1
|
Okada D. The opposite aging effect to single cell transcriptome profile among cell subsets. Biogerontology 2024; 25:1253-1262. [PMID: 39261411 DOI: 10.1007/s10522-024-10138-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Comparing transcriptome profiling between younger and older samples reveals genes related to aging and provides insight into the biological functions affected by aging. Recent research has identified sex, tissue, and cell type-specific age-related changes in gene expression. This study reports the overall picture of the opposite aging effect, in which aging increases gene expression in one cell subset and decreases it in another cell subset. Using the Tabula Muris Senis dataset, a large public single-cell RNA sequencing dataset from mice, we compared the effects of aging in different cell subsets. As a result, the opposite aging effect was observed widely in the genes, particularly enriched in genes related to ribosomal function and translation. The opposite aging effect was observed in the known aging-related genes. Furthermore, the opposite aging effect was observed in the transcriptome diversity quantified by the number of expressed genes and the Shannon entropy. This study highlights the importance of considering the cell subset when intervening with aging-related genes.
Collapse
Affiliation(s)
- Daigo Okada
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, 53 Syogoin-Kawaramachi, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
2
|
Guo D, Zhang M, Qi B, Peng T, Liu M, Li Z, Fu F, Guo Y, Li C, Wang Y, Hu L, Li Y. Lipid overload-induced RTN3 activation leads to cardiac dysfunction by promoting lipid droplet biogenesis. Cell Death Differ 2024; 31:292-308. [PMID: 38017147 PMCID: PMC10923887 DOI: 10.1038/s41418-023-01241-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023] Open
Abstract
Lipid droplet (LD) accumulation is a notable feature of obesity-induced cardiomyopathy, while underlying mechanism remains poorly understood. Here we show that mice fed with high-fat diet (HFD) exhibited significantly increase in cardiac LD and RTN3 expression, accompanied by cardiac function impairment. Multiple loss- and gain-of function experiments indicate that RTN3 is critical to HFD-induced cardiac LD accumulation. Mechanistically, RTN3 directly bonds with fatty acid binding protein 5 (FABP5) to facilitate the directed transport of fatty acids to endoplasmic reticulum, thereby promoting LD biogenesis in a diacylglycerol acyltransferase 2 dependent way. Moreover, lipid overload-induced RTN3 upregulation is due to increased expression of CCAAT/enhancer binding protein α (C/EBPα), which positively regulates RTN3 transcription by binding to its promoter region. Notably, above findings were verified in the myocardium of obese patients. Our findings suggest that manipulating LD biogenesis by modulating RTN3 may be a potential strategy for treating cardiac dysfunction in obese patients.
Collapse
Affiliation(s)
- Dong Guo
- Department of Cardiology, Tangdu Hospital, Airforce Medical University, Xi'an, 710032, China
| | - Mingming Zhang
- Department of Cardiology, Tangdu Hospital, Airforce Medical University, Xi'an, 710032, China
| | - Bingchao Qi
- Department of Cardiology, Tangdu Hospital, Airforce Medical University, Xi'an, 710032, China
| | - Tingwei Peng
- Department of Cardiology, Tangdu Hospital, Airforce Medical University, Xi'an, 710032, China
| | - Mingchuan Liu
- Department of Cardiology, Tangdu Hospital, Airforce Medical University, Xi'an, 710032, China
| | - Zhelong Li
- Department of Ultrasound Diagnostics, Tangdu Hospital, Airforce Medical University, Xi'an, 710032, China
| | - Feng Fu
- Department of Physiology and Pathophysiology, Airforce Medical University, Xi'an, 710032, China
| | - Yanjie Guo
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi'an, 710100, China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, Airforce Medical University, 710032, Xi'an, China
| | - Ying Wang
- Department of Cardiology, Tangdu Hospital, Airforce Medical University, Xi'an, 710032, China
| | - Lang Hu
- Department of Cardiology, Tangdu Hospital, Airforce Medical University, Xi'an, 710032, China.
| | - Yan Li
- Department of Cardiology, Tangdu Hospital, Airforce Medical University, Xi'an, 710032, China.
| |
Collapse
|
3
|
C/EBPβ Regulates TFAM Expression, Mitochondrial Function and Autophagy in Cellular Models of Parkinson's Disease. Int J Mol Sci 2023; 24:ijms24021459. [PMID: 36674978 PMCID: PMC9865173 DOI: 10.3390/ijms24021459] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that results from the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Since there are only symptomatic treatments available, new cellular and molecular targets involved in the onset and progression of this disease are needed to develop effective treatments. CCAAT/Enhancer Binding Protein β (C/EBPβ) transcription factor levels are altered in patients with a variety of neurodegenerative diseases, suggesting that it may be a good therapeutic target for the treatment of PD. A list of genes involved in PD that can be regulated by C/EBPβ was generated by the combination of genetic and in silico data, the mitochondrial transcription factor A (TFAM) being among them. In this paper, we observed that C/EBPβ overexpression increased TFAM promoter activity. However, downregulation of C/EBPβ in different PD/neuroinflammation cellular models produced an increase in TFAM levels, together with other mitochondrial markers. This led us to propose an accumulation of non-functional mitochondria possibly due to the alteration of their autophagic degradation in the absence of C/EBPβ. Then, we concluded that C/EBPβ is not only involved in harmful processes occurring in PD, such as inflammation, but is also implicated in mitochondrial function and autophagy in PD-like conditions.
Collapse
|
4
|
Xia Y, Qadota H, Wang ZH, Liu P, Liu X, Ye KX, Matheny CJ, Berglund K, Yu SP, Drake D, Bennett DA, Wang XC, Yankner BA, Benian GM, Ye K. Neuronal C/EBPβ/AEP pathway shortens life span via selective GABAnergic neuronal degeneration by FOXO repression. SCIENCE ADVANCES 2022; 8:eabj8658. [PMID: 35353567 PMCID: PMC8967231 DOI: 10.1126/sciadv.abj8658] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 02/07/2022] [Indexed: 05/05/2023]
Abstract
The age-related cognitive decline of normal aging is exacerbated in neurodegenerative diseases including Alzheimer's disease (AD). However, it remains unclear whether age-related cognitive regulators in AD pathologies contribute to life span. Here, we show that C/EBPβ, an Aβ and inflammatory cytokine-activated transcription factor that promotes AD pathologies via activating asparagine endopeptidase (AEP), mediates longevity in a gene dose-dependent manner in neuronal C/EBPβ transgenic mice. C/EBPβ selectively triggers inhibitory GABAnergic neuronal degeneration by repressing FOXOs and up-regulating AEP, leading to aberrant neural excitation and cognitive dysfunction. Overexpression of CEBP-2 or LGMN-1 (AEP) in Caenorhabditis elegans neurons but not muscle stimulates neural excitation and shortens life span. CEBP-2 or LGMN-1 reduces daf-2 mutant-elongated life span and diminishes daf-16-induced longevity. C/EBPβ and AEP are lower in humans with extended longevity and inversely correlated with REST/FOXO1. These findings demonstrate a conserved mechanism of aging that couples pathological cognitive decline to life span by the neuronal C/EBPβ/AEP pathway.
Collapse
Affiliation(s)
- Yiyuan Xia
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
| | - Hiroshi Qadota
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
| | - Zhi-Hao Wang
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
| | - Pai Liu
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
- Neuroscience program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
| | - Karen X. Ye
- Emory College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA
| | - Courtney J. Matheny
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
| | - Ken Berglund
- Department of Neurosurgery, Emory University, Atlanta, GA 30322, USA
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University, Atlanta, GA 30322, USA
| | - Derek Drake
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Xiao-Chuan Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | | | - Guy M. Benian
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Shenzhen, China
| |
Collapse
|
5
|
Zhao B, Liu M, Liu H, Xie J, Yan J, Hou X, Liu J. Zeaxanthin promotes browning by enhancing mitochondrial biogenesis through the PKA pathway in 3T3-L1 adipocytes. Food Funct 2021; 12:6283-6293. [PMID: 34047728 DOI: 10.1039/d1fo00524c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Obesity is closely associated with maintaining mitochondrial homeostasis, and mitochondrial dysfunction can lead to systemic lipid metabolism disorders. Zeaxanthin (ZEA) is a kind of carotenoid with potent antioxidant activity and has been reported to promote mitochondrial biogenesis. Nevertheless, the molecular mechanism has not been explained. In this study, we first discovered that ZEA stimulated 3T3-L1 adipocyte browning by increasing the expression of specific markers (Cd137, Tbx1, Sirt1, Cidea, Ucp1, Tmem26, and Cited1), thereby reducing lipid accumulation. Besides, ZEA promoted mitochondrial biogenesis by increasing the expression of PRDM16, UCP1, NRF2, PGC-1α, and SIRT1. Moreover, the uncoupled oxygen consumption rate (OCR) of protons leaked in 3T3-L1 adipocytes was rapidly increased by ZEA treatment, which improved mitochondrial respiration and energy metabolism. Furthermore, we found that ZEA promotes browning by enhancing mitochondrial biogenesis partly through the protein kinase A (PKA) pathway. This study provided new insight into the promotion of browning and mitochondrial biogenesis by ZEA, suggesting that ZEA probably has potential therapeutic effects on obesity.
Collapse
Affiliation(s)
- Bailing Zhao
- National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China.
| | | | | | | | | | | | | |
Collapse
|
6
|
Kobayashi M, Nezu Y, Tagawa R, Higami Y. Mitochondrial Unfolded Protein Responses in White Adipose Tissue: Lipoatrophy, Whole-Body Metabolism and Lifespan. Int J Mol Sci 2021; 22:ijms22062854. [PMID: 33799894 PMCID: PMC7998111 DOI: 10.3390/ijms22062854] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) is a stress response mediated by the expression of genes such as chaperones, proteases, and mitokines to maintain mitochondrial proteostasis. Certain genetically modified mice, which defect mitochondrial proteins specifically in adipocytes, developed atrophy of the white adipose tissue, resisted diet-induced obesity, and had altered whole-body metabolism. UPRmt, which has beneficial functions for living organisms, is termed "mitohormesis", but its specific characteristics and detailed regulatory mechanism have not been elucidated to date. In this review, we discuss the function of UPRmt in adipose atrophy (lipoatrophy), whole-body metabolism, and lifespan based on the concept of mitohormesis.
Collapse
Affiliation(s)
- Masaki Kobayashi
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (M.K.); (Y.N.); (R.T.)
| | - Yuichiro Nezu
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (M.K.); (Y.N.); (R.T.)
| | - Ryoma Tagawa
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (M.K.); (Y.N.); (R.T.)
| | - Yoshikazu Higami
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (M.K.); (Y.N.); (R.T.)
- Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-8510, Japan
- Correspondence: ; Tel.: +81-4-7121-3676
| |
Collapse
|
7
|
Kobayashi M, Higami Y. [Metabolic Alteration in Aging Process: Metabolic Remodeling in White Adipose Tissue by Caloric Restriction]. YAKUGAKU ZASSHI 2020; 140:383-389. [PMID: 32115557 DOI: 10.1248/yakushi.19-00193-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Caloric restriction (CR) improves whole-body metabolism, suppresses various age-related pathophysiological changes, and extends lifespan. The beneficial actions of CR are regulated in growth hormone (GH)/insulin-like growth factor-1 (IGF-1) signal-dependent and -independent manners. To clarify the GH/IGF-1-independent mechanism, we compared gene expression profiles in white adipose tissue (WAT) between CR and GH/IGF-1 suppression, and found that CR upregulated sterol regulatory element-binding protein 1c (SREBP-1c) regulatory gene expression. To validate the impact of SREBP-1c as a beneficial mediator of CR, we compared the responses to CR between wild-type and SREBP-1c knockout (KO) mice. CR extended lifespan, upregulated gene expression involved in FA biosynthesis, activated mitochondrial biogenesis, and suppressed oxidative stress predominantly in WAT. In contrast, most of these findings were not observed in KO mice. Furthermore, SREBP-1c was implicated in CR-associated mitochondrial activation through upregulation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a master regulator of mitochondrial biogenesis. Sirtuin-3 (SIRT3) regulates mitochondrial quality and is also involved in the beneficial actions of CR. We observed that CR upregulated the mature form of SIRT3 protein and mitochondrial intermediate peptidase (MIPEP), a mitochondrial signal peptidase (MtSPase), in WAT. MIPEP cleaved precursor form of SIRT3 to mature form, and activated certain mitochondrial matrix proteins, suggesting that MIPEP might contribute to maintenance of mitochondrial quality during CR via SIRT3 activation. Taken together, CR induces SREBP-1c-dependent metabolic remodeling, including enhancement of FA biosynthesis and mitochondrial activation, via PGC-1α, and improvement of mitochondria quality via Mipep in WAT, resulting in beneficial actions.
Collapse
Affiliation(s)
- Masaki Kobayashi
- Laboratory of Molecular Pathology and Metabolic Disease, Department of Medical and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Yoshikazu Higami
- Laboratory of Molecular Pathology and Metabolic Disease, Department of Medical and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|
8
|
Kobayashi M, Uta S, Otsubo M, Deguchi Y, Tagawa R, Mizunoe Y, Nakagawa Y, Shimano H, Higami Y. Srebp-1c/Fgf21/Pgc-1α Axis Regulated by Leptin Signaling in Adipocytes-Possible Mechanism of Caloric Restriction-Associated Metabolic Remodeling of White Adipose Tissue. Nutrients 2020; 12:nu12072054. [PMID: 32664386 PMCID: PMC7400870 DOI: 10.3390/nu12072054] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Caloric restriction (CR) improves whole body metabolism, suppresses age-related pathophysiology, and extends lifespan in rodents. Metabolic remodeling, including fatty acid (FA) biosynthesis and mitochondrial biogenesis, in white adipose tissue (WAT) plays an important role in the beneficial effects of CR. We have proposed that CR-induced mitochondrial biogenesis in WAT is mediated by peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), which is transcriptionally regulated by sterol regulatory element-binding protein 1c (SREBP-1c), a master regulator of FA biosynthesis. We have also proposed that the CR-associated upregulation of SREBP-1 and PGC-1α might result from the attenuation of leptin signaling and the upregulation of fibroblast growth factor 21 (FGF21) in WAT. However, the detailed molecular mechanisms remain unclear. Here, we interrogate the regulatory mechanisms involving leptin signaling, SREBP-1c, FGF21, and PGC-1α using Srebp-1c knockout (KO) mice, mouse embryonic fibroblasts, and 3T3-L1 adipocytes, by altering the expression of SREBP-1c or FGF21. We show that a reduction in leptin signaling induces the expression of proteins involved in FA biosynthesis and mitochondrial biogenesis via SREBP-1c in adipocytes. The upregulation of SREBP-1c activates PGC-1α transcription via FGF21, but it is unlikely that the FGF21-associated upregulation of PGC-1α expression is a predominant contributor to mitochondrial biogenesis in adipocytes.
Collapse
Affiliation(s)
- Masaki Kobayashi
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; (M.K.); (S.U.); (M.O.); (Y.D.); (R.T)
| | - Seira Uta
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; (M.K.); (S.U.); (M.O.); (Y.D.); (R.T)
| | - Minami Otsubo
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; (M.K.); (S.U.); (M.O.); (Y.D.); (R.T)
| | - Yusuke Deguchi
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; (M.K.); (S.U.); (M.O.); (Y.D.); (R.T)
| | - Ryoma Tagawa
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; (M.K.); (S.U.); (M.O.); (Y.D.); (R.T)
| | - Yuhei Mizunoe
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan; (Y.M.); (H.S.)
| | - Yoshimi Nakagawa
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan;
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan; (Y.M.); (H.S.)
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki 305-8575, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo 100-1004, Japan
| | - Yoshikazu Higami
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; (M.K.); (S.U.); (M.O.); (Y.D.); (R.T)
- Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-8510, Japan
- Correspondence: ; Tel./Fax: +81-4-7121-3676
| |
Collapse
|
9
|
Mori MA. Aging: a New Perspective on an Old Issue. AN ACAD BRAS CIENC 2020; 92:e20200437. [PMID: 32638871 DOI: 10.1590/0001-3765202020200437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/21/2020] [Indexed: 12/23/2022] Open
Abstract
The world is undergoing a profound demographic change with a rapid increase in the prevalence of aged individuals. The finitude of life, the burden of senescence and the search for strategies to prolong human life span have troubled humanity since ancient times. However, only in the past few decades we started to understand how organisms age and how life span can be manipulated. Here I give an historical perspective of the aging field and conclude with the notion that aging is controlled by signals from the adipose tissue which are tightly controlled by small non-coding RNAs such as miRNAs.
Collapse
Affiliation(s)
- Marcelo A Mori
- Laboratory of Aging Biology (LaBE), Universidade Estadual de Campinas/UNICAMP, Campinas, SP, Brazil
| |
Collapse
|
10
|
Emerging Role of C/EBPβ and Epigenetic DNA Methylation in Ageing. Trends Genet 2020; 36:71-80. [DOI: 10.1016/j.tig.2019.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/31/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022]
|
11
|
Hoshino S, Kobayashi M, Higami Y. Mechanisms of the anti-aging and prolongevity effects of caloric restriction: evidence from studies of genetically modified animals. Aging (Albany NY) 2019; 10:2243-2251. [PMID: 30222593 PMCID: PMC6188494 DOI: 10.18632/aging.101557] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 09/10/2018] [Indexed: 12/29/2022]
Abstract
It is widely accepted that caloric restriction (CR) extends lifespan and suppresses various pathophysiological changes. CR suppresses growth hormone/insulin-like growth factor signaling and mechanistic target of rapamycin complex 1 activity, activates sirtuin and enhances mitochondrial redox regulation, but the exact mechanisms are still under debate. In this review, we discuss the mechanisms of CR using evidence from studies of animals that were genetically modified according to recent advances in molecular and genetic technologies, from the viewpoint of the adaptive response hypothesis proposed by Holliday (1989). We then explain the beneficial actions of CR, classified according to whether they operate under feeding or fasting conditions.
Collapse
Affiliation(s)
- Shunsuke Hoshino
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan.,Translational Research Center, Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Masaki Kobayashi
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan.,Translational Research Center, Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yoshikazu Higami
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan.,Translational Research Center, Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| |
Collapse
|
12
|
Medkour Y, Mohammad K, Arlia-Ciommo A, Svistkova V, Dakik P, Mitrofanova D, Rodriguez MEL, Junio JAB, Taifour T, Escudero P, Goltsios FF, Soodbakhsh S, Maalaoui H, Simard É, Titorenko VI. Mechanisms by which PE21, an extract from the white willow Salix alba, delays chronological aging in budding yeast. Oncotarget 2019; 10:5780-5816. [PMID: 31645900 PMCID: PMC6791382 DOI: 10.18632/oncotarget.27209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/27/2019] [Indexed: 01/05/2023] Open
Abstract
We have recently found that PE21, an extract from the white willow Salix alba, slows chronological aging and prolongs longevity of the yeast Saccharomyces cerevisiae more efficiently than any of the previously known pharmacological interventions. Here, we investigated mechanisms through which PE21 delays yeast chronological aging and extends yeast longevity. We show that PE21 causes a remodeling of lipid metabolism in chronologically aging yeast, thereby instigating changes in the concentrations of several lipid classes. We demonstrate that such changes in the cellular lipidome initiate three mechanisms of aging delay and longevity extension. The first mechanism through which PE21 slows aging and prolongs longevity consists in its ability to decrease the intracellular concentration of free fatty acids. This postpones an age-related onset of liponecrotic cell death promoted by excessive concentrations of free fatty acids. The second mechanism of aging delay and longevity extension by PE21 consists in its ability to decrease the concentrations of triacylglycerols and to increase the concentrations of glycerophospholipids within the endoplasmic reticulum membrane. This activates the unfolded protein response system in the endoplasmic reticulum, which then decelerates an age-related decline in protein and lipid homeostasis and slows down an aging-associated deterioration of cell resistance to stress. The third mechanisms underlying aging delay and longevity extension by PE21 consists in its ability to change lipid concentrations in the mitochondrial membranes. This alters certain catabolic and anabolic processes in mitochondria, thus amending the pattern of aging-associated changes in several key aspects of mitochondrial functionality.
Collapse
Affiliation(s)
- Younes Medkour
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Karamat Mohammad
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | | - Veronika Svistkova
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Pamela Dakik
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Darya Mitrofanova
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | | | | - Tarek Taifour
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Paola Escudero
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Fani-Fay Goltsios
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Sahar Soodbakhsh
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Hana Maalaoui
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Éric Simard
- Idunn Technologies Inc., Rosemere, Quebec J7A 4A5, Canada
| | | |
Collapse
|
13
|
Fujii N, Uta S, Kobayashi M, Sato T, Okita N, Higami Y. Impact of aging and caloric restriction on fibroblast growth factor 21 signaling in rat white adipose tissue. Exp Gerontol 2019; 118:55-64. [PMID: 30620889 DOI: 10.1016/j.exger.2019.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/14/2018] [Accepted: 01/01/2019] [Indexed: 12/31/2022]
Abstract
Caloric restriction (CR) suppresses age-related pathophysiology and extends lifespan. We recently reported that metabolic remodeling of white adipose tissue (WAT) plays an important role in the beneficial actions of CR; however, the detailed molecular mechanisms of this remodeling remain to be established. In the present study, we aimed to identify CR-induced alterations in the expression of fibroblast growth factor 21 (FGF21), a regulator of lipid and glucose metabolism, and of its downstream signaling mediators in liver and WAT, across the lifespan of rats. We evaluated groups of rats that had been either fed ad libitum or calorie restricted from 3 months of age and were euthanized at 3.5, 9, or 24 months of age, under fed and fasted conditions. The expression of FGF21 mRNA and/or protein increased with age in liver and WAT. Interestingly, in the WAT of 9-month-old fed rats, CR further upregulated FGF21 expression and eliminated the aging-associated reductions in the expression of FGFR1 and beta-klotho (KLB; FGF21 receptor complex). It also enhanced the expression of FGF21 targets, including glucose transporter 1 and peroxisome proliferator-activated receptor (PPAR)γ coactivator-1α. The analysis of transcriptional regulators of Fgf21 suggested that aging and CR might upregulate Fgf21 expression via different mechanisms. In adipocytes in vitro, constitutive FGF21 overexpression upregulated the FGF21 receptor complex and FGF21 targets at the mRNA or protein level. Thus, both aging and CR induced FGF21 expression in rat WAT; however, only CR activated FGF21 signaling. Our results suggest that FGF21 signaling contributes to the CR-induced metabolic remodeling of WAT, likely activating glucose uptake and mitochondrial biogenesis.
