1
|
Coelho MA, Strauss ME, Watterson A, Cooper S, Bhosle S, Illuzzi G, Karakoc E, Dinçer C, Vieira SF, Sharma M, Moullet M, Conticelli D, Koeppel J, McCarten K, Cattaneo CM, Veninga V, Picco G, Parts L, Forment JV, Voest EE, Marioni JC, Bassett A, Garnett MJ. Base editing screens define the genetic landscape of cancer drug resistance mechanisms. Nat Genet 2024:10.1038/s41588-024-01948-8. [PMID: 39424923 DOI: 10.1038/s41588-024-01948-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 09/13/2024] [Indexed: 10/21/2024]
Abstract
Drug resistance is a principal limitation to the long-term efficacy of cancer therapies. Cancer genome sequencing can retrospectively delineate the genetic basis of drug resistance, but this requires large numbers of post-treatment samples to nominate causal variants. Here we prospectively identify genetic mechanisms of resistance to ten oncology drugs from CRISPR base editing mutagenesis screens in four cancer cell lines using a guide RNA library predicted to install 32,476 variants in 11 cancer genes. We identify four functional classes of protein variants modulating drug sensitivity and use single-cell transcriptomics to reveal how these variants operate through distinct mechanisms, including eliciting a drug-addicted cell state. We identify variants that can be targeted with alternative inhibitors to overcome resistance and functionally validate an epidermal growth factor receptor (EGFR) variant that sensitizes lung cancer cells to EGFR inhibitors. Our variant-to-function map has implications for patient stratification, therapy combinations and drug scheduling in cancer treatment.
Collapse
Affiliation(s)
- Matthew A Coelho
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK.
- Cancer Genome Editing, Wellcome Sanger Institute, Hinxton, UK.
- Open Targets, Cambridge, UK.
| | - Magdalena E Strauss
- EMBL-European Bioinformatics Institute, Cambridge, UK
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
- Gene Editing and Cellular Research and Development, Wellcome Sanger Institute, Hinxton, UK
- Department of Mathematics and Statistics, University of Exeter, Exeter, UK
| | - Alex Watterson
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
| | - Sarah Cooper
- Gene Editing and Cellular Research and Development, Wellcome Sanger Institute, Hinxton, UK
| | - Shriram Bhosle
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
| | | | - Emre Karakoc
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
- Open Targets, Cambridge, UK
| | - Cansu Dinçer
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
| | - Sara F Vieira
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
- Open Targets, Cambridge, UK
| | - Mamta Sharma
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
| | - Marie Moullet
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
| | - Daniela Conticelli
- Department of Oncology, University of Turin, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Jonas Koeppel
- Generative and Synthetic Genomics, Wellcome Sanger Institute, Hinxton, UK
| | - Katrina McCarten
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
| | - Chiara M Cattaneo
- Department of Immunology and Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vivien Veninga
- Department of Immunology and Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Gabriele Picco
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
- Open Targets, Cambridge, UK
| | - Leopold Parts
- Generative and Synthetic Genomics, Wellcome Sanger Institute, Hinxton, UK
| | | | - Emile E Voest
- Department of Immunology and Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - John C Marioni
- EMBL-European Bioinformatics Institute, Cambridge, UK
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
- Genentech, South San Francisco, CA, USA
| | - Andrew Bassett
- Gene Editing and Cellular Research and Development, Wellcome Sanger Institute, Hinxton, UK
| | - Mathew J Garnett
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK.
- Open Targets, Cambridge, UK.
| |
Collapse
|
2
|
Gorodezki D, Schuhmann MU, Ebinger M, Schittenhelm J. Dissecting the Natural Patterns of Progression and Senescence in Pediatric Low-Grade Glioma: From Cellular Mechanisms to Clinical Implications. Cells 2024; 13:1215. [PMID: 39056798 PMCID: PMC11274692 DOI: 10.3390/cells13141215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Pediatric low-grade gliomas (PLGGs) comprise a heterogeneous set of low-grade glial and glioneuronal tumors, collectively representing the most frequent CNS tumors of childhood and adolescence. Despite excellent overall survival rates, the chronic nature of the disease bears a high risk of long-term disease- and therapy-related morbidity in affected patients. Recent in-depth molecular profiling and studies of the genetic landscape of PLGGs led to the discovery of the paramount role of frequent upregulation of RAS/MAPK and mTOR signaling in tumorigenesis and progression of these tumors. Beyond, the subsequent unveiling of RAS/MAPK-driven oncogene-induced senescence in these tumors may shape the understanding of the molecular mechanisms determining the versatile progression patterns of PLGGs, potentially providing a promising target for novel therapies. Recent in vitro and in vivo studies moreover indicate a strong dependence of PLGG formation and growth on the tumor microenvironment. In this work, we provide an overview of the current understanding of the multilayered cellular mechanisms and clinical factors determining the natural progression patterns and the characteristic biological behavior of these tumors, aiming to provide a foundation for advanced stratification for the management of these tumors within a multimodal treatment approach.
Collapse
Affiliation(s)
- David Gorodezki
- Department of Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany;
| | - Martin U. Schuhmann
- Section of Pediatric Neurosurgery, Department of Neurosurgery, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Martin Ebinger
- Department of Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany;
| | - Jens Schittenhelm
- Department of Neuropathology, Institute of Pathology, University Hospital Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
3
|
Csergeová L, Krbušek D, Janoštiak R. CIP/KIP and INK4 families as hostages of oncogenic signaling. Cell Div 2024; 19:11. [PMID: 38561743 PMCID: PMC10985988 DOI: 10.1186/s13008-024-00115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
CIP/KIP and INK4 families of Cyclin-dependent kinase inhibitors (CKIs) are well-established cell cycle regulatory proteins whose canonical function is binding to Cyclin-CDK complexes and altering their function. Initial experiments showed that these proteins negatively regulate cell cycle progression and thus are tumor suppressors in the context of molecular oncology. However, expanded research into the functions of these proteins showed that most of them have non-canonical functions, both cell cycle-dependent and independent, and can even act as tumor enhancers depending on their posttranslational modifications, subcellular localization, and cell state context. This review aims to provide an overview of canonical as well as non-canonical functions of CIP/KIP and INK4 families of CKIs, discuss the potential avenues to promote their tumor suppressor functions instead of tumor enhancing ones, and how they could be utilized to design improved treatment regimens for cancer patients.
Collapse
Affiliation(s)
- Lucia Csergeová
- BIOCEV-First Faculty of Medicine, Charles University, Prague, Czechia
| | - David Krbušek
- BIOCEV-First Faculty of Medicine, Charles University, Prague, Czechia
| | | |
Collapse
|
4
|
Klemm S, Evert K, Utpatel K, Muggli A, Simile MM, Chen X, Evert M, Calvisi DF, Scheiter A. Identification of DUSP4/6 overexpression as a potential rheostat to NRAS-induced hepatocarcinogenesis. BMC Cancer 2023; 23:1086. [PMID: 37946160 PMCID: PMC10636894 DOI: 10.1186/s12885-023-11577-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Upregulation of the mitogen-activated protein kinase (MAPK) cascade is common in hepatocellular carcinoma (HCC). Neuroblastoma RAS viral oncogene homolog (NRAS) is mutated in a small percentage of HCC and is hitherto considered insufficient for hepatocarcinogenesis. We aimed to characterize the process of N-Ras-dependent carcinogenesis in the liver and to identify potential therapeutic vulnerabilities. METHODS NRAS V12 plasmid was delivered into the mouse liver via hydrodynamic tail vein injection (HTVI). The resulting tumours, preneoplastic lesions, and normal tissue were characterized by NanoString® gene expression analysis, Western Blot, and Immunohistochemistry (IHC). The results were further confirmed by in vitro analyses of HCC cell lines. RESULTS HTVI with NRAS V12 plasmid resulted in the gradual formation of preneoplastic and neoplastic lesions in the liver three months post-injection. These lesions mostly showed characteristics of HCC, with some exceptions of spindle cell/ cholangiocellular differentiation. Progressive upregulation of the RAS/RAF/MEK/ERK signalling was detectable in the lesions by Western Blot and IHC. NanoString® gene expression analysis of preneoplastic and tumorous tissue revealed a gradual overexpression of the cancer stem cell marker CD133 and Dual Specificity Phosphatases 4 and 6 (DUSP4/6). In vitro, transfection of HCC cell lines with NRAS V12 plasmid resulted in a coherent upregulation of DUSP4 and DUSP6. Paradoxically, this upregulation in PLC/PRF/5 cells was accompanied by a downregulation of phosphorylated extracellular-signal-regulated kinase (pERK), suggesting an overshooting compensation. Silencing of DUSP4 and DUSP6 increased proliferation in HCC cell lines. CONCLUSIONS Contrary to prior assumptions, the G12V NRAS mutant form is sufficient to elicit hepatocarcinogenesis in the mouse. Furthermore, the upregulation of the MAPK cascade was paralleled by the overexpression of DUSP4, DUSP6, and CD133 in vivo and in vitro. Therefore, DUSP4 and DUSP6 might fine-tune the excessive MAPK activation, a mechanism that can potentially be harnessed therapeutically.
Collapse
Affiliation(s)
- Sophie Klemm
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Katja Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Kirsten Utpatel
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Alexandra Muggli
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Maria M Simile
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, Sassari, Italy
| | - Xin Chen
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | | |
Collapse
|
5
|
Hannan R, McLaughlin MF, Pop LM, Pedrosa I, Kapur P, Garant A, Ahn C, Christie A, Zhu J, Wang T, Robles L, Durakoglugil D, Woldu S, Margulis V, Gahan J, Brugarolas J, Timmerman R, Cadeddu J. Phase 2 Trial of Stereotactic Ablative Radiotherapy for Patients with Primary Renal Cancer. Eur Urol 2023; 84:275-286. [PMID: 36898872 PMCID: PMC10440291 DOI: 10.1016/j.eururo.2023.02.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/17/2023] [Accepted: 02/15/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND Most renal cell carcinomas (RCCs) are localized and managed by active surveillance, surgery, or minimally invasive techniques. Stereotactic ablative radiation (SAbR) may provide an innovative non-invasive alternative although prospective data are limited. OBJECTIVE To investigate whether SAbR is effective in the management of primary RCCs. DESIGN, SETTING, AND PARTICIPANTS Patients with biopsy-confirmed radiographically enlarging primary RCC (≤5 cm) were enrolled. SAbR was delivered in either three (12 Gy) or five (8 Gy) fractions. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The primary endpoint was local control (LC) defined as a reduction in tumor growth rate (compared with a benchmark of 4 mm/yr on active surveillance) and pathologic evidence of tumor response at 1 yr. Secondary endpoints included LC by the Response Evaluation Criteria in Solid Tumors (RECIST 1.1), safety, and preservation of kidney function. Exploratory tumor cell-enriched spatial protein and gene expression analysis were conducted on pre- and post-treatment biopsy samples. RESULTS AND LIMITATIONS Target accrual was reached with the enrollment of 16 ethnically diverse patients. Radiographic LC at 1 yr was observed in 94% of patients (15/16; 95% confidence interval: 70, 100), and this was accompanied by pathologic evidence of tumor response (hyalinization, necrosis, and reduced tumor cellularity) in all patients. By RECIST, 100% of the sites remained without progression at 1 yr. The median pretreatment growth rate was 0.8 cm/yr (interquartile range [IQR]: 0.3, 1.4), and the median post-treatment growth rate was 0.0 cm/yr (IQR: -0.4, 0.1, p < 0.002). Tumor cell viability decreased from 4.6% to 0.7% at 1 yr (p = 0.004). With a median follow-up of 36 mo for censored patients, the disease control rate was 94%. SAbR was well tolerated with no grade ≥2 (acute or late) toxicities. The average glomerular filtration rate declined from a baseline of 65.6 to 55.4 ml/min at 1 yr (p = 0.003). Spatial protein and gene expression analyses were consistent with the induction of cellular senescence by radiation. CONCLUSIONS This clinical trial adds to the growing body of evidence suggesting that SAbR is effective for primary RCC supporting its evaluation in comparative phase 3 clinical trials. PATIENT SUMMARY In this clinical trial, we investigated a noninvasive treatment option of stereotactic radiation therapy for the treatment of primary kidney cancer and found that it was safe and effective.
