1
|
Skubica P, Hoffmanova I, Dankova P. Chronically increased osteoclastogenesis in adult celiac disease patients does not hinder improvement in bone health induced by gluten-free diet: Role of vitamin D, OPG and IL-6. J Nutr Biochem 2025; 139:109871. [PMID: 39978647 DOI: 10.1016/j.jnutbio.2025.109871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 01/07/2025] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
The etiology of bone loss in celiac disease (CeD) remains a clinical challenge, with uncertainties present such as the extent of involvement of malabsorption and inflammation-induced osteoresorption processes in development of osteopenia/osteoporosis (OPN/OP), or reasons for failure to achieve healthy bone mass (BMD) even after long-term gluten-free diet (GFD) treatment. This observational prospective study explores the in vitro osteoclastogenic potential of peripheral blood precursors originating from adult active (newly diagnosed and untreated) celiac disease patients (aCeD) and describes the longitudinal changes in osteoclastogenesis after long-term adherence to GFD. To find connections between in vitro observations and in vivo bone metabolism changes, serum levels of 25(OH)D3, PTH, bCTX, PINP, CRP, IL-6, RANKL and OPG were measured before and after GFD and levels of these markers were correlated with the rate of osteoclastogenesis in vitro. OPG and IL-6 showed associations with BMD and/or presence of OPN/OP. Patients after GFD (CeD-GFD) exhibited improved BMD and increased serum 25(OH)D3 levels, alongside reduced bCTX and PINP levels. Compared to healthy donors, aCeD osteoclast genesis in vitro was higher and, surprisingly, remained elevated even in CeD-GFD patients. Negative correlation was found between osteoclastogenesis rate and serum OPG in aCeD, while osteoclastogenesis rate positively correlated with PTH in CeD-GFD. These results highlight OPG as marker for risk of OPN/OP in CeD and suggest that improvement of BMD after GFD is a result of uncoupling between bone metabolism and osteoresorptive action of osteoclasts after GFD.
Collapse
Affiliation(s)
- Patrik Skubica
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Prague, Czech Republic
| | - Iva Hoffmanova
- Department of Internal Medicine, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic.
| | - Pavlina Dankova
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
2
|
Polyzos SA, Anastasilakis K, Cundy T, Kita M. Long-Term Denosumab Treatment in Adults with Juvenile Paget Disease. Calcif Tissue Int 2025; 116:60. [PMID: 40223037 PMCID: PMC11994531 DOI: 10.1007/s00223-025-01370-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025]
Abstract
Juvenile Paget disease (JPD) is a very rare disease, mainly caused by biallelic inactivating mutations in the TNFRSF11B gene that encodes osteoprotegerin. Owing to its rarity, the treatment of JPD is largely empirical. Accelerated bone turnover as assessed by biochemical markers, such as alkaline phosphatase (ALP), can be suppressed by bisphosphonate treatment, but it relapses if bisphosphonate treatment is discontinued. In this report, we describe our experience with long-term denosumab treatment in two adults with JPD, homozygous for the "Balkan" mutation (966_969delTGACinsCTT) in TNFRSF11B. Subject 1 started denosumab in age 35 and subject 2 in age 34. Both continue treatment until today, for 13.5 and 12 years, respectively. ALP was steadily normalized in both. Bone pain decreased and mobility improved. Hearing did not further deteriorate and no new fracture occurred. Vision remained unchanged in subject 2, but subject 1 experienced sudden vision loss of the right eye at age 46, which was successfully managed with intravitreal treatment with anti-vascular endothelial growth factor medications. In conclusion, long-term denosumab administration in adults with JPD, who had been previously treated with bisphosphonates, was safe and effective in terms of the skeletal disease, but it may not prevent the emergence of retinopathy.
Collapse
Affiliation(s)
- Stergios A Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | - Tim Cundy
- Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand
| | - Marina Kita
- Department of Endocrinology, Ippokration General Hospital, Thessaloniki, Greece
| |
Collapse
|
3
|
Shin SY, Kang IS, Kim C. ERK inhibits osteoclast differentiation in RAW 264.7 cells through the osteoprotegerin-mediated autophagy. Bone 2025; 193:117424. [PMID: 39947572 DOI: 10.1016/j.bone.2025.117424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/22/2025] [Accepted: 02/09/2025] [Indexed: 02/25/2025]
Abstract
Osteoclasts (OCs) are bone-resorbing cells derived from the monocyte/macrophage lineage. The extracellular signal-regulated kinase (ERK) pathway controls cellular responses such as proliferation, differentiation, and survival, including those of OCs. In the present study, ERK inhibitors reduced the proliferation of bone marrow-derived macrophages (BMMs) and RAW 264.7 cells. However, ERK inhibitors decreased OC differentiation in BMMs but increased it in RAW 264.7 cells. ERK downregulation using small interfering RNA transfection also increased the OC differentiation and the expression of receptor activator of nuclear factor-κB, OC-specific markers, and OC-associated transcription factors in RAW 264.7 cells. These findings suggest ERK regulates OC differentiation in RAW 264.7 cells differently than in BMMs. Thus, we further investigated the mechanism by which ERK negatively regulates OC differentiation in RAW 264.7 cells. ERK inhibition decreased the expression of osteoprotegerin (OPG), a negative regulator of OC differentiation. OPG knockdown increased OC formation. ERK inhibitors activated the Akt/mammalian target of the rapamycin (mTOR) signaling pathway while inhibiting unc-51-like autophagy activating kinase 1 (ULK1). This resulted in decreased levels of microtubule-associated protein 1A/1B-light chain 3-II (LC3-II) and increased levels of p62, thereby reducing autophagy. In addition, OPG knockdown reduced autophagy by activating Akt/mTOR and inhibiting ULK1, resulting in decreased LC3-II and accumulated p62. Therefore, ERK inhibition promoted OC differentiation by downregulating OPG-mediated inhibition of osteoclastogenesis and autophagy in RAW 264.7 cells. These findings highlight ERK's complex role in OC differentiation and suggest that understanding ERK's dual impact on OC differentiation can provide insights into novel treatment strategies for bone-related disorders.
Collapse
Affiliation(s)
- Soo-Young Shin
- Laboratory of Leukocyte Signaling Research, Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Republic of Korea; BK21, Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - In-Soon Kang
- Laboratory of Leukocyte Signaling Research, Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Chaekyun Kim
- Laboratory of Leukocyte Signaling Research, Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Republic of Korea; BK21, Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
4
|
Zhao W, Qian J, Li J, Su T, Deng X, Fu Y, Liang X, Cui H. From death to birth: how osteocyte death promotes osteoclast formation. Front Immunol 2025; 16:1551542. [PMID: 40165960 PMCID: PMC11955613 DOI: 10.3389/fimmu.2025.1551542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
Bone remodeling is a dynamic and continuous process involving three components: bone formation mediated by osteoblasts, bone resorption mediated by osteoclasts, and bone formation-resorption balancing regulated by osteocytes. Excessive osteocyte death is found in various bone diseases, such as postmenopausal osteoporosis (PMOP), and osteoclasts are found increased and activated at osteocyte death sites. Currently, apart from apoptosis and necrosis as previously established, more forms of cell death are reported, including necroptosis, ferroptosis and pyroptosis. These forms of cell death play important role in the development of inflammatory diseases and bone diseases. Increasing studies have revealed that various forms of osteocyte death promote osteoclast formation via different mechanism, including actively secreting pro-inflammatory and pro-osteoclastogenic cytokines, such as tumor necrosis factor alpha (TNF-α) and receptor activator of nuclear factor-kappa B ligand (RANKL), or passively releasing pro-inflammatory damage associated molecule patterns (DAMPs), such as high mobility group box 1 (HMGB1). This review summarizes the established and potential mechanisms by which various forms of osteocyte death regulate osteoclast formation, aiming to provide better understanding of bone disease development and therapeutic target.
Collapse
Affiliation(s)
- Weijie Zhao
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Emergency Surgery, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Jiale Qian
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Emergency Surgery, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Ji Li
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Emergency Surgery, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Tian Su
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, College of pharmacy, Hainan Medical University, Haikou, China
| | - Xiaozhong Deng
- Department of Pain Treatment, Nanxi Shan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Yonghua Fu
- Department of Hand and Foot Microsurgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xuelong Liang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hongwang Cui
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Emergency Surgery, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| |
Collapse
|
5
|
Luo J, Wang Q, Liu W, Liao H, Qing W, Zhang M, Tang D, Luo G, Zhao H. Computed tomography provides a "one-stop-shop" targeted analysis for coronary artery calcification and osteoporosis: a review. Front Endocrinol (Lausanne) 2025; 16:1356831. [PMID: 40093749 PMCID: PMC11906312 DOI: 10.3389/fendo.2025.1356831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/05/2025] [Indexed: 03/19/2025] Open
Abstract
The global trend towards longer lifespans has led to an aging population and a rise in the prevalence of diseases that predominantly affect elderly people. Coronary artery calcification (CAC) and osteoporosis (OP) are common in elderly populations. CT scans provide a reliable method to assess and monitor the progression of these diseases. In this review, the relationship between OP and CAC in terms of pathophysiological mechanism, comorbidity risk factors and clinical manifestations is reviewed, with a focus on the advancements in CT imaging, clinical applications and the possibility for "one-stop-shop" for examination.
Collapse
Affiliation(s)
- Jing Luo
- Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Qian Wang
- Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
- Department of Radiology, Hong'an County People's Hospital, Huanggang, Hubei, China
| | - Wenhong Liu
- Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Huazhi Liao
- Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Weipeng Qing
- Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Minyi Zhang
- Major in Medical Imaging, The University of South China, Hengyang, Hunan, China
| | - Deqiu Tang
- Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Guanghua Luo
- Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Heng Zhao
- Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| |
Collapse
|
6
|
Sharan K, Brandt C, Yusuf MA, Singh P, Halder N, Edwards ME, Mangu SVVSR, Das A, Mishra A, Kumar SS, Sharma A, Gupta A, Liu XS, Guo EX, Monani UR, Ponnalagu D, Ivanov II, Lal G, Clare S, Dougan G, Yadav VK. Rapid and relaying deleterious effects of a gastrointestinal pathogen, Citrobacter rodentium, on bone, an extra-intestinal organ. iScience 2025; 28:111802. [PMID: 39967874 PMCID: PMC11834125 DOI: 10.1016/j.isci.2025.111802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/04/2024] [Accepted: 01/10/2025] [Indexed: 02/20/2025] Open
Abstract
Enteropathogenic infections cause pathophysiological changes in the host but their effects beyond the gastrointestinal tract are undefined. Here, using Citrobacter rodentium infection in mouse, which mimics human diarrheal enteropathogenic Escherichia coli, we show that gastrointestinal infection negatively affects bone remodeling, leading to compromised bone architecture. Transmission of infection through fecal-oral route from Citrobacter rodentium-infected to non-infected mice caused bone loss in non-infected cage mates. Mice with B cell deficiency (Igh6-/- mice) failed to clear C. rodentium infection and exhibited more severe and long-term bone loss compared to WT mice. Unbiased cytokine profiling showed an increase in circulating tumor necrosis factor α (TNFα) levels following Citrobacter rodentium infection, and immunoneutralization of TNFα prevented infection-induced bone loss completely in WT and immunocompromised mice. These findings reveal rapid, relaying, and modifiable effects of enteropathogenic infections on an extraintestinal organ-bone, and provide insights into the mechanism(s) through which these infections affect extraintestinal organ homeostasis.
Collapse
Affiliation(s)
- Kunal Sharan
- Mouse Genetics Project, Wellcome Sanger Institute, Hinxton, Saffron Walden, UK
- Department of Molecular Nutrition, CSIR-CFTRI, Mysore, Karnataka, India
| | - Cordelia Brandt
- Host-Pathogen Interaction Group, Wellcome Sanger Institute, Hinxton, Saffron Walden, UK
| | - Mohd Aslam Yusuf
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Parminder Singh
- National Institute of Immunology, New Delhi, New Delhi, India
| | - Namrita Halder
- National Centre for Cell Science, Pune, Maharastra, India
| | - Madeline E. Edwards
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | - SVVS Ravi Mangu
- Department of Molecular Nutrition, CSIR-CFTRI, Mysore, Karnataka, India
| | - Abhilipsa Das
- Department of Molecular Nutrition, CSIR-CFTRI, Mysore, Karnataka, India
| | - Amrita Mishra
- National Centre for Cell Science, Pune, Maharastra, India
| | - Shashi S. Kumar
- Center for Motor Neuron Biology & Disease, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
| | - Amita Sharma
- Pediatric Kidney Foundation, New Delhi, New Delhi, India
| | - Alka Gupta
- Reproductive Biology Laboratory, National Institute of Immunology, New Delhi, New Delhi, India
| | - Xiaowei S. Liu
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward X. Guo
- Bone Biomechanics Laboratory, Columbia University, New York, NY, USA
| | - Umrao R. Monani
- Center for Motor Neuron Biology & Disease, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | | | - Ivaylo I. Ivanov
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | - Girdhari Lal
- National Centre for Cell Science, Pune, Maharastra, India
| | - Simon Clare
- Host-Pathogen Interaction Group, Wellcome Sanger Institute, Hinxton, Saffron Walden, UK
| | - Gordon Dougan
- Host-Pathogen Interaction Group, Wellcome Sanger Institute, Hinxton, Saffron Walden, UK
- Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
- Centre for Translational Stem Cell Biology, Hong Kong, China
| | - Vijay K. Yadav
- Mouse Genetics Project, Wellcome Sanger Institute, Hinxton, Saffron Walden, UK
- National Institute of Immunology, New Delhi, New Delhi, India
- Department of Genetics and Development, Columbia University, New York, NY, USA
- Healthy Longevity Program, Department of Pathology, Immunology and Laboratory Medicine, Rutgers University, Newark, NJ, USA
- Center for Cell Signaling, Rutgers University, Newark, NJ, USA
- Center for Immunity and Inflammation, Rutgers University, Newark, NJ, USA
| |
Collapse
|
7
|
Hauge SC, Hjortkjær HØ, Persson F, Theilade S, Frost M, Jørgensen NR, Rossing P, Hansen D. Bone mineral density and the risk of kidney disease in patients with type 1 diabetes. J Diabetes Complications 2025; 39:108927. [PMID: 39708433 DOI: 10.1016/j.jdiacomp.2024.108927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024]
Abstract
AIM To explore the association between bone disorder and the risk for progression of diabetic kidney disease (DKD) in persons with type 1 diabetes mellitus (T1DM). METHODS In this prospective cohort study the association between bone mineral density (BMD), bone-derived factors (sclerostin, Dickkopf-1, and osteoprotegerin (OPG)), and four outcomes were investigated: 1) progression of albuminuria; 2) decline in estimated glomerular filtration rate (eGFR) ≥30 %; 3) kidney failure (KF); and 4) a composite kidney outcome consisting of at least one of the outcomes. RESULTS In 318 participants (median follow-up time 5.5 years) patients with osteoporosis (BMD with T-score < -2.5) had increased risk of eGFR decline: hazard ratio (HR) 2.56 (95 % CI 1.06-6.19, p = 0.04), KF: HR 9.92 (95 % CI 1.16-84.95, p = 0.04), and the composite kidney outcome: HR 2.42 (95 % CI 1.18-4.96, p = 0.02). Patients with high OPG had increased risk of eGFR decline, KF, and the composite outcome, compared to patients with low OPG in unadjusted analysis. No bone-derived factor was associated with any outcome in adjusted analyses. CONCLUSIONS In patients with T1DM low BMD was associated with progression of DKD, suggesting an interaction between bone and kidney.