Collapse
Affiliation(s)
- Namiki Fujii
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Seira Uta
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Masaki Kobayashi
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Translational Research Center, Research Institute of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Tsugumichi Sato
- Translational Research Center, Research Institute of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Laboratory of Drug Informatics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Naoyuki Okita
- Translational Research Center, Research Institute of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Division of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 1-1-1 Daigakudori, Sanyo-onoda, Yamaguchi 756-0884, Japan.
| | - Yoshikazu Higami
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Translational Research Center, Research Institute of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
14
|
Kobayashi M, Fujii N, Narita T, Higami Y. SREBP-1c-Dependent Metabolic Remodeling of White Adipose Tissue by Caloric Restriction. Int J Mol Sci 2018; 19:ijms19113335. [PMID: 30373107 PMCID: PMC6275055 DOI: 10.3390/ijms19113335] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/21/2018] [Accepted: 10/21/2018] [Indexed: 12/21/2022] Open
Abstract
Caloric restriction (CR) delays the onset of many age-related pathophysiological changes and extends lifespan. White adipose tissue (WAT) is not only a major tissue for energy storage, but also an endocrine tissue that secretes various adipokines. Recent reports have demonstrated that alterations in the characteristics of WAT can impact whole-body metabolism and lifespan. Hence, we hypothesized that functional alterations in WAT may play important roles in the beneficial effects of CR. Previously, using microarray analysis of WAT from CR rats, we found that CR enhances fatty acid (FA) biosynthesis, and identified sterol regulatory element-binding protein 1c (SREBP-1c), a master regulator of FA synthesis, as a mediator of CR. These findings were validated by showing that CR failed to upregulate factors involved in FA biosynthesis and to extend longevity in SREBP-1c knockout mice. Furthermore, we revealed that SREBP-1c is implicated in CR-associated mitochondrial activation through the upregulation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a master regulator of mitochondrial biogenesis. Notably, these CR-associated phenotypes were observed only in WAT. We conclude that CR induces SREBP-1c-dependent metabolic remodeling, including the enhancement of FA biosynthesis and mitochondrial activation, via PGC-1α in WAT, resulting in beneficial effects.
Collapse
Affiliation(s)
- Masaki Kobayashi
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
- Translational Research Center, Research Institute of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Namiki Fujii
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Takumi Narita
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Yoshikazu Higami
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
- Translational Research Center, Research Institute of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
15
|
McMurphy T, Huang W, Queen NJ, Ali S, Widstrom KJ, Liu X, Xiao R, Siu JJ, Cao L. Implementation of environmental enrichment after middle age promotes healthy aging. Aging (Albany NY) 2018; 10:1698-1721. [PMID: 30036185 PMCID: PMC6075449 DOI: 10.18632/aging.101502] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/15/2018] [Indexed: 12/19/2022]
Abstract
With increases in life expectancy, it is vital to understand the dynamics of aging, their interaction with lifestyle factors, and the connections to age-related disease processes. Our work on environmental enrichment (EE), a housing environment boosting mental health, has revealed a novel anticancer and anti-obesity phenotype mediated by a brain-fat axis: the hypothalamic-sympathoneural-adipocyte (HSA) axis in young animals. Here we investigated EE effects on healthspan and lifespan when initiated after middle age. Short-term EE for six weeks activated the HSA axis in 10-month-old mice. Long-term EE for twelve months reduced adiposity, improved glucose tolerance, decreased leptin levels, enhanced motor abilities, and inhibited anxiety. In addition to adipose remodeling, EE decreased age-related liver steatosis, reduced hepatic glucose production, and increased glucose uptake by liver and adipose tissue contributing to the improved glycemic control. The EE-induced liver modulation was associated with a suppression of protein kinase Cε. Moreover, EE down-regulated the expression of inflammatory genes in the brain, adipose, and liver. EE initiated at 18-month of age significantly improved glycemic control and showed a trend of positive impact on mean lifespan. These data suggest that EE induces metabolic and behavioral adaptations that are shared by factors known to increase healthspan and lifespan.
Collapse
Affiliation(s)
- Travis McMurphy
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Equal contribution
| | - Wei Huang
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Equal contribution
| | - Nicholas J. Queen
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Seemaab Ali
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kyle J. Widstrom
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Xianglan Liu
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Run Xiao
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jason J. Siu
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Lei Cao
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
16
|
Schäfer A, Mekker B, Mallick M, Vastolo V, Karaulanov E, Sebastian D, von der Lippen C, Epe B, Downes DJ, Scholz C, Niehrs C. Impaired DNA demethylation of C/EBP sites causes premature aging. Genes Dev 2018; 32:742-762. [PMID: 29884649 PMCID: PMC6049513 DOI: 10.1101/gad.311969.118] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/07/2018] [Indexed: 12/25/2022]
Abstract
Here, Schäfer et al. investigated whether DNA methylation alterations are involved in aging. Using knockout mice for adapter proteins for site-specific demethylation by TET methylcytosine dioxygenases Gadd45a and Ing1, they show that enhancer methylation can affect aging and imply that C/EBP proteins play an unexpected role in this process. Changes in DNA methylation are among the best-documented epigenetic alterations accompanying organismal aging. However, whether and how altered DNA methylation is causally involved in aging have remained elusive. GADD45α (growth arrest and DNA damage protein 45A) and ING1 (inhibitor of growth family member 1) are adapter proteins for site-specific demethylation by TET (ten-eleven translocation) methylcytosine dioxygenases. Here we show that Gadd45a/Ing1 double-knockout mice display segmental progeria and phenocopy impaired energy homeostasis and lipodystrophy characteristic of Cebp (CCAAT/enhancer-binding protein) mutants. Correspondingly, GADD45α occupies C/EBPβ/δ-dependent superenhancers and, cooperatively with ING1, promotes local DNA demethylation via long-range chromatin loops to permit C/EBPβ recruitment. The results indicate that enhancer methylation can affect aging and imply that C/EBP proteins play an unexpected role in this process. Our study suggests a causal nexus between DNA demethylation, metabolism, and organismal aging.
Collapse
Affiliation(s)
- Andrea Schäfer
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | | | | | | | | | | | - Carina von der Lippen
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
| | - Bernd Epe
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
| | - Damien J Downes
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Carola Scholz
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Christof Niehrs
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany.,German Cancer Research Center, Division of Molecular Embryology, German Cancer Research Center-Center for Molecular Biology (DKFZ-ZMBH) Alliance, 69120 Heidelberg, Germany
| |
Collapse
|
17
|
Loss of Malat1 does not modify age- or diet-induced adipose tissue accretion and insulin resistance in mice. PLoS One 2018; 13:e0196603. [PMID: 29746487 PMCID: PMC5944987 DOI: 10.1371/journal.pone.0196603] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 04/16/2018] [Indexed: 12/18/2022] Open
Abstract
Several studies have suggested that signals emerging from white adipose tissue can contribute to the control of longevity. In turn, aging is associated with perturbed regulation and partitioning of fat depots and insulin resistance. However, the exact mechanisms involved in these relationships remain undetermined. Using RAP-PCR on adipose tissue of young and old male mice coupled with qPCR validation, we have uncovered the long non-coding RNA Malat1 as a gene robustly downregulated in visceral white adipose tissue (vWAT) during normal aging in male mice and men. Reductions in Malat1 expression in subcutaneous WAT (scWAT) were also observed in genetic (ob and db) as well as diet-induced models of obesity. Based on these findings, Malat1+/+ and Malat1-/- mouse littermates were thus probed to detect whether loss of Malat1 would impact age or diet-induced gain in fat mass and development of glucose intolerance. Contrary to this hypothesis, male and female Malat1-deficient mice gained as much weight, and developed insulin resistance to a similar extent as their Malat1+/+ littermates when studied up to eight months old on regular chow or a high-fat, high-sucrose diet. Moreover, we observed no marked difference in oxygen consumption, food intake, or lipid profiles between Malat1+/+ and Malat1-/- mice. Therefore, we conclude that the overall metabolic impact of the absence of Malat1 on adipose tissue accretion and glucose intolerance is either physiologically not relevant upon aging and obesity, or that it is masked by as yet unknown compensatory mechanisms.
Collapse
|
18
|
Discovery of plant extracts that greatly delay yeast chronological aging and have different effects on longevity-defining cellular processes. Oncotarget 2017; 7:16542-66. [PMID: 26918729 PMCID: PMC4941334 DOI: 10.18632/oncotarget.7665] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/11/2016] [Indexed: 01/19/2023] Open
Abstract
We discovered six plant extracts that increase yeast chronological lifespan to a significantly greater extent than any of the presently known longevity-extending chemical compounds. One of these extracts is the most potent longevity-extending pharmacological intervention yet described. We show that each of the six plant extracts is a geroprotector which delays the onset and decreases the rate of yeast chronological aging by eliciting a hormetic stress response. We also show that each of these extracts has different effects on cellular processes that define longevity in organisms across phyla. These effects include the following: 1) increased mitochondrial respiration and membrane potential; 2) augmented or reduced concentrations of reactive oxygen species; 3) decreased oxidative damage to cellular proteins, membrane lipids, and mitochondrial and nuclear genomes; 4) enhanced cell resistance to oxidative and thermal stresses; and 5) accelerated degradation of neutral lipids deposited in lipid droplets. Our findings provide new insights into mechanisms through which chemicals extracted from certain plants can slow biological aging.