Collapse
Affiliation(s)
- Raquibul Hannan
- Department of Radiation Oncology, University of Texas Southwestern, Dallas, TX, USA; Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Mark F McLaughlin
- Department of Radiation Oncology, University of Texas Southwestern, Dallas, TX, USA
| | - Laurentiu M Pop
- Department of Radiation Oncology, University of Texas Southwestern, Dallas, TX, USA
| | - Ivan Pedrosa
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Radiology, University of Texas Southwestern, Dallas, TX, USA; Department of Urology, University of Texas Southwestern, Dallas, TX, USA
| | - Payal Kapur
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Urology, University of Texas Southwestern, Dallas, TX, USA; Department of Pathology, University of Texas Southwestern, Dallas, TX, USA
| | - Aurelie Garant
- Department of Radiation Oncology, University of Texas Southwestern, Dallas, TX, USA; Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chul Ahn
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Population and Data Sciences, University of Texas Southwestern, Dallas, TX, USA
| | - Alana Christie
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - James Zhu
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tao Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Liliana Robles
- Department of Radiation Oncology, University of Texas Southwestern, Dallas, TX, USA
| | - Deniz Durakoglugil
- Department of Radiation Oncology, University of Texas Southwestern, Dallas, TX, USA
| | - Solomon Woldu
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Urology, University of Texas Southwestern, Dallas, TX, USA
| | - Vitaly Margulis
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Urology, University of Texas Southwestern, Dallas, TX, USA
| | - Jeffrey Gahan
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Urology, University of Texas Southwestern, Dallas, TX, USA
| | - James Brugarolas
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine, University of Texas Southwestern, Dallas, TX, USA
| | - Robert Timmerman
- Department of Radiation Oncology, University of Texas Southwestern, Dallas, TX, USA; Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey Cadeddu
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Urology, University of Texas Southwestern, Dallas, TX, USA
| |
Collapse
|
6
|
Chojak R, Fares J, Petrosyan E, Lesniak MS. Cellular senescence in glioma. J Neurooncol 2023; 164:11-29. [PMID: 37458855 DOI: 10.1007/s11060-023-04387-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/01/2023] [Indexed: 08/29/2023]
Abstract
INTRODUCTION Glioma is the most common primary brain tumor and is often associated with treatment resistance and poor prognosis. Standard treatment typically involves radiotherapy and temozolomide-based chemotherapy, both of which induce cellular senescence-a tumor suppression mechanism. DISCUSSION Gliomas employ various mechanisms to bypass or escape senescence and remain in a proliferative state. Importantly, senescent cells remain viable and secrete a large number of factors collectively known as the senescence-associated secretory phenotype (SASP) that, paradoxically, also have pro-tumorigenic effects. Furthermore, senescent cells may represent one form of tumor dormancy and play a role in glioma recurrence and progression. CONCLUSION In this article, we delineate an overview of senescence in the context of gliomas, including the mechanisms that lead to senescence induction, bypass, and escape. Furthermore, we examine the role of senescent cells in the tumor microenvironment and their role in tumor progression and recurrence. Additionally, we highlight potential therapeutic opportunities for targeting senescence in glioma.
Collapse
Affiliation(s)
- Rafał Chojak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N. St Clair Street, Suite 2210, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N. St Clair Street, Suite 2210, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Edgar Petrosyan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N. St Clair Street, Suite 2210, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N. St Clair Street, Suite 2210, Chicago, IL, 60611, USA.
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
7
|
Netterfield TS, Ostheimer GJ, Tentner AR, Joughin BA, Dakoyannis AM, Sharma CD, Sorger PK, Janes KA, Lauffenburger DA, Yaffe MB. Biphasic JNK-Erk signaling separates the induction and maintenance of cell senescence after DNA damage induced by topoisomerase II inhibition. Cell Syst 2023; 14:582-604.e10. [PMID: 37473730 PMCID: PMC10627503 DOI: 10.1016/j.cels.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 03/24/2023] [Accepted: 06/13/2023] [Indexed: 07/22/2023]
Abstract
Genotoxic stress in mammalian cells, including those caused by anti-cancer chemotherapy, can induce temporary cell-cycle arrest, DNA damage-induced senescence (DDIS), or apoptotic cell death. Despite obvious clinical importance, it is unclear how the signals emerging from DNA damage are integrated together with other cellular signaling pathways monitoring the cell's environment and/or internal state to control different cell fates. Using single-cell-based signaling measurements combined with tensor partial least square regression (t-PLSR)/principal component analysis (PCA) analysis, we show that JNK and Erk MAPK signaling regulates the initiation of cell senescence through the transcription factor AP-1 at early times after doxorubicin-induced DNA damage and the senescence-associated secretory phenotype (SASP) at late times after damage. These results identify temporally distinct roles for signaling pathways beyond the classic DNA damage response (DDR) that control the cell senescence decision and modulate the tumor microenvironment and reveal fundamental similarities between signaling pathways responsible for oncogene-induced senescence (OIS) and senescence caused by topoisomerase II inhibition. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Tatiana S Netterfield
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gerard J Ostheimer
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andrea R Tentner
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Brian A Joughin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alexandra M Dakoyannis
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Charvi D Sharma
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Computer Science and Molecular Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin A Janes
- Department of Biomedical Engineering and Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael B Yaffe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Acute Care Surgery, Trauma, and Surgical Critical Care, and Division of Surgical Oncology, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
8
|
Ye M, Huang X, Wu Q, Liu F. Senescent Stromal Cells in the Tumor Microenvironment: Victims or Accomplices? Cancers (Basel) 2023; 15:cancers15071927. [PMID: 37046588 PMCID: PMC10093305 DOI: 10.3390/cancers15071927] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/11/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Cellular senescence is a unique cellular state. Senescent cells enter a non-proliferative phase, and the cell cycle is arrested. However, senescence is essentially an active cellular phenotype, with senescent cells affecting themselves and neighboring cells via autocrine and paracrine patterns. A growing body of research suggests that the dysregulation of senescent stromal cells in the microenvironment is tightly associated with the development of a variety of complex cancers. The role of senescent stromal cells in impacting the cancer cell and tumor microenvironment has also attracted the attention of researchers. In this review, we summarize the generation of senescent stromal cells in the tumor microenvironment and their specific biological functions. By concluding the signaling pathways and regulatory mechanisms by which senescent stromal cells promote tumor progression, distant metastasis, immune infiltration, and therapy resistance, this paper suggests that senescent stromal cells may serve as potential targets for drug therapy, thus providing new clues for future related research.
Collapse
Affiliation(s)
- Minghan Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu 610065, China
| | - Xinyi Huang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250100, China
| | - Qianju Wu
- Stomatological Hospital of Xiamen Medical College, Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen 361008, China
- Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu 610065, China
| |
Collapse
|
9
|
Chen JY, Hug C, Reyes J, Tian C, Gerosa L, Fröhlich F, Ponsioen B, Snippert HJG, Spencer SL, Jambhekar A, Sorger PK, Lahav G. Multi-range ERK responses shape the proliferative trajectory of single cells following oncogene induction. Cell Rep 2023; 42:112252. [PMID: 36920903 PMCID: PMC10153468 DOI: 10.1016/j.celrep.2023.112252] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 01/10/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Oncogene-induced senescence is a phenomenon in which aberrant oncogene expression causes non-transformed cells to enter a non-proliferative state. Cells undergoing oncogenic induction display phenotypic heterogeneity, with some cells senescing and others remaining proliferative. The causes of heterogeneity remain unclear. We studied the sources of heterogeneity in the responses of human epithelial cells to oncogenic BRAFV600E expression. We found that a narrow expression range of BRAFV600E generated a wide range of activities of its downstream effector ERK. In population-level and single-cell assays, ERK activity displayed a non-monotonic relationship to proliferation, with intermediate ERK activities leading to maximal proliferation. We profiled gene expression across a range of ERK activities over time and characterized four distinct ERK response classes, which we propose act in concert to generate the ERK-proliferation response. Altogether, our studies map the input-output relationships between ERK activity and proliferation, elucidating how heterogeneity can be generated during oncogene induction.
Collapse
Affiliation(s)
- Jia-Yun Chen
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Clemens Hug
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - José Reyes
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chengzhe Tian
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA; Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
| | - Luca Gerosa
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Genentech, Inc, South San Francisco, CA 94080, USA
| | - Fabian Fröhlich
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Bas Ponsioen
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Hugo J G Snippert
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Sabrina L Spencer
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Ashwini Jambhekar
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard Medical School, Boston, MA, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard Medical School, Boston, MA, USA.
| | - Galit Lahav
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Ras protein abundance correlates with Ras isoform mutation patterns in cancer. Oncogene 2023; 42:1224-1232. [PMID: 36864243 PMCID: PMC10079525 DOI: 10.1038/s41388-023-02638-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/04/2023]
Abstract
Activating mutations of Ras genes are often observed in cancer. The protein products of the three Ras genes are almost identical. However, for reasons that remain unclear, KRAS is far more frequently mutated than the other Ras isoforms in cancer and RASopathies. We have quantified HRAS, NRAS, KRAS4A and KRAS4B protein abundance across a large panel of cell lines and healthy tissues. We observe consistent patterns of KRAS > NRAS»HRAS protein expression in cells that correlate with the rank order of Ras mutation frequencies in cancer. Our data provide support for the model of a sweet-spot of Ras dosage mediating isoform-specific contributions to cancer and development. We suggest that in most cases, being the most abundant Ras isoform correlates with occupying the sweet-spot and that HRAS and NRAS expression is usually insufficient to promote oncogenesis when mutated. However, our results challenge the notion that rare codons mechanistically underpin the predominance of KRAS mutant cancers. Finally, direct measurement of mutant versus wildtype KRAS protein abundance revealed a frequent imbalance that may suggest additional non-gene duplication mechanisms for optimizing oncogenic Ras dosage.
Collapse
|
11
|
Truskowski K, Amend SR, Pienta KJ. Dormant cancer cells: programmed quiescence, senescence, or both? Cancer Metastasis Rev 2023; 42:37-47. [PMID: 36598661 PMCID: PMC10014758 DOI: 10.1007/s10555-022-10073-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023]
Abstract
Metastasis is the overwhelming driver of cancer mortality, accounting for the majority of cancer deaths. Many patients present with metastatic relapse years after eradication of the primary lesion. Disseminated cancer cells can undergo a durable proliferative arrest and lie dormant in secondary tissues before reentering the cell cycle to seed these lethal relapses. This process of cancer cell dormancy remains poorly understood, largely due to difficulties in studying these dormant cells. In the face of these challenges, the application of knowledge from the cellular senescence and quiescence fields may help to guide future thinking on the study of dormant cancer cells. Both senescence and quiescence are common programs of proliferative arrest that are integral to tissue development and homeostasis. Despite phenotypic differences, these two states also share common characteristics, and both likely play a role in cancer dormancy and delayed metastatic relapse. Understanding the cell biology behind these states, their overlaps and unique characteristics is critical to our future understanding of dormant cancer cells, as these cells likely employ some of the same molecular programs to promote survival and dissemination. In this review, we highlight the biology underlying these non-proliferative states, relate this knowledge to what we currently know about dormant cancer cells, and discuss implications for future work toward targeting these elusive metastatic seeds.
Collapse
Affiliation(s)
- Kevin Truskowski
- Brady Urological Institute, Johns Hopkins School of Medicine, 600 North Wolfe St, Baltimore, MD, USA.
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, 1830 E. Monument St. Suite 20103, Baltimore, MD, 21205, USA.