Collapse
Affiliation(s)
- Sabina Chaudhary Hauge
- Department of Nephrology, Copenhagen University Hospital - Herlev and Gentofte, Borgmester Ib Juuls Vej 1, 2730 Herlev, Denmark.
| | | | - Frederik Persson
- Steno Diabetes Center Copenhagen, Borgmester Ib Juuls Vej 83, 2730 Herlev, Denmark
| | - Simone Theilade
- Steno Diabetes Center Copenhagen, Borgmester Ib Juuls Vej 83, 2730 Herlev, Denmark
| | - Morten Frost
- Molecular Endocrinology Laboratory (KMEB), Odense University Hospital, J.B. Winsløws Vej 25, 1, Floor, 5000 Odense C, Denmark; Department of Clinical Research, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Niklas Rye Jørgensen
- Department of Clinical Biochemistry, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 13, 2600 Glostrup, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Translational Research Center, Nordstjernevej 42, 2600 Glostrup, Denmark
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Borgmester Ib Juuls Vej 83, 2730 Herlev, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Ditte Hansen
- Department of Nephrology, Copenhagen University Hospital - Herlev and Gentofte, Borgmester Ib Juuls Vej 1, 2730 Herlev, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| |
Collapse
|
8
|
Maddaloni E, Nguyen M, Shah SH, Holman RR. Osteoprotegerin, Osteopontin, and Osteocalcin Are Associated With Cardiovascular Events in Type 2 Diabetes: Insights From EXSCEL. Diabetes Care 2025; 48:235-242. [PMID: 39576722 DOI: 10.2337/dc24-1455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/30/2024] [Indexed: 11/24/2024]
Abstract
OBJECTIVE To evaluate the association of four bone metabolism biomarkers (osteoprotegerin, osteopontin, sclerostin, and osteocalcin) with cardiovascular events in people with type 2 diabetes (T2D). RESEARCH DESIGN AND METHODS The Exenatide Study of Cardiovascular Event Lowering (EXSCEL) was a randomized clinical trial evaluating the cardiovascular (CV) safety and efficacy of once-weekly exenatide for patients with T2D. Candidate biomarker data were selected from proteomic profiling performed at baseline and 12 months after randomization samples by SomaScan assay in 5,473 trial participants. The primary composite outcome was the first occurrence of CV death, nonfatal myocardial infarction, or nonfatal stroke (major cardiovascular events [MACE]). Cox proportional hazards models controlling for confounders were used for time-to-event analyses to calculate hazard ratios (HRs) with 95% CI for a 1 SD increase in the biomarker concentrations. RESULTS The primary outcome occurred in 813 participants (14.9%). Higher levels of osteoprotegerin (HR 1.11; 95% CI 1.03-1.20; P = 0.0047) and osteopontin (HR 1.10; 95% CI 1.02-1.18; P = 0.0095) were associated with an increased risk of MACE. The addition of osteoprotegerin and osteopontin to a clinical predictive model containing traditional CV risk factors provided minimal incremental value for MACE prediction (C-index 0.629 vs. 0.638; likelihood ratio test P < 0.001). Osteocalcin and sclerostin were not associated with MACE. Osteocalcin had a nonlinear association with all-cause death and with CV death. CONCLUSIONS Higher levels of osteoprotegerin and osteopontin are associated with an increased risk of CV events in people with T2D, supporting the hypothesis that pathways involved in bone metabolism play a role in CV disease.
Collapse
Affiliation(s)
- Ernesto Maddaloni
- Experimental Medicine Department, Sapienza University of Rome, Rome, Italy
- Diabetes Trials Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, U.K
| | | | | | - Rury R Holman
- Diabetes Trials Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, U.K
| |
Collapse
|
9
|
Tabuchi Y, Kuroda K, Furusawa Y, Hirano T, Nagaoka R, Omura M, Hasegawa H, Hirayama J, Suzuki N. Genes involved in osteogenic differentiation induced by low‑intensity pulsed ultrasound in goldfish scales. Biomed Rep 2025; 22:18. [PMID: 39651404 PMCID: PMC11621920 DOI: 10.3892/br.2024.1896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/09/2024] [Indexed: 12/11/2024] Open
Abstract
The teleost scale is a unique calcified tissue that contains osteoclasts, osteoblasts, osteocytes and the bone matrix, similar to mammalian bone. Here, the effects of low-intensity pulsed ultrasound (LIPUS) on osteoblasts and osteoclasts in goldfish scales were investigated. Scales were treated with LIPUS, which is equivalent to use under clinical conditions (30 mW/cm2 for 20 min), then cultured at 15˚C. Alkaline phosphatase activity, a marker of osteoblasts, or tartrate-resistant acid phosphatase (TRAP) activity, a marker of osteoclasts was measured. The gene expression profile was examined using RNA-sequencing. Gene network and biological function analyses were performed using the Ingenuity® Pathways Knowledge Base. A single exposure of LIPUS significantly increased ALP activity but did not affect TRAP activity. These data indicated that LIPUS induced osteoblastic activation in goldfish scales. Using RNA-sequencing, numerous genes that were significantly and differentially expressed 3, 6, and 24 h after LIPUS exposure were observed. Ingenuity® pathway analysis demonstrated that three gene networks, GN-3h, GN-6h, and GN-24h, were obtained from upregulated genes at 3, 6 and 24 h culture, respectively, and included several genes associated with osteoblast differentiation, such as protein kinase D1, prostaglandin-endoperoxide synthase 2, TNFRSF11B (tumor necrosis factor receptor superfamily, member 11b) and WNT3A (Wnt family member 3A). A significant upregulation of expression levels of these genes in scales treated with LIPUS was confirmed by reverse transcription-quantitative polymerase chain reaction. These results contribute to elucidating the molecular mechanisms of osteoblast activation induced by LIPUS.
Collapse
Affiliation(s)
- Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| | - Kouhei Kuroda
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ishikawa 927-0553, Japan
| | - Yukihiro Furusawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Toyama 939-0398, Japan
| | - Tetsushi Hirano
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| | - Ryo Nagaoka
- Laboratory of Medical Information Sensing, Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Masaaki Omura
- Laboratory of Medical Information Sensing, Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Hideyuki Hasegawa
- Laboratory of Medical Information Sensing, Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Jun Hirayama
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Ishikawa 923-0961, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ishikawa 927-0553, Japan
| |
Collapse
|
10
|
Chudek J, Pośpiech M, Chudek A, Holecki M, Puzianowska-Kuźnicka M. Osteoprotegerin as an Emerging Biomarker of Carotid Artery Stenosis? A Scoping Review with Meta-Analysis. Diagnostics (Basel) 2025; 15:219. [PMID: 39857103 PMCID: PMC11764218 DOI: 10.3390/diagnostics15020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Objective: In developed countries, stroke is the fifth cause of death, with a high mortality rate, and with recovery to normal neurological function in one-third of survivors. Atherosclerotic occlusive disease of the extracranial part of the internal carotid artery and related embolic complications are common preventable causes of ischemic stroke (IS), attributable to 7-18% of all first-time cases. Osteoprotegerin (OPG), a soluble member of the tumor necrosis factor receptor (TNFR) superfamily, is considered a modulator of vascular calcification linked to vascular smooth muscle cell proliferation and collagen production in atherosclerotic plaques. Therefore, OPG emerges as a potential biomarker (BM) of calcified carotid plaques and carotid artery stenosis (CAS). Methods: We performed a literature search of PubMed on OPG in CAS and atherosclerosis published until 2024. Results: Increased levels of serum OPG were reported in both patients with symptomatic and asymptomatic CAS, and higher values were observed in those with unstable atherosclerotic plaques. Notably, increased OPG levels were observed regardless of the location of atherosclerosis, including coronary and other peripheral arteries. In addition, chronic kidney disease, the most significant confounder disturbing the association between vascular damage and circulating OPG levels, decreases the usefulness of OPG as a BM in CAS. Conclusions: Osteoprotegerin may be considered an emerging BM of global rather than cerebrovascular atherosclerosis. Its diagnostic significance in identifying patients with asymptomatic CAS and their monitoring is limited.
Collapse
Affiliation(s)
- Jerzy Chudek
- Department of Internal Medicine and Oncological Chemotherapy, Medical Faculty in Katowice, Medical University of Silesia, 40-027 Katowice, Poland;
| | - Marta Pośpiech
- Department of Internal Medicine and Oncological Chemotherapy, Medical Faculty in Katowice, Medical University of Silesia, 40-027 Katowice, Poland;
| | - Anna Chudek
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Michał Holecki
- Department of Internal, Autoimmune and Metabolic Diseases, School of Medicine, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Monika Puzianowska-Kuźnicka
- Department of Human Epigenetics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
- Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland
| |
Collapse
|
11
|
Tong X, Fu X, Gong A, Yu G, Chen N, Chen B, Gu J, Liu Z. Effect of Luteolin on cadmium-inhibited bone growth via suppressing osteoclastogenesis in laying chickens. J Anim Sci 2025; 103:skaf033. [PMID: 39921628 PMCID: PMC11912829 DOI: 10.1093/jas/skaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/07/2025] [Indexed: 02/10/2025] Open
Abstract
Luteolin (Lut) is a flavonoid derived from several plant sources. Cadmium (Cd) is a widespread environmental contaminant and potential toxin with detrimental effects on animal health. However, the effect of Lut on Cd-induced inhibition of bone growth in laying chickens remains unclear. This study investigates the effects of Lut on Cd-induced inhibition of bone growth in the femur and tibia of laying chickens. A total of sixty 1-d-old green-eggshell yellow feather laying chickens were randomly assigned to 4 groups after a 5-d acclimation period: basal diet (Con), cadmium chloride (CdCl2, Cd), Lut, and Lut + Cd. Bone microstructure, serum biomarkers of bone remodeling, the levels of Cd, calcium (Ca), phosphorus (P), and trace metal elements were assessed using the micro-computed tomography (Micro-CT), enzyme-linked immunosorbent assay (ELISA), and microwave digestion, respectively. Bone remodeling biomarkers, late endosomal/lysosomal adaptor and MAPK and mTOR activator 1 (LAMTOR1), as well as the phosphorylation of AMP-activated protein kinase α (AMPKα) and protein kinase B (Akt), were quantified using the qRT-PCR and western blot. The results indicated that Lut effectively mitigated Cd-induced bone mass loss compared to the Cd group, resulting in increased bone volume (BV), bone surface/BV (BS/BV), connectivity density (Conn.Dn), and the length and weight of the femur and tibia in laying chickens. Mechanistically, compared to the Cd group, Lut restored the ratio of osteoprotegerin (OPG)/receptor activator of NF-κB ligand (RANKL) in serum and bone tissue, enhanced the expression of bone morphogenetic protein-2 (BMP-2), runt-related transcription factor 2 (Runx2), osteocalcin (OCN), and Osterix (OSX), while reducing the levels of Ca, Cd, and alkaline phosphatase (ALP) activity, as well as the expression of osteopontin (OPN), c-Fos, osteoclast stimulatory-transmembrane protein (OC-STAMP), tartrate-resistant acid phosphatase, cathepsin K (CTSK), matrix metalloprotein-9 (MMP-9), LAMTOR1, and the phosphorylation of AMPKα and Akt. Therefore, Lut alleviates Cd-induced damage to the femur and tibia of chickens by promoting osteogenesis and inhibiting osteoclastogenesis, positioning Lut as a potential therapeutic plant extract for enhancing bone growth in laying chickens.
Collapse
Affiliation(s)
- Xishuai Tong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of The Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, P. R. China
| | - Xiaohui Fu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of The Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, P. R. China
| | - Anqing Gong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of The Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, P. R. China
| | - Gengsheng Yu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of The Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, P. R. China
| | - Naineng Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of The Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, P. R. China
| | - Bing Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of The Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, P. R. China
| | - Jianhong Gu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of The Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, P. R. China
| | - Zongping Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of The Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, P. R. China
| |
Collapse
|
12
|
Pérez-Chacón G, Santamaría PG, Redondo-Pedraza J, González-Suárez E. RANK/RANKL Signaling Pathway in Breast Development and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:309-345. [PMID: 39821032 DOI: 10.1007/978-3-031-70875-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
RANK pathway has attracted increasing interest as a promising target in breast cancer, given the availability of denosumab, an anti-RANKL drug. RANK signaling mediates progesterone-driven regulation of mammary gland development and favors breast cancer initiation by controlling mammary cell proliferation and stem cell fate. RANK activation promotes luminal mammary epithelial cell senescence, acting as an initial barrier to tumorigenesis but ultimately facilitating tumor progression and metastasis. Comprehensive analyses have demonstrated that RANK protein expression is an independent biomarker of poor prognosis in postmenopausal and estrogen receptor-negative breast cancer patients. RANK pathway also has multiple roles in immunity and inflammation, regulating innate and adaptive responses. In the tumor microenvironment, RANK and RANKL are expressed by different immune cell populations and contribute to the regulation of tumor immune surveillance, mainly driving immunosuppressive effects.Herein, we discuss the preventive and therapeutic potential of targeting RANK signaling in breast cancer given its tumor cell intrinsic and extrinsic effects. RANKL inhibition has been shown to induce mammary tumor cell differentiation and an antitumor immune response. Moreover, loss of RANK signaling increases sensitivity of breast cancer cells to chemotherapy, targeted therapies such as HER2 and CDK4/6 inhibitors, and immunotherapy. Finally, we describe clinical trials of denosumab for breast cancer prevention, such as those ongoing in women with high risk of developing breast cancer, large phase III clinical trials where the impact of adjuvant denosumab on disease-free survival has been assessed, and window trials to evaluate the immunomodulatory effects of denosumab in breast cancer and other solid tumors.
Collapse
Affiliation(s)
- Gema Pérez-Chacón
- Molecular Oncology, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | | - Eva González-Suárez
- Molecular Oncology, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
- Oncobell, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
13
|
Rinotas V, Gkikopoulou E, Tzortzis E, Kritikos K, Siatra P, Papadopoulos A, Perivolidi VI, Douni E. Interplay between bone marrow adiposity and bone resorption in RANKL-mediated modelled osteoporosis. J Cell Physiol 2024; 239:e31434. [PMID: 39279218 DOI: 10.1002/jcp.31434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/18/2024]
Abstract
Bone marrow adipose tissue (BMAT) accrues in osteoporosis, whereas its contribution to the progression of bone resorption remains insufficiently understood. To understand the mechanisms that promote BMAT expansion in osteoporosis, in the present study, we performed extensive analysis of the spatiotemporal pattern of BMAT expansion during the progression of bone resorption in TgRANKL transgenic mouse models of osteoporosis expressing human RANKL (receptor activator of nuclear factor-κB ligand). Our results showed that TgRANKL mice of both sexes developed dramatically increased BMAT expansion compared to wild-type (WT) littermates, that was analogous to the levels of RANKL expression and the severity of the bone loss phenotype. BMAT was formed at close proximity to areas undergoing active bone remodelling and bone resorption, whereas bone resorption preceded BMAT development. Expression analysis in bone fractions demonstrated that BMAT constitutes a major source for RANKL production. Ex vivo analysis of isolated bone marrow stromal cells from TgRANKL mice showed an increased adipogenic differentiation capacity compared to WT, while osteoclast supernatants further exaggerated adipogenesis, supporting a critical role of the osteoclast-derived secretome in the differentiation of bone marrow adipocytes. Furthermore, the effectiveness of an antiosteoporosis treatment in BMAT development was investigated upon treatment of TgRANKL models with the bisphosphonate alendronate. Notably, alendronate effectively improved bone mass and attenuated BMAT expansion, indicating a possible involvement of osteoclasts and bone resorption in BMAT development. On the contrary, inhibition of BMAT with PPARγ antagonists (GW9662 or BADGE) effectively ameliorated BMAT expansion but failed to reverse the osteoporotic phenotype of TgRANKL mice. Overall, our data demonstrate that TgRANKL mice constitute unique genetic mouse models for investigating the pathogenic mechanisms that regulate the development and expansion of BMAT in osteolytic diseases.
