1
|
Wutikeli H, Xie T, Xiong W, Shen Y. ELAV/Hu RNA-binding protein family: key regulators in neurological disorders, cancer, and other diseases. RNA Biol 2025; 22:1-11. [PMID: 40000387 PMCID: PMC11926907 DOI: 10.1080/15476286.2025.2471133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
The ELAV/Hu family represents a crucial group of RNA-binding proteins predominantly expressed in neurons, playing significant roles in mRNA transcription and translation. These proteins bind to AU-rich elements in transcripts to regulate the expression of cytokines, growth factors, and the development and maintenance of neurons. Elav-like RNA-binding proteins exhibit remarkable molecular weight conservation across different species, highlighting their evolutionary conservation. Although these proteins are widely expressed in the nervous system and other cell types, variations in the DNA sequences of the four Elav proteins contribute to their distinct roles in neurological disorders, cancer, and other Diseases . Elavl1, a ubiquitously expressed family member, is integral to processes such as cell growth, ageing, tumorigenesis, and inflammatory diseases. Elavl2, primarily expressed in the nervous and reproductive systems, is critical for central nervous system and retinal development; its dysregulation has been implicated in neurodevelopmental disorders such as autism. Both Elavl3 and Elavl4 are restricted to the nervous system and are involved in neuronal differentiation and excitability. Elavl3 is essential for cerebellar function and has been associated with epilepsy, while Elavl4 is linked to neurodegenerative diseases, including Parkinson's and Alzheimer's diseases. This paper provides a comprehensive review of the ELAV/Hu family's role in nervous system development, neurological disorders, cancer, and other diseases.
Collapse
Affiliation(s)
- Huxitaer Wutikeli
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Ting Xie
- Division of Life Science, The Hong Kong University of Science and Technology, Special Administrative Region (SAR), Kowloon, Hong Kong, China
| | - Wenjun Xiong
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
2
|
Völkers M, Preiss T, Hentze MW. RNA-binding proteins in cardiovascular biology and disease: the beat goes on. Nat Rev Cardiol 2024; 21:361-378. [PMID: 38163813 DOI: 10.1038/s41569-023-00958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
Cardiac development and function are becoming increasingly well understood from different angles, including signalling, transcriptional and epigenetic mechanisms. By contrast, the importance of the post-transcriptional landscape of cardiac biology largely remains to be uncovered, building on the foundation of a few existing paradigms. The discovery during the past decade of hundreds of additional RNA-binding proteins in mammalian cells and organs, including the heart, is expected to accelerate progress and has raised intriguing possibilities for better understanding the intricacies of cardiac development, metabolism and adaptive alterations. In this Review, we discuss the progress and new concepts on RNA-binding proteins and RNA biology and appraise them in the context of common cardiovascular clinical conditions, from cell and organ-wide perspectives. We also discuss how a better understanding of cardiac RNA-binding proteins can fill crucial knowledge gaps in cardiology and might pave the way to developing better treatments to reduce cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- Mirko Völkers
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg and Mannheim, Germany
| | - Thomas Preiss
- Shine-Dalgarno Centre for RNA Innovation, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Matthias W Hentze
- European Molecular Biology Laboratory, Heidelberg, Germany.
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany.
| |
Collapse
|
3
|
Lee S, Wei L, Zhang B, Goering R, Majumdar S, Wen J, Taliaferro JM, Lai EC. ELAV/Hu RNA binding proteins determine multiple programs of neural alternative splicing. PLoS Genet 2021; 17:e1009439. [PMID: 33826609 PMCID: PMC8055025 DOI: 10.1371/journal.pgen.1009439] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/19/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
ELAV/Hu factors are conserved RNA binding proteins (RBPs) that play diverse roles in mRNA processing and regulation. The founding member, Drosophila Elav, was recognized as a vital neural factor 35 years ago. Nevertheless, little was known about its impacts on the transcriptome, and potential functional overlap with its paralogs. Building on our recent findings that neural-specific lengthened 3' UTR isoforms are co-determined by ELAV/Hu factors, we address their impacts on splicing. While only a few splicing targets of Drosophila are known, ectopic expression of each of the three family members (Elav, Fne and Rbp9) alters hundreds of cassette exon and alternative last exon (ALE) splicing choices. Reciprocally, double mutants of elav/fne, but not elav alone, exhibit opposite effects on both classes of regulated mRNA processing events in larval CNS. While manipulation of Drosophila ELAV/Hu RBPs induces both exon skipping and inclusion, characteristic ELAV/Hu motifs are enriched only within introns flanking exons that are suppressed by ELAV/Hu factors. Moreover, the roles of ELAV/Hu factors in global promotion of distal ALE splicing are mechanistically linked to terminal 3' UTR extensions in neurons, since both processes involve bypass of proximal polyadenylation signals linked to ELAV/Hu motifs downstream of cleavage sites. We corroborate the direct action of Elav in diverse modes of mRNA processing using RRM-dependent Elav-CLIP data from S2 cells. Finally, we provide evidence for conservation in mammalian neurons, which undergo broad programs of distal ALE and APA lengthening, linked to ELAV/Hu motifs downstream of regulated polyadenylation sites. Overall, ELAV/Hu RBPs orchestrate multiple broad programs of neuronal mRNA processing and isoform diversification in Drosophila and mammalian neurons.
Collapse
Affiliation(s)
- Seungjae Lee
- Developmental Biology Program, Sloan Kettering Institute, New York City, New York, United States of America
| | - Lu Wei
- Developmental Biology Program, Sloan Kettering Institute, New York City, New York, United States of America
| | - Binglong Zhang
- Developmental Biology Program, Sloan Kettering Institute, New York City, New York, United States of America
| | - Raeann Goering
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- RNA Bioscience Initiative University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Sonali Majumdar
- Developmental Biology Program, Sloan Kettering Institute, New York City, New York, United States of America
| | - Jiayu Wen
- Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - J. Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- RNA Bioscience Initiative University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Eric C. Lai
- Developmental Biology Program, Sloan Kettering Institute, New York City, New York, United States of America
| |
Collapse
|
4
|
Džafo E, Bianchi N, Monticelli S. Cell-intrinsic mechanisms to restrain inflammatory responses in T lymphocytes. Immunol Rev 2021; 300:181-193. [PMID: 33507562 DOI: 10.1111/imr.12932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/29/2020] [Accepted: 11/08/2020] [Indexed: 12/14/2022]
Abstract
A mechanistic understanding of the regulatory circuits that control the effector responses of memory T helper lymphocytes, and in particular their ability to produce pro-inflammatory cytokines, may lead to effective therapeutic interventions in all immune-related diseases. Activation of T lymphocytes induces robust immune responses that in most cases lead to the complete eradication of invading pathogens or tumor cells. At the same time, however, such responses must be both highly controlled in magnitude and limited in time to avoid unnecessary damage. To achieve such sophisticated level of control, T lymphocytes have at their disposal an array of transcriptional and post-transcriptional regulatory mechanisms that ensure the acquisition of a phenotype that is tailored to the incoming stimulus while restraining unwarranted activation, eventually leading to the resolution of the inflammatory response. Here, we will discuss some of these cell-intrinsic mechanisms that control T cell responses and involve transcription factors, microRNAs, and RNA-binding proteins. We will also explore how the same mechanisms can be involved both in anti-tumor responses and in autoimmunity.
Collapse
Affiliation(s)
- Emina Džafo
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Niccolò Bianchi
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Silvia Monticelli
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana (USI), Bellinzona, Switzerland
| |
Collapse
|
5
|
Torabi SF, Vaidya AT, Tycowski KT, DeGregorio SJ, Wang J, Shu MD, Steitz TA, Steitz JA. RNA stabilization by a poly(A) tail 3'-end binding pocket and other modes of poly(A)-RNA interaction. Science 2021; 371:science.abe6523. [PMID: 33414189 DOI: 10.1126/science.abe6523] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022]
Abstract
Polyadenylate [poly(A)] tail addition to the 3' end of a wide range of RNAs is a highly conserved modification that plays a central role in cellular RNA function. Elements for nuclear expression (ENEs) are cis-acting RNA elements that stabilize poly(A) tails by sequestering them in RNA triplex structures. A crystal structure of a double ENE from a rice hAT transposon messenger RNA complexed with poly(A)28 at a resolution of 2.89 angstroms reveals multiple modes of interaction with poly(A), including major-groove triple helices, extended minor-groove interactions with RNA double helices, a quintuple-base motif that transitions poly(A) from minor-groove associations to major-groove triple helices, and a poly(A) 3'-end binding pocket. Our findings both expand the repertoire of motifs involved in long-range RNA interactions and provide insights into how polyadenylation can protect an RNA's extreme 3' end.