- Cancer Ecology Center, Johns Hopkins School of Medicine, 600 North Wolfe St, Baltimore, MD, USA.
| | - Sarah R Amend
- Brady Urological Institute, Johns Hopkins School of Medicine, 600 North Wolfe St, Baltimore, MD, USA
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, 1830 E. Monument St. Suite 20103, Baltimore, MD, 21205, USA
- Cancer Ecology Center, Johns Hopkins School of Medicine, 600 North Wolfe St, Baltimore, MD, USA
| | - Kenneth J Pienta
- Brady Urological Institute, Johns Hopkins School of Medicine, 600 North Wolfe St, Baltimore, MD, USA
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, 1830 E. Monument St. Suite 20103, Baltimore, MD, 21205, USA
- Cancer Ecology Center, Johns Hopkins School of Medicine, 600 North Wolfe St, Baltimore, MD, USA
| |
Collapse
|
12
|
The role of transcription factors in the acquisition of the four latest proposed hallmarks of cancer and corresponding enabling characteristics. Semin Cancer Biol 2022; 86:1203-1215. [PMID: 36244529 DOI: 10.1016/j.semcancer.2022.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 01/27/2023]
Abstract
With the recent description of the molecular and cellular characteristics that enable acquisition of both core and new hallmarks of cancer, the consequences of transcription factor dysregulation in the hallmarks scheme has become increasingly evident. Dysregulation or mutation of transcription factors has long been recognized in the development of cancer where alterations in these key regulatory molecules can result in aberrant gene expression and consequential blockade of normal cellular differentiation. Here, we provide an up-to-date review of involvement of dysregulated transcription factor networks with the most recently reported cancer hallmarks and enabling characteristic properties. We present some illustrative examples of the impact of dysregulated transcription factors, specifically focusing on the characteristics of phenotypic plasticity, non-mutational epigenetic reprogramming, polymorphic microbiomes, and senescence. We also discuss how new insights into transcription factor dysregulation in cancer is contributing to addressing current therapeutic challenges.
Collapse
|
13
|
Nagaraj K, Sarfstein R, Laron Z, Werner H. Long-Term IGF1 Stimulation Leads to Cellular Senescence via Functional Interaction with the Thioredoxin-Interacting Protein, TXNIP. Cells 2022; 11:cells11203260. [PMID: 36291127 PMCID: PMC9601129 DOI: 10.3390/cells11203260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 12/05/2022] Open
Abstract
The growth hormone (GH)–insulin-like growth factor-1 (IGF1) signaling pathway plays a major role in orchestrating cellular interactions, metabolism, growth and aging. Studies from worms to mice showed that downregulated activity of the GH/IGF1 pathway could be beneficial for the extension of lifespan. Laron syndrome (LS) is an inherited autosomal recessive disorder caused by molecular defects of the GH receptor (GHR) gene, leading to congenital IGF1 deficiency. Life-long exposure to minute endogenous IGF1 levels in LS is associated with low stature as well as other endocrine and metabolic deficits. Epidemiological surveys reported that patients with LS have a reduced risk of developing cancer. Studies conducted on LS-derived lymphoblastoid cells led to the identification of a novel link between IGF1 and thioredoxin-interacting protein (TXNIP), a multifunctional mitochondrial protein. TXNIP is highly expressed in LS patients and plays a critical role in cellular redox regulation by thioredoxin. Given that IGF1 affects the levels of TXNIP under various stress conditions, including high glucose and oxidative stress, we hypothesized that the IGF1–TXNIP axis plays an essential role in helping maintain a physiological balance in cellular homeostasis. In this study, we show that TXNIP is vital for the cell fate choice when cells are challenged by various stress signals. Furthermore, prolonged IGF1 treatment leads to the establishment of a premature senescence phenotype characterized by a unique senescence network signature. Combined IGF1/TXNIP-induced premature senescence can be associated with a typical secretory inflammatory phenotype that is mediated by STAT3/IL-1A signaling. Finally, these mechanistic insights might help with the understanding of basic aspects of IGF1-related pathologies in the clinical setting.
Collapse
Affiliation(s)
- Karthik Nagaraj
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Rive Sarfstein
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Zvi Laron
- Endocrinology and Diabetes Research Unit, Schneider Children’s Medical Center, Petah Tikva 49292, Israel
| | - Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Correspondence: ; Tel.: +972-3-6408542; Fax: +972-3-6405055
| |
Collapse
|
14
|
Volonte D, Sedorovitz M, Galbiati F. Impaired Cdc20 signaling promotes senescence in normal cells and apoptosis in non-small cell lung cancer cells. J Biol Chem 2022; 298:102405. [PMID: 35988650 PMCID: PMC9490043 DOI: 10.1016/j.jbc.2022.102405] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/05/2022] Open
Abstract
Cellular senescence is a form of irreversible growth arrest that cancer cells evade. The cell division cycle protein 20 homolog (Cdc20) is a positive regulator of cell division, but how its dysregulation may relate to senescence is unclear. Here, we find that Cdc20 mRNA and protein expression are downregulated in stress-induced premature senescent lung fibroblasts in a p53-dependent manner. Either Cdc20 downregulation or inhibition of anaphase-promoting complex/cyclosome (APC/C) is sufficient to induce premature senescence in lung fibroblasts, while APC/C activation inhibits stress-induced premature senescence. Mechanistically, we show both Cdc20 downregulation and APC/C inhibition induce premature senescence through glycogen synthase kinase (GSK)-3β-mediated phosphorylation and downregulation of securin expression. Interestingly, we determined Cdc20 expression is upregulated in human lung adenocarcinoma. We find that downregulation of Cdc20 in non-small cell lung cancer (NSCLC) cells is sufficient to inhibit cell proliferation and growth in soft agar and to promote apoptosis, but not senescence, in a manner dependent on downregulation of securin following GSK-3β-mediated securin phosphorylation. Similarly, we demonstrate securin expression is downregulated and cell viability is inhibited in NSCLC cells following inhibition of APC/C. Furthermore, we show chemotherapeutic drugs downregulate both Cdc20 and securin protein expression in NSCLC cells. Either Cdc20 downregulation by siRNA or APC/C inhibition sensitize, while securin overexpression inhibits, chemotherapeutic drug-induced NSCLC cell death. Together, our findings provide evidence that Cdc20/APC/C/securin-dependent signaling is a key regulator of cell survival, and its disruption promotes premature senescence in normal lung cells and induces apoptosis in lung cancer cells that have bypassed the senescence barrier.
Collapse
Affiliation(s)
- Daniela Volonte
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Morgan Sedorovitz
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ferruccio Galbiati
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
15
|
Farooq U, Notani D. Transcriptional regulation of INK4/ARF locus by cis and trans mechanisms. Front Cell Dev Biol 2022; 10:948351. [PMID: 36158211 PMCID: PMC9500187 DOI: 10.3389/fcell.2022.948351] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/09/2022] [Indexed: 12/12/2022] Open
Abstract
9p21 locus is one of the most reproducible regions in genome-wide association studies (GWAS). The region harbors CDKN2A/B genes that code for p16INK4a, p15INK4b, and p14ARF proteins, and it also harbors a long gene desert adjacent to these genes. The polymorphisms that are associated with several diseases and cancers are present in these genes and the gene desert region. These proteins are critical cell cycle regulators whose transcriptional dysregulation is strongly linked with cellular regeneration, stemness, aging, and cancers. Given the importance of this locus, intense scientific efforts on understanding the regulation of these genes via promoter-driven mechanisms and recently, via the distal regulatory mechanism have provided major insights. In this review, we describe these mechanisms and propose the ways by which this locus can be targeted in pathologies and aging.
Collapse
Affiliation(s)
- Umer Farooq
- Genetics and Development, National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
- The University of Trans-Disciplinary Health Sciences and Technology, Bangalore, India
- *Correspondence: Umer Farooq, ; Dimple Notani,
| | - Dimple Notani
- Genetics and Development, National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
- *Correspondence: Umer Farooq, ; Dimple Notani,
| |
Collapse
|
16
|
Fujino T, Asada S, Goyama S, Kitamura T. Mechanisms involved in hematopoietic stem cell aging. Cell Mol Life Sci 2022; 79:473. [PMID: 35941268 PMCID: PMC11072869 DOI: 10.1007/s00018-022-04356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 11/03/2022]
Abstract
Hematopoietic stem cells (HSCs) undergo progressive functional decline over time due to both internal and external stressors, leading to aging of the hematopoietic system. A comprehensive understanding of the molecular mechanisms underlying HSC aging will be valuable in developing novel therapies for HSC rejuvenation and to prevent the onset of several age-associated diseases and hematological malignancies. This review considers the general causes of HSC aging that range from cell-intrinsic factors to cell-extrinsic factors. In particular, epigenetics and inflammation have been implicated in the linkage of HSC aging, clonality, and oncogenesis. The challenges in clarifying mechanisms of HSC aging have accelerated the development of therapeutic interventions to rejuvenate HSCs, the major goal of aging research; these details are also discussed in this review.
Collapse
Affiliation(s)
- Takeshi Fujino
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Shuhei Asada
- The Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, 1628666, Japan
| | - Susumu Goyama
- Division of Molecular Oncology Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, 1088639, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
| |
Collapse
|
17
|
Futami K, Sato S, Maita M, Katagiri T. Lack of a p16 INK4a/ARF locus in fish genome may underlie senescence resistance in the fish cell line, EPC. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 133:104420. [PMID: 35417735 DOI: 10.1016/j.dci.2022.104420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Unlike most mammalian cell lines, fish cell lines are immortal and resistant to cellular senescence. Elevated expression of H-Ras contributes to the induction of senescence in a fish cell line, EPC, but is not sufficient to induce full senescence. Here, we focused on the absence of a p16INK4a/ARF locus in the fish genome, and investigated whether this might be a critical determinant of the resistance of EPC cells to full senescence. We found that transfected EPC cells constitutively overexpressing p16INK4a exhibited large size and flat morphology characteristic of prematurely senescent cells; the cells also showed p53-independent senescence-like growth arrest and senescence-associated β-galactosidase (SA-β-gal) activity. Furthermore, the mRNA levels of proinflammatory senescence-associated secretory phenotype (SASP) factors increased in EPC cells constitutively overexpressing p16INK4a. These results suggest that the lack of p16INK4a in the fish genome may be a critical determinant of senescence resistance in fish cell lines.
Collapse
Affiliation(s)
- Kunihiko Futami
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo, 108-8477, Japan.
| | - Shunichi Sato
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo, 108-8477, Japan
| | - Masashi Maita
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo, 108-8477, Japan
| | - Takayuki Katagiri
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo, 108-8477, Japan
| |
Collapse
|
18
|
Kaur N, Lum M, Lewis RE, Black AR, Black JD. A novel anti-proliferative PKCα-Ras-ERK signaling axis in intestinal epithelial cells. J Biol Chem 2022; 298:102121. [PMID: 35697074 PMCID: PMC9270260 DOI: 10.1016/j.jbc.2022.102121] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/05/2022] [Accepted: 05/31/2022] [Indexed: 01/02/2023] Open
Abstract
We have previously shown that the serine/threonine kinase PKCα triggers MAPK/ERK kinase (MEK)-dependent G1→S cell cycle arrest in intestinal epithelial cells, characterized by downregulation of cyclin D1 and inhibitor of DNA-binding protein 1 (Id1) and upregulation of the cyclin-dependent kinase inhibitor p21Cip1. Here, we use pharmacological inhibitors, genetic approaches, siRNA-mediated knockdown, and immunoprecipitation to further characterize anti-proliferative ERK signaling in intestinal cells. We show that PKCα signaling intersects the Ras-Raf-MEK-ERK kinase cascade at the level of Ras small GTPases, and that anti-proliferative effects of PKCα require active Ras, Raf, MEK and ERK, core ERK pathway components that are also essential for pro-proliferative ERK signaling induced by epidermal growth factor (EGF). However, PKCα-induced anti-proliferative signaling differs from EGF signaling in that it is independent of the Ras guanine nucleotide exchange factors (Ras-GEFs), SOS1/2, and involves prolonged rather than transient ERK activation. PKCα forms complexes with A-Raf, B-Raf and C-Raf that dissociate upon pathway activation, and all three Raf isoforms can mediate PKCα-induced anti-proliferative effects. At least two PKCα-ERK pathways that collaborate to promote growth arrest were identified: one pathway requiring the Ras-GEF, RasGRP3, and H-Ras, leads to p21Cip1 upregulation, while additional pathway(s) mediate PKCα-induced cyclin D1 and Id1 downregulation. PKCα also induces ERK-dependent SOS1 phosphorylation, indicating possible negative crosstalk between anti-proliferative and growth-promoting ERK signaling. Importantly, the spatio-temporal activation of PKCα and ERK in the intestinal epithelium in vivo supports the physiological relevance of these pathways and highlights the importance of anti-proliferative ERK signaling to tissue homeostasis in the intestine.