Collapse
Affiliation(s)
- Vagelis Rinotas
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Evi Gkikopoulou
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Efthymiοs Tzortzis
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Konstantinos Kritikos
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Panagiota Siatra
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Apostolos Papadopoulos
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Vasiliki-Iris Perivolidi
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Eleni Douni
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
14
|
Demir SA, Seyrantepe V. Abnormally accumulated GM2 ganglioside contributes to skeletal deformity in Tay-Sachs mice. J Mol Med (Berl) 2024; 102:1517-1526. [PMID: 39514043 DOI: 10.1007/s00109-024-02498-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/03/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Tay-Sachs Disease is a rare lysosomal storage disorder caused by mutations in the HEXA gene, responsible for the degradation of ganglioside GM2. In addition to progressive neurodegeneration, Tay-Sachs patients display bone anomalies, including kyphosis. Tay-Sachs disease mouse model (Hexa-/-Neu3-/-) shows both neuropathological and clinical abnormalities of the infantile-onset disease phenotype. In this study, we investigated the effects of GM2 accumulation on bone remodeling activity. Here, we evaluated the bone phenotype of 5-month-old Hexa-/-Neu3-/- mice with age-matched control groups using gene expression analysis, bone plasma biomarker analysis, and micro-computed tomography. We demonstrated lower plasma alkaline phosphatase activity and calcium levels with increased tartrate-resistant acid phosphatase levels, indicating reduced bone remodeling activity in mice. Consistently, gene expression analysis confirmed osteoblast reduction and osteoclast induction in the femur of mice. Micro-computed tomography and analysis show reduced trabecular bone volume, mineral density, number, and thickness in Hexa-/-Neu3-/- mice. In conclusion, we demonstrated that abnormal GM2 ganglioside accumulation significantly triggers skeletal abnormality in Tay-Sachs mice. We suggest that further investigation of the molecular basis of bone structure anomalies is necessary to elucidate new therapeutic targets that prevent the progression of bone symptoms and improve the life standards of Tay-Sachs patients. KEY MESSAGES: We detected the markers of bone loss-associated disorders such as osteopenia and osteoporosis in the Tay-Sachs disease mice model Hexa-/-Neu3-/-. We also demonstrated for the first time there is an increase in trabecular spacing and a reduction in trabecular thickness and number indicating skeletal abnormalities in mice model using micro-CT analysis.
Collapse
Affiliation(s)
| | - Volkan Seyrantepe
- Izmir Institute of Technology, IYTEDEHAM, Urla, Izmir, Turkey.
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey.
| |
Collapse
|
15
|
Yang H, Xu G, Li Q, Zhu L. Ligustrazine alleviates the progression of coronary artery calcification by inhibiting caspase-3/GSDME mediated pyroptosis. Biosci Trends 2024; 18:482-491. [PMID: 38972749 DOI: 10.5582/bst.2024.01096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Coronary artery calcification (CAC) is an early marker for atherosclerosis and is mainly induced by the osteoblast-like phenotype conversion of vascular smooth muscle cells (VSMCs). Recent reports indicate that NOD-like receptor protein 3 (NLRP3)-mediated pyroptosis plays a significant role in the calcification of vascular smooth muscle cells (VSMCs), making it a promising target for treating calcific aortic valve disease (CAC). Ligustrazine, or tetramethylpyrazine (TMP), has been found effective in various cardiovascular and cerebrovascular diseases and is suggested to inhibit NLRP3-mediated pyroptosis. However, the function of TMP in CAC is unknown. Herein, influences of TMP on β-glycerophosphate (β-GP)-stimulated VSMCs and OPG-/- mice were explored. Mouse Aortic Vascular Smooth Muscle (MOVAS-1) cells were stimulated by β-GP with si- caspase-3, si- Gasdermin E (GSDME) or TMP. Increased calcification, reactive oxygen species (ROS) level, Interleukin-1beta (IL-1β) and Interleukin-18 (IL-18) levels, lactate dehydrogenase (LDH) release, enhanced apoptosis, and activated cysteine-aspartic acid protease-3 (caspase-3)/GSDME signaling were observed in β-GP-stimulated MOVAS-1 cells, which was sharply alleviated by si-caspase-3, si-GSDME or TMP. Furthermore, the impact of TMP on the β-GP-induced calcification and injury in MOVAS-1 cells was abolished by raptinal, an activator of caspase-3. Subsequently, OPG-/- mice were dosed with TMP or TMP combined with raptinal. Calcium deposition, increased nodules, elevated IL-1β and IL-18 levels, upregulated CASP3 and actin alpha 2, smooth muscle (ACTA2), and activated caspase-3/GSDME signaling in OPG-/- mice were markedly alleviated by TMP, which were notably reversed by the co-administration of raptinal. Collectively, TMP mitigated CAC by inhibiting caspase-3/GSDME mediated pyroptosis.
Collapse
MESH Headings
- Animals
- Pyroptosis/drug effects
- Mice
- Pyrazines/pharmacology
- Pyrazines/therapeutic use
- Caspase 3/metabolism
- Vascular Calcification/drug therapy
- Vascular Calcification/pathology
- Vascular Calcification/metabolism
- Mice, Knockout
- Coronary Artery Disease/drug therapy
- Coronary Artery Disease/pathology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Reactive Oxygen Species/metabolism
- Cell Line
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Osteoprotegerin/metabolism
- Disease Progression
- Phosphate-Binding Proteins/metabolism
- Gasdermins
Collapse
Affiliation(s)
- Honghui Yang
- Department of Cardiology, Zhengzhou University, Central China Fuwai Hospital, Zhengzhou, China
| | - Guian Xu
- Department of Cardiology, Zhengzhou University, Central China Fuwai Hospital, Zhengzhou, China
| | - Qingman Li
- Department of Cardiology, Zhengzhou University, Central China Fuwai Hospital, Zhengzhou, China
| | - Lijie Zhu
- Department of Cardiology, Zhengzhou University, Central China Fuwai Hospital, Zhengzhou, China
| |
Collapse
|
16
|
Wang D, Li Q, Xie C. The role and mechanism of protein post‑translational modification in vascular calcification (Review). Exp Ther Med 2024; 28:419. [PMID: 39301258 PMCID: PMC11411399 DOI: 10.3892/etm.2024.12708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024] Open
Abstract
Vascular calcification is closely associated with morbidity and mortality in patients with chronic kidney disease, atherosclerosis and diabetes. In the past few decades, vascular calcification has been studied extensively and the findings have shown that the mechanism of vascular calcification is not merely a consequence of a high-phosphorus and high-calcium environment but also an active process characterized by abnormal calcium phosphate deposition on blood vessel walls that involves various molecular mechanisms. Recent advances in bioinformatics approaches have led to increasing recognition that aberrant post-translational modifications (PTMs) play important roles in vascular calcification. This review presents the latest progress in clarifying the roles of PTMs, such as ubiquitination, acetylation, carbamylation and glycosylation, as well as signaling pathways, such as the Wnt/β-catenin pathway, in vascular calcification.
Collapse
Affiliation(s)
- Dongyan Wang
- Department of Medical Science, Yangzhou Polytechnic College, Yangzhou, Jiangsu 225100, P.R. China
| | - Qin Li
- Department of Medical Science, Yangzhou Polytechnic College, Yangzhou, Jiangsu 225100, P.R. China
| | - Caidie Xie
- Department of Nephrology, Nanjing Second Hospital, Nanjing Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210037, P.R. China
| |
Collapse
|
17
|
Wang M, Mo D, Zhou C, Guo M, Zhang W, Chen R, Xu J, Zhang N, Yu H. Association between Ward's triangle bone mineral density levels and abdominal aortic calcification: Data from the national health and nutrition examination survey 2013-2014. Clin Nutr ESPEN 2024; 64:344-357. [PMID: 39461592 DOI: 10.1016/j.clnesp.2024.10.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/05/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND & AIMS Despite extensive research into the cardiovascular implications of abdominal aortic calcification (AAC), there is a scarcity of robust studies exploring its association with Ward's triangle bone mineral density (BMD). This study aimed to evaluate this relationship in a nationally representative sample and compare the predictive value with femoral neck BMD and total femur BMD. METHODS We conducted a cross-sectional analysis of 2013-2014 National Health and Nutrition Examination Survey (NHANES) data, utilizing a complex, stratified, multistage, cluster sampling design. BMD measurements at Ward's triangle, femoral neck, and total femur were assessed using DXA scans. AAC severity was defined by a Kauppila score of ≥5. Predictors of AAC-24 scores were identified through correlation and linear regression models. Stratified regression and restricted cubic splines were applied to explore subgroup and dose-response relationships. RESULTS Of the 2965 participants representing 116, 562, 500 individuals in the U.S., 11 % had severe AAC. Ward's triangle BMD showed a significant negative association with AAC-24 scores (β = -1.90, 95 % CI: -2.80 to -1.00, P < 0.002) and a reduced risk of severe AAC (OR = 0.85, 95 % CI: 0.76 to 0.95, P = 0.010). Non-linear associations were observed between Ward's triangle BMD and AAC outcomes. Ward's triangle BMD outperformed femoral neck and total femur BMD in predicting AAC. CONCLUSIONS Higher Ward's triangle BMD is linked to lower odds of severe AAC, highlighting its potential for improved early detection of AAC over femoral neck and total femur BMD. Healthcare providers should consider the implications of reduced Ward's triangle BMD for systemic atherosclerosis and recommend early AAC screening for enhanced cardiovascular risk management.
Collapse
Affiliation(s)
- Mengmeng Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China; Institute of Cardiovascular Disease, Qingdao University, Qingdao 266001, Shandong, China.
| | - Degang Mo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Chi Zhou
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Mengqi Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Wenqiang Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Rui Chen
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Jiachao Xu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Ning Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China.
| | - Haichu Yu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China; Institute of Cardiovascular Disease, Qingdao University, Qingdao 266001, Shandong, China.
| |
Collapse
|
18
|
Campbell MJ, Bustamante-Gomez C, Fu Q, Beenken KE, Reyes-Pardo H, Smeltzer MS, O'Brien CA. RANKL-mediated osteoclast formation is required for bone loss in a murine model of Staphylococcus aureus osteomyelitis. Bone 2024; 187:117181. [PMID: 38960295 PMCID: PMC11325436 DOI: 10.1016/j.bone.2024.117181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Staphylococcus aureus osteomyelitis leads to extensive bone destruction. Osteoclasts are bone resorbing cells that are often increased in bone infected with S. aureus. The cytokine RANKL is essential for osteoclast formation under physiological conditions but in vitro evidence suggests that inflammatory cytokines may by-pass the requirement for RANKL. The goal of this study was to determine whether RANKL-dependent osteoclast formation is essential for the bone loss that occurs in a murine model of S. aureus osteomyelitis. To this end, humanized-RANKL mice were infected by direct inoculation of S. aureus into a unicortical defect in the femur. Mice were treated with vehicle or denosumab, a human monoclonal antibody that inhibits RANKL, both before and during a 14-day infection period. The severe cortical bone destruction caused by infection was completely prevented by denosumab administration even though the bacterial burden in the femur was not affected. Osteoclasts were abundant near the inoculation site in vehicle-treated mice but absent in denosumab-treated mice. In situ hybridization demonstrated that S. aureus infection potently stimulated RANKL expression in bone marrow stromal cells. The extensive reactive bone formation that occurs in this osteomyelitis model was also reduced by denosumab administration. Lastly, there was a notable lack of osteoblasts near the infection site suggesting that the normal coupling of bone formation to bone resorption was disrupted by S. aureus infection. These results demonstrate that RANKL-mediated osteoclast formation is required for the bone loss that occurs in S. aureus infection and suggest that disruption of the coupling of bone formation to bone resorption may also contribute to bone loss in this condition.
Collapse
Affiliation(s)
- Mara J Campbell
- Department of Microbiology and Immunology, The University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Cecile Bustamante-Gomez
- Division of Endocrinology, The University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Qiang Fu
- Division of Endocrinology, The University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Karen E Beenken
- Department of Microbiology and Immunology, The University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Humberto Reyes-Pardo
- Division of Endocrinology, The University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Mark S Smeltzer
- Department of Microbiology and Immunology, The University of Arkansas for Medical Sciences, Little Rock, AR, United States of America; Department of Orthopaedic Surgery, The University of Arkansas for Medical Sciences, Little Rock, AR, United States of America.
| | - Charles A O'Brien
- Division of Endocrinology, The University of Arkansas for Medical Sciences, Little Rock, AR, United States of America; Department of Orthopaedic Surgery, The University of Arkansas for Medical Sciences, Little Rock, AR, United States of America; Central Arkansas Veterans Healthcare System, Little Rock, AR, United States of America.
| |
Collapse
|
19
|
Li Z, Lin J, Wu J, Suo J, Wang Z. The Hippo signalling pathway in bone homeostasis: Under the regulation of mechanics and aging. Cell Prolif 2024; 57:e13652. [PMID: 38700015 PMCID: PMC11471399 DOI: 10.1111/cpr.13652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/04/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
The Hippo signalling pathway is a conserved kinase cascade that orchestrates diverse cellular processes, such as proliferation, apoptosis, lineage commitment and stemness. With the onset of society ages, research on skeletal aging-mechanics-bone homeostasis has exploded. In recent years, aging and mechanical force in the skeletal system have gained groundbreaking research progress. Under the regulation of mechanics and aging, the Hippo signalling pathway has a crucial role in the development and homeostasis of bone. We synthesize the current knowledge on the role of the Hippo signalling pathway, particularly its downstream effectors yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), in bone homeostasis. We discuss the regulation of the lineage specification and function of different skeletal cell types by the Hippo signalling pathway. The interactions of the Hippo signalling pathway with other pathways, such as Wnt, transforming growth factor beta and nuclear factor kappa-B, are also mentioned because of their importance for modulating bone homeostasis. Furthermore, YAP/TAZ have been extensively studied as mechanotransducers. Due to space limitations, we focus on reviewing how mechanical forces and aging influence cell fate, communications and homeostasis through a dysregulated Hippo signalling pathway.