Collapse
|
19
|
Fujii N, Narita T, Okita N, Kobayashi M, Furuta Y, Chujo Y, Sakai M, Yamada A, Takeda K, Konishi T, Sudo Y, Shimokawa I, Higami Y. Sterol regulatory element-binding protein-1c orchestrates metabolic remodeling of white adipose tissue by caloric restriction. Aging Cell 2017; 16:508-517. [PMID: 28256090 PMCID: PMC5418191 DOI: 10.1111/acel.12576] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2017] [Indexed: 12/31/2022] Open
Abstract
Caloric restriction (CR) can delay onset of several age‐related pathophysiologies and extend lifespan in various species, including rodents. CR also induces metabolic remodeling involved in activation of lipid metabolism, enhancement of mitochondrial biogenesis, and reduction of oxidative stress in white adipose tissue (WAT). In studies using genetically modified mice with extended lifespans, WAT characteristics influenced mammalian lifespans. However, molecular mechanisms underlying CR‐associated metabolic remodeling of WAT remain unclear. Sterol regulatory element‐binding protein‐1c (Srebp‐1c), a master transcription factor of fatty acid (FA) biosynthesis, is responsible for the pathogenesis of fatty liver (steatosis). Our study showed that, under CR conditions, Srebp‐1c enhanced mitochondrial biogenesis via increased expression of peroxisome proliferator‐activated receptor gamma coactivator‐1α (Pgc‐1α) and upregulated expression of proteins involved in FA biosynthesis within WAT. However, via Srebp‐1c, most of these CR‐associated metabolic alterations were not observed in other tissues, including the liver. Moreover, our data indicated that Srebp‐1c may be an important factor both for CR‐associated suppression of oxidative stress, through increased synthesis of glutathione in WAT, and for the prolongevity action of CR. Our results strongly suggested that Srebp‐1c, the primary FA biosynthesis‐promoting transcriptional factor implicated in fatty liver disease, is also the food shortage‐responsive factor in WAT. This indicated that Srebp‐1c is a key regulator of metabolic remodeling leading to the beneficial effects of CR.
Collapse
Affiliation(s)
- Namiki Fujii
- Laboratory of Molecular Pathology and Metabolic Disease; Faculty of Pharmaceutical Sciences; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
| | - Takumi Narita
- Laboratory of Molecular Pathology and Metabolic Disease; Faculty of Pharmaceutical Sciences; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
- Translational Research Center, Research Institute of Science and Technology; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
| | - Naoyuki Okita
- Translational Research Center, Research Institute of Science and Technology; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
- Department of Internal Medicine Research; Sasaki Institute; Sasaki Foundation; 2-2 Kandasurugadai Chiyoda-ku, Tokyo 101-0062 Japan
| | - Masaki Kobayashi
- Laboratory of Molecular Pathology and Metabolic Disease; Faculty of Pharmaceutical Sciences; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
- Translational Research Center, Research Institute of Science and Technology; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
| | - Yurika Furuta
- Laboratory of Molecular Pathology and Metabolic Disease; Faculty of Pharmaceutical Sciences; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
| | - Yoshikazu Chujo
- Laboratory of Molecular Pathology and Metabolic Disease; Faculty of Pharmaceutical Sciences; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
| | - Masahiro Sakai
- Laboratory of Molecular Pathology and Metabolic Disease; Faculty of Pharmaceutical Sciences; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
| | - Atsushi Yamada
- Laboratory of Molecular Pathology and Metabolic Disease; Faculty of Pharmaceutical Sciences; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
| | - Kanae Takeda
- Laboratory of Molecular Pathology and Metabolic Disease; Faculty of Pharmaceutical Sciences; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
| | - Tomokazu Konishi
- Faculty of Bioresource Sciences; Akita Prefectural University; Shimoshinjo Nakano, Akita 010-0195 Japan
| | - Yuka Sudo
- Laboratory of Molecular Pathology and Metabolic Disease; Faculty of Pharmaceutical Sciences; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
- Translational Research Center, Research Institute of Science and Technology; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
| | - Isao Shimokawa
- Translational Research Center, Research Institute of Science and Technology; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
- Department of Pathology; Nagasaki University Graduate School of Biomedical Sciences; 1-12-4 Sakamoto Nagasaki 852-8523 Japan
| | - Yoshikazu Higami
- Laboratory of Molecular Pathology and Metabolic Disease; Faculty of Pharmaceutical Sciences; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
- Translational Research Center, Research Institute of Science and Technology; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
| |
Collapse
|
20
|
Mechanisms Underlying the Essential Role of Mitochondrial Membrane Lipids in Yeast Chronological Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2916985. [PMID: 28593023 PMCID: PMC5448074 DOI: 10.1155/2017/2916985] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/18/2017] [Indexed: 12/12/2022]
Abstract
The functional state of mitochondria is vital to cellular and organismal aging in eukaryotes across phyla. Studies in the yeast Saccharomyces cerevisiae have provided evidence that age-related changes in some aspects of mitochondrial functionality can create certain molecular signals. These signals can then define the rate of cellular aging by altering unidirectional and bidirectional communications between mitochondria and other organelles. Several aspects of mitochondrial functionality are known to impact the replicative and/or chronological modes of yeast aging. They include mitochondrial electron transport, membrane potential, reactive oxygen species, and protein synthesis and proteostasis, as well as mitochondrial synthesis of iron-sulfur clusters, amino acids, and NADPH. Our recent findings have revealed that the composition of mitochondrial membrane lipids is one of the key aspects of mitochondrial functionality affecting yeast chronological aging. We demonstrated that exogenously added lithocholic bile acid can delay chronological aging in yeast because it elicits specific changes in mitochondrial membrane lipids. These changes allow mitochondria to operate as signaling platforms that delay yeast chronological aging by orchestrating an institution and maintenance of a distinct cellular pattern. In this review, we discuss molecular and cellular mechanisms underlying the essential role of mitochondrial membrane lipids in yeast chronological aging.
Collapse
|
21
|
Fu J, Li Z, Zhang H, Mao Y, Wang A, Wang X, Zou Z, Zhang X. Molecular pathways regulating the formation of brown-like adipocytes in white adipose tissue. Diabetes Metab Res Rev 2015; 31:433-52. [PMID: 25139773 DOI: 10.1002/dmrr.2600] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 05/06/2014] [Accepted: 07/23/2014] [Indexed: 01/29/2023]
Abstract
Adipose tissue is functionally composed of brown adipose tissue and white adipose tissue. The unique thermogenic capacity of brown adipose tissue results from expression of uncoupling protein 1 in the mitochondrial inner membrane. On the basis of recent findings that adult humans have functionally active brown adipose tissue, it is now recognized as playing a much more important role in human metabolism than was previously thought. More importantly, brown-like adipocytes can be recruited in white adipose tissue upon environmental stimulation and pharmacologic treatment, and this change is associated with increased energy expenditure, contributing to a lean and healthy phenotype. Thus, the promotion of brown-like adipocyte development in white adipose tissue offers novel possibilities for the development of therapeutic strategies to combat obesity and related metabolic diseases. In this review, we summarize recent advances in understanding the molecular mechanisms involved in the recruitment of brown-like adipocyte in white adipose tissue.
Collapse
Affiliation(s)
- Jianfei Fu
- Institute of Preventative Medicine and Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, 315211, Zhejiang, China
- Department of Medical Records and Statistics, Ningbo First Hospital, Ningbo, 315010, Zhejiang, China
| | - Zhen Li
- School of Public Health, Wuhan University, Wuhan, 430071, Hubei, China
| | - Huiqin Zhang
- Institute of Preventative Medicine and Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Yushan Mao
- The Affiliated Hospital of School of Medicine of Ningbo University, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Anshi Wang
- Institute of Preventative Medicine and Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Xin Wang
- Institute of Preventative Medicine and Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Zuquan Zou
- Institute of Preventative Medicine and Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Xiaohong Zhang
- Institute of Preventative Medicine and Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, 315211, Zhejiang, China
| |
Collapse
|
22
|
Okita N, Tsuchiya T, Fukushima M, Itakura K, Yuguchi K, Narita T, Hashizume Y, Sudo Y, Chiba T, Shimokawa I, Higami Y. Chronological analysis of caloric restriction-induced alteration of fatty acid biosynthesis in white adipose tissue of rats. Exp Gerontol 2015; 63:59-66. [PMID: 25616173 DOI: 10.1016/j.exger.2015.01.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 12/19/2014] [Accepted: 01/19/2015] [Indexed: 12/20/2022]
Abstract
The beneficial actions of caloric restriction (CR) could be mediated in part by metabolic remodeling of white adipose tissue (WAT). Recently, we suggested that CR for 6 months increased the expressions of proteins involved in de novo fatty acid (FA) biosynthesis in WAT of 9-month-old rats. Herein, we compared the CR-induced chronological alterations of the expression of mRNAs and/or proteins involved in FA biosynthesis in the WAT and liver of rats subjected to CR starting from 3 months of age and their age-matched controls fed ad libitum. The findings suggested that CR was more effective on FA biosynthesis in WAT than in liver. In WAT, CR markedly increased the expressions of mRNAs and/or proteins involved in FA biosynthesis, including sterol regulatory element-binding protein 1c (SREBP1c), a master transcriptional regulator of FA biosynthesis, throughout the experimental period. Interestingly, the CR-enhanced upregulation was temporally attenuated at 5 months of age. CR markedly increased the nuclear phosphorylated form of Akt only at 3.5 months of age. In contrast, CR significantly reduced the expression of leptin at 9 months of age. The CR-induced upregulation was not observed in obese fa/fa Zucker rats homozygous for nonfunctional leptin receptor. Collectively, these data indicate that the V-shaped chronological alterations in WAT are regulated via SREBP1c, which is probably activated by CR duration-dependent modulation of both insulin and leptin signaling.
Collapse
Affiliation(s)
- Naoyuki Okita
- Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan; Department of Internal Medicine Research, Sasaki Institute, Sasaki Foundation, Tokyo, Japan
| | - Takuro Tsuchiya
- Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Mayumi Fukushima
- Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Kaho Itakura
- Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Keiko Yuguchi
- Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Takumi Narita
- Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Yukari Hashizume
- Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Yuka Sudo
- Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Takuya Chiba
- Department of Investigative Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Department of Health Sciences and Social Welfare, Faculty of Human Sciences, Waseda University, Tokorozawa, Japan
| | - Isao Shimokawa
- Department of Investigative Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yoshikazu Higami
- Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.
| |
Collapse
|
23
|
Mechanisms underlying the anti-aging and anti-tumor effects of lithocholic bile acid. Int J Mol Sci 2014; 15:16522-43. [PMID: 25238416 PMCID: PMC4200844 DOI: 10.3390/ijms150916522] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 08/21/2014] [Accepted: 09/11/2014] [Indexed: 12/13/2022] Open
Abstract
Bile acids are cholesterol-derived bioactive lipids that play essential roles in the maintenance of a heathy lifespan. These amphipathic molecules with detergent-like properties display numerous beneficial effects on various longevity- and healthspan-promoting processes in evolutionarily distant organisms. Recent studies revealed that lithocholic bile acid not only causes a considerable lifespan extension in yeast, but also exhibits a substantial cytotoxic effect in cultured cancer cells derived from different tissues and organisms. The molecular and cellular mechanisms underlying the robust anti-aging and anti-tumor effects of lithocholic acid have emerged. This review summarizes the current knowledge of these mechanisms, outlines the most important unanswered questions and suggests directions for future research.
