescence analyses after inhibition of DNA replication with aphidicolin. Inhibition of DNA replication had no effect on abnormal methylation and hydroxymethylation patterns that still persisted in the superovulated group. Interestingly, the onset of DNA replication, which was also analyzed in these experiments, was remarkably delayed in the superovulated group. Our findings imply an impact of superovulation on both replication-dependent and -independent or yet unknown demethylation mechanisms in PN stage mouse embryos. In addition, they reveal for the first time a negative effect of superovulation on the initiation of DNA replication in PN stage mouse embryos.
Collapse
|
36
|
Ladstätter S, Tachibana K. Genomic insights into chromatin reprogramming to totipotency in embryos. J Cell Biol 2018; 218:70-82. [PMID: 30257850 PMCID: PMC6314560 DOI: 10.1083/jcb.201807044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 12/19/2022] Open
Abstract
Ladstätter and Tachibana discuss changes in DNA methylation, chromatin accessibility, and topological architecture occurring during the reprogramming to totipotency in the early embryo. The early embryo is the natural prototype for the acquisition of totipotency, which is the potential of a cell to produce a whole organism. Generation of a totipotent embryo involves chromatin reorganization and epigenetic reprogramming that alter DNA and histone modifications. Understanding embryonic chromatin architecture and how this is related to the epigenome and transcriptome will provide invaluable insights into cell fate decisions. Recently emerging low-input genomic assays allow the exploration of regulatory networks in the sparsely available mammalian embryo. Thus, the field of developmental biology is transitioning from microscopy to genome-wide chromatin descriptions. Ultimately, the prototype becomes a unique model for studying fundamental principles of development, epigenetic reprogramming, and cellular plasticity. In this review, we discuss chromatin reprogramming in the early mouse embryo, focusing on DNA methylation, chromatin accessibility, and higher-order chromatin structure.
Collapse
Affiliation(s)
- Sabrina Ladstätter
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Kikuë Tachibana
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| |
Collapse
|
37
|
Marshall KL, Rivera RM. The effects of superovulation and reproductive aging on the epigenome of the oocyte and embryo. Mol Reprod Dev 2018; 85:90-105. [PMID: 29280527 DOI: 10.1002/mrd.22951] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/14/2017] [Accepted: 12/19/2017] [Indexed: 12/26/2022]
Abstract
A societal preference of delaying maternal age at first childbirth has increased reliance on assisted reproductive technologies/therapies (ART) to conceive a child. Oocytes that have undergone physiologic aging (≥35 years for humans) are now commonly used for ART, yet evidence is building that suboptimal reproductive environments associated with aging negatively affect oocyte competence and embryo development-although the mechanisms underlying these relationship are not yet well understood. Epigenetic programming of the oocyte occurs during its growth within a follicle, so the ovarian stimulation protocols that administer exogenous hormones, as part of the first step for all ART procedures, may prevent the gamete from establishing an appropriate epigenetic state. Therefore, understanding how oocyte. Therefore, understanding how hormone stimulation and oocyte physiologic age independently and synergistically physiologic age independently and synergistically affect the epigenetic programming of these gametes, and how this may affect their developmental competence, are crucial to improved ART outcomes. Here, we review studies that measured the developmental outcomes affected by superovulation and aging, focusing on how the epigenome (i.e., global and imprinted DNA methylation, histone modifications, and epigenetic modifiers) of gametes and embryos acquired from females undergoing physiologic aging and exogenous ovarian stimulation is affected.