Collapse
Affiliation(s)
- Zhengda Li
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Jing'an District Central HospitalFudan UniversityShanghaiChina
| | - Junqing Lin
- Institute of Microsurgery on Extremities, and Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine ShanghaiShanghaiChina
| | - Jing Wu
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Jing'an District Central HospitalFudan UniversityShanghaiChina
| | - Jinlong Suo
- Institute of Microsurgery on Extremities, and Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine ShanghaiShanghaiChina
| | - Zuoyun Wang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Jing'an District Central HospitalFudan UniversityShanghaiChina
| |
Collapse
|
20
|
Nestor MS, Bhupalam V, Awad N, Hetzel JD. The Therapeutic Role of Genistein in Perimenopausal and Postmenopausal Women. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2024; 17:45-53. [PMID: 39445324 PMCID: PMC11495164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Objective We sought to review the biology and clinical benefits of genistein, a plant-derived isoflavone with emphasis on perimenopausal and postmenopausal women. The focus is on assessing its impact on skin health and aesthetics as well as bone density and cardiovascular and metabolic functions. Methods This narrative review used PubMed to collect studies relating to the biology and clinical effects of genistein on postmenopausal signs and symptoms, including bone density loss, metabolic issues and symptoms, and skin aging. Articles were selected based on relevance to the scope of genistein's influence on estrogen receptors and their downstream effects. This review included in vitro, in vivo, animal, and human studies. Results According to the current literature, genistein demonstrates efficacy in mitigating menopausal signs and symptoms such as hot flashes, bone density loss and rate of osteoporosis, and skin aging. It shows a protective effect against cardiovascular diseases by improving lipid profiles, weight changes, and reducing low-density lipoprotein cholesterol. It also displays benefits in increasing bone mineral density but has not displayed the side effects commonly associated with estrogen replacement. Regarding skin health, genistein appears to enhance photoprotection, wound healing, elasticity, and hydration, inhibits skin cancer, and reduces wrinkles. Conclusion Genistein acts as a selective estrogen receptor modulator (SERM) with benefits across a spectrum of menopausal signs and symptoms, presenting a viable alternative to estrogen replacement in perimenopausal and postmenopausal women. Its utility extends to improving cardiovascular health, bone density, and skin quality, making it a comprehensive treatment option for peri and postmenopausal women.
Collapse
Affiliation(s)
- Mark S. Nestor
- All authors are with the Center for Clinical and Cosmetic Research in Aventura, Florida
- Dr. Nestor is additionally with the Department of Dermatology and Cutaneous Surgery at the University of Miami Miller School of Medicine in Miami, Florida and the Department of Surgery, Division of Plastic Surgery at the University of Miami Miller School of Medicine in Miami, Florida
| | - Vishnu Bhupalam
- All authors are with the Center for Clinical and Cosmetic Research in Aventura, Florida
| | - Nardin Awad
- All authors are with the Center for Clinical and Cosmetic Research in Aventura, Florida
| | - John D. Hetzel
- All authors are with the Center for Clinical and Cosmetic Research in Aventura, Florida
| |
Collapse
|
21
|
Geers J, Bing R, Pawade TA, Doris MK, Daghem M, Fletcher AJ, White AC, Forsyth L, Evans E, Kwieciński J, Williams MC, van Beek EJR, Kwak S, Peeters FE, Tzolos E, Slomka PJ, Lucatelli C, Ralston SH, Prendergast B, Newby DE, Dweck MR. Effect of Denosumab or Alendronate on Vascular Calcification: Secondary Analysis of SALTIRE2 Randomized Controlled Trial. J Am Heart Assoc 2024; 13:e032571. [PMID: 39248270 PMCID: PMC11935633 DOI: 10.1161/jaha.123.032571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/08/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Patients with osteoporosis demonstrate increased vascular calcification but the effect of osteoporosis treatments on vascular calcification remains unclear. The present study aimed to examine whether coronary or aortic calcification are influenced by denosumab and alendronic acid treatment. METHODS AND RESULTS In a double-blind randomized controlled SALTIRE2 (Study Investigating the Effect of Drugs Used to Treat Osteoporosis on the Progression of Calcific Aortic Stenosis) trial, patients with aortic stenosis were randomized 2:1:2:1 to denosumab, placebo injection, alendronic acid, or placebo capsule. Participants underwent serial imaging with computed tomography and 18F-sodium fluoride positron emission tomography for the assessment of vascular calcium burden and calcification activity, respectively. We report the prespecified secondary analyses of 24-month change in coronary calcium score, and 12-month changes in thoracic aorta calcium score, coronary and aortic 18F-sodium fluoride activity. One hundred fifty patients with aortic stenosis (72±8 years; 21% female) were randomized to denosumab (n=49), alendronic acid (n=51), and placebo (injection n=25, capsule n=25). There were no differences in change in coronary calcium scores between placebo (16 [-64 to 148] Agatston units) and either denosumab (94 [0-212] Agatston units, P=0.24) or alendronic acid (34 [-62 to 134], P=0.99). There were no differences in change in thoracic aorta calcium scores between placebo (132 [22-512] Agatston units) and either denosumab (118 [11-340], P=0.75) or alendronic acid (116 [26-498] Agatston units, P=0.62). There were no differences in changes in coronary or aortic 18F-sodium fluoride activity between treatment groups. CONCLUSIONS Neither alendronic acid nor denosumab are associated with changes in the activity or progression of coronary or aortic calcification. Osteoporosis treatments do not appear to have major impact on vascular calcification of atherosclerosis. REGISTRATION https://www.clinicaltrials.gov; Unique identifier: NCT02132026.
Collapse
Affiliation(s)
- Jolien Geers
- BHF Centre for Cardiovascular ScienceUniversity of EdinburghEdinburghUK
- Department of CardiologyUniversitair Ziekenhuis Brussel (UZ Brussel)Vrije Universiteit Brussel (VUB)BrusselsBelgium
| | - Rong Bing
- BHF Centre for Cardiovascular ScienceUniversity of EdinburghEdinburghUK
| | - Tania A. Pawade
- BHF Centre for Cardiovascular ScienceUniversity of EdinburghEdinburghUK
| | - Mhairi K. Doris
- BHF Centre for Cardiovascular ScienceUniversity of EdinburghEdinburghUK
| | - Marwa Daghem
- BHF Centre for Cardiovascular ScienceUniversity of EdinburghEdinburghUK
| | - Alexander J. Fletcher
- BHF Centre for Cardiovascular ScienceUniversity of EdinburghEdinburghUK
- Department of Child HealthUniversity of GlasgowGlasgowUK
| | - Audrey C. White
- BHF Centre for Cardiovascular ScienceUniversity of EdinburghEdinburghUK
| | - Laura Forsyth
- Edinburgh Clinical Trials UnitUniversity of EdinburghEdinburghUK
| | - Emily Evans
- Edinburgh Clinical Research FacilityUniversity of EdinburghEdinburghUK
| | - Jacek Kwieciński
- Department of Interventional Cardiology and AngiologyInstitute of CardiologyWarsawPoland
| | - Michelle C. Williams
- BHF Centre for Cardiovascular ScienceUniversity of EdinburghEdinburghUK
- Edinburgh ImagingUniversity of EdinburghEdinburghUK
| | - Edwin J. R. van Beek
- BHF Centre for Cardiovascular ScienceUniversity of EdinburghEdinburghUK
- Edinburgh ImagingUniversity of EdinburghEdinburghUK
| | - Soongu Kwak
- Department of Internal MedicineSeoul National University HospitalSeoulSouth Korea
| | | | - Evangelos Tzolos
- BHF Centre for Cardiovascular ScienceUniversity of EdinburghEdinburghUK
| | - Piotr J Slomka
- Departments of Biomedical Sciences and MedicineCedars‐Sinai Medical CenterBiomedical Imaging Research InstituteLos AngelesCAUSA
| | | | - Stuart H. Ralston
- Institute of Genetics and Molecular MedicineUniversity of EdinburghUK
| | | | - David E. Newby
- BHF Centre for Cardiovascular ScienceUniversity of EdinburghEdinburghUK
| | - Marc R. Dweck
- BHF Centre for Cardiovascular ScienceUniversity of EdinburghEdinburghUK
| |
Collapse
|
22
|
Diab DL, Watts NB. The use of denosumab in osteoporosis - an update on efficacy and drug safety. Expert Opin Drug Saf 2024; 23:1069-1077. [PMID: 39262109 DOI: 10.1080/14740338.2024.2386365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/03/2024] [Indexed: 09/13/2024]
Abstract
INTRODUCTION Denosumab (Prolia) is a fully human monoclonal antibody against the receptor activator of the nuclear factor kappaB ligand. It is a potent antiresorptive agent that reduces osteoclastogenesis. AREAS COVERED Denosumab has been shown to improve bone mineral density and reduce the incidence of new fractures in postmenopausal women and men. It is also used in the treatment of glucocorticoid-induced osteoporosis, as well as for the prevention of bone loss and reduction of fracture risk in men receiving androgen deprivation therapy for non-metastatic prostate cancer and women receiving adjuvant aromatase inhibitor therapy for breast cancer. Initial safety concerns included infections, cancer, skin reactions, cardiovascular disease, hypocalcemia, osteonecrosis of the jaw, and atypical femur fractures; however, further study and experience provide reassurance on these issues. Anecdotal reports have raised concerns about an increased risk of multiple vertebral fractures following discontinuation of denosumab. EXPERT OPINION Although bisphosphonates are often selected as initial therapy for osteoporosis, denosumab may be an appropriate initial therapy in patients at high risk for fracture, including older patients who have difficulty with the dosing requirements of oral bisphosphonates, as well as patients who are intolerant of, unresponsive to, or have contraindications to other therapies. Additional data is needed to address questions regarding treatment duration and discontinuation.
Collapse
Affiliation(s)
- Dima L Diab
- College of Medicine, Cincinnati VA Medical Center, Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati, Cincinnati, OH, USA
| | - Nelson B Watts
- Mercy Health Osteoporosis and Bone Health Services, Cincinnati, OH, USA
| |
Collapse
|
23
|
Monti F, Perazza F, Leoni L, Stefanini B, Ferri S, Tovoli F, Zavatta G, Piscaglia F, Petroni ML, Ravaioli F. RANK-RANKL-OPG Axis in MASLD: Current Evidence Linking Bone and Liver Diseases and Future Perspectives. Int J Mol Sci 2024; 25:9193. [PMID: 39273141 PMCID: PMC11395242 DOI: 10.3390/ijms25179193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD)-and its worse form, metabolic-associated steatohepatitis (MASH), characterised by inflammation and liver damage-corresponds to the liver's involvement in metabolic syndrome, which constitutes an economic burden for healthcare systems. However, the biomolecular pathways that contribute to steatotic liver disease are not completely clear. Abnormalities of bone metabolism are frequent in people affected by metabolic liver disease, with reduced bone density and an increased risk of fracture. Receptor activator of NF-κB (RANK), receptor activator of NF-κB ligand (RANKL), and osteoprotegerin(OPG) are critical regulators of bone metabolism, performing pleiotropic effects, and may have potential involvement in metabolic disorders like MASLD, resulting in a topic of great interest and intrigue. This narrative review aims to investigate this potential role and its implications in MASLD development and progression and in hepatocellular carcinoma, which represents its worst complication.
Collapse
Affiliation(s)
- Federico Monti
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.M.); (F.P.); (B.S.); (F.T.); (G.Z.); (F.P.); (M.L.P.)
| | - Federica Perazza
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.M.); (F.P.); (B.S.); (F.T.); (G.Z.); (F.P.); (M.L.P.)
| | - Laura Leoni
- Department of Dietetics and Clinical Nutrition, Maggiore-Bellaria Hospital, Azienda Unità Sanitaria Locale (AUSL), 40138 Bologna, Italy;
| | - Bernardo Stefanini
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.M.); (F.P.); (B.S.); (F.T.); (G.Z.); (F.P.); (M.L.P.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Silvia Ferri
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Francesco Tovoli
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.M.); (F.P.); (B.S.); (F.T.); (G.Z.); (F.P.); (M.L.P.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Guido Zavatta
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.M.); (F.P.); (B.S.); (F.T.); (G.Z.); (F.P.); (M.L.P.)
- Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Fabio Piscaglia
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.M.); (F.P.); (B.S.); (F.T.); (G.Z.); (F.P.); (M.L.P.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Maria Letizia Petroni
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.M.); (F.P.); (B.S.); (F.T.); (G.Z.); (F.P.); (M.L.P.)
- Unit of Clinical Nutrition and Metabolism, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Federico Ravaioli
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.M.); (F.P.); (B.S.); (F.T.); (G.Z.); (F.P.); (M.L.P.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| |
Collapse
|
24
|
Devoy EJ, Jabari E, Kotsanos G, Choe RH, Fisher JP. An Exploration of the Role of Osteoclast Lineage Cells in Bone Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 39041616 DOI: 10.1089/ten.teb.2024.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Bone defects because of age, trauma, and surgery, which are exacerbated by medication side effects and common diseases such as osteoporosis, diabetes, and rheumatoid arthritis, are a problem of epidemic scale. The present clinical standard for treating these defects includes autografts and allografts. Although both treatments can promote robust regenerative outcomes, they fail to strike a desirable balance of availability, side effect profile, consistent regenerative efficacy, and affordability. This difficulty has contributed to the rise of bone tissue engineering (BTE) as a potential avenue through which enhanced bone regeneration could be delivered. BTE is founded upon a paradigm of using biomaterials, bioactive factors, osteoblast lineage cells (ObLCs), and vascularization to cue deficient bone tissue into a state of regeneration. Despite promising preclinical results, BTE has had modest success in being translated into the clinical setting. One barrier has been the simplicity of its paradigm relative to the complexity of biological bone. Therefore, this paradigm must be critically examined and expanded to better account for this complexity. One potential avenue for this is a more detailed consideration of osteoclast lineage cells (OcLCs). Although these cells ostensibly oppose ObLCs and bone regeneration through their resorptive functions, a myriad of investigations have shed light on their potential to influence bone equilibrium in more complex ways through their interactions with both ObLCs and bone matrix. Most BTE research has not systematically evaluated their influence. Yet contrary to expectations associated with the paradigm, a selection of BTE investigations has demonstrated that this influence can enhance bone regeneration in certain contexts. In addition, much work has elucidated the role of many controllable scaffold parameters in both inhibiting and stimulating the activity of OcLCs in parallel to bone regeneration. Therefore, this review aims to detail and explore the implications of OcLCs in BTE and how they can be leveraged to improve upon the existing BTE paradigm.
Collapse
Affiliation(s)
- Eoin J Devoy
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Erfan Jabari
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - George Kotsanos
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Robert H Choe
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
25
|
Zhou S, Wen H, Wang B, Guan S, Fang X. Serum levels of soluble receptor activator for nuclear factor kB ligand play a crucial role in the association of osteoprotegerin with coronary artery disease. Exp Ther Med 2024; 28:325. [PMID: 38979019 PMCID: PMC11229391 DOI: 10.3892/etm.2024.12614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/08/2024] [Indexed: 07/10/2024] Open
Abstract
Osteoprotegerin (OPG) is a soluble decoy receptor for receptor activator of nuclear factor kB ligand (RANKL), and is implicated in the pathogenesis of atherosclerosis. The aim of the present study was to examine the hypothesis that serum OPG concentrations are increased in patients with stable coronary artery disease (CAD) at different serum levels of soluble RANKL (sRANKL). The study used a case-control design in which consecutively hospitalized individuals were recruited. Fasting blood samples were taken upon admission for serum testing. Participants with previously diagnosed CAD that was asymptomatic or had controlled symptoms constituted the stable CAD group, whereas patients with negative coronary computed tomography angiography results constituted the control non-CAD group. Exclusion criteria included recent acute coronary syndrome, severe heart failure, CAD-complicating autoimmune, blood or thyroid diseases, cancer, elevated temperature with or without infection, severe liver or kidney dysfunction, abnormal calcium metabolism, recent surgery and trauma history. A total of 118 individuals were included in the study. Smoothed plots generated using the recursive method and multivariate models showed that the incidence of stable CAD increased with serum OPG level up to the turning point of 18 pg/ml. This trend was observed at both high [odds ratio (OR), 1.61; 95% confidence interval (CI), 1.04-2.50; P=0.032) and low sRANKL concentrations (OR, 1.52; 95% CI, 1.06-2.17; P=0.022) after adjustment for cardiovascular risk factors. In conclusion, serum OPG levels ≤18 pg/ml are positively associated with stable CAD, regardless of sRANKL levels. In addition, at the same serum OPG level, higher sRANKL levels are associated with a greater incidence of stable CAD compared with lower sRANKL levels. This study identified the relationship between OPG, sRANKL, and stable CAD, and established the reference range for future clinical use.