Collapse
|
24
|
|
25
|
Sheedfar F, Biase SD, Koonen D, Vinciguerra M. Liver diseases and aging: friends or foes? Aging Cell 2013; 12:950-4. [PMID: 23815295 DOI: 10.1111/acel.12128] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2013] [Indexed: 12/14/2022] Open
Abstract
The liver is the only internal human organ capable of natural regeneration of lost tissue, as little as 25% of a liver can regenerate into a whole liver. The process of aging predisposes to hepatic functional and structural impairment and metabolic risk. Therefore, understanding how aging could affect the molecular pathology of liver diseases is particularly important, and few studies to date have tackled this complex process. The most common liver disease, affecting one-third of the overall population, is nonalcoholic fatty liver disease (NAFLD), characterized by an intrahepatic accumulation of lipids. NAFLD can evolve into nonalcoholic steatohepatitis (NASH) in the presence of oxidative stress and inflammation. NASH is a serious risk factor for disabling and deadly liver diseases such as cirrhosis and hepatocellular carcinoma (HCC). Old age seems to favor NAFLD, NASH, and ultimately HCC, in agreement with the inflamm-aging theory, according to which aging accrues inflammation. However, the incidence of HCC drops significantly in the very elderly (individuals aged more than 70) and the relationship between the progression of NAFLD/NASH/HCC and very old age is obscure. In this review, we discuss the literature and we argue that there might be an age window in which the liver becomes resistant to the development of injury; this needs to be studied to understand fully the interaction between age and liver diseases from a therapeutic perspective.
Collapse
Affiliation(s)
- Fareeba Sheedfar
- Molecular Genetics; University of Groningen; University Medical Center Groningen (UMCG); Groningen The Netherlands
| | - Stefano Di Biase
- Andrus Gerontology Center and Department of Biological Sciences; University of Southern California; Los Angeles CA USA
| | - Debby Koonen
- Molecular Genetics; University of Groningen; University Medical Center Groningen (UMCG); Groningen The Netherlands
| | - Manlio Vinciguerra
- Division of Medicine; University College London (UCL) - Institute for Liver and Digestive Health; Royal Free Hospital; London UK
- Euro-Mediterranean Institute for Science and Technology (IEMEST); Palermo Italy
- Department of Medical Sciences; Division of Internal Medicine; IRCCS “Casa Sollievo della Sofferenza”; S. Giovanni Rotondo Italy
| |
Collapse
|
26
|
Balamurugan K, Sterneck E. The many faces of C/EBPδ and their relevance for inflammation and cancer. Int J Biol Sci 2013; 9:917-33. [PMID: 24155666 PMCID: PMC3805898 DOI: 10.7150/ijbs.7224] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 08/27/2013] [Indexed: 12/29/2022] Open
Abstract
The CCAAT/enhancer binding protein delta (CEBPD, C/EBPδ) is a transcription factor that modulates many biological processes including cell differentiation, motility, growth arrest, proliferation, and cell death. The diversity of C/EBPδ's functions depends in part on the cell type and cellular context and can have opposing outcomes. For example, C/EBPδ promotes inflammatory signaling, but it can also inhibit pro-inflammatory pathways, and in a mouse model of mammary tumorigenesis, C/EBPδ reduces tumor incidence but promotes tumor metastasis. This review highlights the multifaceted nature of C/EBPδ's functions, with an emphasis on pathways that are relevant for cancer and inflammation, and illustrates how C/EBPδ emerged from the shadow of its family members as a fascinating “jack of all trades.” Our current knowledge on C/EBPδ indicates that, rather than being essential for a specific cellular process, C/EBPδ helps to interpret a variety of cues in a cell-type and context-dependent manner, to adjust cellular functions to specific situations. Therefore, insights into the roles and mechanisms of C/EBPδ signaling can lead to a better understanding of how the integration of different signaling pathways dictates normal and pathological cell functions and physiology.
Collapse
Affiliation(s)
- Kuppusamy Balamurugan
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD-21702-1201, U.S.A
| | | |
Collapse
|
27
|
Chujo Y, Fujii N, Okita N, Konishi T, Narita T, Yamada A, Haruyama Y, Tashiro K, Chiba T, Shimokawa I, Higami Y. Caloric restriction-associated remodeling of rat white adipose tissue: effects on the growth hormone/insulin-like growth factor-1 axis, sterol regulatory element binding protein-1, and macrophage infiltration. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1143-1156. [PMID: 22645024 PMCID: PMC3705091 DOI: 10.1007/s11357-012-9439-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 05/16/2012] [Indexed: 06/01/2023]
Abstract
The role of the growth hormone (GH)-insulin-like growth factor (IGF)-1 axis in the lifelong caloric restriction (CR)-associated remodeling of white adipose tissue (WAT), adipocyte size, and gene expression profiles was explored in this study. We analyzed the WAT morphology of 6-7-month-old wild-type Wistar rats fed ad libitum (WdAL) or subjected to CR (WdCR), and of heterozygous transgenic dwarf rats bearing an anti-sense GH transgene fed ad libitum (TgAL) or subjected to CR (TgCR). Although less effective in TgAL, the adipocyte size was significantly reduced in WdCR compared with WdAL. This CR effect was blunted in Tg rats. We also used high-density oligonucleotide microarrays to examine the gene expression profile of WAT of WdAL, WdCR, and TgAL rats. The gene expression profile of WdCR, but not TgAL, differed greatly from that of WdAL. The gene clusters with the largest changes induced by CR but not by Tg were genes involved in lipid biosynthesis and inflammation, particularly sterol regulatory element binding proteins (SREBPs)-regulated and macrophage-related genes, respectively. Real-time reverse-transcription polymerase chain reaction analysis confirmed that the expression of SREBP-1 and its downstream targets was upregulated, whereas the macrophage-related genes were downregulated in WdCR, but not in TgAL. In addition, CR affected the gene expression profile of Tg rats similarly to wild-type rats. Our findings suggest that CR-associated remodeling of WAT, which involves SREBP-1-mediated transcriptional activation and suppression of macrophage infiltration, is regulated in a GH-IGF-1-independent manner.
Collapse
Affiliation(s)
- Yoshikazu Chujo
- />Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Namiki Fujii
- />Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Naoyuki Okita
- />Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Tomokazu Konishi
- />Molecular Genetics Group, Akita Prefectural University, Akita, Japan
| | - Takumi Narita
- />Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Atsushi Yamada
- />Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yushi Haruyama
- />Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kosuke Tashiro
- />Graduate School of Bioresource and Bioenvironmental Sciences, Molecular Gene Technics, Kyushu University, Fukuoka, Japan
| | - Takuya Chiba
- />Department of Investigative Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Isao Shimokawa
- />Department of Investigative Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yoshikazu Higami
- />Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
28
|
Carter S, Caron A, Richard D, Picard F. Role of leptin resistance in the development of obesity in older patients. Clin Interv Aging 2013; 8:829-44. [PMID: 23869170 PMCID: PMC3706252 DOI: 10.2147/cia.s36367] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Obesity is a global epidemic associated with aging-like cellular processes; in both aging and obesity, resistance to hormones such as insulin and leptin can be observed. Leptin is a circulating hormone/cytokine with central and peripheral effects that is released mainly by subcutaneous white adipose tissue. Centrally, leptin controls food intake, energy expenditure, and fat distribution, whereas it controls (among several others) insulin sensitivity, free fatty acids (FFAs) oxidation, and lipolysis in the periphery. Aging is associated with important changes in both the distribution and the composition of adipose tissue. Fat is redistributed from the subcutaneous to the visceral depot and increased inflammation participates in adipocyte dysfunction. This redistribution of adipose tissue in favor of visceral fat influences negatively both longevity and healthy aging as shown in numerous animal models. These modifications observed during aging are also associated with leptin resistance. This resistance blunts normal central and peripheral functions of leptin, which leads to a decrease in neuroendocrine function and insulin sensitivity, an imbalance in energy regulation, and disturbances in lipid metabolism. Here, we review how age-related leptin resistance triggers metabolic disturbances and affects the longevity of obese patients. Furthermore, we discuss the potential impacts of leptin resistance on the decline of brown adipose tissue thermogenesis observed in elderly individuals.
Collapse
Affiliation(s)
- Sophie Carter
- Faculty of Pharmacy, Department of Anatomy and Physiology, Université Laval, Québec, QC, Canada
| | | | | | | |
Collapse
|
29
|
van Dam S, Cordeiro R, Craig T, van Dam J, Wood SH, de Magalhães JP. GeneFriends: an online co-expression analysis tool to identify novel gene targets for aging and complex diseases. BMC Genomics 2012; 13:535. [PMID: 23039964 PMCID: PMC3495651 DOI: 10.1186/1471-2164-13-535] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 08/22/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although many diseases have been well characterized at the molecular level, the underlying mechanisms are often unknown. Nearly half of all human genes remain poorly studied, yet these genes may contribute to a number of disease processes. Genes involved in common biological processes and diseases are often co-expressed. Using known disease-associated genes in a co-expression analysis may help identify and prioritize novel candidate genes for further study. RESULTS We have created an online tool, called GeneFriends, which identifies co-expressed genes in over 1,000 mouse microarray datasets. GeneFriends can be used to assign putative functions to poorly studied genes. Using a seed list of disease-associated genes and a guilt-by-association method, GeneFriends allows users to quickly identify novel genes and transcription factors associated with a disease or process. We tested GeneFriends using seed lists for aging, cancer, and mitochondrial complex I disease. We identified several candidate genes that have previously been predicted as relevant targets. Some of the genes identified are already being tested in clinical trials, indicating the effectiveness of this approach. Co-expressed transcription factors were investigated, identifying C/ebp genes as candidate regulators of aging. Furthermore, several novel candidate genes, that may be suitable for experimental or clinical follow-up, were identified. Two of the novel candidates of unknown function that were co-expressed with cancer-associated genes were selected for experimental validation. Knock-down of their human homologs (C1ORF112 and C12ORF48) in HeLa cells slowed growth, indicating that these genes of unknown function, identified by GeneFriends, may be involved in cancer. CONCLUSIONS GeneFriends is a resource for biologists to identify and prioritize novel candidate genes involved in biological processes and complex diseases. It is an intuitive online resource that will help drive experimentation. GeneFriends is available online at: http://genefriends.org/.
Collapse
Affiliation(s)
- Sipko van Dam
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | | | | | | | | | | |
Collapse
|
30
|
Pérusse L, Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B, Snyder EE, Bouchard C. The Human Obesity Gene Map: The 2004 Update. ACTA ACUST UNITED AC 2012; 13:381-490. [PMID: 15833932 DOI: 10.1038/oby.2005.50] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This paper presents the eleventh update of the human obesity gene map, which incorporates published results up to the end of October 2004. Evidence from single-gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, transgenic and knockout murine models relevant to obesity, quantitative trait loci (QTLs) from animal cross-breeding experiments, association studies with candidate genes, and linkages from genome scans is reviewed. As of October 2004, 173 human obesity cases due to single-gene mutations in 10 different genes have been reported, and 49 loci related to Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. There are 166 genes which, when mutated or expressed as transgenes in the mouse, result in phenotypes that affect body weight and adiposity. The number of QTLs reported from animal models currently reaches 221. The number of human obesity QTLs derived from genome scans continues to grow, and we have now 204 QTLs for obesity-related phenotypes from 50 genome-wide scans. A total of 38 genomic regions harbor QTLs replicated among two to four studies. The number of studies reporting associations between DNA sequence variation in specific genes and obesity phenotypes has also increased considerably with 358 findings of positive associations with 113 candidate genes. Among them, 18 genes are supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. Overall, >600 genes, markers, and chromosomal regions have been associated or linked with human obesity phenotypes. The electronic version of the map with links to useful publications and genomic and other relevant sites can be found at http://obesitygene.pbrc.edu.