Collapse
Affiliation(s)
- Kira L Marshall
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| | | |
Collapse
|
38
|
Radford EJ. An Introduction to Epigenetic Mechanisms. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 158:29-48. [DOI: 10.1016/bs.pmbts.2018.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
Patkin E, Grudinina N, Sasina L, Noniashvili E, Pavlinova L, Suchkova I, Kustova M, Kolmakov N, Van Truong T, Sofronov G. Asymmetric DNA methylation between sister chromatids of metaphase chromosomes in mouse embryos upon bisphenol A action. Reprod Toxicol 2017; 74:1-9. [DOI: 10.1016/j.reprotox.2017.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/24/2017] [Accepted: 08/18/2017] [Indexed: 12/17/2022]
|
40
|
Yamazaki J, Jelinek J, Hisamoto S, Tsukamoto A, Inaba M. Dynamic changes in DNA methylation patterns in canine lymphoma cell lines demonstrated by genome-wide quantitative DNA methylation analysis. Vet J 2017; 231:48-54. [PMID: 29429487 DOI: 10.1016/j.tvjl.2017.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 09/05/2017] [Accepted: 11/17/2017] [Indexed: 10/18/2022]
Abstract
DNA methylation is the conversion of cytosine to 5-methylcytosine, leading to changes in the interactions between DNA and proteins. Methylation of cytosine-guanine (CpG) islands (CGIs) is associated with gene expression silencing of the involved promoter. Although studies focussing on global changes or a few single loci in DNA methylation have been performed in dogs with certain diseases, genome-wide analysis of DNA methylation is required to prospectively identify specific regions with DNA methylation change. The hypothesis of this study was that next-generation sequencing with methylation-specific signatures created by sequential digestion of genomic DNA with SmaI and XmaI enzymes can provide quantitative information on methylation levels. Using blood from healthy dogs and cells obtained from canine lymphoma cell lines, approximately 100,000CpG sites across the dog genome were analysed with the novel method established in this study. CpG sites in CGIs broadly were shown to be either methylated or unmethylated in normal blood, while CpG sites not within CpG islands (NCGIs) were largely methylated. Thousands of CpG sites in lymphoma cell lines were found to gain methylation at normally unmethylated CGI sites and lose methylation at normally methylated NCGI sites. These hypermethylated CpG sites are located at promoter regions of hundreds of genes, such as TWIST2 and TLX3. In addition, genes annotated with 'Homeobox' and 'DNA-binding' characteristics have hypermethylated CpG sites in their promoter CGIs. Genome-wide quantitative DNA methylation analysis is a sensitive method that is likely to be suitable for studies of DNA methylation changes in cancer, as well as other common diseases in dogs.
Collapse
Affiliation(s)
- J Yamazaki
- Laboratory of Molecular Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Japan.
| | - J Jelinek
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA 19140, USA
| | - S Hisamoto
- Laboratory of Molecular Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Japan
| | - A Tsukamoto
- Laboratory of Laboratory Animal Science, School of Veterinary Medicine, Azabu University, Japan
| | - M Inaba
- Laboratory of Molecular Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Japan
| |
Collapse
|
41
|
Rhee C, Kim J, Tucker HO. Transcriptional Regulation of the First Cell Fate Decision. JOURNAL OF DEVELOPMENTAL BIOLOGY & REGENERATIVE MEDICINE 2017; 1:102. [PMID: 29658952 PMCID: PMC5897107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding how the first cell fate decision has chosen is a fascinating biological question that was received consider attention over the last decade. Numerous transcription factors are required, and many have been shown to have essential roles in this process. Here we reexamine the function that transcription factors play primarily in the mouse-the model system most thoroughly examined in this process. We address how the first embryonic lineage is established and maintained, with a particular emphasis on subsequent trophectoderm development and the role of the recently established Arid3a transcription factor in this process. In addition, we review relevant aspects of embryonic stem cell reprogramming into trophoblast stem cells -the equivalent of the epiblast (inner cell mass) and the establishment of induced trophoblast stem cells-the in vitro equivalent of the trophectoderm.