Collapse
Affiliation(s)
- Seyed-Fakhreddin Torabi
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Anand T Vaidya
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA.,TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Kazimierz T Tycowski
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Suzanne J DeGregorio
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Mei-Di Shu
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Thomas A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA. .,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| |
Collapse
|
6
|
HuD regulates SOD1 expression during oxidative stress in differentiated neuroblastoma cells and sporadic ALS motor cortex. Neurobiol Dis 2020; 148:105211. [PMID: 33271327 DOI: 10.1016/j.nbd.2020.105211] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/09/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
The neuronal RNA-binding protein (RBP) HuD plays an important role in brain development, synaptic plasticity and neurodegenerative diseases such as Parkinson's (PD) and Alzheimer's (AD). Bioinformatics analysis of the human SOD1 mRNA 3' untranslated region (3'UTR) demonstrated the presence of HuD binding adenine-uridine (AU)-rich instability-conferring elements (AREs). Using differentiated SH-SY5Y cells along with brain tissues from sporadic amyotrophic lateral sclerosis (sALS) patients, we assessed HuD-dependent regulation of SOD1 mRNA. In vitro binding and mRNA decay assays demonstrate that HuD specifically binds to SOD1 ARE motifs promoting mRNA stabilization. In SH-SY5Y cells, overexpression of full-length HuD increased SOD1 mRNA and protein levels while a dominant negative form of the RBP downregulated its expression. HuD regulation of SOD1 mRNA was also found to be oxidative stress (OS)-dependent, as shown by the increased HuD binding and upregulation of this mRNA after H2O2 exposure. This treatment also induced a shift in alternative polyadenylation (APA) site usage in SOD1 3'UTR, increasing the levels of a long variant bearing HuD binding sites. The requirement of HuD for SOD1 upregulation during oxidative damage was validated using a specific siRNA that downregulated HuD protein levels to 36% and prevented upregulation of SOD1 and 91 additional genes. In the motor cortex from sALS patients, we found increases in SOD1 and HuD mRNAs and proteins, accompanied by greater HuD binding to this mRNA as confirmed by RNA-immunoprecipitation (RIP) assays. Altogether, our results suggest a role of HuD in the post-transcriptional regulation of SOD1 expression during ALS pathogenesis.
Collapse
|
7
|
McDonald EM, Anderson J, Wilusz J, Ebel GD, Brault AC. Zika Virus Replication in Myeloid Cells during Acute Infection Is Vital to Viral Dissemination and Pathogenesis in a Mouse Model. J Virol 2020; 94:e00838-20. [PMID: 32847848 PMCID: PMC7565634 DOI: 10.1128/jvi.00838-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/02/2020] [Indexed: 12/22/2022] Open
Abstract
Zika virus (ZIKV) can establish infection in immune privileged sites such as the testes, eye, and placenta. Whether ZIKV infection of white blood cells is required for dissemination of the virus to immune privileged sites has not been definitively shown. To assess whether initial ZIKV replication in myeloid cell populations is critical for dissemination during acute infection, recombinant ZIKVs were generated that could not replicate in these specific cells. ZIKV was cell restricted by insertion of a complementary sequence to a myeloid-specific microRNA in the 3' untranslated region. Following inoculation of a highly sensitive immunodeficient mouse model, crucial immune parameters, such as quantification of leukocyte cell subsets, cytokine and chemokine secretion, and viremia, were assessed. Decreased neutrophil numbers in the spleen were observed during acute infection with myeloid-restricted ZIKV that precluded the generation of viremia and viral dissemination to peripheral organs. Mice inoculated with a nontarget microRNA control ZIKV demonstrated increased expression of key cytokines and chemokines critical for neutrophil and monocyte recruitment and increased neutrophil influx in the spleen. In addition, ZIKV-infected Ly6Chi monocytes were identified in vivo in the spleen. Mice inoculated with myeloid-restricted ZIKV had a decrease in Ly6Chi ZIKV RNA-positive monocytes and a lack of inflammatory cytokine production compared to mice inoculated with control ZIKV.IMPORTANCE Myeloid cells, including monocytes, play a crucial role in immune responses to pathogens. Monocytes have also been implicated as "Trojan horses" during viral infections, carrying infectious virus particles to immune privileged sites and/or to sites protected by physical blood-tissue barriers, such as the blood-testis barrier and the blood-brain barrier. In this study, we found that myeloid cells are crucial to Zika virus (ZIKV) pathogenesis. By engineering ZIKV clones to encode myeloid-specific microRNA target sequences, viral replication was inhibited in myeloid cells by harnessing the RNA interference pathway. Severely immunodeficient mice inoculated with myeloid-restricted ZIKV did not demonstrate clinical signs of disease and survived infection. Furthermore, viral dissemination to peripheral organs was not observed in these mice. Lastly, we identified Ly6Cmid/hi murine monocytes as the major myeloid cell population that disseminates ZIKV.
Collapse
Affiliation(s)
- Erin M McDonald
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - John Anderson
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Jeff Wilusz
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Gregory D Ebel
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Aaron C Brault
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| |
Collapse
|
8
|
Michalski D, Ontiveros JG, Russo J, Charley PA, Anderson JR, Heck AM, Geiss BJ, Wilusz J. Zika virus noncoding sfRNAs sequester multiple host-derived RNA-binding proteins and modulate mRNA decay and splicing during infection. J Biol Chem 2019; 294:16282-16296. [PMID: 31519749 DOI: 10.1074/jbc.ra119.009129] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/19/2019] [Indexed: 12/17/2022] Open
Abstract
Insect-borne flaviviruses produce a 300-500-base long noncoding RNA, termed subgenomic flavivirus RNA (sfRNA), by stalling the cellular 5'-3'-exoribonuclease 1 (XRN1) via structures located in their 3' UTRs. In this study, we demonstrate that sfRNA production by Zika virus represses XRN1 analogous to what we have previously shown for other flaviviruses. Using protein-RNA reconstitution and a stringent RNA pulldown assay with human choriocarcinoma (JAR) cells, we demonstrate that the sfRNAs from both dengue type 2 and Zika viruses interact with a common set of 21 RNA-binding proteins that contribute to the regulation of post-transcriptional processes in the cell, including splicing, RNA stability, and translation. We found that four of these sfRNA-interacting host proteins, DEAD-box helicase 6 (DDX6) and enhancer of mRNA decapping 3 (EDC3) (two RNA decay factors), phosphorylated adaptor for RNA export (a regulator of the biogenesis of the splicing machinery), and apolipoprotein B mRNA-editing enzyme catalytic subunit 3C (APOBEC3C, a nucleic acid-editing deaminase), inherently restrict Zika virus infection. Furthermore, we demonstrate that the regulations of cellular mRNA decay and RNA splicing are compromised by Zika virus infection as well as by sfRNA alone. Collectively, these results reveal the large extent to which Zika virus-derived sfRNAs interact with cellular RNA-binding proteins and highlight the potential for widespread dysregulation of post-transcriptional control that likely limits the effective response of these cells to viral infection.
Collapse
Affiliation(s)
- Daniel Michalski
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523
| | - J Gustavo Ontiveros
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado 80523
| | - Joseph Russo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523
| | - Phillida A Charley
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523
| | - John R Anderson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523
| | - Adam M Heck
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado 80523
| | - Brian J Geiss
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523.,Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado 80523
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523 .,Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado 80523
| |
Collapse
|
9
|
Karginov FV. HuR controls apoptosis and activation response without effects on cytokine 3' UTRs. RNA Biol 2019; 16:686-695. [PMID: 30777501 DOI: 10.1080/15476286.2019.1582954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
RNA binding proteins regulate gene expression through several post-transcriptional mechanisms. The broadly expressed HuR/ELAVL1 is important for proper function of multiple immune cell types, and has been proposed to regulate cytokine and other mRNA 3' UTRs upon activation. However, this mechanism has not been previously dissected in stable cellular settings. In this study, HuR demonstrated strong anti-apoptotic and activation roles in Jurkat T cells. Detailed transcriptomic analysis of HuR knockout cells revealed a substantial negative impact on the activation program, coordinately preventing the expression of immune response gene categories, including all cytokines. Knockout cells showed a significant defect in IL-2 production, which was rescued upon reintroduction of HuR. Interestingly, the mechanism of HuR regulation did not involve control of the cytokine 3' UTRs: HuR knockout did not affect the activity of 3' UTR reporters in 293 cells, and had no effect on IL-2 and TNF 3' UTRs in resting or activated Jurkats. Instead, impaired cytokine production corresponded with defective induction of the IL-2 promoter upon activation. Accordingly, upregulation of NFATC1 was also impaired, without 3' UTR effects. Together, these results indicate that HuR controls cytokine production through coordinated upstream pathways, and that additional mechanisms must be considered in investigating its function.