Collapse
Affiliation(s)
- Navneet Kaur
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Michelle Lum
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Robert E Lewis
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jennifer D Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
19
|
Dutchak K, Garnett S, Nicoll M, de Bruyns A, Dankort D. MOB3A Bypasses BRAF and RAS Oncogene-Induced Senescence by Engaging the Hippo Pathway. Mol Cancer Res 2022; 20:770-781. [PMID: 35046109 DOI: 10.1158/1541-7786.mcr-21-0767] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/20/2021] [Accepted: 01/11/2022] [Indexed: 12/30/2022]
Abstract
Oncogenic activation of the RTK-RAS-RAF-MEK-ERK pathway occurs in approximately 25% of all human cancers, yet activated RAS, BRAF, or MEK expression in primary cells leads to a prolonged and predominantly irreversible cell-cycle arrest termed oncogene-induced senescence (OIS). OIS acts as an intrinsic tumor suppressor mechanism, serving as a barrier to tumor progression. Screening a library of activated kinases and kinase-regulatory proteins we identified MOB3A, a Mps-one binder coactivator (MOB) protein family member, whose constitutive expression permits proliferation and suppresses senescence in response to oncogenic RAS and BRAF signals. MOB3A is one of seven human MOB genes, which are highly conserved from yeast to human and that function to activate the Hippo pathway kinases (MST/LATS) or NDR kinases through direct association. Here we show that within the MOB family of genes MOB3A and C are unique in their ability to allow primary cell proliferation in the face of sustained oncogene signaling. Unlike the canonical MOB1A/B proteins, MOB3A inhibits Hippo/MST/LATS signaling and constitutive MOB3A membrane localization phenocopies OIS bypass seen with elevated YAP expression. Moreover, inhibition of MOB3 family member expression results in decreased proliferation and tumor growth of cancer cell lines. Together these data identify MOB3A's role in bypass of oncogene induced senescence and its role as a Hippo pathway inhibitor. IMPLICATIONS These results suggest that MOB3 targeting to re-engage the Hippo pathway, or direct targeting of YAP/TAZ, may be viable therapeutic strategies potential for RAS-pathway driven tumours.
Collapse
Affiliation(s)
- Kendall Dutchak
- Department of Biology, McGill University, Stewart Biology, Montréal QC, Canada
| | - Sam Garnett
- Department of Biology, McGill University, Stewart Biology, Montréal QC, Canada
| | - Mary Nicoll
- Department of Biology, McGill University, Stewart Biology, Montréal QC, Canada
| | - Angeline de Bruyns
- Department of Biology, McGill University, Stewart Biology, Montréal QC, Canada
| | - David Dankort
- Department of Biology, McGill University, Stewart Biology, Montréal QC, Canada.,Goodman Cancer Research Centre, Montréal QC, Canada
| |
Collapse
|
20
|
Lieschke E, Wang Z, Chang C, Weeden CE, Kelly GL, Strasser A. Flow cytometric single cell-based assay to simultaneously detect cell death, cell cycling, DNA content and cell senescence. Cell Death Differ 2022; 29:1004-1012. [PMID: 35264779 PMCID: PMC9091206 DOI: 10.1038/s41418-022-00964-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 11/09/2022] Open
Abstract
Cell death, cell cycle arrest and cellular senescence are three distinct cellular responses that can be induced by oncogene activation and diverse anti-cancer agents, and this often requires the action of the tumour suppressor TP53. Within a cell population, or even within an individual cell, these processes are not necessarily mutually exclusive. It is therefore important to measure all these processes simultaneously. However, current assays generally visualise only one or at best two responses, often only detecting the dominant one. Here, we present a novel flow cytometric assay that allows simultaneous assessment of cell viability and cell cycling through measurement of DNA content and DNA synthesis, and markers of cell senescence at the single cell level. We demonstrate that this assay can be performed on both human and murine cells, that are either cancerous or non-transformed, and can help to dissect complex cell fate decisions. We believe that this experimental tool will be useful for the study of diverse biological processes.
Collapse
|
21
|
Nojima I, Hosoda R, Toda Y, Saito Y, Ueda N, Horimoto K, Iwahara N, Horio Y, Kuno A. Downregulation of IGFBP5 contributes to replicative senescence via ERK2 activation in mouse embryonic fibroblasts. Aging (Albany NY) 2022; 14:2966-2988. [PMID: 35378512 PMCID: PMC9037271 DOI: 10.18632/aging.203999] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 03/23/2022] [Indexed: 11/29/2022]
Abstract
Insulin-like growth factor (IGF)-binding proteins (IGFBPs) are secretory proteins that regulate IGF signaling. In this study, we investigated the role of IGFBP5 in replicative senescence in embryonic mouse fibroblasts (MEFs). During passages according to the 3T3 method, MEFs underwent senescence after the 5th passage (P5) based on cell growth arrest, an increase in the number of cells positive for senescence-associated β-galactosidase (SA-β-GAL) staining, and upregulation of p16 and p19. In P8 MEFs, IGFBP5 mRNA level was markedly reduced compared with that in P2 MEFs. Downregulation of IGFBP5 via siRNA in P2 MEFs increased the number of SA-β-GAL-positive cells, upregulated p16 and p19, and inhibited cell growth. Incubation of MEFs with IGFBP5 during serial passage increased the cumulative population doubling and decreased SA-β-GAL positivity compared with those in vehicle-treated cells. IGFBP5 knockdown in P2 MEFs increased phosphorylation levels of ERK1 and ERK2. Silencing of ERK2, but not that of ERK1, blocked the increase in the number of SA-β-GAL-positive cells in IGFBP5-knockdown cells. The reduction in the cell number and upregulation of p16 and p21 in IGFBP5-knockdown cells were attenuated by ERK2 knockdown. Our results suggest that downregulation of IGFBP5 during serial passage contributes to replicative senescence via ERK2 in MEFs.
Collapse
Affiliation(s)
- Iyori Nojima
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ryusuke Hosoda
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuki Toda
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yoshiki Saito
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Naohiro Ueda
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kouhei Horimoto
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Naotoshi Iwahara
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yoshiyuki Horio
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Kuno
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
22
|
Morsli S, Doherty GJ, Muñoz-Espín D. Activatable senoprobes and senolytics: Novel strategies to detect and target senescent cells. Mech Ageing Dev 2022; 202:111618. [PMID: 34990647 DOI: 10.1016/j.mad.2021.111618] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 01/10/2023]
Abstract
Pharmacologically active compounds that manipulate cellular senescence (senotherapies) have recently shown great promise in multiple pre-clinical disease models, and some of them are now being tested in clinical trials. Despite promising proof-of-principle evidence, there are known on- and off-target toxicities associated with these compounds, and therefore more refined and novel strategies to improve their efficacy and specificity for senescent cells are being developed. Preferential release of drugs and macromolecular formulations within senescent cells has been predominantly achieved by exploiting one of the most widely used biomarkers of senescence, the increase in lysosomal senescence-associated β-galactosidase (SA-β-gal) activity, a common feature of most reported senescent cell types. Galacto-conjugation is a versatile therapeutic and detection strategy to facilitate preferential targeting of senescent cells by using a variety of existing formulations, including modular systems, nanocarriers, activatable prodrugs, probes, and small molecules. We discuss the benefits and drawbacks of these specific senescence targeting tools and how the strategy of galacto-conjugation might be utilised to design more specific and sophisticated next-generation senotherapeutics, as well as theranostic agents. Finally, we discuss some innovative strategies and possible future directions for the field.
Collapse
Affiliation(s)
- Samir Morsli
- CRUK Cambridge Centre Early Detection Programme, Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK
| | - Gary J Doherty
- Department of Oncology, Box 193, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK.
| | - Daniel Muñoz-Espín
- CRUK Cambridge Centre Early Detection Programme, Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK.
| |
Collapse
|
23
|
Fakhri S, Zachariah Moradi S, DeLiberto LK, Bishayee A. Cellular senescence signaling in cancer: A novel therapeutic target to combat human malignancies. Biochem Pharmacol 2022; 199:114989. [DOI: 10.1016/j.bcp.2022.114989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/26/2022]
|
24
|
Early differential responses elicited by BRAF V600E in adult mouse models. Cell Death Dis 2022; 13:142. [PMID: 35145078 PMCID: PMC8831492 DOI: 10.1038/s41419-022-04597-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 12/16/2021] [Accepted: 01/19/2022] [Indexed: 11/16/2022]
Abstract
The BRAF gene is frequently mutated in cancer. The most common genetic mutation is a single nucleotide transition which gives rise to a constitutively active BRAF kinase (BRAFV600E) which in turn sustains continuous cell proliferation. The study of BRAFV600E murine models has been mainly focused on the role of BRAFV600E in tumor development but little is known on the early molecular impact of BRAFV600E expression in vivo. Here, we study the immediate effects of acute ubiquitous BRAFV600E activation in vivo. We find that BRAFV600E elicits a rapid DNA damage response in the liver, spleen, lungs but not in thyroids. This DNA damage response does not occur at telomeres and is accompanied by activation of the senescence marker p21CIP1 only in lungs but not in liver or spleen. Moreover, in lungs, BRAFV600E provokes an acute inflammatory state with a tissue-specific recruitment of neutrophils in the alveolar parenchyma and macrophages in bronchi/bronchioles, as well as bronchial/bronchiolar epithelium transdifferentiation and development of adenomas. Furthermore, whereas in non-tumor alveolar type II (ATIIs) pneumocytes, acute BRAFV600E induction elicits rapid p53-independent p21CIP1 activation, adenoma ATIIs express p53 without resulting in p21CIP1 gene activation. Conversely, albeit in Club cells BRAFV600E-mediated proliferative cue is more exacerbated compared to that occurring in ATIIs, such oncogenic stimulus culminates with p21CIP1-mediated cell cycle arrest and apoptosis. Our findings indicate that acute BRAFV600E expression drives an immediate induction of DNA damage response in vivo. More importantly, it also results in rapid differential responses of cell cycle and senescence-associated proteins in lung epithelia, thus revealing the early molecular changes emerging in BRAFV600E-challenged cells during tumorigenesis in vivo.
Collapse
|
25
|
Wu D, Tan H, Su W, Cheng D, Wang G, Wang J, Ma DA, Dong GM, Sun P. MZF1 mediates oncogene-induced senescence by promoting the transcription of p16 INK4A. Oncogene 2022; 41:414-426. [PMID: 34773072 PMCID: PMC8758531 DOI: 10.1038/s41388-021-02110-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 01/27/2023]
Abstract
Oncogene induced senescence is a tumor suppressing defense mechanism, in which the cell cycle-dependent protein kinase (CDK) inhibitor p16INK4A (encoded by the CDKN2A gene) plays a key role. We previously reported that a transcriptional co-activator chromodomain helicase DNA binding protein 7 (CHD7) mediates oncogenic ras-induced senescence by inducing transcription of the p16INK4A gene. In the current study, we identified myeloid zinc finger 1 (MZF1) as the transcriptional factor that recruits CHD7 to the p16INK4A promoter, where it mediates oncogenic ras-induced p16INK4A transcription and senescence through CHD7, in primary human cells from multiple origins. Moreover, the expression of MZF1 is induced by oncogenic ras in senescent cells through the c-Jun and Ets1 transcriptional factors upon their activation by the Ras-Raf-1-MEK-ERK signaling pathway. In non-small cell lung cancer (NSCLC) and pancreatic adenocarcinoma (PAAD) where activating ras mutations occur frequently, reduced MZF1 expression is observed in tumors, as compared to corresponding normal tissues, and correlates with poor patient survival. Analysis of single cell RNA-sequencing data from PAAD patients revealed that among the tumor cells with normal RB expression levels, those with reduced levels of MZF1 are more likely to express lower p16INK4A levels. These findings have identified novel signaling components in the pathway that mediates induction of the p16INK4A tumor suppressor and the senescence response, and suggested that MZF1 is a potential tumor suppressor in at least some cancer types, the loss of which contributes to the inactivation of the p16INK4A/RB pathway and disruption of senescence in tumor cells with intact RB.