Collapse
Affiliation(s)
- Catherine Rhee
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge MA 02138, USA
| | - Jonghwan Kim
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Haley O. Tucker
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
42
|
Abstract
The regulation of the genome relies on the epigenome to instruct, define and restrict the activities of growth and development. Among the cohort of epigenetic instructions, DNA methylation is perhaps the best understood. In most mammals, cycles of the addition and removal of DNA methylation constitute phases of reprogramming when the developing embryo must negotiate lineage defining and developmental commitment events. In these instances, the DNA methylation instruction is often removed, thereby allowing a change in permission for future development and a return to a more plastic and pluripotent state. Because of this, the germ line, upon demethylation, can give rise to gametes that are fully functional across generations and poised for totipotency. This return to a less differentiated state can also be achieved experimentally. The loss of DNA methylation constitutes one of the significant barriers to induced pluripotency and is a prerequisite for the generation of iPS cells. Taking fully differentiated cells, such as skin cells, and turning back the developmental clock heralded a technological breakthrough discovery in 2006 (Takahashi and Yamanaka 2006) with unprecedented promise in regenerative medicine. In this chapter, the mechanistic possibilities for DNA demethylation will be described in the context of natural and experimentally induced epigenetic reprogramming. The balance of the maintenance of this heritable mark together with its timely removal is essential for lifelong health and may be a key in our understanding of ageing.
Collapse
Affiliation(s)
- Wendy Dean
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK.
| |
Collapse
|
43
|
Abstract
In mammals, DNA methylation in the form of 5-methylcytosine (5mC) can be actively reversed to unmodified cytosine (C) through TET dioxygenase-mediated oxidation of 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), followed by replication-dependent dilution or thymine DNA glycosylase (TDG)-dependent base excision repair. In the past few years, biochemical and structural studies have revealed mechanistic insights into how TET and TDG mediate active DNA demethylation. Additionally, many regulatory mechanisms of this process have been identified. Technological advances in mapping and tracing the oxidized forms of 5mC allow further dissection of their functions. Furthermore, the biological functions of active DNA demethylation in various biological contexts have also been revealed. In this Review, we summarize the recent advances and highlight key unanswered questions.
Collapse
|
44
|
Pang APS, Sugai C, Maunakea AK. High-throughput sequencing offers new insights into 5-hydroxymethylcytosine. Biomol Concepts 2017; 7:169-78. [PMID: 27356236 DOI: 10.1515/bmc-2016-0011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/01/2016] [Indexed: 01/15/2023] Open
Abstract
Chemical modifications of DNA comprise epigenetic mechanisms that contribute to the maintenance of cellular activities and memory. Although the function of 5-methylcytosine (5-mC) has been extensively studied, little is known about the function(s) of relatively rarer and underappreciated cytosine modifications including 5-hydroxymethylcytosine (5-hmC). The discovery that ten-eleven translocation (Tet) proteins mediate conversion of 5-mC to 5-hmC, and other oxidation derivatives, sparked renewed interest to understand the biological role of 5-hmC. Studies examining total 5-hmC levels revealed the highly dynamic yet tissue-specific nature of this modification, implicating a role in epigenetic regulation and development. Intriguingly, 5-hmC levels are highest during early development and in the brain where abnormal patterns of 5-hmC have been observed in disease conditions. Thus, 5-hmC adds to the growing list of epigenetic modifications with potential utility in clinical applications and warrants further investigation. This review discusses the emerging functional roles of 5-hmC in normal and disease states, focusing primarily on insights provided by recent studies exploring the genome-wide distribution of this modification in mammals.
Collapse
|
45
|
Ling KY, Cheow LF, Quake SR, Burkholder WF, Messerschmidt DM. Single Cell Restriction Enzyme-Based Analysis of Methylation at Genomic Imprinted Regions in Preimplantation Mouse Embryos. Methods Mol Biol 2017; 1605:171-189. [PMID: 28456965 DOI: 10.1007/978-1-4939-6988-3_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The methylation of cytosines in DNA is a fundamental epigenetic regulatory mechanism. During preimplantation development, mammalian embryos undergo extensive epigenetic reprogramming, including the global erasure of germ cell-specific DNA methylation marks, to allow for the establishment of the pluripotent state of the epiblast. However, DNA methylation marks at specific regions, such as imprinted gene regions, escape this reprogramming process, as their inheritance from germline to soma is paramount for proper development. To study the dynamics of DNA methylation marks in single blastomeres of mouse preimplantation embryos, we devised a new approach-single cell restriction enzyme analysis of methylation (SCRAM). SCRAM allows for reliable, fast, and high-throughput analysis of DNA methylation states of multiple regions of interest from single cells. In the method described below, SCRAM is specifically used to address loss of DNA methylation at genomic imprints or other highly methylated regions of interest.