Collapse
Affiliation(s)
- Fedor V Karginov
- a Department of Molecular, Cell, and Systems Biology , Institute for Integrative Genome Biology, University of California , Riverside , CA , USA
| |
Collapse
|
10
|
Russo J, Mundell CT, Charley PA, Wilusz C, Wilusz J. Engineered viral RNA decay intermediates to assess XRN1-mediated decay. Methods 2018; 155:116-123. [PMID: 30521847 DOI: 10.1016/j.ymeth.2018.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 01/23/2023] Open
Abstract
Both RNA synthesis and decay must be balanced within a cell to achieve proper gene expression. Additionally, modulation of RNA decay specifically offers the cell an opportunity to rapidly reshape the transcriptome in response to specific stimuli or cues. Therefore, it is critical to understand the underlying mechanisms through which RNA decay contribute to gene expression homeostasis. Cell-free reconstitution approaches have been used successfully to reveal mechanisms associated with numerous post-transcriptional RNA processes. Historically, it has been difficult to examine all aspects of RNA decay in such an in vitro setting due, in part, to limitations on the ability to resolve larger RNAs through denaturing polyacrylamide gels. Thus, in vitro systems to study RNA decay rely on smaller, less biologically relevant RNA fragments. Herein, we present an approach to more confidently examine RNA decay parameters of large mRNA size transcripts through the inclusion of an engineered XRN1-resistant reporter RNA (xrRNA). By placing a 67 nucleotide xrRNA near the 3' end of any in vitro transcribed RNA with variable size or sequence context, investigators can observe the accumulation of the xrRNA as a readout of exoribonuclease-mediated 5'-3' decay. This approach may allow in vitro RNA decay assays to include full biologically relevant mRNA/mRNPs, extending their utility and allow improved experimental design considerations to promote biologically relevant outcomes.
Collapse
Affiliation(s)
- Joseph Russo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80525, United States
| | - Cary T Mundell
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80525, United States; Program in Cell & Molecular Biology, Colorado State University, Fort Collins, CO 80525, United States
| | - Phillida A Charley
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80525, United States
| | - Carol Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80525, United States; Program in Cell & Molecular Biology, Colorado State University, Fort Collins, CO 80525, United States
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80525, United States; Program in Cell & Molecular Biology, Colorado State University, Fort Collins, CO 80525, United States.
| |
Collapse
|
11
|
Mattijssen S, Arimbasseri AG, Iben JR, Gaidamakov S, Lee J, Hafner M, Maraia RJ. LARP4 mRNA codon-tRNA match contributes to LARP4 activity for ribosomal protein mRNA poly(A) tail length protection. eLife 2017; 6:e28889. [PMID: 28895529 PMCID: PMC5626478 DOI: 10.7554/elife.28889] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/05/2017] [Indexed: 12/12/2022] Open
Abstract
Messenger RNA function is controlled by the 3' poly(A) tail (PAT) and poly(A)-binding protein (PABP). La-related protein-4 (LARP4) binds poly(A) and PABP. LARP4 mRNA contains a translation-dependent, coding region determinant (CRD) of instability that limits its expression. Although the CRD comprises <10% of LARP4 codons, the mRNA levels vary >20 fold with synonymous CRD substitutions that accommodate tRNA dynamics. Separately, overexpression of the most limiting tRNA increases LARP4 levels and reveals its functional activity, net lengthening of the PATs of heterologous mRNAs with concomitant stabilization, including ribosomal protein (RP) mRNAs. Genetic deletion of cellular LARP4 decreases PAT length and RPmRNA stability. This LARP4 activity requires its PABP-interaction domain and the RNA-binding module which we show is sensitive to poly(A) 3'-termini, consistent with protection from deadenylation. The results indicate that LARP4 is a posttranscriptional regulator of ribosomal protein production in mammalian cells and suggest that this activity can be controlled by tRNA levels.
Collapse
Affiliation(s)
- Sandy Mattijssen
- Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaUnited States
| | | | - James R Iben
- Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaUnited States
| | - Sergei Gaidamakov
- Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaUnited States
| | - Joowon Lee
- Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaUnited States
| | - Markus Hafner
- National Institute of Arthritis and Musculoskeletal and Skin DiseasesNational Institutes of HealthBethesdaUnited States
| | - Richard J Maraia
- Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaUnited States
- Commissioned CorpsUS Public Health ServiceBethesdaUnited Staes
| |
Collapse
|
12
|
Fukao A, Fujiwara T. The coupled and uncoupled mechanisms by which trans-acting factors regulate mRNA stability and translation. J Biochem 2017; 161:309-314. [PMID: 28039391 DOI: 10.1093/jb/mvw086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/11/2016] [Indexed: 12/25/2022] Open
Abstract
In mammals, spatiotemporal control of protein synthesis plays a key role in the post-transcriptional regulation of gene expression during cell proliferation, development and differentiation and RNA-binding proteins (RBPs) and microRNAs (miRNAs) are required for this phenomenon. RBPs and miRNAs control the levels of mRNA protein products by regulating mRNA stability and translation. Recent studies have shown that RBPs and miRNAs simultaneously regulate mRNA stability and translation, and that the differential functions of RBPs and miRNAs are dependent on their interaction partners. Here, we summarize the coupled- and uncoupled mechanisms by which trans-acting factors regulate mRNA stability and translation.
Collapse
|
13
|
Biswas R, Kumar P, Pollard HB. Regulation of mRNA turnover in cystic fibrosis lung disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27863009 DOI: 10.1002/wrna.1408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/13/2016] [Accepted: 10/16/2016] [Indexed: 01/07/2023]
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, F508del-CFTR being the most frequent mutation. The CF lung is characterized by a hyperinflammatory phenotype and is regulated by multiple factors that coordinate its pathophysiology. In CF the expression of CFTR as well as proinflammatory genes are regulated at the level of messenger RNA (mRNA) stability, which subsequently affect translation. These mechanisms are mediated by inflammatory RNA-binding proteins as well as small endogenous noncoding microRNAs, in coordination with cellular signaling pathways. These regulatory factors exhibit altered expression and function in vivo in the CF lung, and play a key role in the pathophysiology of CF lung disease. In this review, we have described the role of mRNA stability and associated regulatory mechanisms in CF lung disease. WIREs RNA 2017, 8:e1408. doi: 10.1002/wrna.1408 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Roopa Biswas
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Parameet Kumar
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Harvey B Pollard
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
14
|
Fotinos A, Fritz DT, Lisica S, Liu Y, Rogers MB. Competing Repressive Factors Control Bone Morphogenetic Protein 2 (BMP2) in Mesenchymal Cells. J Cell Biochem 2016. [PMID: 26212702 DOI: 10.1002/jcb.25290] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The amount, timing, and location of bone morphogenetic protein 2 (BMP2) synthesis influences the differentiation of pluripotent mesenchymal cells in embryos and adults. The BMP2 3'untranslated region (3'UTR) contains a highly conserved AU-rich element (ARE) embedded in a sequence that commonly represses gene expression in mesenchymal cells. Computational analyses indicate that this site also may bind several microRNAs (miRNAs). Although miRNAs frequently target AU-rich regions, this ARE is unusual because the miRNAs directly span the ARE. We began to characterize the factors that may regulate Bmp2 expression via this complex site. The activating protein HuR (Hu antigen R, ELAVL1, HGNC:3312) directly binds this ARE and can activate gene expression. An miRNA was demonstrated to reverse HuR-mediated activation. Mutational and RNA-interference evidence also supports an AUF1 (AU-factor-1, HNRNPD, HGNC:5036) contribution to the observed repressive activity of the 3'UTR in mesenchymal cells. A limited number of studies describe how miRNAs interact with ARE-binding proteins that bind adjacent sites. This study is among the first to describe protein/miRNA interactions at the same site.