Collapse
Affiliation(s)
- Dan Wu
- Departments of Cancer Biology, Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, NC 27157, USA
| | - Hua Tan
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Weijun Su
- Nankai University School of Medicine, Tianjin, China
| | - Dongmei Cheng
- Departments of Cancer Biology, Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, NC 27157, USA
| | - Guanwen Wang
- Departments of Cancer Biology, Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, NC 27157, USA,Nankai University School of Medicine, Tianjin, China
| | - Juan Wang
- Departments of Cancer Biology, Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, NC 27157, USA,Nankai University School of Medicine, Tianjin, China
| | - Ding A. Ma
- Departments of Cancer Biology, Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, NC 27157, USA
| | - George M. Dong
- Departments of Cancer Biology, Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, NC 27157, USA
| | - Peiqing Sun
- Department of Cancer Biology, Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-, Salem, NC, 27157, USA.
| |
Collapse
|
26
|
Abstract
Gadd45a, Gadd45b, and Gadd45g have been implicated in cell cycle arrest, DNA repair, apoptosis, innate immunity, genomic stability, and more recently in senescence. Evidence has accumulated that Gadd45a deficiency results in escape of mouse embryo fibroblasts from senescence, whereas Gadd45b deficiency promotes premature senescence and skin aging. Moreover, recently Gadd45b deficiency was found to promote senescence and attenuate liver fibrosis, whereas Gadd45a was observed to exert a protective effect against hepatic fibrosis. These findings indicate that the Gadd45 stress response proteins play important roles in modulating cellular responses to senescence. Thus, exploring how Gadd45 proteins modulate cellular senescence has the potential to provide new and innovative tools to treat cancer as well as liver disease.
Collapse
Affiliation(s)
- M Raza Zaidi
- Fels Cancer Institute for Personalized Medicine, Department of Cancer and Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.
| | - Dan A Liebermann
- Fels Cancer Institute for Personalized Medicine, Department of Cancer and Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
27
|
McNeal AS, Belote RL, Zeng H, Urquijo M, Barker K, Torres R, Curtin M, Shain AH, Andtbacka RHI, Holmen S, Lum DH, McCalmont TH, VanBrocklin MW, Grossman D, Wei ML, Lang UE, Judson-Torres RL. BRAF V600E induces reversible mitotic arrest in human melanocytes via microrna-mediated suppression of AURKB. eLife 2021; 10:e70385. [PMID: 34812139 PMCID: PMC8610417 DOI: 10.7554/elife.70385] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/12/2021] [Indexed: 12/22/2022] Open
Abstract
Benign melanocytic nevi frequently emerge when an acquired BRAFV600E mutation triggers unchecked proliferation and subsequent arrest in melanocytes. Recent observations have challenged the role of oncogene-induced senescence in melanocytic nevus formation, necessitating investigations into alternative mechanisms for the establishment and maintenance of proliferation arrest in nevi. We compared the transcriptomes of melanocytes from healthy human skin, nevi, and melanomas arising from nevi and identified a set of microRNAs as highly expressed nevus-enriched transcripts. Two of these microRNAs-MIR211-5p and MIR328-3p-induced mitotic failure, genome duplication, and proliferation arrest in human melanocytes through convergent targeting of AURKB. We demonstrate that BRAFV600E induces a similar proliferation arrest in primary human melanocytes that is both reversible and conditional. Specifically, BRAFV600E expression stimulates either arrest or proliferation depending on the differentiation state of the melanocyte. We report genome duplication in human melanocytic nevi, reciprocal expression of AURKB and microRNAs in nevi and melanomas, and rescue of arrested human nevus cells with AURKB expression. Taken together, our data describe an alternative molecular mechanism for melanocytic nevus formation that is congruent with both experimental and clinical observations.
Collapse
Affiliation(s)
- Andrew S McNeal
- University of California, San FranciscoSan FranciscoUnited States
| | | | - Hanlin Zeng
- Huntsman Cancer Inst.Salt Lake CityUnited States
| | | | | | - Rodrigo Torres
- University of California, San FranciscoSan FranciscoUnited States
| | | | - A Hunter Shain
- University of California, San FranciscoSan FranciscoUnited States
| | - Robert HI Andtbacka
- Huntsman Cancer Inst.Salt Lake CityUnited States
- University of UtahSalt Lake CityUnited States
| | - Sheri Holmen
- Huntsman Cancer Inst.Salt Lake CityUnited States
- University of UtahSalt Lake CityUnited States
| | - David H Lum
- Huntsman Cancer Inst.Salt Lake CityUnited States
| | | | - Matt W VanBrocklin
- Huntsman Cancer Inst.Salt Lake CityUnited States
- University of UtahSalt Lake CityUnited States
| | - Douglas Grossman
- Huntsman Cancer Inst.Salt Lake CityUnited States
- University of UtahSalt Lake CityUnited States
| | - Maria L Wei
- University of California, San FranciscoSan FranciscoUnited States
| | - Ursula E Lang
- University of California, San FranciscoSan FranciscoUnited States
| | - Robert L Judson-Torres
- Huntsman Cancer Inst.Salt Lake CityUnited States
- University of UtahSalt Lake CityUnited States
| |
Collapse
|
28
|
Ou H, Hoffmann R, González‐López C, Doherty GJ, Korkola JE, Muñoz‐Espín D. Cellular senescence in cancer: from mechanisms to detection. Mol Oncol 2021; 15:2634-2671. [PMID: 32981205 PMCID: PMC8486596 DOI: 10.1002/1878-0261.12807] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/25/2020] [Accepted: 09/22/2020] [Indexed: 01/10/2023] Open
Abstract
Senescence refers to a cellular state featuring a stable cell-cycle arrest triggered in response to stress. This response also involves other distinct morphological and intracellular changes including alterations in gene expression and epigenetic modifications, elevated macromolecular damage, metabolism deregulation and a complex pro-inflammatory secretory phenotype. The initial demonstration of oncogene-induced senescence in vitro established senescence as an important tumour-suppressive mechanism, in addition to apoptosis. Senescence not only halts the proliferation of premalignant cells but also facilitates the clearance of affected cells through immunosurveillance. Failure to clear senescent cells owing to deficient immunosurveillance may, however, lead to a state of chronic inflammation that nurtures a pro-tumorigenic microenvironment favouring cancer initiation, migration and metastasis. In addition, senescence is a response to post-therapy genotoxic stress. Therefore, tracking the emergence of senescent cells becomes pivotal to detect potential pro-tumorigenic events. Current protocols for the in vivo detection of senescence require the analysis of fixed or deep-frozen tissues, despite a significant clinical need for real-time bioimaging methods. Accuracy and efficiency of senescence detection are further hampered by a lack of universal and more specific senescence biomarkers. Recently, in an attempt to overcome these hurdles, an assortment of detection tools has been developed. These strategies all have significant potential for clinical utilisation and include flow cytometry combined with histo- or cytochemical approaches, nanoparticle-based targeted delivery of imaging contrast agents, OFF-ON fluorescent senoprobes, positron emission tomography senoprobes and analysis of circulating SASP factors, extracellular vesicles and cell-free nucleic acids isolated from plasma. Here, we highlight the occurrence of senescence in neoplasia and advanced tumours, assess the impact of senescence on tumorigenesis and discuss how the ongoing development of senescence detection tools might improve early detection of multiple cancers and response to therapy in the near future.
Collapse
Affiliation(s)
- Hui‐Ling Ou
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeUK
| | - Reuben Hoffmann
- Department of Biomedical EngineeringKnight Cancer InstituteOHSU Center for Spatial Systems BiomedicineOregon Health and Science UniversityPortlandORUSA
| | - Cristina González‐López
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeUK
| | - Gary J. Doherty
- Department of OncologyCambridge University Hospitals NHS Foundation TrustCambridge Biomedical CampusUK
| | - James E. Korkola
- Department of Biomedical EngineeringKnight Cancer InstituteOHSU Center for Spatial Systems BiomedicineOregon Health and Science UniversityPortlandORUSA
| | - Daniel Muñoz‐Espín
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeUK
| |
Collapse
|
29
|
Leu JD, Wang CY, Lo CC, Lin MY, Chang CY, Hung WC, Lin ST, Wang BS, Lee YJ. Involvement of c-Myc in low dose radiation-induced senescence enhanced migration and invasion of unirradiated cancer cells. Aging (Albany NY) 2021; 13:22208-22231. [PMID: 34552037 PMCID: PMC8507273 DOI: 10.18632/aging.203527] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/11/2021] [Indexed: 12/27/2022]
Abstract
Ionizing radiation is known to cause cell apoptosis at high dose range, but little is known about the cellular response to low dose radiation. In this study, we found that conditioned medium harvested from WI-38 lung fibroblasts and H1299 lung adenocarcinoma cells exposed to 0.1Gy to 1Gy could enhance the migration and invasion of unirradiated H1299 cells in both 2D and 3D culturing circumstances. Low dose radiation did not induce apoptosis, but induced senescence in irradiated cells. We next examined the expression of immediately early genes including c-Myc and K-Ras. Although both genes could be up-regulated by low dose radiation, induction of c-Myc was more specific to low dose range (0.5Gy) at transcriptional and translational levels. Knockdown of c-Myc by shRNA could repress the senescence induced by low dose radiation. The conditioned medium of irradiated cells induced migration of unirradiated cells was also repressed by knockdown of c-Myc. The c-Myc inhibitor 10058-F4 could suppress low dose radiation induced cell senescence, and the conditioned medium harvested from irradiated cells pretreated with 10058-F4 also lost the ability to enhance the migration of unirradiated cells. The cytokine array analysis revealed that immunosuppressive monocyte chemoattractant protein-1 increased by low dose radiation could be repressed by 10058-F4. We also showed that 10058-F4 could suppress low dose radiation induced tumor progression in a xenograft tumor model. Taken together, current data suggest that -Myc is involved in low dose radiation induced cell senescence and potent bystander effect to increase the motility of unirradiated cells.