Collapse
Affiliation(s)
- Ka Yi Ling
- Developmental Epigenetics and Disease Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Lih Feng Cheow
- Microfluidics Systems Biology Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Stephen R Quake
- Department of Bioengineering and Applied Physics, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
| | - William F Burkholder
- Microfluidics Systems Biology Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Daniel M Messerschmidt
- Developmental Epigenetics and Disease Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
46
|
Svoboda P, Fulka H, Malik R. Clearance of Parental Products. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 953:489-535. [DOI: 10.1007/978-3-319-46095-6_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
DNA methylation-based variation between human populations. Mol Genet Genomics 2016; 292:5-35. [PMID: 27815639 DOI: 10.1007/s00438-016-1264-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 10/25/2016] [Indexed: 12/16/2022]
Abstract
Several studies have proved that DNA methylation affects regulation of gene expression and development. Epigenome-wide studies have reported variation in methylation patterns between populations, including Caucasians, non-Caucasians (Blacks), Hispanics, Arabs, and numerous populations of the African continent. Not only has DNA methylation differences shown to impact externally visible characteristics, but is also a potential biomarker for underlying racial health disparities between human populations. Ethnicity-related methylation differences set their mark during early embryonic development. Genetic variations, such as single-nucleotide polymorphisms and environmental factors, such as age, dietary folate, socioeconomic status, and smoking, impacts DNA methylation levels, which reciprocally impacts expression of phenotypes. Studies show that it is necessary to address these external influences when attempting to differentiate between populations since the relative impacts of these factors on the human methylome remain uncertain. The present review summarises several reported attempts to establish the contribution of differential DNA methylation to natural human variation, and shows that DNA methylation could represent new opportunities for risk stratification and prevention of several diseases amongst populations world-wide. Variation of methylation patterns between human populations is an exciting prospect which inspires further valuable research to apply the concept in routine medical and forensic casework. However, trans-generational inheritance needs to be quantified to decipher the proportion of variation contributed by DNA methylation. The future holds thorough evaluation of the epigenome to understand quantification, heritability, and the effect of DNA methylation on phenotypes. In addition, methylation profiling of the same ethnic groups across geographical locations will shed light on conserved methylation differences in populations.
Collapse
|
48
|
Amenya HZ, Tohyama C, Ohsako S. Dioxin induces Ahr-dependent robust DNA demethylation of the Cyp1a1 promoter via Tdg in the mouse liver. Sci Rep 2016; 6:34989. [PMID: 27713569 PMCID: PMC5054525 DOI: 10.1038/srep34989] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/22/2016] [Indexed: 12/24/2022] Open
Abstract
The aryl hydrocarbon receptor (Ahr) is a highly conserved nuclear receptor that plays an important role in the manifestation of toxicity induced by polycyclic aromatic hydrocarbons. As a xenobiotic sensor, Ahr is involved in chemical biotransformation through activation of drug metabolizing enzymes. The activated Ahr cooperates with coactivator complexes to induce epigenetic modifications at target genes. Thus, it is conceivable that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent Ahr ligand, may elicit robust epigenetic changes in vivo at the Ahr target gene cytochrome P450 1a1 (Cyp1a1). A single dose of TCDD administered to adult mice induced Ahr-dependent CpG hypomethylation, changes in histone modifications, and thymine DNA glycosylase (Tdg) recruitment at the Cyp1a1 promoter in the liver within 24 hrs. These epigenetic changes persisted until 40 days post-TCDD treatment and there was Cyp1a1 mRNA hyperinduction upon repeat administration of TCDD at this time-point. Our demethylation assay using siRNA knockdown and an in vitro methylated plasmid showed that Ahr, Tdg, and the ten-eleven translocation methyldioxygenases Tet2 and Tet3 are required for the TCDD-induced DNA demethylation. These results provide novel evidence of Ahr-driven active DNA demethylation and epigenetic memory. The epigenetic alterations influence response to subsequent chemical exposure and imply an adaptive mechanism to xenobiotic stress.