Collapse
Affiliation(s)
- Anastasios Fotinos
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey
| | - David T Fritz
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Steven Lisica
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Yijun Liu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Melissa B Rogers
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
15
|
Crystal Structure of the N-Terminal RNA Recognition Motif of mRNA Decay Regulator AUF1. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3286191. [PMID: 27437398 PMCID: PMC4942602 DOI: 10.1155/2016/3286191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/17/2016] [Accepted: 05/25/2016] [Indexed: 11/18/2022]
Abstract
AU-rich element binding/degradation factor 1 (AUF1) plays a role in destabilizing mRNAs by forming complexes with AU-rich elements (ARE) in the 3′-untranslated regions. Multiple AUF1-ARE complexes regulate the translation of encoded products related to the cell cycle, apoptosis, and inflammation. AUF1 contains two tandem RNA recognition motifs (RRM) and a Gln- (Q-) rich domain in their C-terminal region. To observe how the two RRMs are involved in recognizing ARE, we obtained the AUF1-p37 protein covering the two RRMs. However, only N-terminal RRM (RRM1) was crystallized and its structure was determined at 1.7 Å resolution. It appears that the RRM1 and RRM2 separated before crystallization. To demonstrate which factors affect the separate RRM1-2, we performed limited proteolysis using trypsin. The results indicated that the intact proteins were cleaved by unknown proteases that were associated with them prior to crystallization. In comparison with each of the monomers, the conformations of the β2-β3 loops were highly variable. Furthermore, a comparison with the RRM1-2 structures of HuR and hnRNP A1 revealed that a dimer of RRM1 could be one of the possible conformations of RRM1-2. Our data may provide a guidance for further structural investigations of AUF1 tandem RRM repeat and its mode of ARE binding.
Collapse
|
16
|
Khabar KSA. Hallmarks of cancer and AU-rich elements. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27251431 PMCID: PMC5215528 DOI: 10.1002/wrna.1368] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/05/2016] [Accepted: 05/09/2016] [Indexed: 12/14/2022]
Abstract
Post‐transcriptional control of gene expression is aberrant in cancer cells. Sustained stabilization and enhanced translation of specific mRNAs are features of tumor cells. AU‐rich elements (AREs), cis‐acting mRNA decay determinants, play a major role in the posttranscriptional regulation of many genes involved in cancer processes. This review discusses the role of aberrant ARE‐mediated posttranscriptional processes in each of the hallmarks of cancer, including sustained cellular growth, resistance to apoptosis, angiogenesis, invasion, and metastasis. WIREs RNA 2017, 8:e1368. doi: 10.1002/wrna.1368 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Khalid S A Khabar
- King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Mattijssen S, Maraia RJ. LARP4 Is Regulated by Tumor Necrosis Factor Alpha in a Tristetraprolin-Dependent Manner. Mol Cell Biol 2016; 36:574-84. [PMID: 26644407 PMCID: PMC4751689 DOI: 10.1128/mcb.00804-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/14/2015] [Accepted: 11/20/2015] [Indexed: 01/09/2023] Open
Abstract
LARP4 is a protein with unknown function that independently binds to poly(A) RNA, RACK1, and the poly(A)-binding protein (PABPC1). Here, we report on its regulation. We found a conserved AU-rich element (ARE) in the human LARP4 mRNA 3' untranslated region (UTR). This ARE, but not its antisense version or a point-mutated version, significantly decreased the stability of β-globin reporter mRNA. We found that overexpression of tristetraprolin (TTP), but not its RNA binding mutant or the other ARE-binding proteins tested, decreased cellular LARP4 levels. RNA coimmunoprecipitation showed that TTP specifically associated with LARP4 mRNA in vivo. Consistent with this, mouse LARP4 accumulated to higher levels in TTP gene knockout (KO) cells than in control cells. Stimulation of WT cells with tumor necrosis factor alpha (TNF-α), which rapidly induces TTP, robustly decreased LARP4 with a coincident time course but had no such effect on LARP4B or La protein or on LARP4 in the TTP KO cells. The TNF-α-induced TTP pulse was followed by a transient decrease in LARP4 mRNA that was quickly followed by a subsequent transient decrease in LARP4 protein. Involvement of LARP4 as a target of TNF-α-TTP regulation provides a clue as to how its functional activity may be used in a physiologic pathway.
Collapse
Affiliation(s)
- Sandy Mattijssen
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Richard J Maraia
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA Commissioned Corps, U.S. Public Health Service, Washington, DC, USA
| |
Collapse
|
18
|
Yuan ZY, Lu X, Lei F, Chai YS, Wang YG, Jiang JF, Feng TS, Wang XP, Yu X, Yan XJ, Xing DM, Du LJ. TATA boxes in gene transcription and poly (A) tails in mRNA stability: New perspective on the effects of berberine. Sci Rep 2015; 5:18326. [PMID: 26671652 PMCID: PMC4680869 DOI: 10.1038/srep18326] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/16/2015] [Indexed: 01/17/2023] Open
Abstract
Berberine (BBR) is a natural compound with variable pharmacological effects and a broad panel of target genes. We investigated berberine’s pharmacological activities from the perspective of its nucleotide-binding ability and discovered that BBR directly regulates gene expression by targeting TATA boxes in transcriptional regulatory regions as well as the poly adenine (poly (A)) tail at the mRNA terminus. BBR inhibits gene transcription by binding the TATA boxes in the transcriptional regulatory region, but it promotes higher levels of expression by targeting the poly (A) tails of mRNAs. The present study demonstrates that TATA boxes and poly (A) tails are the first and second primary targets by which BBR regulates gene expression. The final outcome of gene regulation by BBR depends on the structure of the individual gene. This is the first study to reveal that TATA boxes and poly (A) tails are direct targets for BBR in its regulation of gene expression. Our findings provide a novel explanation for the complex activities of a small molecule compound in a biological system and a novel horizon for small molecule-compound pharmacological studies.
Collapse
Affiliation(s)
- Zhi-Yi Yuan
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xi Lu
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Fan Lei
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yu-Shuang Chai
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yu-Gang Wang
- MD Anderson Cancer Center, University of Texas, Houston, Texas 77030, USA
| | - Jing-Fei Jiang
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Tian-Shi Feng
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xin-Pei Wang
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xuan Yu
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiao-Jin Yan
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Dong-Ming Xing
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Li-Jun Du
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
19
|
Kim HH, Lee SJ, Gardiner AS, Perrone-Bizzozero NI, Yoo S. Different motif requirements for the localization zipcode element of β-actin mRNA binding by HuD and ZBP1. Nucleic Acids Res 2015; 43:7432-46. [PMID: 26152301 PMCID: PMC4551932 DOI: 10.1093/nar/gkv699] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/29/2015] [Indexed: 11/13/2022] Open
Abstract
Interactions of RNA-binding proteins (RBPs) with their target transcripts are essential for regulating gene expression at the posttranscriptional level including mRNA export/localization, stability, and translation. ZBP1 and HuD are RBPs that play pivotal roles in mRNA transport and local translational control in neuronal processes. While HuD possesses three RNA recognition motifs (RRMs), ZBP1 contains two RRMs and four K homology (KH) domains that either increase target specificity or provide a multi-target binding capability. Here we used isolated cis-element sequences of the target mRNA to examine directly protein-RNA interactions in cell-free systems. We found that both ZBP1 and HuD bind the zipcode element in rat β-actin mRNA's 3' UTR. Differences between HuD and ZBP1 were observed in their binding preference to the element. HuD showed a binding preference for U-rich sequence. In contrast, ZBP1 binding to the zipcode RNA depended more on the structural level, as it required the proper spatial organization of a stem-loop that is mainly determined by the U-rich element juxtaposed to the 3' end of a 5'-ACACCC-3' motif. On the basis of this work, we propose that ZBP1 and HuD bind to overlapping sites in the β-actin zipcode, but they recognize different features of this target sequence.