Collapse
Affiliation(s)
- Shaoqiong Zhou
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hui Wen
- Department of General Practice, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Bin Wang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Siming Guan
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xin Fang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
26
|
Gheorghe SR, Crăciun AM, Ilyés T, Tisa IB, Sur L, Lupan I, Samasca G, Silaghi CN. Converging Mechanisms of Vascular and Cartilaginous Calcification. BIOLOGY 2024; 13:565. [PMID: 39194503 DOI: 10.3390/biology13080565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Physiological calcification occurs in bones and epiphyseal cartilage as they grow, whereas ectopic calcification occurs in blood vessels, cartilage, and soft tissues. Although it was formerly thought to be a passive and degenerative process associated with aging, ectopic calcification has been identified as an active cell-mediated process resembling osteogenesis, and an increasing number of studies have provided evidence for this paradigm shift. A significant association between vascular calcification and cardiovascular risk has been demonstrated by various studies, which have shown that arterial calcification has predictive value for future coronary events. With respect to cartilaginous calcification, calcium phosphate or hydroxyapatite crystals can form asymptomatic deposits in joints or periarticular tissues, contributing to the pathophysiology of osteoarthritis, rheumatoid arthritis, ankylosing spondylitis, tendinitis, and bursitis. The risk factors and sequence of events that initiate ectopic calcification, as well as the mechanisms that prevent the development of this pathology, are still topics of debate. Consequently, in this review, we focus on the nexus of the mechanisms underlying vascular and cartilaginous calcifications, trying to circumscribe the similarities and disparities between them to provide more clarity in this regard.
Collapse
Affiliation(s)
- Simona R Gheorghe
- Department of Medical Biochemistry, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Alexandra M Crăciun
- Department of Medical Biochemistry, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Tamás Ilyés
- Department of Medical Biochemistry, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Ioana Badiu Tisa
- Department of Pediatrics III, Iuliu Hatieganu University of Medicine and Pharmacy, 400217 Cluj-Napoca, Romania
| | - Lucia Sur
- Department of Pediatrics I, Iuliu Hatieganu University of Medicine and Pharmacy, 400370 Cluj-Napoca, Romania
| | - Iulia Lupan
- Department of Molecular Biology, Babes-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Gabriel Samasca
- Department of Immunology, Iuliu Hatieganu University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania
| | - Ciprian N Silaghi
- Department of Medical Biochemistry, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| |
Collapse
|
27
|
Cavalcanti de Araújo PH, Cezine MER, Vulczak A, Vieira LC, Matsuo FS, Remoto JM, Santos ADR, Miyabara EH, Alberici LC, Osako MK. RANKL signaling drives skeletal muscle into the oxidative profile. J Bone Miner Res 2024; 39:753-764. [PMID: 38619281 DOI: 10.1093/jbmr/zjae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 03/13/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
The bone-muscle unit refers to the reciprocal regulation between bone and muscle by mechanical interaction and tissue communication via soluble factors. The RANKL stimulation induces mitochondrial biogenesis and increases the oxidative capacity in osteoclasts and adipocytes. RANKL may bind to the membrane bound RANK or to osteoprotegerin (OPG), a decoy receptor that inhibits RANK-RANKL activation. RANK is highly expressed in skeletal muscle, but the contribution of RANKL to healthy skeletal muscle fiber remains elusive. Here we show that RANKL stimulation in C2C12-derived myotubes induced activation of mitochondrial biogenesis pathways as detected by RNA-seq and western blot. RANKL expanded the mitochondrial reticulum, as shown by mitochondrial DNA quantification and MitoTracker staining, and boosted the spare respiratory capacity. Using MEK and MAPK inhibitors, we found that RANKL signals via ERK and p38 to induce mitochondrial biogenesis. The soleus from OPG-/- and OPG+/- mice showed higher respiratory rates compared to C57BL6/J WT mice, which correlates with high serum RANKL levels. RANKL infusion using a mini-osmotic pump in WT mice increased the number of mitochondria, boosted the respiratory rate, increased succinate dehydrogenase activity in skeletal muscle, and improved the fatigue resistance of gastrocnemius. Therefore, our findings reveal a new role of RANKL as an osteokine-like protein that impacts muscle fiber metabolism.
Collapse
Affiliation(s)
- Paulo Henrique Cavalcanti de Araújo
- Laboratory of Cell and Tissue Biology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo 14049-900, Brazil
| | - Maria Eduarda Ramos Cezine
- Laboratory of Cell and Tissue Biology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo 14049-900, Brazil
| | - Anderson Vulczak
- Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirao Preto, São Paulo 14040-903, Brazil
| | - Luiz Carlos Vieira
- Laboratory of Cell and Tissue Biology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo 14049-900, Brazil
| | - Flávia Sayuri Matsuo
- Laboratory of Cell and Tissue Biology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo 14049-900, Brazil
| | - Júlia Maranghetti Remoto
- Laboratory of Cell and Tissue Biology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo 14049-900, Brazil
| | - Audrei Dos Reis Santos
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Elen Haruka Miyabara
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Luciane Carla Alberici
- Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirao Preto, São Paulo 14040-903, Brazil
| | - Mariana Kiomy Osako
- Laboratory of Cell and Tissue Biology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo 14049-900, Brazil
| |
Collapse
|
28
|
Koh NYY, Miszkiewicz JJ, Fac ML, Wee NKY, Sims NA. Preclinical Rodent Models for Human Bone Disease, Including a Focus on Cortical Bone. Endocr Rev 2024; 45:493-520. [PMID: 38315213 PMCID: PMC11244217 DOI: 10.1210/endrev/bnae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/22/2023] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Preclinical models (typically ovariectomized rats and genetically altered mice) have underpinned much of what we know about skeletal biology. They have been pivotal for developing therapies for osteoporosis and monogenic skeletal conditions, including osteogenesis imperfecta, achondroplasia, hypophosphatasia, and craniodysplasias. Further therapeutic advances, particularly to improve cortical strength, require improved understanding and more rigorous use and reporting. We describe here how trabecular and cortical bone structure develop, are maintained, and degenerate with aging in mice, rats, and humans, and how cortical bone structure is changed in some preclinical models of endocrine conditions (eg, postmenopausal osteoporosis, chronic kidney disease, hyperparathyroidism, diabetes). We provide examples of preclinical models used to identify and test current therapies for osteoporosis, and discuss common concerns raised when comparing rodent preclinical models to the human skeleton. We focus especially on cortical bone, because it differs between small and larger mammals in its organizational structure. We discuss mechanisms common to mouse and human controlling cortical bone strength and structure, including recent examples revealing genetic contributors to cortical porosity and osteocyte network configurations during growth, maturity, and aging. We conclude with guidelines for clear reporting on mouse models with a goal for better consistency in the use and interpretation of these models.
Collapse
Affiliation(s)
- Natalie Y Y Koh
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Justyna J Miszkiewicz
- School of Social Science, The University of Queensland, Brisbane, QLD 4072, Australia
- Vertebrate Evolution Development and Ecology, Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
| | - Mary Louise Fac
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Natalie K Y Wee
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Natalie A Sims
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| |
Collapse
|
29
|
Zerlotin R, Oranger A, Pignataro P, Dicarlo M, Sanesi L, Suriano C, Storlino G, Rizzi R, Mestice A, Di Gioia S, Mori G, Grano M, Colaianni G, Colucci S. Irisin prevents trabecular bone damage and tumor invasion in a mouse model of multiple myeloma. JBMR Plus 2024; 8:ziae066. [PMID: 38855797 PMCID: PMC11162589 DOI: 10.1093/jbmrpl/ziae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/29/2024] [Indexed: 06/11/2024] Open
Abstract
Bone disease associated with multiple myeloma (MM) is characterized by osteolytic lesions and pathological fractures, which remain a therapeutic priority despite new drugs improving MM patient survival. Antiresorptive molecules represent the main option for the treatment of MM-associated bone disease (MMBD), whereas osteoanabolic molecules are under investigation. Among these latter, we here focused on the myokine irisin, which is able to enhance bone mass in healthy mice, prevent bone loss in osteoporotic mouse models, and accelerate fracture healing in mice. Therefore, we investigated irisin effect on MMBD in a mouse model of MM induced by intratibial injection of myeloma cells followed by weekly administration of 100 μg/kg of recombinant irisin for 5 wk. By micro-Ct analysis, we demonstrated that irisin improves MM-induced trabecular bone damage by partially preventing the reduction of femur Trabecular Bone Volume/Total Volume (P = .0028), Trabecular Number (P = .0076), Trabecular Fractal Dimension (P = .0044), and increasing Trabecular Separation (P = .0003) in MM mice. In cortical bone, irisin downregulates the expression of Sclerostin, a bone formation inhibitor, and RankL, a pro-osteoclastogenic molecule, while in BM it upregulates Opg, an anti-osteoclastogenic cytokine. We found that in the BM tibia of irisin-treated MM mice, the percentage of MM cells displays a reduction trend, while in the femur it decreases significantly. This is in line with the in vitro reduction of myeloma cell viability after 48 h of irisin stimulation at both 200 and 500 ng/mL and, after 72 h already at 100 ng/mL rec-irisin. These results could be due to irisin ability to downregulate the expression of Notch 3, which is important for cell-to-cell communication in the tumor niche, and Cyclin D1, supporting an inhibitory effect of irisin on MM cell proliferation. Overall, our findings suggest that irisin could be a new promising strategy to counteract MMBD and tumor burden in one shot.
Collapse
Affiliation(s)
- Roberta Zerlotin
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Angela Oranger
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Patrizia Pignataro
- Department of Translational Biomedicine and Neuroscience, University of Bari, 70124 Bari, Italy
| | - Manuela Dicarlo
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Lorenzo Sanesi
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Clelia Suriano
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Giuseppina Storlino
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Rita Rizzi
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Anna Mestice
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Sante Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Maria Grano
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Graziana Colaianni
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Silvia Colucci
- Department of Translational Biomedicine and Neuroscience, University of Bari, 70124 Bari, Italy
| |
Collapse
|
30
|
Dutka M, Garczorz W, Kosowska A, Buczek E, Godek P, Wojakowski W, Francuz T. Osteoprotegerin Is Essential for the Development of Endothelial Dysfunction Induced by Angiotensin II in Mice. Int J Mol Sci 2024; 25:6434. [PMID: 38928140 PMCID: PMC11203749 DOI: 10.3390/ijms25126434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Opinions on the effects of osteoprotegerin (OPG) have evolved over the years from a protein protecting the vasculature from calcification to a cardiovascular risk factor contributing to inflammation within the vascular wall. Nowadays, the link between OPG and angiotensin II (Ang II) appears to be particularly important. In this study, the endothelial function was investigated in OPG-knockout mice (B6.129.S4-OPG, OPG-) and wild-type (C57BL/6J, OPG+) mice under basic conditions and after Ang II exposure by assessing the endothelium-dependent diastolic response of aortic rings to acetylcholine in vitro. A further aim of the study was to compare the effect of Ang II on the expression of cytokines in the aortic wall of both groups of mice. Our study shows that rings from OPG- mice had their normal endothelial function preserved after incubation with Ang II, whereas those from OPG+ mice showed significant endothelial dysfunction. We conclude that the absence of OPG, although associated with a pro-inflammatory cytokine profile in the vascular wall, simultaneously protects against Ang II-induced increases in pro-inflammatory cytokines in the murine vascular wall. Our study also demonstrates that the absence of OPG can result in a decrease in the concentration of pro-inflammatory cytokines in the vascular wall after Ang II exposure. The presence of OPG is therefore crucial for the development of Ang II-induced inflammation in the vascular wall and for the development of Ang II-induced endothelial dysfunction.
Collapse
Affiliation(s)
- Mieczysław Dutka
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biala, 43-309 Bielsko-Biala, Poland
| | - Wojciech Garczorz
- Department of Biochemistry, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland; (W.G.); (A.K.); (T.F.)
| | - Agnieszka Kosowska
- Department of Biochemistry, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland; (W.G.); (A.K.); (T.F.)
| | - Elzbieta Buczek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 30-348 Krakow, Poland;
| | - Piotr Godek
- Department of Cardiology and Structural Heart Disease, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland; (P.G.); (W.W.)
| | - Wojciech Wojakowski
- Department of Cardiology and Structural Heart Disease, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland; (P.G.); (W.W.)
| | - Tomasz Francuz
- Department of Biochemistry, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland; (W.G.); (A.K.); (T.F.)
| |
Collapse
|
31
|
Khan H, Abu-Raisi M, Feasson M, Shaikh F, Saposnik G, Mamdani M, Qadura M. Current Prognostic Biomarkers for Abdominal Aortic Aneurysm: A Comprehensive Scoping Review of the Literature. Biomolecules 2024; 14:661. [PMID: 38927064 PMCID: PMC11201473 DOI: 10.3390/biom14060661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a progressive dilatation of the aorta that can lead to aortic rupture. The pathophysiology of the disease is not well characterized but is known to be caused by the general breakdown of the extracellular matrix within the aortic wall. In this comprehensive literature review, all current research on proteins that have been investigated for their potential prognostic capabilities in patients with AAA was included. A total of 45 proteins were found to be potential prognostic biomarkers for AAA, predicting incidence of AAA, AAA rupture, AAA growth, endoleak, and post-surgical mortality. The 45 proteins fell into the following seven general categories based on their primary function: (1) cardiovascular health, (2) hemostasis, (3) transport proteins, (4) inflammation and immunity, (5) kidney function, (6) cellular structure, (7) and hormones and growth factors. This is the most up-to-date literature review on current prognostic markers for AAA and their functions. This review outlines the wide pathophysiological processes that are implicated in AAA disease progression.
Collapse
Affiliation(s)
- Hamzah Khan
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Li Ka Shing Knowledge Institute, St Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
| | - Mohamed Abu-Raisi
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Li Ka Shing Knowledge Institute, St Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
| | - Manon Feasson
- Li Ka Shing Knowledge Institute, St Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
| | - Farah Shaikh
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Li Ka Shing Knowledge Institute, St Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
| | - Gustavo Saposnik
- Li Ka Shing Knowledge Institute, St Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Muhammad Mamdani
- Li Ka Shing Knowledge Institute, St Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
| | - Mohammad Qadura
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Li Ka Shing Knowledge Institute, St Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
32
|
Bhadouria N, Holguin N. Osteoporosis treatments for intervertebral disc degeneration and back pain: a perspective. JBMR Plus 2024; 8:ziae048. [PMID: 38706880 PMCID: PMC11066806 DOI: 10.1093/jbmrpl/ziae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 05/07/2024] Open
Abstract
Low back pain derived from intervertebral disc (IVD) degeneration is a debilitating spinal condition that, despite its prevalence, does not have any intermediary guidelines for pharmacological treatment between palliative care and invasive surgery. The development of treatments for the IVD is complicated by the variety of resident cell types needed to maintain the regionally distinct structural properties of the IVD that permit the safe, complex motions of the spine. Osteoporosis of the spine increases the risk of vertebral bone fracture that can increase the incidence of back pain. Fortunately, there are a variety of pharmacological treatments for osteoporosis that target osteoblasts, osteoclasts and/or osteocytes to build bone and prevent vertebral fracture. Of particular note, clinical and preclinical studies suggest that commonly prescribed osteoporosis drugs like bisphosphonates, intermittent parathyroid hormone, anti-sclerostin antibody, selective estrogen receptor modulators and anti-receptor activator of nuclear factor-kappa B ligand inhibitor denosumab may also relieve back pain. Here, we cite clinical and preclinical studies and include unpublished data to support the argument that a subset of these therapeutics for osteoporosis may alleviate low back pain by also targeting the IVD.