Collapse
Affiliation(s)
- Jyh-Der Leu
- Department of Radiation Oncology, Taipei City Hospital, Taipei 110, Taiwan.,Institute of Neuroscience, National Cheng Chi University, Taipei 116, Taiwan
| | - Chung-Yih Wang
- Radiotherapy, Department of Medical Imaging, Cheng Hsin General Hospital, Taipei 112, Taiwan
| | - Chia-Chien Lo
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Min-Ying Lin
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chun-Yuan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.,Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903-2681, USA
| | - Wen-Chin Hung
- Department of Radiation Oncology, Taipei City Hospital, Taipei 110, Taiwan
| | - Shi-Ting Lin
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Bo-Shen Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yi-Jang Lee
- Department of Radiation Oncology, Taipei City Hospital, Taipei 110, Taiwan.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
30
|
Expression of oncogenic HRAS in human Rh28 and RMS-YM rhabdomyosarcoma cells leads to oncogene-induced senescence. Sci Rep 2021; 11:16505. [PMID: 34389744 PMCID: PMC8363632 DOI: 10.1038/s41598-021-95355-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/06/2021] [Indexed: 11/08/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma. The two predominant histologic variants of RMS, embryonal and alveolar rhabdomyosarcoma (eRMS and aRMS, respectively), carry very different prognoses. While eRMS is associated with an intermediate prognosis, the 5-year survival rate of aRMS is less than 30%. The RMS subtypes are also different at the molecular level-eRMS frequently has multiple genetic alterations, including mutations in RAS and TP53, whereas aRMS often has chromosomal translocations resulting in PAX3-FOXO1 or PAX7-FOXO1 fusions, but otherwise has a "quiet" genome. Interestingly, mutations in RAS are rarely found in aRMS. In this study, we explored the role of oncogenic RAS in aRMS. We found that while ectopic oncogenic HRAS expression was tolerated in the human RAS-driven eRMS cell line RD, it was detrimental to cell growth and proliferation in the human aRMS cell line Rh28. Growth inhibition was mediated by oncogene-induced senescence and associated with increased RB pathway activity and expression of the cyclin-dependent kinase inhibitors p16 and p21. Unexpectedly, the human eRMS cell line RMS-YM, a RAS wild-type eRMS cell line, also exhibited growth inhibition in response to oncogenic HRAS in a manner similar to aRMS Rh28 cells. This work suggests that oncogenic RAS is expressed in a context-dependent manner in RMS and may provide insight into the differential origins and therapeutic opportunities for RMS subtypes.
Collapse
|
31
|
Yang J, Liu M, Hong D, Zeng M, Zhang X. The Paradoxical Role of Cellular Senescence in Cancer. Front Cell Dev Biol 2021; 9:722205. [PMID: 34458273 PMCID: PMC8388842 DOI: 10.3389/fcell.2021.722205] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Cellular senescence occurs in proliferating cells as a consequence of various triggers including telomere shortening, DNA damage, and inappropriate expression of oncogenes. The senescent state is accompanied by failure to reenter the cell cycle under mitotic stimulation, resistance to cell death and enhanced secretory phenotype. A growing number of studies have convincingly demonstrated a paradoxical role for spontaneous senescence and therapy-induced senescence (TIS), that senescence may involve both cancer prevention and cancer aggressiveness. Cellular senescence was initially described as a physiological suppressor mechanism of tumor cells, because cancer development requires cell proliferation. However, there is growing evidence that senescent cells may contribute to oncogenesis, partly in a senescence-associated secretory phenotype (SASP)-dependent manner. On the one hand, SASP prevents cell division and promotes immune clearance of damaged cells, thereby avoiding tumor development. On the other hand, SASP contributes to tumor progression and relapse through creating an immunosuppressive environment. In this review, we performed a review to summarize both bright and dark sides of senescence in cancer, and the strategies to handle senescence in cancer therapy were also discussed.
Collapse
Affiliation(s)
- Jing Yang
- Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mengmeng Liu
- Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dongchun Hong
- Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Musheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xing Zhang
- Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
32
|
Abstract
The ageing population is becoming a significant socio-economic issue. To address the expanding health gap, it is important to deepen our understanding of the mechanisms underlying ageing in various organisms at the single-cell level. The discovery of the antifungal, immunosuppressive, and anticancer drug rapamycin, which possesses the ability to extend the lifespan of several species, has prompted extensive research in the areas of cell metabolic regulation, development, and senescence. At the centre of this research is the mTOR pathway, with key roles in cell growth, proteosynthesis, ribosomal biogenesis, transcriptional regulation, glucose and lipid metabolism, and autophagy. Recently, it has become obvious that mTOR dysregulation is involved in several age-related diseases, such as cancer, neurodegenerative diseases, and type 2 diabetes mellitus. Additionally, mTOR hyperactivation affects the process of ageing per se. In this review, we provide an overview of recent insights into the mTOR signalling pathway, including its regulation and its influence on various hallmarks of ageing at the cellular level.
Collapse
Affiliation(s)
- Zofia Chrienova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| |
Collapse
|
33
|
Young ARJ, Cassidy LD, Narita M. Autophagy and senescence, converging roles in pathophysiology as seen through mouse models. Adv Cancer Res 2021; 150:113-145. [PMID: 33858595 DOI: 10.1016/bs.acr.2021.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Both senescence and autophagy have been strongly linked to aging and also cancer development. Numerous molecular, cellular, and physiological changes are known to correlate with an increasing age, yet our understanding of what underlies these changes or how they combine to give rise to the various pathologies associated with aging is still unclear. Levels of autophagy activity are known to decrease with advancing age, in a variety of organisms including mammals. Whereas senescent cells are known to accumulate in our bodies with age. Herein we review evidence from some elegant genetic mouse models linking senescence and also autophagy to aging and cancer. It is especially interesting to note the convergence in the pathological phenotypes of these two processes, senescence and autophagy, in these mouse models.
Collapse
Affiliation(s)
- Andrew R J Young
- Cancer Research UK Cambridge Research Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom.
| | - Liam D Cassidy
- Cancer Research UK Cambridge Research Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Masashi Narita
- Cancer Research UK Cambridge Research Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom.
| |
Collapse
|
34
|
Buj R, Leon KE, Anguelov MA, Aird KM. Suppression of p16 alleviates the senescence-associated secretory phenotype. Aging (Albany NY) 2021; 13:3290-3312. [PMID: 33550279 PMCID: PMC7906185 DOI: 10.18632/aging.202640] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022]
Abstract
Oncogene-induced senescence (OIS) is characterized by increased expression of the cell cycle inhibitor p16, leading to a hallmark cell cycle arrest. Suppression of p16 in this context drives proliferation, senescence bypass, and contributes to tumorigenesis. OIS cells are also characterized by the expression and secretion of a widely variable group of factors collectively termed the senescence-associated secretory phenotype (SASP). The SASP can be both beneficial and detrimental and affects the microenvironment in a highly context-dependent manner. The relationship between p16 suppression and the SASP remains unclear. Here, we show that knockdown of p16 decreases expression of the SASP factors and pro-inflammatory cytokines IL6 and CXCL8 in multiple models, including OIS and DNA damage-induced senescence. Notably, this is uncoupled from the senescence-associated cell cycle arrest. Moreover, low p16 expression in both cancer cell lines and patient samples correspond to decreased SASP gene expression, suggesting this is a universal effect of loss of p16 expression. Together, our data suggest that p16 regulates SASP gene expression, which has implications for understanding how p16 modulates both the senescent and tumor microenvironment.
Collapse
Affiliation(s)
- Raquel Buj
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Kelly E. Leon
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Biomedical Sciences Graduate Program, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Marlyn A. Anguelov
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Katherine M. Aird
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
35
|
The ERK mitogen-activated protein kinase signaling network: the final frontier in RAS signal transduction. Biochem Soc Trans 2021; 49:253-267. [PMID: 33544118 DOI: 10.1042/bst20200507] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/30/2020] [Accepted: 01/08/2021] [Indexed: 12/11/2022]
Abstract
The RAF-MEK-ERK mitogen-activated protein kinase (MAPK) cascade is aberrantly activated in a diverse set of human cancers and the RASopathy group of genetic developmental disorders. This protein kinase cascade is one of the most intensely studied cellular signaling networks and has been frequently targeted by the pharmaceutical industry, with more than 30 inhibitors either approved or under clinical evaluation. The ERK-MAPK cascade was originally depicted as a serial and linear, unidirectional pathway that relays extracellular signals, such as mitogenic stimuli, through the cytoplasm to the nucleus. However, we now appreciate that this three-tiered protein kinase cascade is a central core of a complex network with dynamic signaling inputs and outputs and autoregulatory loops. Despite our considerable advances in understanding the ERK-MAPK network, the ability of cancer cells to adapt to the inhibition of key nodes reveals a level of complexity that remains to be fully understood. In this review, we summarize important developments in our understanding of the ERK-MAPK network and identify unresolved issues for ongoing and future study.
Collapse
|
36
|
Garnett S, de Bruyns A, Provencher-Tom V, Dutchak K, Shu R, Dankort D. Metabolic Regulator IAPP (Amylin) Is Required for BRAF and RAS Oncogene-Induced Senescence. Mol Cancer Res 2021; 19:874-885. [PMID: 33500359 DOI: 10.1158/1541-7786.mcr-20-0879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/17/2020] [Accepted: 01/21/2021] [Indexed: 11/16/2022]
Abstract
Cellular senescence is characterized by a prolonged and predominantly irreversible cell-cycle arrest state, which is linked to loss of tissue function and aging in mammals. Moreover, in response to aberrant oncogenic signals such as those from oncogenic RAS or BRAF, senescence functions as an intrinsic tumor suppressor mechanism restraining tumor progression. In addition to this durable proliferative block, senescent cells adopt altered morphologies, transcriptional profiles, and metabolism, while often possessing unusual heterochromatin formation termed senescence-associated heterochromatic foci. To uncover genes that are required to permit proliferation in the face of sustained oncogene signaling, we conducted an shRNA-based genetic screen in primary cells expressing inducible BRAF. Here we show that depletion of a known glycolysis regulator, islet amylin polypeptide (IAPP also known as amylin), prevents RAS and BRAF oncogene-induced senescence (OIS) in human cells. Importantly, depletion of IAPP resulted in changes of the cells' metabolome and this metabolic reprogramming was associated with widespread alterations in chromatin modifications compared with senescent cells. Conversely, exogenous treatment of IAPP-depleted cells with amylin restored OIS. Together, our results demonstrate that the metabolic regulator IAPP is important regulator of OIS. Moreover, they suggest that IAPP analog treatment or activation of IAPP signaling in RAS/BRAF mutant tumors may have therapeutic potential through senescence induction. IMPLICATIONS: These findings demonstrate that IAPP is a novel metabolic regulator of oncogene-induced senescence and use of IAPP analogs may be therapeutically effective to restore growth arrest to BRAF and/or RAS mutant cancers.
Collapse
Affiliation(s)
- Sam Garnett
- Department of Biology, McGill University, Montréal QC, Canada
| | | | | | - Kendall Dutchak
- Department of Biology, McGill University, Montréal QC, Canada
| | - Ran Shu
- Department of Biology, McGill University, Montréal QC, Canada
| | - David Dankort
- Department of Biology, McGill University, Montréal QC, Canada. .,Goodman Cancer Research Centre, Montréal QC, Canada
| |
Collapse
|
37
|
Abstract
Cellular senescence is a feature of most somatic cells. It is characterized by an irreversible cell cycle arrest and by the ability to secrete a plethora of mediators of inflammation and growth factors, which can alter the senescent cell's microenvironment. Senescent cells accumulate in tissues over time and contribute to both aging and the development of age-associated diseases. Senescent cells have antagonistic pleiotropic roles in cancer. Given the inability of senescent cells to proliferate, cellular senescence is a powerful tumor suppressor mechanism in young individuals. However, accumulation of senescent stromal cells during aging can fuel cancer cell growth in virtue of their capacity to release factors that stimulate cell proliferation. Caveolin-1 is a structural protein component of caveolae, invaginations of the plasma membrane involved in a variety of cellular processes, including signal transduction. Mounting evidence over the last 10-15 years has demonstrated a central role of caveolin-1 in the development of a senescent phenotype and the regulation of both the anti-tumorigenic and pro-tumorigenic properties of cellular senescence. In this review, we discuss the cellular mechanisms and functions of caveolin-1 in the context of cellular senescence and their relevance to the biology of cancer.