Collapse
Affiliation(s)
- Hak Hee Kim
- Nemours Biomedical Research, Alfred I. duPont Hosp. for Children, Wilmington, DE 19803, USA
| | - Seung Joon Lee
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Amy S Gardiner
- Department of Neuroscience, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Nora I Perrone-Bizzozero
- Department of Neuroscience, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Soonmoon Yoo
- Nemours Biomedical Research, Alfred I. duPont Hosp. for Children, Wilmington, DE 19803, USA
| |
Collapse
|
20
|
Shum EY, Espinoza JL, Ramaiah M, Wilkinson MF. Identification of novel post-transcriptional features in olfactory receptor family mRNAs. Nucleic Acids Res 2015; 43:9314-26. [PMID: 25908788 PMCID: PMC4627058 DOI: 10.1093/nar/gkv324] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 03/30/2015] [Indexed: 01/23/2023] Open
Abstract
Olfactory receptor (Olfr) genes comprise the largest gene family in mice. Despite their importance in olfaction, how most Olfr mRNAs are regulated remains unexplored. Using RNA-seq analysis coupled with analysis of pre-existing databases, we found that Olfr mRNAs have several atypical features suggesting that post-transcriptional regulation impacts their expression. First, Olfr mRNAs, as a group, have dramatically higher average AU-content and lower predicted secondary structure than do control mRNAs. Second, Olfr mRNAs have a higher density of AU-rich elements (AREs) in their 3'UTR and upstream open reading frames (uORFs) in their 5 UTR than do control mRNAs. Third, Olfr mRNAs have shorter 3' UTR regions and with fewer predicted miRNA-binding sites. All of these novel properties correlated with higher Olfr expression. We also identified striking differences in the post-transcriptional features of the mRNAs from the two major classes of Olfr genes, a finding consistent with their independent evolutionary origin. Together, our results suggest that the Olfr gene family has encountered unusual selective forces in neural cells that have driven them to acquire unique post-transcriptional regulatory features. In support of this possibility, we found that while Olfr mRNAs are degraded by a deadenylation-dependent mechanism, they are largely protected from this decay in neural lineage cells.
Collapse
Affiliation(s)
- Eleen Y Shum
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0695, USA
| | - Josh L Espinoza
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0695, USA
| | - Madhuvanthi Ramaiah
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0695, USA
| | - Miles F Wilkinson
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0695, USA Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
21
|
Panganiban RP, Vonakis BM, Ishmael FT, Stellato C. Coordinated post-transcriptional regulation of the chemokine system: messages from CCL2. J Interferon Cytokine Res 2015; 34:255-66. [PMID: 24697203 DOI: 10.1089/jir.2013.0149] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The molecular cross-talk between epithelium and immune cells in the airway mucosa is a key regulator of homeostatic immune surveillance and is crucially involved in the development of chronic lung inflammatory diseases. The patterns of gene expression that follow the sensitization process occurring in allergic asthma and chronic rhinosinusitis and those present in the neutrophilic response of other chronic inflammatory lung diseases such as chronic obstructive pulmonary disease (COPD) are tightly regulated in their specificity. Studies exploring the global transcript profiles associated with determinants of post-transcriptional gene regulation (PTR) such as RNA-binding proteins (RBP) and microRNAs identified several of these factors as being crucially involved in controlling the expression of chemokines upon airway epithelial cell stimulation with cytokines prototypic of Th1- or Th2-driven responses. These studies also uncovered the participation of these pathways to glucocorticoids' inhibitory effect on the epithelial chemokine network. Unmasking the molecular mechanisms of chemokine PTR may likely uncover novel therapeutic strategies for the blockade of proinflammatory pathways that are pathogenetic for asthma, COPD, and other lung inflammatory diseases.
Collapse
Affiliation(s)
- Ronaldo P Panganiban
- 1 Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine , Hershey, Pennsylvania
| | | | | | | |
Collapse
|
22
|
Griseri P, Pagès G. Control of pro-angiogenic cytokine mRNA half-life in cancer: the role of AU-rich elements and associated proteins. J Interferon Cytokine Res 2015; 34:242-54. [PMID: 24697202 DOI: 10.1089/jir.2013.0140] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Control of mRNA half-life plays a central role in normal development and disease. Several pathological conditions, such as inflammation and cancer, tightly correlate with deregulation in mRNA stability of pro-inflammatory genes. Among these, pro-angiogenesis cytokines, which play a crucial role in the formation of new blood vessels, normally show rapid mRNA decay patterns. The mRNA half-life of these genes appears to be regulated by mRNA-binding proteins that interact with AU-rich elements (AREs) in the 3'-untranslated region of mRNAs. Some of these RNA-binding proteins, such as tristetraprolin (TTP), ARE RNA-binding protein 1, and KH-type splicing regulatory protein, normally promote mRNA degradation. Conversely, other proteins, such as embryonic lethal abnormal vision-like protein 1 (HuR) and polyadenylate-binding protein-interacting protein 2, act as antagonists, stabilizing the mRNA. The steady state levels of mRNA-binding proteins and their relative ratio is often perturbed in human cancers and associated with invasion and aggressiveness. Compelling evidence also suggests that underexpression of TTP and overexpression of HuR may be a useful prognostic and predictive marker in breast, colon, prostate, and brain cancers, indicating a potential therapeutic approach for these tumors. In this review, we summarize the main mechanisms involved in the regulation of mRNA decay of pro-angiogenesis cytokines in different cancers and discuss the interactions between the AU-rich-binding proteins and their mRNA targets.
Collapse
Affiliation(s)
- Paola Griseri
- 1 U.O.C Medical Genetics, Institute Giannina Gaslini , Genoa, Italy
| | | |
Collapse
|
23
|
Lee JY, Chung TW, Choi HJ, Lee CH, Eun JS, Han YT, Choi JY, Kim SY, Han CW, Jeong HS, Ha KT. A novel cantharidin analog N-benzylcantharidinamide reduces the expression of MMP-9 and invasive potentials of Hep3B via inhibiting cytosolic translocation of HuR. Biochem Biophys Res Commun 2014; 447:371-7. [PMID: 24735540 DOI: 10.1016/j.bbrc.2014.04.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 12/20/2022]
Abstract
Invasion and metastasis are major causes of malignant tumor-associated mortality. The present study aimed to investigate the molecular events underlying inhibitory effect of N-benzylcantharidinamide, a novel synthetic analog of cantharidin, on matrix metalloproteinase-9 (MMP-9)-mediated invasion in highly metastatic hepatocellular carcinoma Hep3B cells. In this investigation, among six analogs of cantharidin, only N-benzylcantharidinamide has the inhibitory action on MMP-9 expression at non-toxic dose. The MMP-9 expression and invasion of Hep3B cells were significantly suppressed by treatment of N-benzylcantharidinamide in a dose-dependent manner. On the other hand, the transcriptional activity of MMP-9 promoter and nuclear levels of NF-κB and AP-1 as the main transcriptional factors inducing MMP-9 expression were not affected by it although the level of MMP-9 mRNA was reduced by treatment of N-benzylcantharidinamide. Interestingly, the stability of MMP-9 mRNA was significantly reduced by N-benzylcantharidinamide-treatment. In addition, the cytosolic translocation of human antigen R (HuR), which results in the increase of MMP-9 mRNA stability through interaction of HuR with 3'-untranslated region of MMP-9 mRNA, was suppressed by treatment of N-benzylcantharidinamide, in a dose-dependent manner. Taken together, it was demonstrated, for the first time, that N-benzylcantharidinamide suppresses MMP-9 expression by reducing HuR-mediated MMP-9 mRNA stability for the inhibition of invasive potential in highly metastatic Hep3B cells.