Collapse
Affiliation(s)
- Neharika Bhadouria
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Nilsson Holguin
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| |
Collapse
|
33
|
Hioki T, Tachi J, Matsushima-Nishiwaki R, Iida H, Kozawa O, Tokuda H. Oncostatin M suppresses bone morphogenetic protein-4-induced osteoprotegerin synthesis in MC3T3-E1 osteoblast-like cells: p70 S6 kinase attenuation. Cell Biochem Funct 2024; 42:e4068. [PMID: 38817105 DOI: 10.1002/cbf.4068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Evidence is accumulating that osteal macrophages, in addition to bone-resorbing osteoclasts and bone-forming osteoblasts, participate vitally in bone remodeling process. Oncostatin M (OSM), an inflammatory cytokine belonging to interleukin-6 superfamily, is recognized as an essential factor secreted by osteal macrophages to orchestrate bone remodeling. Osteoprotegerin (OPG) produced by osteoblasts regulates osteoclastogenesis. We have reported that bone morphogenetic protein-4 (BMP-4) stimulates OPG synthesis in MC3T3-E1 osteoblast-like cells, and that SMAD1/5/8(9), p38 mitogen-activated protein kinase (MAPK), and p70 S6 kinase are involved in the OPG synthesis. The present study aims to investigate the effect of OSM on the synthesis of OPG stimulated by BMP-4 in osteoblasts. OSM suppressed the release and the mRNA expression of OPG upregulated by BMP-4 in MC3T3-E1 cells. Neither the BMP-4-induced phosphorylation of SMAD1/5/9 nor that of p38 MAPK was affected by OSM. On the other hand, the phosphorylation of p70 S6 kinase stimulated by BMP-4 was considerably suppressed by OSM. These results strongly suggest that OSM suppresses the BMP-4-stimulated OPG synthesis via inhibition of the p70 S6 kinase-mediated pathway in osteoblast-like cells.
Collapse
Affiliation(s)
- Tomoyuki Hioki
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Dermatology, Central Japan International Medical Center, Minokamo, Japan
- Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Junko Tachi
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Rie Matsushima-Nishiwaki
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Hiroki Iida
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Haruhiko Tokuda
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
- Department of Clinical Laboratory, Hospital, National Center for Geriatrics and Gerontology, Obu, Japan
| |
Collapse
|
34
|
Pang L, Lin H, Wei X, Wei W, Lan Y. Prognostic effect of osteoprotegerin in patients with ischemic stroke: A systematic review and meta-analysis. PLoS One 2024; 19:e0303832. [PMID: 38820283 PMCID: PMC11142426 DOI: 10.1371/journal.pone.0303832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/01/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Osteoprotegerin (OPG) is supposed to participate in the development of atherosclerosis and cardio-cerebrovascular disease. However, the results of research on relationship between OPG and ischemic stroke (IS) are controversial. Therefore, we carried out the first systematic review and meta-analysis to evaluate prognostic effect of osteoprotegerin in patients with IS. METHODS We comprehensively searched databases of PubMed, Embase, and the Cochrane Library through 21 August 2023 to identify observational studies that evaluated effect of OPG on poor functional outcome (modified Rankin Scale [mRS] Score of 3-6) and mortality in patients with IS. Adjusted odds ratios (aOR) with a 95% confidence interval (CI) of each included study were used as much as possible to assess the pooled effect. RESULTS Five studies that enrolled 4,506 patients in total fulfilled our inclusion criteria. Three studies were included in the pooled analysis for each endpoint since one of the included studies had provided data on poor functional outcome as well as mortality. OPG was neither associated with poor functional outcome (aOR 1.29, 95% CI 0.90-1.85) nor with mortality (aOR 1.57, 95% CI 0.90-2.74) in patients with IS. CONCLUSIONS There is insufficient evidence to demonstrate the correlation between OPG and mortality or poor functional outcome in IS patients. OPG cannot be applied to predict worse neurological function in IS patients based on the current evidence.
Collapse
Affiliation(s)
- Linlin Pang
- Department of Neurology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Hongyu Lin
- Department of Neurology, Red Cross Hospital of Yulin City, Yulin, Guangxi Zhuang Autonomous Region, China
| | - Xinxian Wei
- Department of Neurology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Wenxin Wei
- Department of Neurology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yu Lan
- Department of Neurology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
35
|
Fernández-Villabrille S, Martín-Vírgala J, Martín-Carro B, Baena-Huerta F, González-García N, Gil-Peña H, Rodríguez-García M, Fernández-Gómez JM, Fernández-Martín JL, Alonso-Montes C, Naves-Díaz M, Carrillo-López N, Panizo S. RANKL, but Not R-Spondins, Is Involved in Vascular Smooth Muscle Cell Calcification through LGR4 Interaction. Int J Mol Sci 2024; 25:5735. [PMID: 38891922 PMCID: PMC11172097 DOI: 10.3390/ijms25115735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Vascular calcification has a global health impact that is closely linked to bone loss. The Receptor Activator of Nuclear Factor Kappa B (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system, fundamental for bone metabolism, also plays an important role in vascular calcification. The Leucine-rich repeat-containing G-protein-coupled receptor 4 (LGR4), a novel receptor for RANKL, regulates bone remodeling, and it appears to be involved in vascular calcification. Besides RANKL, LGR4 interacts with R-spondins (RSPOs), which are known for their roles in bone but are less understood in vascular calcification. Studies were conducted in rats with chronic renal failure fed normal or high phosphorus diets for 18 weeks, with and without control of circulating parathormone (PTH) levels, resulting in different degrees of aortic calcification. Additionally, vascular smooth muscle cells (VSMCs) were cultured under non-calcifying (1 mM phosphate) and calcifying (3 mM phosphate) media with different concentrations of PTH. To explore the role of RANKL in VSMC calcification, increasing concentrations of soluble RANKL were added to non-calcifying and calcifying media. The effects mediated by RANKL binding to its receptor LGR4 were investigated by silencing the LGR4 receptor in VSMCs. Furthermore, the gene expression of the RANK/RANKL/OPG system and the ligands of LGR4 was assessed in human epigastric arteries obtained from kidney transplant recipients with calcification scores (Kauppila Index). Increased aortic calcium in rats coincided with elevated systolic blood pressure, upregulated Lgr4 and Rankl gene expression, downregulated Opg gene expression, and higher serum RANKL/OPG ratio without changes in Rspos gene expression. Elevated phosphate in vitro increased calcium content and expression of Rankl and Lgr4 while reducing Opg. Elevated PTH in the presence of high phosphate exacerbated the increase in calcium content. No changes in Rspos were observed under the conditions employed. The addition of soluble RANKL to VSMCs induced genotypic differentiation and calcification, partly prevented by LGR4 silencing. In the epigastric arteries of individuals presenting vascular calcification, the gene expression of RANKL was higher. While RSPOs show minimal impact on VSMC calcification, RANKL, interacting with LGR4, drives osteogenic differentiation in VSMCs, unveiling a novel mechanism beyond RANKL-RANK binding.
Collapse
MESH Headings
- RANK Ligand/metabolism
- RANK Ligand/genetics
- Animals
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Rats
- Humans
- Male
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Osteoprotegerin/metabolism
- Osteoprotegerin/genetics
- Parathyroid Hormone/metabolism
- Cells, Cultured
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Sara Fernández-Villabrille
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 33011 Oviedo, Spain
| | - Julia Martín-Vírgala
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 33011 Oviedo, Spain
| | - Beatriz Martín-Carro
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 33011 Oviedo, Spain
| | - Francisco Baena-Huerta
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 33011 Oviedo, Spain
| | - Nerea González-García
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 33011 Oviedo, Spain
| | - Helena Gil-Peña
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 33011 Oviedo, Spain
- AGC de la Infancia y Adolescencia, Hospital Universitario Central de Asturias (HUCA), Instituto de Investigación Sanitaria del Princiado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Minerva Rodríguez-García
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 33011 Oviedo, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | | | - José Luis Fernández-Martín
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 33011 Oviedo, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Department of Medicine, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Cristina Alonso-Montes
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 33011 Oviedo, Spain
| | - Manuel Naves-Díaz
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 33011 Oviedo, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Department of Medicine, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Natalia Carrillo-López
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 33011 Oviedo, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Department of Medicine, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Sara Panizo
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 33011 Oviedo, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Department of Medicine, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
36
|
Liang W, Wei T, Hu L, Chen M, Tong L, Zhou W, Duan X, Zhao X, Zhou W, Jiang Q, Xiao G, Zou W, Chen D, Zou Z, Bai X. An integrated multi-omics analysis reveals osteokines involved in global regulation. Cell Metab 2024; 36:1144-1163.e7. [PMID: 38574738 DOI: 10.1016/j.cmet.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/22/2024] [Accepted: 03/10/2024] [Indexed: 04/06/2024]
Abstract
Bone secretory proteins, termed osteokines, regulate bone metabolism and whole-body homeostasis. However, fundamental questions as to what the bona fide osteokines and their cellular sources are and how they are regulated remain unclear. In this study, we analyzed bone and extraskeletal tissues, osteoblast (OB) conditioned media, bone marrow supernatant (BMS), and serum, for basal osteokines and those responsive to aging and mechanical loading/unloading. We identified 375 candidate osteokines and their changes in response to aging and mechanical dynamics by integrating data from RNA-seq, scRNA-seq, and proteomic approaches. Furthermore, we analyzed their cellular sources in the bone and inter-organ communication facilitated by them (bone-brain, liver, and aorta). Notably, we discovered that senescent OBs secrete fatty-acid-binding protein 3 to propagate senescence toward vascular smooth muscle cells (VSMCs). Taken together, we identified previously unknown candidate osteokines and established a dynamic regulatory network among them, thus providing valuable resources to further investigate their systemic roles.
Collapse
Affiliation(s)
- Wenquan Liang
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tiantian Wei
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Le Hu
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Meijun Chen
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Liping Tong
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wu Zhou
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xingwei Duan
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaoyang Zhao
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weijie Zhou
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Di Chen
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Shenzhen, China.
| | - Zhipeng Zou
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Xiaochun Bai
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Academy of Orthopedics, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province 510630, China.
| |
Collapse
|
37
|
Carnwath TP, Demel SL, Prestigiacomo CJ. Genetics of ischemic stroke functional outcome. J Neurol 2024; 271:2345-2369. [PMID: 38502340 PMCID: PMC11055934 DOI: 10.1007/s00415-024-12263-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/21/2024]
Abstract
Ischemic stroke, which accounts for 87% of cerebrovascular accidents, is responsible for massive global burden both in terms of economic cost and personal hardship. Many stroke survivors face long-term disability-a phenotype associated with an increasing number of genetic variants. While clinical variables such as stroke severity greatly impact recovery, genetic polymorphisms linked to functional outcome may offer physicians a unique opportunity to deliver personalized care based on their patient's genetic makeup, leading to improved outcomes. A comprehensive catalogue of the variants at play is required for such an approach. In this review, we compile and describe the polymorphisms associated with outcome scores such as modified Rankin Scale and Barthel Index. Our search identified 74 known genetic polymorphisms spread across 48 features associated with various poststroke disability metrics. The known variants span diverse biological systems and are related to inflammation, vascular homeostasis, growth factors, metabolism, the p53 regulatory pathway, and mitochondrial variation. Understanding how these variants influence functional outcome may be helpful in maximizing poststroke recovery.
Collapse
Affiliation(s)
- Troy P Carnwath
- University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | - Stacie L Demel
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Charles J Prestigiacomo
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| |
Collapse
|
38
|
Muratovic D, Atkins GJ, Findlay DM. Is RANKL a potential molecular target in osteoarthritis? Osteoarthritis Cartilage 2024; 32:493-500. [PMID: 38160744 DOI: 10.1016/j.joca.2023.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/09/2023] [Accepted: 10/27/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE Osteoarthritis (OA) is a disease of joints, in which the bone under the articular cartilage undergoes increased remodelling activity. The question is whether a better understanding of the causes and mechanisms of bone remodelling can predict disease-modifying treatments. DESIGN This review summarises the current understanding of the aetiology of OA, with an emphasis on events in the subchondral bone (SCB), and the cells and cytokines involved, to seek an answer to this question. RESULTS SCB remodelling across OA changes the microstructure of the SCB, which alters the load-bearing properties of the joint and seems to have an important role in the initiation and progression of OA. Bone remodelling is tightly controlled by numerous cytokines, of which Receptor Activator of NFκB ligand (RANKL) and osteoprotegerin are central factors in almost all known bone conditions. In terms of finding therapeutic options for OA, an important question is whether controlling the rate of SCB remodelling would be beneficial. The role of RANKL in the pathogenesis and progression of OA and the effect of its neutralisation remain to be clarified. CONCLUSIONS This review further makes the case for SCB remodelling as important in OA and for additional study of RANKL in OA, both its pathophysiological role and its potential as an OA disease target.
Collapse
Affiliation(s)
- Dzenita Muratovic
- Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia 5000, Australia; Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia 5000, Australia.
| | - Gerald J Atkins
- Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia 5000, Australia; Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia 5000, Australia.
| | - David M Findlay
- Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
39
|
Fan Y, Li Q, Liu Y, Miao J, Zhao T, Cai J, Liu M, Cao J, Xu H, Wei L, Li M, Shen C. Sex- and Age-Specific Prevalence of Osteopenia and Osteoporosis: Sampling Survey. JMIR Public Health Surveill 2024; 10:e48947. [PMID: 38578689 PMCID: PMC11031699 DOI: 10.2196/48947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 12/21/2023] [Accepted: 03/01/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Osteopenia and osteoporosis are posing a long-term influence on the aging population's health contributing to a higher risk of mortality, loss of autonomy, hospitalization, and huge health system costs and social burden. Therefore, more pertinent data are needed to demonstrate the current state of osteoporosis. OBJECTIVE This sampling survey seeks to assess the trends in the prevalence of osteopenia and osteoporosis in a Chinese Han population. METHODS A community-based cross-sectional study involving 16,377 participants used a multistage sampling method. Bone mineral density was measured using the quantitative ultrasonic densitometry. Student t test and Mann-Whitney U test were used to test the difference between normally and nonnormally distributed quantitative variables between male and female participants. A chi-square (χ2) test was used to compare categorized variables. Stratified analysis was conducted to describe the prevalence rates of osteoporosis (T score ≤-2.5) and osteopenia (T score -2.5 to -1.0) across age, sex, calcium intake, and menopause. A direct standardization method was used to calculate the age-standardized prevalence rates of osteoporosis and osteopenia. T-score was further categorized into quartiles (T1-T4) by age- and sex-specified groups. RESULTS The prevalence rates of osteopenia and osteoporosis were 40.5% (6633/16,377) and 7.93% (1299/16,377), respectively, and the age-standardized prevalence rates were 27.32% (287,877,129.4/1,053,861,940) and 3.51% (36,974,582.3/1,053,861,940), respectively. There was an increase in osteopenia and osteoporosis prevalence from 21.47% (120/559) to 56.23% (754/1341) and 0.89% (5/559) to 17.23% (231/1341), respectively, as age increased from 18 years to 75 years old. The prevalence rates of osteopenia and osteoporosis were significantly higher in female participants (4238/9645, 43.94% and 1130/9645, 11.72%) than in male participants (2395/6732, 35.58% and 169/6732, 2.51%; P<.001), and in postmenopausal female participants (3638/7493, 48.55% and 1053/7493, 14.05%) than in premenopausal female participants (538/2026, 26.55% and 53/2026, 2.62%; P<.001). In addition, female participants with a history of calcium intake had a lower osteoporosis prevalence rate than female participants without any history of calcium intake in all age groups (P=.004). From low quartile to high quartile of T-score, the prevalence of diabetes mellitus (752/4037, 18.63%; 779/4029, 19.33%; 769/3894, 19.75%; and 869/3879, 22.4%) and dyslipidemia (2228/4036, 55.2%; 2304/4027, 57.21%; 2306/3891, 59.26%; and 2379/3878, 61.35%) were linearly increased (P<.001), while the prevalence of cancer (112/4037, 2.77%; 110/4029, 2.73%; 103/3894, 2.65%; and 77/3879, 1.99%) was decreased (P=.03). CONCLUSIONS Our data imply that as people age, osteopenia and osteoporosis are more common in females than in males, particularly in postmenopausal females than in premenopausal females, and bone mineral density significantly affects the prevalence of chronic diseases. These findings offer information that can be applied to intervention programs meant to prevent or lessen the burden of osteoporosis in China.