Collapse
|
38
|
Volonte D, Sedorovitz M, Cespedes VE, Beecher ML, Galbiati F. Cell autonomous angiotensin II signaling controls the pleiotropic functions of oncogenic K-Ras. J Biol Chem 2021; 296:100242. [PMID: 33380422 PMCID: PMC7948762 DOI: 10.1074/jbc.ra120.015188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/15/2020] [Accepted: 12/30/2020] [Indexed: 11/30/2022] Open
Abstract
Oncogenic K-Ras (K-RasG12V) promotes senescence in normal cells but fuels transformation of cancer cells after the senescence barrier is bypassed. The mechanisms regulating this pleiotropic function of K-Ras remain to be fully established and bear high pathological significance. We find that K-RasG12V activates the angiotensinogen (AGT) gene promoter and promotes AGT protein expression in a Kruppel-like factor 6-dependent manner in normal cells. We show that AGT is then converted to angiotensin II (Ang II) in a cell-autonomous manner by cellular proteases. We show that blockade of the Ang II receptor type 1 (AT1-R) in normal cells inhibits oncogene-induced senescence. We provide evidence that the oncogenic K-Ras-induced synthesis of Ang II and AT1-R activation promote senescence through caveolin-1-dependent and nicotinamide adenine dinucleotide phosphate oxidase 2-mediated oxidative stress. Interestingly, we find that expression of AGT remains elevated in lung cancer cells but in a Kruppel-like factor 6-independent and high-mobility group AT-hook 1-dependent manner. We show that Ang II-mediated activation of the AT1-R promotes cell proliferation and anchorage-independent growth of lung cancer cells through a STAT3-dependent pathway. Finally, we find that expression of AGT is elevated in lung tumors of K-RasLA2-G12D mice, a mouse model of lung cancer, and human lung cancer. Treatment with the AT1-R antagonist losartan inhibits lung tumor formation in K-RasLA2-G12D mice. Together, our data provide evidence of the existence of a novel cell-autonomous and pleiotropic Ang II-dependent signaling pathway through which oncogenic K-Ras promotes oncogene-induced senescence in normal cells while fueling transformation in cancer cells.
Collapse
Affiliation(s)
- Daniela Volonte
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Morgan Sedorovitz
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Victoria E Cespedes
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Maria L Beecher
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ferruccio Galbiati
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
39
|
Engler M, Fidan M, Nandi S, Cirstea IC. Senescence in RASopathies, a possible novel contributor to a complex pathophenoype. Mech Ageing Dev 2020; 194:111411. [PMID: 33309600 DOI: 10.1016/j.mad.2020.111411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 01/07/2023]
Abstract
Senescence is a biological process that induces a permanent cell cycle arrest and a specific gene expression program in response to various stressors. Following studies over the last few decades, the concept of senescence has evolved from an antiproliferative mechanism in cancer (oncogene-induced senescence) to a critical component of physiological processes associated with embryonic development, tissue regeneration, ageing and its associated diseases. In somatic cells, oncogenic mutations in RAS-MAPK pathway genes are associated with oncogene-induced senescence and cancer, while germline mutations in the same pathway are linked to a group of monogenic developmental disorders generally termed RASopathies. Here, we consider that in these disorders, senescence induction may result in opposing outcomes, a tumour protective effect and a possible contributor to a premature ageing phenotype identified in Costello syndrome, which belongs to the RASopathy group. In this review, we will highlight the role of senescence in organismal homeostasis and we will describe the current knowledge about senescence in RASopathies. Additionally, we provide a perspective on examples of experimentally characterised RASopathy mutations that, alone or in combination with various stressors, may also trigger an age-dependent chronic senescence, possibly contributing to the age-dependent worsening of RASopathy pathophenotype and the reduction of lifespan.
Collapse
Affiliation(s)
- Melanie Engler
- Institute of Comparative Molecular Endocrinology, Ulm University, Helmholtzstr. 8/1, 89081, Ulm, Germany
| | - Miray Fidan
- Institute of Comparative Molecular Endocrinology, Ulm University, Helmholtzstr. 8/1, 89081, Ulm, Germany
| | - Sayantan Nandi
- Institute of Comparative Molecular Endocrinology, Ulm University, Helmholtzstr. 8/1, 89081, Ulm, Germany
| | - Ion Cristian Cirstea
- Institute of Comparative Molecular Endocrinology, Ulm University, Helmholtzstr. 8/1, 89081, Ulm, Germany.
| |
Collapse
|
40
|
Molecular Mechanisms to Target Cellular Senescence in Hepatocellular Carcinoma. Cells 2020; 9:cells9122540. [PMID: 33255630 PMCID: PMC7761055 DOI: 10.3390/cells9122540] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has emerged as a major cause of cancer-related death and is the most common type of liver cancer. Due to the current paucity of drugs for HCC therapy there is a pressing need to develop new therapeutic concepts. In recent years, the role of Serum Response Factor (SRF) and its coactivators, Myocardin-Related Transcription Factors A and B (MRTF-A and -B), in HCC formation and progression has received considerable attention. Targeting MRTFs results in HCC growth arrest provoked by oncogene-induced senescence. The induction of senescence acts as a tumor-suppressive mechanism and therefore gains consideration for pharmacological interventions in cancer therapy. In this article, we describe the key features and the functional role of senescence in light of the development of novel drug targets for HCC therapy with a focus on MRTFs.
Collapse
|
41
|
Muniz L, Lazorthes S, Delmas M, Ouvrard J, Aguirrebengoa M, Trouche D, Nicolas E. Circular ANRIL isoforms switch from repressors to activators of p15/CDKN2B expression during RAF1 oncogene-induced senescence. RNA Biol 2020; 18:404-420. [PMID: 32862732 PMCID: PMC7951966 DOI: 10.1080/15476286.2020.1812910] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Long non-coding RNAs (ncRNAs) are major regulators of gene expression and cell fate. The INK4 locus encodes the tumour suppressor proteins p15INK4b, p16INK4a and p14ARF required for cell cycle arrest and whose expression increases during senescence. ANRIL is a ncRNA antisense to the p15 gene. In proliferative cells, ANRIL prevents senescence by repressing INK4 genes through the recruitment of Polycomb-group proteins. In models of replicative and RASval12 oncogene-induced senescence (OIS), the expression of ANRIL and Polycomb proteins decreases, thus allowing INK4 derepression. Here, we found in a model of RAF1 OIS that ANRIL expression rather increases, due in particular to an increased stability. This led us to search for circular ANRIL isoforms, as circular RNAs are rather stable species. We found that the expression of two circular ANRIL increases in several OIS models (RAF1, MEK1 and BRAF). In proliferative cells, they repress p15 expression, while in RAF1 OIS, they promote full induction of p15, p16 and p14ARF expression. Further analysis of one of these circular ANRIL shows that it interacts with Polycomb proteins and decreases EZH2 Polycomb protein localization and H3K27me3 at the p15 and p16 promoters, respectively. We propose that changes in the ratio between Polycomb proteins and circular ANRIL isoforms allow these isoforms to switch from repressors of p15 gene to activators of all INK4 genes in RAF1 OIS. Our data reveal that regulation of ANRIL expression depends on the senescence inducer and underline the importance of circular ANRIL in the regulation of INK4 gene expression and senescence.
Collapse
Affiliation(s)
- Lisa Muniz
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sandra Lazorthes
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Maxime Delmas
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Ouvrard
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marion Aguirrebengoa
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Didier Trouche
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Estelle Nicolas
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
42
|
Increased expression of hras induces early, but not full, senescence in the immortal fish cell line, EPC. Gene 2020; 765:145116. [PMID: 32896589 DOI: 10.1016/j.gene.2020.145116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 01/24/2023]
Abstract
In contrast to most mammals including human, fish cell lines have long been known to be immortal, with little sign of cellular senescence, despite the absence of transformation. Recently, our laboratory reported that DNA demethylation with 5-aza-2'-deoxycytidine (5-Aza-dC) induces telomere-independent cellular senescence and senescence-associated secretory phenotype (SASP) in an immortal fish cell line, EPC (Epithelioma papulosum cyprini). However, it is not known how fish derived cultured cells are usually resistant to aging in vitro. In this study, we focused on Ras, which carries out the main role of Ras-induced senescence (RIS), and investigated the role of Ras in the regulation of senescence in EPC cells. Our results show that 5-Aza-dC induced the expression of the ras (hras, kras, nras) gene in EPC cells. EPC cells overexpressing HRas or its constitutively active form (HRasV12) showed p53-dependent senescence-like growth arrest and senescence-associated β-galactosidase (SA-β-gal) activity with a large and/or flat morphology characteristic of cell senescence. On the other hand, the SASP was not induced. These results imply that the increased expression of HRas contributes to early senescence in EPC cells, but it alone may not be sufficient for the full senescence, even if HRas is aberrantly activated. Thus, the limited mechanism of RIS may play a role in the senescence-resistance of fish cell lines.
Collapse
|
43
|
Vaishnavi A, Scherzer MT, Kinsey CG, Parkman GL, Truong A, Ghazi P, Schuman S, Battistone B, Garrido-Laguna I, McMahon M. Inhibition of MEK1/2 Forestalls the Onset of Acquired Resistance to Entrectinib in Multiple Models of NTRK1-Driven Cancer. Cell Rep 2020; 32:107994. [PMID: 32755586 PMCID: PMC7478141 DOI: 10.1016/j.celrep.2020.107994] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 05/11/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022] Open
Abstract
NTRK1 gene fusions are actionable drivers of numerous human malignancies. Here, we show that expression of the TPR-NTRK1 fusion kinase in immortalized mouse pancreatic ductal epithelial (IMPE) (pancreas) or mouse lung epithelial (MLE-12) cells is sufficient to promote rapidly growing tumors in mice. Both tumor models are exquisitely sensitive to targeted inhibition with entrectinib, a tropomyosin-related kinase A (TRKA) inhibitor. Initial regression of NTRK1-driven tumors is driven by induced expression of BIM, such that BIM silencing leads to a diminished response to entrectinib in vivo. However, the emergence of drug-resistant disease limits the long-term durability of responses. Based on the reactivation of RAF>MEK>ERK signaling observed in entrectinib-treated tumors, we show that the combination of entrectinib plus the MEK1/2 inhibitor cobimetinib dramatically forestalls the onset of drug resistance in vivo. Collectively, these data provide a mechanistic rationale for rapid clinical deployment of combined inhibition of TRKA plus MEK1/2 in NTRK1-driven cancers.
Collapse
Affiliation(s)
- Aria Vaishnavi
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Michael T Scherzer
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Conan G Kinsey
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Internal Medicine, Division of Oncology, University of Utah, Salt Lake City, UT 84112, USA
| | - Gennie L Parkman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Amanda Truong
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Phaedra Ghazi
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Sophia Schuman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Benjamin Battistone
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Ignacio Garrido-Laguna
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Internal Medicine, Division of Oncology, University of Utah, Salt Lake City, UT 84112, USA
| | - Martin McMahon
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA; Department of Dermatology, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
44
|
Fujita K. p53 Isoforms in Cellular Senescence- and Ageing-Associated Biological and Physiological Functions. Int J Mol Sci 2019; 20:ijms20236023. [PMID: 31795382 PMCID: PMC6928910 DOI: 10.3390/ijms20236023] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022] Open
Abstract
Cellular senescence, a term originally used to define the characteristics of normal human fibroblasts that reached their replicative limit, is an important factor for ageing, age-related diseases including cancer, and cell reprogramming. These outcomes are mediated by senescence-associated changes in gene expressions, which sometimes lead to the secretion of pro-inflammatory factors, or senescence-associated secretory phenotype (SASP) that contribute to paradoxical pro-tumorigenic effects. p53 functions as a transcription factor in cell-autonomous responses such as cell-cycle control, DNA repair, apoptosis, and cellular senescence, and also non-cell-autonomous responses to DNA damage by mediating the SASP function of immune system activation. The human TP53 gene encodes twelve protein isoforms, which provides an explanation for the pleiotropic p53 function on cellular senescence. Recent reports suggest that some short isoforms of p53 may modulate gene expressions in a full-length p53-dependent and -independent manner, in other words, some p53 isoforms cooperate with full-length p53, whereas others operate independently. This review summarizes our current knowledge about the biological activities and functions of p53 isoforms, especially Δ40p53, Δ133p53α, and p53β, on cellular senescence, ageing, age-related disorder, reprogramming, and cancer. Numerous cellular and animal model studies indicate that an unbalance in p53 isoform expression in specific cell types causes age-related disorders such as cancer, premature ageing, and degenerative diseases.