Collapse
Affiliation(s)
- Ji-Yeon Lee
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Tae-Wook Chung
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Hee-Jung Choi
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Chang Hyun Lee
- Department of Anatomy, College of Korean Medicine, Woosuk University, Wanju-gun, Jeonbuk, Republic of Korea
| | - Jae Soon Eun
- College of Pharmacy, Woosuk University, Wanju-gun, Jeonbuk, Republic of Korea
| | - Young Taek Han
- College of Pharmacy, Woosuk University, Wanju-gun, Jeonbuk, Republic of Korea
| | - Jun-Yong Choi
- Department of Internal Medicine, Korean Medicine Hospital, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea; Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - So-Yeon Kim
- Department of Internal Medicine, Korean Medicine Hospital, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Chang-Woo Han
- Department of Internal Medicine, Korean Medicine Hospital, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Han-Sol Jeong
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea.
| | - Ki-Tae Ha
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea; Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea.
| |
Collapse
|
24
|
Lutz CS, Cornett AL. Regulation of genes in the arachidonic acid metabolic pathway by RNA processing and RNA-mediated mechanisms. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 4:593-605. [PMID: 23956046 DOI: 10.1002/wrna.1183] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 01/22/2023]
Abstract
Arachidonic acid (AA) is converted by enzymes in an important metabolic pathway to produce molecules known collectively as eicosanoids, 20 carbon molecules with significant physiological and pathological functions in the human body. Cyclooxygenase (COX) enzymes work in one arm of the pathway to produce prostaglandins (PGs) and thromboxanes (TXs), while the actions of 5-lipoxygenase (ALOX5 or 5LO) and its associated protein (ALOX5AP or FLAP) work in the other arm of the metabolic pathway to produce leukotrienes (LTs). The expression of the COX and ALOX5 enzymes that convert AA to eicosanoids is highly regulated at the post- or co-transcriptional level by alternative mRNA splicing, alternative mRNA polyadenylation, mRNA stability, and microRNA (miRNA) regulation. This review article will highlight these mechanisms of mRNA modulation.
Collapse
Affiliation(s)
- Carol S Lutz
- Department of Biochemistry and Molecular Biology, New Jersey Medical School and the Graduate School of Biomedical Sciences, Rutgers, NJ, USA.
| | | |
Collapse
|
25
|
Abstract
SIGNIFICANCE Production of proteins requires the synthesis, maturation, and export of mRNAs before their translation in the cytoplasm. Endogenous and exogenous sources of DNA damage pose a challenge to the co-ordinated regulation of gene expression, because the integrity of the DNA template can be compromised by DNA lesions. Cells recognize and respond to this DNA damage through a variety of DNA damage responses (DDRs). Failure to deal with DNA damage appropriately can lead to genomic instability and cancer. RECENT ADVANCES The p53 tumor suppressor plays a dominant role in DDR-dependent changes in gene expression, but this transcription factor is not solely responsible for all changes. Recent evidence indicates that RNA metabolism is integral to DDRs as well. In particular, post-transcriptional processes are emerging as important contributors to these complex responses. CRITICAL ISSUES Transcriptional, post-transcriptional, and translational regulation of gene expression is subject to changes in response to DNA damage. How these processes are intertwined in the unfolding of DDR is not fully understood. FUTURE DIRECTIONS Many complex regulatory responses combine to determine cell fate after DNA damage. Understanding how transcriptional, post-transcriptional, and translational processes interdigitate to create a web of regulatory interactions will be one of the key challenges to fully understand DDRs.
Collapse
Affiliation(s)
- Bruce C McKay
- Department of Biology, Institute of Biochemistry, Carleton University , Ottawa, Canada
| |
Collapse
|
26
|
KSRP modulation of GAP-43 mRNA stability restricts axonal outgrowth in embryonic hippocampal neurons. PLoS One 2013; 8:e79255. [PMID: 24244461 PMCID: PMC3828348 DOI: 10.1371/journal.pone.0079255] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/20/2013] [Indexed: 12/02/2022] Open
Abstract
The KH-type splicing regulatory protein (KSRP) promotes the decay of AU-rich element (ARE)-containing mRNAs. Although KSRP is expressed in the nervous system, very little is known about its role in neurons. In this study, we examined whether KSRP regulates the stability of the ARE-containing GAP-43 mRNA. We found that KSRP destabilizes this mRNA by binding to its ARE, a process that requires the presence of its fourth KH domain (KH4). Furthermore, KSRP competed with the stabilizing factor HuD for binding to these sequences. We also examined the functional consequences of KSRP overexpression and knockdown on the differentiation of primary hippocampal neurons in culture. Overexpression of full length KSRP or KSRP without its nuclear localization signal hindered axonal outgrowth in these cultures, while overexpression of a mutant protein without the KH4 domain that has less affinity for binding to GAP-43′s ARE had no effect. In contrast, depletion of KSRP led to a rise in GAP-43 mRNA levels and a dramatic increase in axonal length, both in KSRP shRNA transfected cells and neurons cultured from Ksrp+/− and Ksrp −/−embryos. Finally we found that overexpression of GAP-43 rescued the axonal outgrowth deficits seen with KSRP overexpression, but only when cells were transfected with GAP-43 constructs containing 3′ UTR sequences targeting the transport of this mRNA to axons. Together, our results suggest that KSRP is an important regulator of mRNA stability and axonal length that works in direct opposition to HuD to regulate the levels of GAP-43 and other ARE-containing neuronal mRNAs.
Collapse
|
27
|
Chen J, Cascio J, Magee JD, Techasintana P, Gubin MM, Dahm GM, Calaluce R, Yu S, Atasoy U. Posttranscriptional gene regulation of IL-17 by the RNA-binding protein HuR is required for initiation of experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2013; 191:5441-50. [PMID: 24166976 DOI: 10.4049/jimmunol.1301188] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-17 is a proinflammatory cytokine produced by activated Th17 cells and other immune cells. IL-17-producing Th17 cells are major contributors to chronic inflammatory and autoimmune diseases, such as multiple sclerosis, rheumatoid arthritis, and inflammatory bowel disease. Although the transcriptional regulation of Th17 cells is well understood, the posttranscriptional regulation of IL-17 gene expression remains unknown. The RNA-binding protein HuR positively regulates the stability of many target mRNAs via binding the AU-rich elements present in the 3' untranslated region of many inflammatory cytokines including IL-4, IL-13, and TNF-α. However, the regulation of IL-17 expression by HuR has not been established. CD4(+) Th17 cells from HuR knockout mice had decreased IL-17 steady-state mRNA and protein levels compared with wild-type Th17 cells, as well as decreases in frequency of IL-17(+) cells. Moreover, we demonstrated that HuR directly binds to the IL-17 mRNA 3' untranslated region by using RNA immunoprecipitation and biotin pulldown assays. In addition, the knockout of HuR decreased cellular proliferation of CD4(+) T cells. Mice with adoptively transferred HuR KO Th17 cells had delayed initiation and reduced disease severity in the onset of experimental autoimmune encephalomyelitis compared with wild-type Th17 cells. Our results reveal a HuR-induced posttranscriptional regulatory mechanism of Th17 differentiation that influences IL-17 expression. These findings may provide novel therapeutic targets for the treatment of Th17-mediated autoimmune neuroinflammation.
Collapse
Affiliation(s)
- Jing Chen
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65212
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Najafabadi HS, Lu Z, MacPherson C, Mehta V, Adoue V, Pastinen T, Salavati R. Global identification of conserved post-transcriptional regulatory programs in trypanosomatids. Nucleic Acids Res 2013; 41:8591-600. [PMID: 23877242 PMCID: PMC3794602 DOI: 10.1093/nar/gkt647] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 06/25/2013] [Accepted: 06/29/2013] [Indexed: 12/30/2022] Open
Abstract
While regulatory programs are extensively studied at the level of transcription, elements that are involved in regulation of post-transcriptional processes are largely unknown, and methods for systematic identification of these elements are in early stages. Here, using a novel computational framework, we have integrated sequence information with several functional genomics data sets to characterize conserved regulatory programs of trypanosomatids, a group of eukaryotes that almost entirely rely on post-transcriptional processes for regulation of mRNA abundance. This analysis revealed a complex network of linear and structural RNA elements that potentially govern mRNA abundance across different life stages and environmental conditions. Furthermore, we show that the conserved regulatory network that we have identified is responsive to chemical perturbation of several biological functions in trypanosomatids. We have further characterized one of the most abundant regulatory RNA elements that we discovered, an AU-rich element (ARE) that can be found in 3' untranslated region of many trypanosomatid genes. Using bioinformatics approaches as well as in vitro and in vivo experiments, we have identified three ELAV-like homologs, including the developmentally critical protein TbRBP6, which regulate abundance of a large number of trypanosomatid ARE-containing transcripts. Together, these studies lay out a roadmap for characterization of mechanisms that modulate development and metabolic pathways in trypanosomatids.