Collapse
Affiliation(s)
- Yao Fan
- Division of Clinical Epidemiology, Affiliated Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Qun Li
- Department of Nutrition, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Liu
- Institute for the Prevention and Control of Chronic Non-communicable Diseases, Center for Disease Control and Prevention of Jurong City, Jurong, China
| | - Jing Miao
- Department of Clinical Nutrition, Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Zhao
- Department of Nutrition, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinxin Cai
- Department of Nutrition, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Liu
- Institute for the Prevention and Control of Chronic Non-communicable Diseases, Center for Disease Control and Prevention of Jurong City, Jurong, China
| | - Jun Cao
- Institute for the Prevention and Control of Chronic Non-communicable Diseases, Center for Disease Control and Prevention of Jurong City, Jurong, China
| | - Haifeng Xu
- Institute for the Prevention and Control of Chronic Non-communicable Diseases, Center for Disease Control and Prevention of Jurong City, Jurong, China
| | - Lai Wei
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mengxia Li
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chong Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
40
|
Hioki T, Kuroyanagi G, Matsushima-Nishiwaki R, Omura T, Kozawa O, Tokuda H. Gallein but not fluorescein enhances the PGD 2-stimulated synthesis of osteoprotegerin and interleukin-6 in osteoblasts: Amplification of osteoprotegerin/interleukin-6 by gallein. Prostaglandins Leukot Essent Fatty Acids 2024; 203:102639. [PMID: 39270488 DOI: 10.1016/j.plefa.2024.102639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024]
Abstract
Gallein, a small molecule related to fluorescein, is established as an inhibitor of Gβγ subunits to inhibit G protein (Gs) signaling. This agent is providing a potential therapeutic strategy to ameliorate organ dysfunctions especially involved in inflammation, however; the effects on bone metabolism have not yet been clarified. Prostaglandins (PGs) play important roles as autacoids including osteoblasts, and d-type prostanoid (DP) receptor, a member of G protein-coupled receptor specific to PGD2, is expressed on osteoblasts. We previously reported that prostaglandin D2 (PGD2) induces the syntheses of osteoprotegerin (OPG) and interleukin-6 (IL-6), essential factors in bone remodelling process, and p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), and p44/p42 MAPK are involved in the signal transduction of PGD2 in osteoblast-like MC3T3-E1 cells. Thus, we investigated in this study that the effect and the underlying mechanism of gallein, an inhibitor Gβɤ subunits, on the syntheses of OPG and IL-6 induced by PGD2 in these cells. The cultured cells were treated with gallein or fluorescein, a structurally related compound inactive to Gβɤ subunits, and subsequently stimulated with PGD2. Not fluorescein but gallein amplified the PGD2-stimulated releases of OPG and IL-6. Gallein enhanced the PGD2-upregulated mRNA expression levels of OPG and IL-6. Regarding the signaling mechanism, gallein did not affect the PGD2-induced phosphorylation of p38 MAPK, JNK, or p42 MAPK. In conclusion, gallein upregulates the PGD2-stimulated syntheses of OPG and IL-6 by the specific effect to inhibit Gβγ subunits in osteoblasts, but the effect is not exerted at the upstream of p38 MAPK, JNK, or p44/p42 MAPK activation.
Collapse
Affiliation(s)
- Tomoyuki Hioki
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Dermatology, Central Japan International Medical Center, Minokamo 505-8510, Japan; Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| | - Gen Kuroyanagi
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Rie Matsushima-Nishiwaki
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| | - Takuya Omura
- Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| | - Haruhiko Tokuda
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; Department of Clinical Laboratory, Hospital, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan.
| |
Collapse
|
41
|
Fernández-Villabrille S, Martín-Carro B, Martín-Vírgala J, Rodríguez-Santamaria MDM, Baena-Huerta F, Muñoz-Castañeda JR, Fernández-Martín JL, Alonso-Montes C, Naves-Díaz M, Carrillo-López N, Panizo S. Novel Biomarkers of Bone Metabolism. Nutrients 2024; 16:605. [PMID: 38474734 DOI: 10.3390/nu16050605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Bone represents a metabolically active tissue subject to continuous remodeling orchestrated by the dynamic interplay between osteoblasts and osteoclasts. These cellular processes are modulated by a complex interplay of biochemical and mechanical factors, which are instrumental in assessing bone remodeling. This comprehensive evaluation aids in detecting disorders arising from imbalances between bone formation and reabsorption. Osteoporosis, characterized by a reduction in bone mass and strength leading to heightened bone fragility and susceptibility to fractures, is one of the more prevalent chronic diseases. Some epidemiological studies, especially in patients with chronic kidney disease (CKD), have identified an association between osteoporosis and vascular calcification. Notably, low bone mineral density has been linked to an increased incidence of aortic calcification, with shared molecules, mechanisms, and pathways between the two processes. Certain molecules emerging from these shared pathways can serve as biomarkers for bone and mineral metabolism. Detecting and evaluating these alterations early is crucial, requiring the identification of biomarkers that are reliable for early intervention. While traditional biomarkers for bone remodeling and vascular calcification exist, they suffer from limitations such as low specificity, low sensitivity, and conflicting results across studies. In response, efforts are underway to explore new, more specific biomarkers that can detect alterations at earlier stages. The aim of this review is to comprehensively examine some of the emerging biomarkers in mineral metabolism and their correlation with bone mineral density, fracture risk, and vascular calcification as well as their potential use in clinical practice.
Collapse
Affiliation(s)
- Sara Fernández-Villabrille
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Beatriz Martín-Carro
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Julia Martín-Vírgala
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | | | - Francisco Baena-Huerta
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Juan Rafael Muñoz-Castañeda
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
- Nephrology Service, Reina Sofia University Hospital, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Córdoba, 14004 Córdoba, Spain
| | - José Luis Fernández-Martín
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Cristina Alonso-Montes
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Manuel Naves-Díaz
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Natalia Carrillo-López
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Sara Panizo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| |
Collapse
|
42
|
Schneider AH, Taira TM, Públio GA, da Silva Prado D, Donate Yabuta PB, Dos Santos JC, Machado CC, de Souza FFL, Rodrigues Venturini LG, de Oliveira RDR, Cunha TM, Alves-Filho JC, Louzada-Júnior P, Aparecida da Silva T, Fukada SY, Cunha FQ. Neutrophil extracellular traps mediate bone erosion in rheumatoid arthritis by enhancing RANKL-induced osteoclastogenesis. Br J Pharmacol 2024; 181:429-446. [PMID: 37625900 DOI: 10.1111/bph.16227] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/17/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND AND PURPOSE Rheumatoid arthritis (RA) is a chronic autoimmune disease that can cause bone erosion due to increased osteoclastogenesis. Neutrophils involvement in osteoclastogenesis remains uncertain. Given that neutrophil extracellular traps (NETs) can act as inflammatory mediators in rheumatoid arthritis, we investigated the role of NETs in stimulating bone loss by potentiating osteoclastogenesis during arthritis. EXPERIMENTAL APPROACH The level of NETs in synovial fluid from arthritis patients was assessed. Bone loss was evaluated by histology and micro-CT in antigen-induced arthritis (AIA)-induced WT mice treated with DNase or in Padi4-deficient mice (Padi4flox/flox LysMCRE ). The size and function of osteoclasts and the levels of RANKL and osteoprotegerin (OPG) released by osteoblasts that were incubated with NETs were measured. The expression of osteoclastogenic marker genes and protein levels were evaluated by qPCR and western blotting. To assess the participation of TLR4 and TLR9 in osteoclastogenesis, cells from Tlr4-/- and Tlr9-/- mice were cultured with NETs. KEY RESULTS Rheumatoid arthritis patients had higher levels of NETs in synovial fluid than osteoarthritis patients, which correlated with increased levels of RANKL/OPG. Moreover, patients with bone erosion had higher levels of NETs. Inhibiting NETs with DNase or Padi4 deletion alleviated bone loss in arthritic mice. Consistently, NETs enhanced RANKL-induced osteoclastogenesis that was dependent on TLR4 and TLR9 and increased osteoclast resorptive functions in vitro. In addition, NETs stimulated the release of RANKL and inhibited osteoprotegerin in osteoblasts, favouring osteoclastogenesis. CONCLUSIONS AND IMPLICATIONS Inhibiting NETs could be an alternative strategy to reduce bone erosion in arthritis patients.
Collapse
Affiliation(s)
- Ayda Henriques Schneider
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Thaise Mayumi Taira
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Bio-Molecular Sciences, School of Pharmaceutical Science, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Gabriel Azevedo Públio
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Douglas da Silva Prado
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Paula Barbim Donate Yabuta
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Jéssica Cristina Dos Santos
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Neurosciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Caio Cavalcante Machado
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Medicine, Clinical Immunology Division, Medicine Faculty of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Flávio Falcão Lima de Souza
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Medicine, Clinical Immunology Division, Medicine Faculty of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Lucas Gabriel Rodrigues Venturini
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Bio-Molecular Sciences, School of Pharmaceutical Science, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Renê Donizeti Ribeiro de Oliveira
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Medicine, Clinical Immunology Division, Medicine Faculty of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Thiago Mattar Cunha
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - José Carlos Alves-Filho
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Paulo Louzada-Júnior
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Medicine, Clinical Immunology Division, Medicine Faculty of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Tarcília Aparecida da Silva
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Oral Surgery and Pathology, Faculty of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Sandra Yasuyo Fukada
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Bio-Molecular Sciences, School of Pharmaceutical Science, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Fernando Queiróz Cunha
- Center of Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
43
|
Kadoglou NPE, Stasinopoulou M, Velidakis N, Khattab E, Christodoulou E, Gkougkoudi E, Valsami G. The Complex Mechanisms and the Potential Effects of Statins on Vascular Calcification: A Narrative Review. Rev Cardiovasc Med 2024; 25:51. [PMID: 39077343 PMCID: PMC11263155 DOI: 10.31083/j.rcm2502051] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 07/31/2024] Open
Abstract
Vascular calcification (VC) is a complex process of calcium deposition on the arterial wall and atherosclerotic plaques and involves interaction between vascular smooth muscle cells, inflammatory and VC mediators. The latter are independent predictors of cardiovascular morbidity and mortality and potential targets of pharmaceutical therapy. This paper is a narrative review of the complex mechanisms of VC development and in this context the potential anti-atherosclerotic effects of statins. At the initial stages of atherosclerosis VC correlates with atherosclerosis burden and in the long-term with cardiovascular morbidity and mortality. A plethora of animal and clinical studies have proposed statins as the cornerstone of primary and secondary prevention of atherosclerotic cardiovascular disease. Based on coronary computed tomography data, high doses of statins may have negligible or even positive effects on the progression of coronary artery calcification. Growing data support an increase in atherosclerotic plaque calcification in peripheral arteries (e.g., carotids), after long-term, statin-therapy. Despite the paradox of increasing VC, those effects of statins have been associated with higher plaque stability, reducing the risk of consequent adverse events. Statins seem to promote a "favorable" atherosclerotic calcification, suppressing atherosclerotic lesion expansion and their vulnerability. More studies are required to clarify the underlying mechanisms.
Collapse
Affiliation(s)
| | - Marianna Stasinopoulou
- Center of Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | | | - Elina Khattab
- Medical School, University of Cyprus, 2029 Nicosia, Cyprus
| | - Eirini Christodoulou
- Laboratory of Biopharmaceutics-Pharmacokinetics, Department of Pharmacy, School of Health Sciences, National & Kapodistrian University of Athens, 15784 Athens, Greece
| | | | - Georgia Valsami
- Laboratory of Biopharmaceutics-Pharmacokinetics, Department of Pharmacy, School of Health Sciences, National & Kapodistrian University of Athens, 15784 Athens, Greece
| |
Collapse
|
44
|
Kauffenstein G, Martin L, Le Saux O. The Purinergic Nature of Pseudoxanthoma Elasticum. BIOLOGY 2024; 13:74. [PMID: 38392293 PMCID: PMC10886499 DOI: 10.3390/biology13020074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
Pseudoxanthoma Elasticum (PXE) is an inherited disease characterized by elastic fiber calcification in the eyes, the skin and the cardiovascular system. PXE results from mutations in ABCC6 that encodes an ABC transporter primarily expressed in the liver and kidneys. It took nearly 15 years after identifying the gene to better understand the etiology of PXE. ABCC6 function facilitates the efflux of ATP, which is sequentially hydrolyzed by the ectonucleotidases ENPP1 and CD73 into pyrophosphate (PPi) and adenosine, both inhibitors of calcification. PXE, together with General Arterial Calcification of Infancy (GACI caused by ENPP1 mutations) as well as Calcification of Joints and Arteries (CALJA caused by NT5E/CD73 mutations), forms a disease continuum with overlapping phenotypes and shares steps of the same molecular pathway. The explanation of these phenotypes place ABCC6 as an upstream regulator of a purinergic pathway (ABCC6 → ENPP1 → CD73 → TNAP) that notably inhibits mineralization by maintaining a physiological Pi/PPi ratio in connective tissues. Based on a review of the literature and our recent experimental data, we suggest that PXE (and GACI/CALJA) be considered as an authentic "purinergic disease". In this article, we recapitulate the pathobiology of PXE and review molecular and physiological data showing that, beyond PPi deficiency and ectopic calcification, PXE is associated with wide and complex alterations of purinergic systems. Finally, we speculate on the future prospects regarding purinergic signaling and other aspects of this disease.