Collapse
Affiliation(s)
- Hesbon Z Amenya
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chiharu Tohyama
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.,Experimental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Seiichiroh Ohsako
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
49
|
Tulay P, Doshi A, Serhal P, SenGupta SB. Differential expression of parental alleles of BRCA1 in human preimplantation embryos. Eur J Hum Genet 2016; 25:37-42. [PMID: 27677417 DOI: 10.1038/ejhg.2016.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 07/01/2016] [Accepted: 08/05/2016] [Indexed: 11/09/2022] Open
Abstract
Gene expression from both parental genomes is required for completion of embryogenesis. Differential methylation of each parental genome has been observed in mouse and human preimplantation embryos. It is possible that these differences in methylation affect the level of gene transcripts from each parental genome in early developing embryos. The aim of this study was to investigate if there is a parent-specific pattern of BRCA1 expression in human embryos and to examine if this affects embryo development when the embryo carries a BRCA1 or BRCA2 pathogenic mutation. Differential parental expression of ACTB, SNRPN, H19 and BRCA1 was semi-quantitatively analysed by minisequencing in 95 human preimplantation embryos obtained from 15 couples undergoing preimplantation genetic diagnosis. BRCA1 was shown to be differentially expressed favouring the paternal transcript in early developing embryos. Methylation-specific PCR showed a variable methylation profile of BRCA1 promoter region at different stages of embryonic development. Embryos carrying paternally inherited BRCA1 or 2 pathogenic variants were shown to develop more slowly compared with the embryos with maternally inherited BRCA1 or 2 pathogenic mutations. This study suggests that differential demethylation of the parental genomes can influence the early development of preimplantation embryos. Expression of maternal and paternal genes is required for the completion of embryogenesis.
Collapse
Affiliation(s)
- Pinar Tulay
- Department of Medical Genetics, Near East University, Faculty of Medicine, Yakin Dogu Bulvari, Nicosia, Cyprus. .,UCL Preimplantation Genetics Group, Institute for Women's Health, University College London, London, UK. .,4Current address: Near East University, Faculty of Medicine, Department of Medical Genetics, Yakin Dogu Bulvari, Nicosia, Cyprus., .
| | - Alpesh Doshi
- The Centre for Reproductive and Genetic Health, The New Wing Eastman Dental Hospital, London, UK
| | - Paul Serhal
- The Centre for Reproductive and Genetic Health, The New Wing Eastman Dental Hospital, London, UK
| | - Sioban B SenGupta
- Department of Medical Genetics, Near East University, Faculty of Medicine, Yakin Dogu Bulvari, Nicosia, Cyprus.,UCL Preimplantation Genetics Group, Institute for Women's Health, University College London, London, UK
| |
Collapse
|
50
|
Epigenetic studies in Developmental Origins of Health and Disease: pitfalls and key considerations for study design and interpretation. J Dev Orig Health Dis 2016; 8:30-43. [DOI: 10.1017/s2040174416000507] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The field of Developmental Origins of Health and Disease (DOHaD) seeks to understand the relationships between early-life environmental exposures and long-term health and disease. Until recently, the molecular mechanisms underlying these phenomena were poorly understood; however, epigenetics has been proposed to bridge the gap between the environment and phenotype. Epigenetics involves the study of heritable changes in gene expression, which occur without changes to the underlying DNA sequence. Different types of epigenetic modifications include DNA methylation, post-translational histone modifications and non-coding RNAs. Increasingly, changes to the epigenome have been associated with early-life exposures in both humans and animal models, offering both an explanation for how the environment may programme long-term health, as well as molecular changes that could be developed as biomarkers of exposure and/or future disease. As such, epigenetic studies in DOHaD hold much promise; however, there are a number of factors which should be considered when designing and interpreting such studies. These include the impact of the genome on the epigenome, the tissue-specificity of epigenetic marks, the stability (or lack thereof) of epigenetic changes over time and the importance of associating epigenetic changes with changes in transcription or translation to demonstrate functional consequences. In this review, we discuss each of these key concepts and provide practical strategies to mitigate some common pitfalls with the aim of providing a useful guide for future epigenetic studies in DOHaD.
Collapse
|