Collapse
Affiliation(s)
- Louis Pérusse
- Division of Kinesiology, Department of Social and Preventive Medicine, Faculty of Medicine, Laval University, Sainte-Foy, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wang Y, Xu C, Liang Y, Vanhoutte PM. SIRT1 in metabolic syndrome: where to target matters. Pharmacol Ther 2012; 136:305-18. [PMID: 22939883 DOI: 10.1016/j.pharmthera.2012.08.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 08/07/2012] [Indexed: 12/28/2022]
Abstract
Sirtuin 1 (SIRT1), the mammalian ortholog of yeast Sir2p, is a highly conserved NAD(+)-dependent protein deacetylase that has emerged as a key cardiometabolic regulator. During the past decade, Sir2p has been the focus of intense investigations and discussion because it regulates longevity in yeast, worms and flies. Although the extrapolation of data obtained from yeast Sir2p to mammalian SIRT1 cannot be automatic, animal studies provide convincing evidence that SIRT1 is a potent protector against aging-associated pathologies, in particular metabolic disorders and cardiovascular diseases. Indeed, many exciting connections exist between the protein deacetylation function of SIRT1 and its role in fundamental biological responses to various nutritional and environmental signals. As a result, pharmaceutical and nutriceutical interventions targeting SIRT1 are promising strategies to combat aging-associated diseases. The present review summarizes the recent progress in SIRT1 research with a particular focus on the specificities of this protein in individual tissues as they relate to cardiometabolic control.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | | | | | | |
Collapse
|
32
|
Leutz A, Pless O, Lappe M, Dittmar G, Kowenz-Leutz E. Crosstalk between phosphorylation and multi-site arginine/lysine methylation in C/EBPs. Transcription 2012; 2:3-8. [PMID: 21326902 DOI: 10.4161/trns.2.1.13510] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 09/01/2010] [Accepted: 09/01/2010] [Indexed: 12/24/2022] Open
Abstract
C/EBPs are implied in an amazing number of cellular functions: C/EBPs regulate tissue and cell type specific gene expression, proliferation, and differentiation control. C/EBPs assist in energy metabolism, female reproduction, innate immunity, inflammation, senescence, and the development of neoplasms. How can C/EBPs fulfill so many functions? Here we discuss that C/EBPs are extensively modified by methylation of arginine and lysine side chains and that regulated methylation profoundly affects the activity of C/EBPs.
Collapse
Affiliation(s)
- Achim Leutz
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany.
| | | | | | | | | |
Collapse
|
33
|
Okita N, Hayashida Y, Kojima Y, Fukushima M, Yuguchi K, Mikami K, Yamauchi A, Watanabe K, Noguchi M, Nakamura M, Toda T, Higami Y. Differential responses of white adipose tissue and brown adipose tissue to caloric restriction in rats. Mech Ageing Dev 2012; 133:255-66. [PMID: 22414572 DOI: 10.1016/j.mad.2012.02.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 12/14/2011] [Accepted: 02/22/2012] [Indexed: 12/19/2022]
Abstract
Caloric restriction (CR) slows the aging process and extends longevity, but the exact underlying mechanisms remain debatable. It has recently been suggested that the beneficial action of CR may be mediated in part by adipose tissue remodeling. Mammals have two types of adipose tissue: white adipose tissue (WAT) and brown adipose tissue (BAT). In this study, proteome analysis using two-dimensional gel electrophoresis combined with MALDI-TOF MS, and subsequent analyses were performed on both WAT and BAT from 9-month-old male rats fed ad libitum or subjected to CR for 6 months. Our findings suggest that CR activates mitochondrial energy metabolism and fatty acid biosynthesis in WAT. It is likely that in CR animals WAT functions as an energy transducer from glucose to energy-dense lipid. In contrast, in BAT CR either had no effect on, or down-regulated, the mitochondrial electron transport chain, but enhanced fatty acid biosynthesis. This suggests that in CR animals BAT may change its function from an energy consuming system to an energy reservoir system. Based on our findings, we conclude that WAT and BAT cooperate to use energy effectively via a differential response of mitochondrial function to CR.
Collapse
Affiliation(s)
- Naoyuki Okita
- Molecular Pathology & Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Satyanarayana A, Klarmann KD, Gavrilova O, Keller JR. Ablation of the transcriptional regulator Id1 enhances energy expenditure, increases insulin sensitivity, and protects against age and diet induced insulin resistance, and hepatosteatosis. FASEB J 2011; 26:309-23. [PMID: 21990377 DOI: 10.1096/fj.11-190892] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Obesity is a major health concern that contributes to the development of diabetes, hyperlipidemia, coronary artery disease, and cancer. Id proteins are helix-loop-helix transcription factors that regulate the proliferation and differentiation of cells from multiple tissues, including adipocytes. We screened mouse tissues for the expression of Id1 and found that Id1 protein is highly expressed in brown adipose tissue (BAT) and white adipose tissue (WAT), suggesting a role for Id1 in adipogenesis and cell metabolism. Id1(-/-) mice are viable but show a significant reduction in fat mass (P<0.005) over the life of the animal that was not due to decreased number of adipocytes. Analysis of Id1(-/-) mice revealed higher energy expenditure, increased lipolysis, and fatty acid oxidation, resulting in reduced triglyceride accumulation in WAT compared to Id1(+/+) mice. Serum levels of triglycerides (193.9±32.2 vs. 86.5±33.8, P<0.0005), cholesterol (189.4±33.8 vs. 110.6±8.23, P<0.0005) and leptin (1263±835 vs. 222±260, P<0.005) were significantly lower in aged Id1(-/-) mice compared to Id1(+/+) mice. Id1-deficient mice have higher resting (P<0.005) and total (P<0.05) O(2) consumption and lower respiratory exchange ratio (P<0.005), confirming that Id1(-/-) mice use a higher proportion of lipid as an energy source for the increased energy expenditure. The expression of PGC1α and UCP1 were 2- to 3-fold up-regulated in Id1(-/-) BAT, suggesting that loss of Id1 increases thermogenesis. As a consequence of higher energy expenditure and reduced fat mass, Id1(-/-) mice displayed enhanced insulin sensitivity. Id1 deficiency protected mice against age- and high-fat-diet-induced adiposity, insulin resistance, and hepatosteatosis. Our findings suggest that Id1 plays a critical role in the regulation of energy homeostasis and could be a potential target in the treatment of insulin resistance and fatty liver disease.
Collapse
Affiliation(s)
- Ande Satyanarayana
- Center for Cancer Research, National Cancer, Institute-Frederick, Frederick, MD 21702-1201, USA
| | | | | | | |
Collapse
|
35
|
Yuan R, Peters LL, Paigen B. Mice as a mammalian model for research on the genetics of aging. ILAR J 2011; 52:4-15. [PMID: 21411853 DOI: 10.1093/ilar.52.1.4] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mice are an ideal mammalian model for studying the genetics of aging: considerable resources are available, the generation time is short, and the environment can be easily controlled, an important consideration when performing mapping studies to identify genes that influence lifespan and age-related diseases. In this review we highlight some salient contributions of the mouse in aging research: lifespan intervention studies in the Interventions Testing Program of the National Institute on Aging; identification of the genetic underpinnings of the effects of calorie restriction on lifespan; the Aging Phenome Project at the Jackson Laboratory, which has submitted multiple large, freely available phenotyping datasets to the Mouse Phenome Database; insights from spontaneous and engineered mouse mutants; and complex traits analyses identifying quantitative trait loci that affect lifespan. We also show that genomewide association peaks for lifespan in humans and lifespan quantitative loci for mice map to homologous locations in the genome. Thus, the vast bioinformatic and genetic resources of the mouse can be used to screen candidate genes identified in both mouse and human mapping studies, followed by functional testing, often not possible in humans, to determine their influence on aging.
Collapse
Affiliation(s)
- Rong Yuan
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | | |
Collapse
|
36
|
Gao Y, Pan Y. CCAAT/enhancer binding protein-beta negatively regulates the expression of glycerol-3-phosphate dehydrogenase 1 in pig PK-15 cells. J Appl Genet 2011; 52:451-8. [DOI: 10.1007/s13353-011-0050-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 04/13/2011] [Accepted: 04/21/2011] [Indexed: 11/29/2022]
|
37
|
[Progress of transcription factor CCAAT enhancer binding protein β]. YI CHUAN = HEREDITAS 2011; 33:198-206. [PMID: 21402526 DOI: 10.3724/sp.j.1005.2011.00198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
CCAAT enhancer binding protein β (C/EBP β) belongs to CCAAT enhancer binding protein (C/EBP) family, which is a subfamily of basic leucine zipper (bZIP) protein family. C/EBP family plays important roles in many processes such as cell differentiation, metabolism, and development. In this paper, the structure, expression regulation, and function of C/EBP β were reviewed.
Collapse
|
38
|
Goldberg AA, Richard VR, Kyryakov P, Bourque SD, Beach A, Burstein MT, Glebov A, Koupaki O, Boukh-Viner T, Gregg C, Juneau M, English AM, Thomas DY, Titorenko VI. Chemical genetic screen identifies lithocholic acid as an anti-aging compound that extends yeast chronological life span in a TOR-independent manner, by modulating housekeeping longevity assurance processes. Aging (Albany NY) 2010; 2:393-414. [PMID: 20622262 PMCID: PMC2933888 DOI: 10.18632/aging.100168] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In
chronologically aging yeast, longevity can be extended by administering a
caloric restriction (CR) diet or some small molecules. These life-extending
interventions target the adaptable target of rapamycin (TOR) and
cAMP/protein kinase A (cAMP/PKA) signaling pathways that are under the
stringent control of calorie availability. We designed a chemical genetic
screen for small molecules that increase the chronological life span of
yeast under CR by targeting lipid metabolism and modulating housekeeping
longevity pathways that regulate longevity irrespective of the number of
available calories. Our screen identifies lithocholic acid (LCA) as one of
such molecules. We reveal two mechanisms underlying
the life-extending effect of LCA in chronologically aging yeast. One
mechanism operates in a calorie availability-independent fashion and
involves the LCA-governed modulation of housekeeping longevity assurance
pathways that do not overlap with the adaptable TOR and cAMP/PKA pathways.