Collapse
Affiliation(s)
- Gilles Kauffenstein
- UMR INSERM 1260, Regenerative Nanomedicine, University of Strasbourg, 67084 Strasbourg, France
| | - Ludovic Martin
- PXE Consultation Center, MAGEC Nord Reference Center for Rare Skin Diseases, Angers University Hospital, 49000 Angers, France
- MITOVASC-UMR CNRS 6015 INSERM 1083, University of Angers, 49000 Angers, France
| | - Olivier Le Saux
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
45
|
Sabooniha F. Psoriasis, bone and bowel: a comprehensive review and new insights. EXPLORATION OF MUSCULOSKELETAL DISEASES 2024; 2:1-19. [DOI: https:/doi.org/10.37349/emd.2024.00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/01/2023] [Indexed: 01/25/2024]
Abstract
Psoriasis is a chronic immune-mediated disorder affecting about 2% of the population worldwide which is associated with significant morbidity. The disease usually presents as raised, well-demarcated erythematous plaques with adherent silvery scales. Psoriasis can appear at any age but it has two peaks occurring at 15–20 and 55–60 years of age. It affects males and females equally. Despite the multitude of investigations about psoriasis and even development of drugs with satisfactory results, its pathogenesis is not fully understood yet and its course is unpredictable. Various environmental triggers, e.g., obesity, stress and drugs may induce disease in genetically susceptible patients. Although psoriasis was considered primarily as a disease of the skin, more investigations have been revealed its systemic nature. Psoriatic arthritis (PsA) may complicate up to one-third of cases of psoriasis vulgaris (PV). Also, the association between psoriasis and a variety of other immune-mediated disorders such as inflammatory bowel disease (IBD) and celiac disease (CD) has been confirmed in various studies. Moreover, a growing body of evidences indicates that psoriasis shares some common histological and phenotypical properties with the spectrum of osteoimmunological diseases such as Paget’s disease of bone (PDB). Thus, exploring the common molecular and genetic mechanisms underlying psoriasis and related disorders is of paramount importance for better elucidating disease pathogenesis and designing more targeted treatments.
Collapse
|
46
|
Jawich K, Hadakie R, Jamal S, Habeeb R, Al Fahoum S, Ferlin A, De Toni L. Emerging Role of Non-collagenous Bone Proteins as Osteokines in Extraosseous Tissues. Curr Protein Pept Sci 2024; 25:215-225. [PMID: 37937553 DOI: 10.2174/0113892037268414231017074054] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 11/09/2023]
Abstract
Bone is a unique tissue, composed of various types of cells embedded in a calcified extracellular matrix (ECM), whose dynamic structure consists of organic and inorganic compounds produced by bone cells. The main inorganic component is represented by hydroxyapatite, whilst the organic ECM is primarily made up of type I collagen and non-collagenous proteins. These proteins play an important role in bone homeostasis, calcium regulation, and maintenance of the hematopoietic niche. Recent advances in bone biology have highlighted the importance of specific bone proteins, named "osteokines", possessing endocrine functions and exerting effects on nonosseous tissues. Accordingly, osteokines have been found to act as growth factors, cell receptors, and adhesion molecules, thus modifying the view of bone from a static tissue fulfilling mobility to an endocrine organ itself. Since bone is involved in a paracrine and endocrine cross-talk with other tissues, a better understanding of bone secretome and the systemic roles of osteokines is expected to provide benefits in multiple topics: such as identification of novel biomarkers and the development of new therapeutic strategies. The present review discusses in detail the known osseous and extraosseous effects of these proteins and the possible respective clinical and therapeutic significance.
Collapse
Affiliation(s)
- Kenda Jawich
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syrian Arab Republic
- Department of Biochemistry, Faculty of Pharmacy, International University of Science and Technology, Darrah, Syrian Arab Republic
| | - Rana Hadakie
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syrian Arab Republic
| | - Souhaib Jamal
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syrian Arab Republic
| | - Rana Habeeb
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syrian Arab Republic
- Department of Biochemistry, Faculty of Pharmacy, International University of Science and Technology, Darrah, Syrian Arab Republic
| | - Sahar Al Fahoum
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syrian Arab Republic
| | - Alberto Ferlin
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - Luca De Toni
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| |
Collapse
|
47
|
Patnaik R, Riaz S, Sivani BM, Faisal S, Naidoo N, Rizzo M, Banerjee Y. Evaluating the potential of Vitamin D and curcumin to alleviate inflammation and mitigate the progression of osteoarthritis through their effects on human chondrocytes: A proof-of-concept investigation. PLoS One 2023; 18:e0290739. [PMID: 38157375 PMCID: PMC10756552 DOI: 10.1371/journal.pone.0290739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/14/2023] [Indexed: 01/03/2024] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disorder primarily affecting the elderly, characterized by a prominent inflammatory component. The long-term side effects associated with current therapeutic approaches necessitate the development of safer and more efficacious alternatives. Nutraceuticals, such as Vitamin D and curcumin, present promising therapeutic potentials due to their safety, efficacy, and cost-effectiveness. In this study, we utilized a proinflammatory human chondrocyte model of OA to assess the anti-inflammatory properties of Vitamin D and curcumin, with a particular focus on the Protease-Activated Receptor-2 (PAR-2) mediated inflammatory pathway. Employing a robust siRNA approach, we effectively modulated the expression of PAR-2 to understand its role in the inflammatory process. Our results reveal that both Vitamin D and curcumin attenuate the expression of PAR-2, leading to a reduction in the downstream proinflammatory cytokines, such as Tumor Necrosis Factor-alpha (TNF-α), Interleukin 6 (IL-6), and Interleukin 8 (IL-8), implicated in the OA pathogenesis. Concurrently, these compounds suppressed the expression of Receptor Activator of Nuclear Factor kappa-Β Ligand (RANKL) and its receptor RANK, which are associated with PAR-2 mediated TNF-α stimulation. Additionally, Vitamin D and curcumin downregulated the expression of Interferon gamma (IFN-γ), known to elevate RANKL levels, underscoring their potential therapeutic implications in OA. This study, for the first time, provides evidence of the mitigating effect of Vitamin D and curcumin on PAR-2 mediated inflammation, employing an siRNA approach in OA. Thus, our findings pave the way for future research and the development of novel, safer, and more effective therapeutic strategies for managing OA.
Collapse
Affiliation(s)
- Rajashree Patnaik
- College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine, and Health Sciences (MBRU), Dubai, United Arab Emirates
| | - Sumbal Riaz
- College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine, and Health Sciences (MBRU), Dubai, United Arab Emirates
| | - Bala Mohan Sivani
- College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine, and Health Sciences (MBRU), Dubai, United Arab Emirates
| | - Shemima Faisal
- College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine, and Health Sciences (MBRU), Dubai, United Arab Emirates
| | - Nerissa Naidoo
- College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine, and Health Sciences (MBRU), Dubai, United Arab Emirates
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine, and Medical Specialties (Promise), University of Palermo, Palermo, Italy
| | - Yajnavalka Banerjee
- College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine, and Health Sciences (MBRU), Dubai, United Arab Emirates
- Centre for Medical Education, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
48
|
Macrì F, Vigorito I, Castiglione S, Faggiano S, Casaburo M, Fanotti N, Piacentini L, Vigetti D, Vinci MC, Raucci A. High Phosphate-Induced JAK-STAT Signalling Sustains Vascular Smooth Muscle Cell Inflammation and Limits Calcification. Biomolecules 2023; 14:29. [PMID: 38254629 PMCID: PMC10813375 DOI: 10.3390/biom14010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Vascular calcification (VC) is an age-related complication characterised by calcium-phosphate deposition in the arterial wall driven by the osteogenic transformation of vascular smooth muscle cells (VSMCs). The JAK-STAT pathway is an emerging target in inflammation. Considering the relationship between VC and inflammation, we investigated the role of JAK-STAT signalling during VSMC calcification. Human aortic smooth muscle cells (HASMCs) were cultured in high-inorganic phosphate (Pi) medium for up to 7 days; calcium deposition was determined via Alizarin staining and colorimetric assay. Inflammatory factor secretion was evaluated via ELISA and JAK-STAT members' activation using Western blot or immunohistochemistry on HASMCs or calcified aortas of Vitamin D-treated C57BL6/J mice, respectively. The JAK-STAT pathway was blocked by JAK Inhibitor I and Von Kossa staining was used for calcium deposits in murine aortic rings. During Pi-induced calcification, HASMCs released IL-6, IL-8, and MCP-1 and activated JAK1-JAK3 proteins and STAT1. Phospho-STAT1 was detected in murine calcified aortas. Blocking of the JAK-STAT cascade reduced HASMC proliferation and pro-inflammatory factor expression and release while increasing calcium deposition and osteogenic transcription factor RUNX2 expression. Consistently, JAK-STAT pathway inhibition exacerbates mouse aortic ring calcification ex vivo. Intriguingly, our results suggest an alternative link between VSMC inflammation and VC.
Collapse
Affiliation(s)
- Federica Macrì
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino-IRCCS, 20138 Milan, Italy; (F.M.); (I.V.); (S.C.); (S.F.)
| | - Ilaria Vigorito
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino-IRCCS, 20138 Milan, Italy; (F.M.); (I.V.); (S.C.); (S.F.)
| | - Stefania Castiglione
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino-IRCCS, 20138 Milan, Italy; (F.M.); (I.V.); (S.C.); (S.F.)
| | - Stefano Faggiano
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino-IRCCS, 20138 Milan, Italy; (F.M.); (I.V.); (S.C.); (S.F.)
| | - Manuel Casaburo
- Animal Facility, Centro Cardiologico Monzino-IRCCS, 20138 Milan, Italy; (M.C.); (N.F.)
| | - Nadia Fanotti
- Animal Facility, Centro Cardiologico Monzino-IRCCS, 20138 Milan, Italy; (M.C.); (N.F.)
| | - Luca Piacentini
- Bioinformatics and Artificial Intelligence Facility, Centro Cardiologico Monzino-IRCCS, 20138 Milan, Italy;
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy;
| | - Maria Cristina Vinci
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, 20138 Milan, Italy;
| | - Angela Raucci
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino-IRCCS, 20138 Milan, Italy; (F.M.); (I.V.); (S.C.); (S.F.)
- Animal Facility, Centro Cardiologico Monzino-IRCCS, 20138 Milan, Italy; (M.C.); (N.F.)
| |
Collapse
|
49
|
Kumar L, Arora MK, Marwah S. Biologic Antiresorptive: Denosumab. Indian J Orthop 2023; 57:127-134. [PMID: 38107799 PMCID: PMC10721778 DOI: 10.1007/s43465-023-01064-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
Background Osteoporosis is an age-related common bone disorder characterized by low bone mineral density and increased fragility fracture risk. Various Antiresorptive medications are being used to target osteoclast mediated bone resorption to prevent bone loss and reduce fracture risk. About Denosumab Denosumab is a novel biological antiresorptive drug that belongs to the class of monoclonal antibodies. It binds to and inhibits the cytokine receptor activator of nuclear factor kappa-B ligand (RANKL), which is requisite for osteoclast differentiation, function and survival. Effectiveness Denosumab has been shown to be a potent and effective therapy for osteoporosis, with clinical trial data demonstrating significant improvement in bone mineral density (BMD) and reductions in fracture risk at various skeletal sites for more than 10 years of treatment. Safety Profile Denosumab has a favourable benefit/risk profile, with low rates of complications such as infection, atypical femoral fracture and osteonecrosis of the jawbone. Challenges However, denosumab treatment requires continuous administration, as discontinuation leads to rapid bone mineral loss and increased risk of multiple vertebral fractures due to rebound of bone turnover. Therefore, modification to another anti-osteoporosis drug therapy after denosumab discontinuation is required to maintain bone health. Conclusion Denosumab is a promising biological antiresorptive therapy for osteoporosis that offers high efficacy and safety, but also poses challenges for long-term management.
Collapse
Affiliation(s)
- Lalit Kumar
- Marengo Asia Hospital, Gurugram, Haryana India
| | | | - Sunil Marwah
- Marengo Asia Hospital, Gurugram, Haryana India
- Gurugram, India
| |
Collapse
|
50
|
Alarkawi D, Tran T, Chen W, March LM, Blyth FM, Blank RD, Bliuc D, Center JR. Denosumab and Mortality in a Real-World Setting: A Comparative Study. J Bone Miner Res 2023; 38:1757-1770. [PMID: 37915252 DOI: 10.1002/jbmr.4930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 10/13/2023] [Accepted: 10/21/2023] [Indexed: 11/03/2023]
Abstract
Denosumab (Dmab) is increasingly prescribed worldwide. Unlike bisphosphonates (BPs), its effect on mortality has yet to be well explored. This study examined the association between Dmab and all-cause mortality compared with no treatment in subjects with a fracture and BPs in subjects without a fracture. The study population was from the Sax Institute's 45 and Up Study (n = 267,357), a prospective population-based cohort with questionnaire data linked to hospital admissions (Admitted Patients Data Collection [APDC] data were linked by the Centre for Health Record Linkage), medication records (Pharmaceutical Benefits Scheme [PBS] provided by Services Australia), and stored securely (secure data access was provided through the Sax Institute's Secure Unified Research Environment [SURE]). The new-user cohort design with propensity-score (PS) matching was implemented. In the fracture cohort, Dmab and oral BP users were matched 1:2 to no treatment (Dmab: 617 women, 154 men; oral BPs: 615 women, 266 men). In the no-fracture cohort, Dmab users were matched 1:1 with oral BPs and zoledronic acid (Zol) users (Dmab:oral BPs: 479 men, 1534 women; Dmab:Zol: 280 men, 625 women). Mortality risk was measured using sex-specific pairwise multivariable Cox models. In the fracture cohort, compared with no treatment, Dmab was associated with 48% lower mortality in women (hazard ratio [HR] = 0.52, 95% confidence interval [CI] 0.36-0.72) but not in men. Oral BPs were associated with 44% lower mortality in both sexes (women HR = 0.56, 95% CI 0.42-0.77; men HR = 0.56, 95% CI 0.40-0.78). In the no-fracture cohort, compared with BPs, Dmab was associated with 1.5- to 2.5-fold higher mortality than oral BPs (women HR = 1.49, 95% CI 1.13-1.98; men HR = 2.74; 95% CI 1.82-4.11) but similar mortality to Zol. Dmab in women and oral BPs were associated with lower post-fracture mortality than no treatment. However, Dmab users had generally higher mortality than oral BP users in those without fractures. © 2023 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Dunia Alarkawi
- Skeletal Diseases Program, Garvan Institute of Medical Research, University of New South Wales, Sydney, Australia
| | - Thach Tran
- Skeletal Diseases Program, Garvan Institute of Medical Research, University of New South Wales, Sydney, Australia
| | - Weiwen Chen
- Skeletal Diseases Program, Garvan Institute of Medical Research, University of New South Wales, Sydney, Australia
- Clinical School, Faculty of Medicine, St Vincent's Hospital, University of New South Wales, Sydney, Australia
| | - Lyn M March
- Institute of Bone and Joint Research, Kolling Institute, Sydney, Australia
- Clinical School, Royal North Shore Hospital, St Leonards, Australia
| | - Fiona M Blyth
- Clinical School, Concord Repatriation General Hospital, Sydney, Australia
| | - Robert D Blank
- Skeletal Diseases Program, Garvan Institute of Medical Research, University of New South Wales, Sydney, Australia
| | - Dana Bliuc
- Skeletal Diseases Program, Garvan Institute of Medical Research, University of New South Wales, Sydney, Australia
- School of Population Health, Faculty of Medicine and Health, University of New South Wales Sydney, Sydney, Australia
| | - Jacqueline R Center
- Skeletal Diseases Program, Garvan Institute of Medical Research, University of New South Wales, Sydney, Australia
- Clinical School, Faculty of Medicine, St Vincent's Hospital, University of New South Wales, Sydney, Australia
| |
Collapse
|