Collapse
Affiliation(s)
- Hamed S. Najafabadi
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Ste. Anne de Bellevue, Montreal, Quebec H9X 3V9, Canada, McGill Centre for Bioinformatics, McGill University, 3649 Promenade Sir William Osler, Montreal, Quebec H3G 0B1, Canada, Department of Human Genetics, McGill University Health Centre, Montréal, Québec, Canada, McGill University and Genome Québec Innovation Centre, Montréal, Québec H3A 1A4, Canada, Department of Medical Genetics, McGill University Health Centre, Montréal, Québec, Canada and Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Zhiquan Lu
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Ste. Anne de Bellevue, Montreal, Quebec H9X 3V9, Canada, McGill Centre for Bioinformatics, McGill University, 3649 Promenade Sir William Osler, Montreal, Quebec H3G 0B1, Canada, Department of Human Genetics, McGill University Health Centre, Montréal, Québec, Canada, McGill University and Genome Québec Innovation Centre, Montréal, Québec H3A 1A4, Canada, Department of Medical Genetics, McGill University Health Centre, Montréal, Québec, Canada and Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Chad MacPherson
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Ste. Anne de Bellevue, Montreal, Quebec H9X 3V9, Canada, McGill Centre for Bioinformatics, McGill University, 3649 Promenade Sir William Osler, Montreal, Quebec H3G 0B1, Canada, Department of Human Genetics, McGill University Health Centre, Montréal, Québec, Canada, McGill University and Genome Québec Innovation Centre, Montréal, Québec H3A 1A4, Canada, Department of Medical Genetics, McGill University Health Centre, Montréal, Québec, Canada and Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Vaibhav Mehta
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Ste. Anne de Bellevue, Montreal, Quebec H9X 3V9, Canada, McGill Centre for Bioinformatics, McGill University, 3649 Promenade Sir William Osler, Montreal, Quebec H3G 0B1, Canada, Department of Human Genetics, McGill University Health Centre, Montréal, Québec, Canada, McGill University and Genome Québec Innovation Centre, Montréal, Québec H3A 1A4, Canada, Department of Medical Genetics, McGill University Health Centre, Montréal, Québec, Canada and Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Véronique Adoue
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Ste. Anne de Bellevue, Montreal, Quebec H9X 3V9, Canada, McGill Centre for Bioinformatics, McGill University, 3649 Promenade Sir William Osler, Montreal, Quebec H3G 0B1, Canada, Department of Human Genetics, McGill University Health Centre, Montréal, Québec, Canada, McGill University and Genome Québec Innovation Centre, Montréal, Québec H3A 1A4, Canada, Department of Medical Genetics, McGill University Health Centre, Montréal, Québec, Canada and Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Tomi Pastinen
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Ste. Anne de Bellevue, Montreal, Quebec H9X 3V9, Canada, McGill Centre for Bioinformatics, McGill University, 3649 Promenade Sir William Osler, Montreal, Quebec H3G 0B1, Canada, Department of Human Genetics, McGill University Health Centre, Montréal, Québec, Canada, McGill University and Genome Québec Innovation Centre, Montréal, Québec H3A 1A4, Canada, Department of Medical Genetics, McGill University Health Centre, Montréal, Québec, Canada and Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Reza Salavati
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Ste. Anne de Bellevue, Montreal, Quebec H9X 3V9, Canada, McGill Centre for Bioinformatics, McGill University, 3649 Promenade Sir William Osler, Montreal, Quebec H3G 0B1, Canada, Department of Human Genetics, McGill University Health Centre, Montréal, Québec, Canada, McGill University and Genome Québec Innovation Centre, Montréal, Québec H3A 1A4, Canada, Department of Medical Genetics, McGill University Health Centre, Montréal, Québec, Canada and Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
29
|
Virtanen A, Henriksson N, Nilsson P, Nissbeck M. Poly(A)-specific ribonuclease (PARN): an allosterically regulated, processive and mRNA cap-interacting deadenylase. Crit Rev Biochem Mol Biol 2013; 48:192-209. [PMID: 23496118 DOI: 10.3109/10409238.2013.771132] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Deadenylation of eukaryotic mRNA is a mechanism critical for mRNA function by influencing mRNA turnover and efficiency of protein synthesis. Here, we review poly(A)-specific ribonuclease (PARN), which is one of the biochemically best characterized deadenylases. PARN is unique among the currently known eukaryotic poly(A) degrading nucleases, being the only deadenylase that has the capacity to directly interact during poly(A) hydrolysis with both the m(7)G-cap structure and the poly(A) tail of the mRNA. In short, PARN is a divalent metal-ion dependent poly(A)-specific, processive and cap-interacting 3'-5' exoribonuclease that efficiently degrades poly(A) tails of eukaryotic mRNAs. We discuss in detail the mechanisms of its substrate recognition, catalysis, allostery and processive mode of action. On the basis of biochemical and structural evidence, we present and discuss a working model for PARN action. Models of regulation of PARN activity by trans-acting factors are discussed as well as the physiological relevance of PARN.
Collapse
Affiliation(s)
- Anders Virtanen
- Department of Cell and Molecular Biology, Program of Chemical Biology, Uppsala University, Uppsala, Sweden.
| | | | | | | |
Collapse
|
30
|
Moon SL, Anderson JR, Kumagai Y, Wilusz CJ, Akira S, Khromykh AA, Wilusz J. A noncoding RNA produced by arthropod-borne flaviviruses inhibits the cellular exoribonuclease XRN1 and alters host mRNA stability. RNA (NEW YORK, N.Y.) 2012; 18:2029-40. [PMID: 23006624 PMCID: PMC3479393 DOI: 10.1261/rna.034330.112] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 08/17/2012] [Indexed: 05/25/2023]
Abstract
All arthropod-borne flaviviruses generate a short noncoding RNA (sfRNA) from the viral 3' untranslated region during infection due to stalling of the cellular 5'-to-3' exonuclease XRN1. We show here that formation of sfRNA also inhibits XRN1 activity. Cells infected with Dengue or Kunjin viruses accumulate uncapped mRNAs, decay intermediates normally targeted by XRN1. XRN1 repression also resulted in the increased overall stability of cellular mRNAs in flavivirus-infected cells. Importantly, a mutant Kunjin virus that cannot form sfRNA but replicates to normal levels failed to affect host mRNA stability or XRN1 activity. Expression of sfRNA in the absence of viral infection demonstrated that sfRNA formation was directly responsible for the stabilization of cellular mRNAs. Finally, numerous cellular mRNAs were differentially expressed in an sfRNA-dependent fashion in a Kunjin virus infection. We conclude that flaviviruses incapacitate XRN1 during infection and dysregulate host mRNA stability as a result of sfRNA formation.