The other mechanism extends yeast longevity under non-CR conditions and
consists in LCA-driven unmasking of the previously unknown anti-aging
potential of PKA. We provide evidence that LCA modulates housekeeping
longevity assurance pathways by suppressing lipid-induced necrosis,
attenuating mitochondrial fragmentation, altering oxidation-reduction
processes in mitochondria, enhancing resistance to oxidative and thermal
stresses, suppressing mitochondria-controlled apoptosis, and enhancing
stability of nuclear and mitochondrial DNA.
Collapse
|
39
|
Tchkonia T, Morbeck DE, Von Zglinicki T, Van Deursen J, Lustgarten J, Scrable H, Khosla S, Jensen MD, Kirkland JL. Fat tissue, aging, and cellular senescence. Aging Cell 2010; 9:667-84. [PMID: 20701600 PMCID: PMC2941545 DOI: 10.1111/j.1474-9726.2010.00608.x] [Citation(s) in RCA: 759] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fat tissue, frequently the largest organ in humans, is at the nexus of mechanisms involved in longevity and age-related metabolic dysfunction. Fat distribution and function change dramatically throughout life. Obesity is associated with accelerated onset of diseases common in old age, while fat ablation and certain mutations affecting fat increase life span. Fat cells turn over throughout the life span. Fat cell progenitors, preadipocytes, are abundant, closely related to macrophages, and dysdifferentiate in old age, switching into a pro-inflammatory, tissue-remodeling, senescent-like state. Other mesenchymal progenitors also can acquire a pro-inflammatory, adipocyte-like phenotype with aging. We propose a hypothetical model in which cellular stress and preadipocyte overutilization with aging induce cellular senescence, leading to impaired adipogenesis, failure to sequester lipotoxic fatty acids, inflammatory cytokine and chemokine generation, and innate and adaptive immune response activation. These pro-inflammatory processes may amplify each other and have systemic consequences. This model is consistent with recent concepts about cellular senescence as a stress-responsive, adaptive phenotype that develops through multiple stages, including major metabolic and secretory readjustments, which can spread from cell to cell and can occur at any point during life. Senescence could be an alternative cell fate that develops in response to injury or metabolic dysfunction and might occur in nondividing as well as dividing cells. Consistent with this, a senescent-like state can develop in preadipocytes and fat cells from young obese individuals. Senescent, pro-inflammatory cells in fat could have profound clinical consequences because of the large size of the fat organ and its central metabolic role.
Collapse
Affiliation(s)
- Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW The review highlights recent findings regarding the functions of mitochondria in adipocytes, providing an understanding of their central roles in regulating substrate metabolism, energy expenditure, disposal of reactive oxygen species (ROS), and in the pathophysiology of obesity and insulin resistance, as well as roles in the mechanisms that affect adipogenesis and mature adipocyte function. RECENT FINDINGS Nutrient excess leads to mitochondrial dysfunction, which in turn leads to obesity-related pathologies, in part due to the harmful effects of ROS. The recent recognition of 'ectopic' brown adipose in humans suggests that this tissue may play an underappreciated role in the control of energy expenditure. Transcription factors, PGC-1alpha and PRDM16, which regulate brown adipogenesis, and members of the TGF-beta superfamily that modulate this process may be important new targets for antiobesity drugs. SUMMARY Mitochondria play central roles in ATP production, energy expenditure, and disposal of ROS. Excessive energy substrates lead to mitochondrial dysfunction with consequential effects on lipid and glucose metabolism. Adipocytes help to maintain the appropriate balance between energy storage and expenditure and maintaining this balance requires normal mitochondrial function. Many adipokines, including members of the TGF-beta superfamily, and transcriptional coactivators, PGC-1alpha and PRDM16, are important regulators of this process.
Collapse
Affiliation(s)
- Juan C. Bournat
- Department of Molecular and Human Genetics, Houston, TX 77030, USA
| | - Chester W. Brown
- Department of Molecular and Human Genetics, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital, Houston, TX 77030, USA
| |
Collapse
|
41
|
Li D, Zhang Y, Xu L, Zhou L, Wang Y, Xue B, Wen Z, Li P, Sang J. Regulation of gene expression by FSP27 in white and brown adipose tissue. BMC Genomics 2010; 11:446. [PMID: 20649970 PMCID: PMC3091643 DOI: 10.1186/1471-2164-11-446] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 07/22/2010] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Brown and white adipose tissues (BAT and WAT) play critical roles in controlling energy homeostasis and in the development of obesity and diabetes. The mouse Fat-Specific protein 27 (FSP27), a member of the cell death-inducing DFF45-like effector (CIDE) family, is expressed in both BAT and WAT and is associated with lipid droplets. Over-expression of FSP27 promotes lipid storage, whereas FSP27 deficient mice have improved insulin sensitivity and are resistant to diet-induced obesity. In addition, FSP27-deficient white adipocytes have reduced lipid storage, smaller lipid droplets, increased mitochondrial activity and a higher expression of several BAT-selective genes. To elucidate the molecular mechanism by which FSP27 controls lipid storage and gene expression in WAT and BAT, we systematically analyzed the gene expression profile of FSP27-deficient WAT by microarray analysis and compared the expression levels of a specific set of genes in WAT and BAT by semi-quantitative real-time PCR analysis. RESULTS BAT-selective genes were significantly up-regulated, whereas WAT-selective genes were down-regulated in the WAT of FSP27-deficient mice. The expression of the BAT-selective genes was also dramatically up-regulated in the WAT of leptin/FSP27 double deficient mice. In addition, the expression levels of genes involved in multiple metabolic pathways, including oxidative phosphorylation, the TCA cycle, fatty acid synthesis and fatty acid oxidation, were increased in the FSP27-deficient WAT. In contrast, the expression levels for genes involved in extracellular matrix remodeling, the classic complement pathway and TGF-beta signaling were down-regulated in the FSP27-deficient WAT. Most importantly, the expression levels of regulatory factors that determine BAT identity, such as CEBP alpha/beta, PRDM16 and major components of the cAMP pathway, were markedly up-regulated in the WAT of FSP27-deficient mice. The expression levels of these regulatory factors were also up-regulated in leptin/FSP27 double deficient mice. Interestingly, distinct gene expression profiles were observed in the BAT of FSP27-deficient mice. Taken together, these data suggest that the WAT of FSP27-deficient mice have a gene expression profile similar to that of BAT. CONCLUSIONS FSP27 acts as a molecular determinant that controls gene expression for a diversity of metabolic and signaling pathways and, in particular, the expression of regulatory factors, including CEBP alpha/beta, PRDM16 and components of the cAMP signaling pathway, that control the identity of WAT and BAT.
Collapse
Affiliation(s)
- De Li
- College of Life Sciences, Beijing Normal University Xinjiekouwai Street 19, Xichen District Beijing 100875, China
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Byerly MS, Simon J, Cogburn LA, Le Bihan-Duval E, Duclos MJ, Aggrey SE, Porter TE. Transcriptional profiling of hypothalamus during development of adiposity in genetically selected fat and lean chickens. Physiol Genomics 2010; 42:157-67. [PMID: 20371548 DOI: 10.1152/physiolgenomics.00029.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The hypothalamus integrates peripheral signals to regulate food intake, energy metabolism, and ultimately growth rate and body composition in vertebrates. Deviations in hypothalamic regulatory controls can lead to accumulation of excess body fat. Many regulatory genes involved in this process remain unidentified, and comparative studies may be helpful to unravel evolutionarily conserved mechanisms controlling body weight and food intake. In the present study, divergently selected fat (FL) and lean (LL) lines of chickens were used to characterize differences in hypothalamic gene expression in these unique genetic lines that develop differences in adiposity without differences in food intake or body weight. Hypothalamic transcriptional profiles were defined with cDNA microarrays before and during divergence of adiposity between the two lines. Six differentially expressed genes identified in chickens are related to genes associated with control of body fat in transgenic or knockout mice, supporting the importance of these genes across species. We identified differences in expression of nine genes involved in glucose metabolism, suggesting that alterations in hypothalamic glycolysis might contribute to differences in levels of body fat between genotypes. Expression of the sweet taste receptor (TAS1R1), which in mammals is involved in glucose sensing and energy uptake, was also higher in FL chickens, suggesting that early differences in glucose sensing might alter the set point for subsequent body composition. Differences in expression of genes associated with tumor necrosis factor (TNF) signaling were also noted. In summary, we identified alterations in transcriptional and metabolic processes within the hypothalamus that could contribute to excessive accumulation of body fat in FL chickens in the absence of differences in food intake, thereby contributing to the genetic basis for obesity in this avian model.
Collapse
Affiliation(s)
- Mardi S Byerly
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Sánchez-Aragó M, Chamorro M, Cuezva JM. Selection of cancer cells with repressed mitochondria triggers colon cancer progression. Carcinogenesis 2010; 31:567-76. [PMID: 20080835 DOI: 10.1093/carcin/bgq012] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The contribution that mitochondrial bioenergetics could have in cancer development is debated. Here, we have generated HCT116-derived colocarcinoma cell lines expressing different levels of the beta catalytic subunit of the mitochondrial H+-adenosine triphosphate synthase to assess the contribution of mitochondrial bioenergetics in colon cancer progression. The generated cells exhibit large ultrastructural, transcriptomic, proteomic and functional differences in their mitochondria and in their in vivo tumor forming capacity. We show that the activity of oxidative phosphorylation defines the rate of glucose utilization by aerobic glycolysis. The aggressive cellular phenotype, which is highly glycolytic, is bound to the deregulated expression of genes involved in metabolic processes, the regulation of the cell cycle, apoptosis, angiogenesis and cell adhesion. Remarkably, the molecular and ultrastructural analysis of the tumors derived from the three HCT116 cell lines under study highlight that tumor promotion inevitably requires the selection of cancer cells with a repressed biogenesis and functional activity of mitochondria, i.e. the highly glycolytic phenotype is selected for tumor development. The tumor forming potential of the cells is a non-genetically acquired condition that provides the cancer cell with a cell-death resistant phenotype. An abrogated mitochondrial respiration contributes to a diminished potential for reactive oxygen species signaling in response to 5-fluorouracil treatment. Treatment of cancer cells with dichloroacetate partially restores the functional differentiation of mitochondria and promotes tumor regression, emphasizing the reversible nature of the metabolic trait of cancer.
Collapse
Affiliation(s)
- María Sánchez-Aragó
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM) and Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER-ISCIII, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | |
Collapse
|
44
|
Abstract
Growing evidence supports the view that LDs (lipid droplets) are dynamic organelles that can serve both as an intracellular signalling compartment and as an organizing platform orchestrating many vital processes in eukaryotic cells. It has become clear that the LDs-confined deposition and lipolytic degradation of neutral lipids define longevity in multicellular eukaryotic organisms and yeast. We summarize the evidence in support of the essential role that LDs play in longevity regulation and propose several molecular mechanisms by which these dynamic organellar compartments control the aging process in multicellular eukaryotes and yeast.