Collapse
Affiliation(s)
- Kaori Fujita
- Cell Induction and Regulation Field, Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
45
|
Kim JW, Kuk MU, Choy HE, Park SC, Park JT. Mitochondrial metabolic reprograming via BRAF inhibition ameliorates senescence. Exp Gerontol 2019; 126:110691. [DOI: 10.1016/j.exger.2019.110691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 12/19/2022]
|
46
|
Carvalho C, L'Hôte V, Courbeyrette R, Kratassiouk G, Pinna G, Cintrat JC, Denby-Wilkes C, Derbois C, Olaso R, Deleuze JF, Mann C, Thuret JY. Glucocorticoids delay RAF-induced senescence promoted by EGR1. J Cell Sci 2019; 132:jcs.230748. [PMID: 31371485 DOI: 10.1242/jcs.230748] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/22/2019] [Indexed: 12/20/2022] Open
Abstract
Expression of hyperactive RAF kinases, such as the oncogenic B-RAF-V600E mutant, in normal human cells triggers a proliferative arrest that blocks tumor formation. We discovered that glucocorticoids delayed the entry into senescence induced by B-RAF-V600E in human fibroblasts, and allowed senescence bypass when the cells were regularly passaged, but that they did not allow proliferation of cells that were already senescent. Transcriptome and siRNA analyses revealed that the EGR1 gene is one target of glucocorticoid action. Transcription of the EGR1 gene is activated by the RAF-MEK-ERK MAPK pathway and acts as a sensor of hyper-mitogenic pathway activity. The EGR1 transcription factor regulates the expression of p15 and p21 (encoded by CDKN2B and CDKN1A, respectively) that are redundantly required for the proliferative arrest of BJ fibroblasts upon expression of B-RAF-V600E. Our results highlight the need to evaluate the action of glucocorticoid on cancer progression in melanoma, thyroid and colon carcinoma in which B-RAF-V600E is a frequent oncogene, and cancers in which evasion from senescence has been shown.
Collapse
Affiliation(s)
- Cyril Carvalho
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Valentin L'Hôte
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Régis Courbeyrette
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Gueorgui Kratassiouk
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Guillaume Pinna
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Jean-Christophe Cintrat
- Service de Chimie Bio-organique et Marquage (SCBM), CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Cyril Denby-Wilkes
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Céline Derbois
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, F-91057 Evry, France
| | - Robert Olaso
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, F-91057 Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, F-91057 Evry, France
| | - Carl Mann
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Jean-Yves Thuret
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
47
|
Metabolic flexibility in melanoma: A potential therapeutic target. Semin Cancer Biol 2019; 59:187-207. [PMID: 31362075 DOI: 10.1016/j.semcancer.2019.07.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/11/2019] [Accepted: 07/23/2019] [Indexed: 01/01/2023]
Abstract
Cutaneous melanoma (CM) represents one of the most metastasizing and drug resistant solid tumors. CM is characterized by a remarkable metabolic plasticity and an important connection between oncogenic activation and energetic metabolism. In fact, melanoma cells can use both cytosolic and mitochondrial compartments to produce adenosine triphosphate (ATP) during cancer progression. However, the CM energetic demand mainly depends on glycolysis, whose upregulation is strictly linked to constitutive activation of BRAF/MAPK pathway affected by BRAFV600E kinase mutant. Furthermore, the impressive metabolic plasticity of melanoma allows the development of resistance mechanisms to BRAF/MEK inhibitors (BRAFi/MEKi) and the adaptation to microenvironmental changes. The metabolic interaction between melanoma cells and tumor microenvironment affects the immune response and CM growth. In this review article, we describe the regulation of melanoma metabolic alterations and the metabolic interactions between cancer cells and microenvironment that influence melanoma progression and immune response. Finally, we summarize the hallmarks of melanoma therapies and we report BRAF/MEK pathway targeted therapy and mechanisms of metabolic resistance.
Collapse
|
48
|
Sale MJ, Balmanno K, Cook SJ. Resistance to ERK1/2 pathway inhibitors; sweet spots, fitness deficits and drug addiction. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:365-380. [PMID: 35582726 PMCID: PMC8992624 DOI: 10.20517/cdr.2019.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 11/12/2022]
Abstract
MEK1/2 inhibitors are clinically approved for the treatment of BRAF-mutant melanoma, where they are used in combination with BRAF inhibitors, and are undergoing evaluation in other malignancies. Acquired resistance to MEK1/2 inhibitors, including selumetinib (AZD6244/ARRY-142866), can arise through amplification of BRAFV600E or KRASG13D to reinstate ERK1/2 signalling. We have found that BRAFV600E amplification and selumetinib resistance are fully reversible following drug withdrawal. This is because resistant cells with BRAFV600E amplification become addicted to selumetinib to maintain a precise level of ERK1/2 signalling (2%-3% of total ERK1/2 active), that is optimal for cell proliferation and survival. Selumetinib withdrawal drives ERK1/2 activation outside of this critical "sweet spot" (~20%-30% of ERK1/2 active) resulting in a p57KIP2-dependent G1 cell cycle arrest and senescence or expression of NOXA and cell death with features of autophagy; these terminal responses select against cells with amplified BRAFV600E. ERK1/2-dependent p57KIP2 expression is required for loss of BRAFV600E amplification and determines the rate of reversal of selumetinib resistance. Growth of selumetinib-resistant cells with BRAFV600E amplification as tumour xenografts also requires the presence of selumetinib to "clamp" ERK1/2 activity within the sweet spot. Thus, BRAFV600E amplification confers a selective disadvantage or "fitness deficit" during drug withdrawal, providing a rationale for intermittent dosing to forestall resistance. Remarkably, selumetinib resistance driven by KRASG13D amplification/upregulation is not reversible. In these cells ERK1/2 reactivation does not inhibit proliferation but drives a ZEB1-dependent epithelial-to-mesenchymal transition that increases cell motility and promotes resistance to traditional chemotherapy agents. Our results reveal that the emergence of drug-addicted, MEKi-resistant cells, and the opportunity this may afford for intermittent dosing schedules ("drug holidays"), may be determined by the nature of the amplified driving oncogene (BRAFV600E vs. KRASG13D), further exemplifying the difficulties of targeting KRAS mutant tumour cells.
Collapse
Affiliation(s)
- Matthew J. Sale
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Kathryn Balmanno
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Simon J. Cook
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| |
Collapse
|
49
|
Volkart PA, Bitencourt-Ferreira G, Souto AA, de Azevedo WF. Cyclin-Dependent Kinase 2 in Cellular Senescence and Cancer. A Structural and Functional Review. Curr Drug Targets 2019; 20:716-726. [DOI: 10.2174/1389450120666181204165344] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 02/03/2023]
Abstract
<P>Background: Cyclin-dependent kinase 2 (CDK2) has been studied due to its role in the
cell-cycle progression. The elucidation of the CDK2 structure paved the way to investigate the molecular
basis for inhibition of this enzyme, with the coordinated efforts combining crystallography with
functional studies.
</P><P>
Objective: Our goal here is to review recent functional and structural studies directed to understanding
the role of CDK2 in cancer and senescence.
</P><P>
Methods: There are over four hundreds of crystallographic structures available for CDK2, many of
them with binding affinity information. We use this abundance of data to analyze the essential features
responsible for the inhibition of CDK2 and its function in cancer and senescence.
</P><P>
Results: The structural and affinity data available CDK2 makes it possible to have a clear view of the
vital CDK2 residues involved in molecular recognition. A detailed description of the structural basis
for ligand binding is of pivotal importance in the design of CDK2 inhibitors. Our analysis shows the
relevance of the residues Leu 83 and Asp 86 for binding affinity. The recent findings revealing the
participation of CDK2 inhibition in senescence open the possibility to explore the richness of structural
and affinity data for a new era in the development of CDK2 inhibitors, targeting cellular senescence.
</P><P>
Conclusion: Here, we analyzed structural information for CDK2 in combination with inhibitors and
mapped the molecular aspects behind the strongest CDK2 inhibitors for which structures and ligandbinding
affinity data were available. From this analysis, we identified the significant intermolecular
interactions responsible for binding affinity. This knowledge may guide the future development of
CDK2 inhibitors targeting cancer and cellular senescence.</P>
Collapse
Affiliation(s)
- Priscylla Andrade Volkart
- School of Sciences - Pontifical Catholic University of Rio Grande do Sul (PUCRS). Av. Ipiranga, 6681 Porto Alegre/RS 90619-900, Brazil
| | - Gabriela Bitencourt-Ferreira
- School of Sciences - Pontifical Catholic University of Rio Grande do Sul (PUCRS). Av. Ipiranga, 6681 Porto Alegre/RS 90619-900, Brazil
| | - André Arigony Souto
- School of Sciences - Pontifical Catholic University of Rio Grande do Sul (PUCRS). Av. Ipiranga, 6681 Porto Alegre/RS 90619-900, Brazil
| | - Walter Filgueira de Azevedo
- School of Sciences - Pontifical Catholic University of Rio Grande do Sul (PUCRS). Av. Ipiranga, 6681 Porto Alegre/RS 90619-900, Brazil
| |
Collapse
|
50
|
Sale MJ, Balmanno K, Saxena J, Ozono E, Wojdyla K, McIntyre RE, Gilley R, Woroniuk A, Howarth KD, Hughes G, Dry JR, Arends MJ, Caro P, Oxley D, Ashton S, Adams DJ, Saez-Rodriguez J, Smith PD, Cook SJ. MEK1/2 inhibitor withdrawal reverses acquired resistance driven by BRAF V600E amplification whereas KRAS G13D amplification promotes EMT-chemoresistance. Nat Commun 2019; 10:2030. [PMID: 31048689 PMCID: PMC6497655 DOI: 10.1038/s41467-019-09438-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 03/11/2019] [Indexed: 12/22/2022] Open
Abstract
Acquired resistance to MEK1/2 inhibitors (MEKi) arises through amplification of BRAFV600E or KRASG13D to reinstate ERK1/2 signalling. Here we show that BRAFV600E amplification and MEKi resistance are reversible following drug withdrawal. Cells with BRAFV600E amplification are addicted to MEKi to maintain a precise level of ERK1/2 signalling that is optimal for cell proliferation and survival, and tumour growth in vivo. Robust ERK1/2 activation following MEKi withdrawal drives a p57KIP2-dependent G1 cell cycle arrest and senescence or expression of NOXA and cell death, selecting against those cells with amplified BRAFV600E. p57KIP2 expression is required for loss of BRAFV600E amplification and reversal of MEKi resistance. Thus, BRAFV600E amplification confers a selective disadvantage during drug withdrawal, validating intermittent dosing to forestall resistance. In contrast, resistance driven by KRASG13D amplification is not reversible; rather ERK1/2 hyperactivation drives ZEB1-dependent epithelial-to-mesenchymal transition and chemoresistance, arguing strongly against the use of drug holidays in cases of KRASG13D amplification.
Collapse
Affiliation(s)
- Matthew J Sale
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| | - Kathryn Balmanno
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Jayeta Saxena
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Eiko Ozono
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Katarzyna Wojdyla
- Proteomics Facility, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Rebecca E McIntyre
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Rebecca Gilley
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Anna Woroniuk
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Karen D Howarth
- Hutchison-MRC Research Centre, Department of Pathology, University of Cambridge, Hills Road, Cambridge, CB2 0XZ, UK
| | - Gareth Hughes
- Oncology Bioscience, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, CRUK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Jonathan R Dry
- Oncology Bioscience, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, 35 Gatehouse Drive, Waltham, MA, 02451, USA
| | - Mark J Arends
- Division of Pathology, Centre for Comparative Pathology, Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - Pilar Caro
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - David Oxley
- Proteomics Facility, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Susan Ashton
- Oncology Bioscience, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Alderley Park, Macclesfield, SK10 4TG, UK
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Julio Saez-Rodriguez
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Paul D Smith
- Oncology Bioscience, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, CRUK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Simon J Cook
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| |
Collapse
|