Collapse
|
45
|
Singh R, Xiang Y, Wang Y, Baikati K, Cuervo AM, Luu YK, Tang Y, Pessin JE, Schwartz GJ, Czaja MJ. Autophagy regulates adipose mass and differentiation in mice. J Clin Invest 2009; 119:3329-39. [PMID: 19855132 DOI: 10.1172/jci39228] [Citation(s) in RCA: 379] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 08/26/2009] [Indexed: 12/11/2022] Open
Abstract
The relative balance between the quantity of white and brown adipose tissue can profoundly affect lipid storage and whole-body energy homeostasis. However, the mechanisms regulating the formation, expansion, and interconversion of these 2 distinct types of fat remain unknown. Recently, the lysosomal degradative pathway of macroautophagy has been identified as a regulator of cellular differentiation, suggesting that autophagy may modulate this process in adipocytes. The function of autophagy in adipose differentiation was therefore examined in the current study by genetic inhibition of the critical macroautophagy gene autophagy-related 7 (Atg7). Knockdown of Atg7 in 3T3-L1 preadipocytes inhibited lipid accumulation and decreased protein levels of adipocyte differentiation factors. Knockdown of Atg5 or pharmacological inhibition of autophagy or lysosome function also had similar effects. An adipocyte-specific mouse knockout of Atg7 generated lean mice with decreased white adipose mass and enhanced insulin sensitivity. White adipose tissue in knockout mice had increased features of brown adipocytes, which, along with an increase in normal brown adipose tissue, led to an elevated rate of fatty acid, beta-oxidation, and a lean body mass. Autophagy therefore functions to regulate body lipid accumulation by controlling adipocyte differentiation and determining the balance between white and brown fat.
Collapse
Affiliation(s)
- Rajat Singh
- Department of Medicine, Albert Einstein College of Medicine, New York, New York10461, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Inferring the transcriptional landscape of bovine skeletal muscle by integrating co-expression networks. PLoS One 2009; 4:e7249. [PMID: 19794913 PMCID: PMC2749936 DOI: 10.1371/journal.pone.0007249] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 08/31/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Despite modern technologies and novel computational approaches, decoding causal transcriptional regulation remains challenging. This is particularly true for less well studied organisms and when only gene expression data is available. In muscle a small number of well characterised transcription factors are proposed to regulate development. Therefore, muscle appears to be a tractable system for proposing new computational approaches. METHODOLOGY/PRINCIPAL FINDINGS Here we report a simple algorithm that asks "which transcriptional regulator has the highest average absolute co-expression correlation to the genes in a co-expression module?" It correctly infers a number of known causal regulators of fundamental biological processes, including cell cycle activity (E2F1), glycolysis (HLF), mitochondrial transcription (TFB2M), adipogenesis (PIAS1), neuronal development (TLX3), immune function (IRF1) and vasculogenesis (SOX17), within a skeletal muscle context. However, none of the canonical pro-myogenic transcription factors (MYOD1, MYOG, MYF5, MYF6 and MEF2C) were linked to muscle structural gene expression modules. Co-expression values were computed using developing bovine muscle from 60 days post conception (early foetal) to 30 months post natal (adulthood) for two breeds of cattle, in addition to a nutritional comparison with a third breed. A number of transcriptional landscapes were constructed and integrated into an always correlated landscape. One notable feature was a 'metabolic axis' formed from glycolysis genes at one end, nuclear-encoded mitochondrial protein genes at the other, and centrally tethered by mitochondrially-encoded mitochondrial protein genes. CONCLUSIONS/SIGNIFICANCE The new module-to-regulator algorithm complements our recently described Regulatory Impact Factor analysis. Together with a simple examination of a co-expression module's contents, these three gene expression approaches are starting to illuminate the in vivo transcriptional regulation of skeletal muscle development.
Collapse
|
47
|
De Pauw A, Tejerina S, Raes M, Keijer J, Arnould T. Mitochondrial (dys)function in adipocyte (de)differentiation and systemic metabolic alterations. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:927-39. [PMID: 19700756 DOI: 10.2353/ajpath.2009.081155] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In mammals, adipose tissue, composed of BAT and WAT, collaborates in energy partitioning and performs metabolic regulatory functions. It is the most flexible tissue in the body, because it is remodeled in size and shape by modifications in adipocyte cell size and/or number, depending on developmental status and energy fluxes. Although numerous reviews have focused on the differentiation program of both brown and white adipocytes as well as on the pathophysiological role of white adipose tissues, the importance of mitochondrial activity in the differentiation or the dedifferentiation programs of adipose cells and in systemic metabolic alterations has not been extensively reviewed previously. Here, we address the crucial role of mitochondrial functions during adipogenesis and in mature adipocytes and discuss the cellular responses of white adipocytes to mitochondrial activity impairment. In addition, we discuss the increase in scientific knowledge regarding mitochondrial functions in the last 10 years and the recent suspicion of mitochondrial dysfunction in several 21st century epidemics (ie, obesity and diabetes), as well as in lipodystrophy found in HIV-treated patients, which can contribute to the development of new therapeutic strategies targeting adipocyte mitochondria.
Collapse
Affiliation(s)
- Aurélia De Pauw
- Laboratory of Biochemistry and Cell Biology, University of Namur, 61 rue de Bruxelles, Namur, Belgium
| | | | | | | | | |
Collapse
|
48
|
Miard S, Dombrowski L, Carter S, Boivin L, Picard F. Aging alters PPARgamma in rodent and human adipose tissue by modulating the balance in steroid receptor coactivator-1. Aging Cell 2009; 8:449-59. [PMID: 19485965 DOI: 10.1111/j.1474-9726.2009.00490.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Age is an important risk factor for the development of metabolic diseases (e.g. obesity, diabetes and atherosclerosis). Yet, little is known about the molecular mechanisms occurring upon aging that affect energy metabolism. Although visceral white adipose tissue (vWAT) is known for its key impact on metabolism, recent studies have indicated it could also be a key regulator of lifespan, suggesting that it can serve as a node for age-associated fat accretion. Here we show that aging triggers changes in the transcriptional milieu of the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma) in vWAT, which leads to a modified potential for transactivation of target genes upon ligand treatment. We found that in vWAT of mice, rats and men, aging induced a specific decrease in the expression of steroid receptor coactivator-1 (SRC-1), whose recruitment to PPARgamma is associated with improved insulin sensitivity and low adipogenic activity. In contrast, aging and oxidative stress did not impact on PPARgamma expression and PPARgamma ligand production. Age-induced loss of PPARgamma/SRC-1 interactions increased the binding of PPARgamma to the promoter of the adipogenic gene aP2. These findings suggest that strategies aimed at increasing SRC-1 expression and recruitment to PPARgamma upon aging might help improve age-associated metabolic disorders.
Collapse
Affiliation(s)
- Stéphanie Miard
- Laval Hospital Research Center, Laval University, Québec, QC, Canada
| | | | | | | | | |
Collapse
|
49
|
Goldberg AA, Bourque SD, Kyryakov P, Gregg C, Boukh-Viner T, Beach A, Burstein MT, Machkalyan G, Richard V, Rampersad S, Cyr D, Milijevic S, Titorenko VI. Effect of calorie restriction on the metabolic history of chronologically aging yeast. Exp Gerontol 2009; 44:555-71. [PMID: 19539741 DOI: 10.1016/j.exger.2009.06.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 05/30/2009] [Accepted: 06/05/2009] [Indexed: 11/30/2022]
Abstract
Aging is a highly complex, multifactorial process. We use the yeast Saccharomyces cerevisiae as a model to study the mechanisms of cellular aging in multicellular eukaryotes. To address the inherent complexity of aging from a systems perspective and to build an integrative model of aging process, we investigated the effect of calorie restriction (CR), a low-calorie dietary regimen, on the metabolic history of chronologically aging yeast. We examined how CR influences the age-related dynamics of changes in the intracellular levels of numerous proteins and metabolites, carbohydrate and lipid metabolism, interorganellar metabolic flow, concentration of reactive oxygen species, mitochondrial morphology, essential oxidation-reduction processes in mitochondria, mitochondrial proteome, cardiolipin in the inner mitochondrial membrane, frequency of mitochondrial DNA mutations, dynamics of mitochondrial nucleoid, susceptibility to mitochondria-controlled apoptosis, and stress resistance. Based on the comparison of the metabolic histories of long-lived CR yeast and short-lived non-CR yeast, we propose that yeast define their long-term viability by designing a diet-specific pattern of metabolism and organelle dynamics prior to reproductive maturation. Thus, our data suggest that longevity in chronologically aging yeast is programmed by the level of metabolic capacity and organelle organization they developed, in a diet-specific fashion, prior to entry into a non-proliferative state.
Collapse
|
50
|
Karamitri A, Shore AM, Docherty K, Speakman JR, Lomax MA. Combinatorial transcription factor regulation of the cyclic AMP-response element on the Pgc-1alpha promoter in white 3T3-L1 and brown HIB-1B preadipocytes. J Biol Chem 2009; 284:20738-52. [PMID: 19491401 DOI: 10.1074/jbc.m109.021766] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cold stress in rodents increases the expression of UCP1 and PGC-1alpha in brown and white adipose tissue. We have previously reported that C/EBPbeta specifically binds to the CRE on the proximal Pgc-1alpha promoter and increases forskolin-sensitive Pgc-1alpha and Ucp1 expression in white 3T3-L1 preadipocytes. Here we show that in mice exposed to a cold environment for 24 h, Pgc-1alpha, Ucp1, and C/ebpbeta but not C/ebpalpha or C/ebpdelta expression were increased in BAT. Conversely, expression of the C/EBP dominant negative Chop10 was increased in WAT but not BAT during cold exposure. Reacclimatization of cold-exposed mice to a warm environment for 24 h completely reversed these changes in gene expression. In HIB-1B, brown preadipocytes, forskolin increased expression of Pgc-1alpha, Ucp1, and C/ebpbeta early in differentiation and inhibited Chop10 expression. Employing chromatin immunoprecipitation, we demonstrate that C/EBPbeta, CREB, ATF-2, and CHOP10 are bound to the Pgc-1alpha proximal CRE, but CHOP10 does not bind in HIB-1B cell lysates. Forskolin stimulation and C/EBPbeta overexpression in 3T3-L1 cells increased C/EBPbeta and CREB but displaced ATF-2 and CHOP10 binding to the Pgc-1alpha proximal CRE. Overexpression of ATF-2 and CHOP10 in 3T3-L1 cells decreased Pgc-1alpha transcription. Knockdown of Chop10 in 3T3-L1 cells using siRNA increased Pgc-1alpha transcription, whereas siRNA against C/ebpbeta in HIB-1B cells decreased Pgc-1alpha and Ucp1 expression. We conclude that the increased cAMP stimulation of Pgc-1alpha expression is regulated by the combinatorial effect of transcription factors acting at the CRE on the proximal Pgc-1alpha promoter.
Collapse
Affiliation(s)
- Angeliki Karamitri
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD
| | | | | | | | | |
Collapse
|