Collapse
Affiliation(s)
- Stephanie L. Moon
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - John R. Anderson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Yutaro Kumagai
- Laboratory of Host Defense, Immunology Frontier Research Center, Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Carol J. Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Shizuo Akira
- Laboratory of Host Defense, Immunology Frontier Research Center, Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Alexander A. Khromykh
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
31
|
Tiedje C, Ronkina N, Tehrani M, Dhamija S, Laass K, Holtmann H, Kotlyarov A, Gaestel M. The p38/MK2-driven exchange between tristetraprolin and HuR regulates AU-rich element-dependent translation. PLoS Genet 2012; 8:e1002977. [PMID: 23028373 PMCID: PMC3459988 DOI: 10.1371/journal.pgen.1002977] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 08/08/2012] [Indexed: 12/28/2022] Open
Abstract
TNF expression of macrophages is under stringent translational control that depends on the p38 MAPK/MK2 pathway and the AU–rich element (ARE) in the TNF mRNA. Here, we elucidate the molecular mechanism of phosphorylation-regulated translation of TNF. We demonstrate that translation of the TNF-precursor at the ER requires expression of the ARE–binding and -stabilizing factor human antigen R (HuR) together with either activity of the p38 MAPK/MK2 pathway or the absence of the ARE-binding and -destabilizing factor tristetraprolin (TTP). We show that phosphorylation of TTP by MK2 decreases its affinity to the ARE, inhibits its ability to replace HuR, and permits HuR-mediated initiation of translation of TNF mRNA. Since translation of TTP's own mRNA is also regulated by this mechanism, an intrinsic feedback control of the inflammatory response is ensured. The phosphorylation-regulated TTP/HuR exchange at target mRNAs provides a reversible switch between unstable/non-translatable and stable/efficiently translated mRNAs. For immediate response and better control of gene expression, eukaryotic cells have developed means to specifically regulate the stability and translation of pre-formed mRNA transcripts. This post-transcriptional regulation of gene expression is realized by a variety of mRNA-binding proteins, which target specific mRNA sequence elements in a signal-dependent manner. Here we describe a molecular switch mechanism where the exchange of two mRNA-binding proteins is regulated by stress and inflammatory signals. This switch operates between stabilization and efficient translation of the target mRNA, when the activator protein of translational initiation binds instead of the phosphorylated destabilizing protein, and translational arrest and degradation of the target, when the non-phosphorylated destabilizing protein replaces the activator. This mechanism is specific to the mRNA of the inflammatory cytokine tumor necrosis factor (TNF)-α and the mRNA of its regulator protein TTP and, hence, enables fast inflammatory response and its stringent feedback control.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Matthias Gaestel
- Institute of Biochemistry, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
32
|
He G, Sun D, Ou Z, Ding A. The protein Zfand5 binds and stabilizes mRNAs with AU-rich elements in their 3'-untranslated regions. J Biol Chem 2012; 287:24967-77. [PMID: 22665488 DOI: 10.1074/jbc.m112.362020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
AU-rich elements (AREs) in the 3'-UTR of unstable transcripts play a vital role in the regulation of many inflammatory mediators. To identify novel ARE-dependent gene regulators, we screened a human leukocyte cDNA library for candidates that enhanced the activity of a luciferase reporter bearing the ARE sequence from TNF (ARE(TNF)). Among 171 hits, we focused on Zfand5 (zinc finger, AN1-type domain 5), a 23-kDa protein containing two zinc finger domains. Zfand5 expression was induced in macrophages in response to IFNγ and Toll-like receptor ligands. Knockdown of Zfand5 in macrophages decreased expression of ARE class II transcripts TNF and COX2, whereas overexpression stabilized TNF mRNA by suppressing deadenylation. Zfand5 specifically bound to ARE(TNF) mRNA and competed with tristetraprolin, a protein known to bind and destabilize class II ARE-containing RNAs. Truncation studies indicated that both zinc fingers of Zfand5 contributed to its mRNA-stabilizing function. These findings add Zfand5 to the growing list of RNA-binding proteins and suggest that Zfand5 can enhance ARE-containing mRNA stability by competing with tristetraprolin for mRNA binding.
Collapse
Affiliation(s)
- Guoan He
- Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, New York 10065, USA
| | | | | | | |
Collapse
|
33
|
The role of translation initiation regulation in haematopoiesis. Comp Funct Genomics 2012; 2012:576540. [PMID: 22649283 PMCID: PMC3357504 DOI: 10.1155/2012/576540] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 02/25/2012] [Indexed: 02/06/2023] Open
Abstract
Organisation of RNAs into functional subgroups that are translated in response to extrinsic and intrinsic factors underlines a relatively unexplored gene expression modulation that drives cell fate in the same manner as regulation of the transcriptome by transcription factors. Recent studies on the molecular mechanisms of inflammatory responses and haematological disorders indicate clearly that the regulation of mRNA translation at the level of translation initiation, mRNA stability, and protein isoform synthesis is implicated in the tight regulation of gene expression. This paper outlines how these posttranscriptional control mechanisms, including control at the level of translation initiation factors and the role of RNA binding proteins, affect hematopoiesis. The clinical relevance of these mechanisms in haematological disorders indicates clearly the potential therapeutic implications and the need of molecular tools that allow measurement at the level of translational control. Although the importance of miRNAs in translation control is well recognised and studied extensively, this paper will exclude detailed account of this level of control.
Collapse
|
34
|
Palusa S, Ndaluka C, Bowen RA, Wilusz CJ, Wilusz J. The 3' untranslated region of the rabies virus glycoprotein mRNA specifically interacts with cellular PCBP2 protein and promotes transcript stability. PLoS One 2012; 7:e33561. [PMID: 22438951 PMCID: PMC3306424 DOI: 10.1371/journal.pone.0033561] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 02/14/2012] [Indexed: 12/25/2022] Open
Abstract
Viral polymerase entry and pausing at intergenic junctions is predicted to lead to a defined polarity in the levels of rhabdovirus gene expression. Interestingly, we observed that the rabies virus glycoprotein mRNA is differentially over-expressed based on this model relative to other transcripts during infection of 293T cells. During infection, the rabies virus glycoprotein mRNA also selectively interacts with the cellular poly(rC)-binding protein 2 (PCBP2), a factor known to influence mRNA stability. Reporter assays performed both in electroporated cells and in a cell-free RNA decay system indicate that the conserved portion of the 3' UTR of the rabies virus glycoprotein mRNA contains an RNA stability element. PCBP2 specifically interacts with reporter transcripts containing this 72 base 3' UTR sequence. Furthermore, the PCBP2 interaction is directly associated with the stability of reporter transcripts. Therefore, we conclude that PCBP2 specifically and selectively interacts with the rabies virus glycoprotein mRNA and that this interaction may contribute to the post-transcriptional regulation of glycoprotein expression.
Collapse
Affiliation(s)
- Saiprasad Palusa
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Christina Ndaluka
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Richard A. Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Carol J. Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
35
|
Schott J, Stoecklin G. Networks controlling mRNA decay in the immune system. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 1:432-56. [PMID: 21956941 DOI: 10.1002/wrna.13] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The active control of mRNA degradation has emerged as a key regulatory mechanism required for proper gene expression in the immune system. An adenosine/uridine (AU)-rich element (ARE) is at the heart of a first regulatory system that promotes the rapid degradation of a multitude of cytokine and chemokine mRNAs. AREs serve as binding sites for a number of regulatory proteins that either destabilize or stabilize the mRNA. Several kinase pathways regulate the activity of ARE-binding proteins and thereby coordinate the expression of their target mRNAs. Small regulatory micro (mi)-RNAs represent a second system that enhances the degradation of several mRNAs encoding important components of signal transduction cascades that are activated during adaptive and innate immune responses. Specific miRNAs are important for the differentiation of T helper cells, class switch recombination in B cells, and the maturation of dendritic cells. Excitement in this area of research is fueled by the discovery of novel RNA elements and regulatory proteins that exert control over specific mRNAs, as exemplified by an endonuclease that was found to directly cleave interleukin-6 mRNA. Together, these systems make up an extensive regulatory network that controls decay rates of individual mRNAs in a precise manner and thereby orchestrates the dynamic expression of many factors essential for adaptive and innate immune responses. In this review, we provide an overview of relevant factors regulated at the level of mRNA stability, summarize RNA-binding proteins and miRNAs that control their degradation rates, and discuss signaling pathways operating within this regulatory network.
Collapse
Affiliation(s)
- Johanna Schott
- Helmholtz Junior Research Group Posttranscriptional Control of Gene Expression, German Cancer Research Center, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | |
Collapse
|
36
|
Pieper D, Schirmer S, Prechtel AT, Kehlenbach RH, Hauber J, Chemnitz J. Functional characterization of the HuR:CD83 mRNA interaction. PLoS One 2011; 6:e23290. [PMID: 21829725 PMCID: PMC3150423 DOI: 10.1371/journal.pone.0023290] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 07/12/2011] [Indexed: 01/15/2023] Open
Abstract
Maturation of dendritic cells (DC) is characterized by expression of CD83, a surface protein that appears to be necessary for the effective activation of naïve T-cells and T-helper cells by DC. Lately it was shown that CD83 expression is regulated on the posttranscriptional level by interaction of the shuttle protein HuR with a novel posttranscriptional regulatory RNA element (PRE), which is located in the coding region of the CD83 transcript. Interestingly, this interaction commits the CD83 mRNA to efficient nuclear export via the CRM1 pathway. To date, however, the structural basis of this interaction, which potentially involves three distinct RNA recognition motifs (RRM1–3) in HuR and a complex three-pronged RNA stem-loop element in CD83 mRNA, has not been investigated in detail. In the present work we analyzed this interaction in vitro and in vivo using various HuR- and CD83 mRNA mutants. We are able to demonstrate that both, RRM1 and RRM2 are crucial for binding, whereas RRM3 as well as the HuR hinge region contributed only marginally to this protein∶RNA interaction. Furthermore, mutation of uridine rich patches within the PRE did not disturb HuR:CD83 mRNA complex formation while, in contrast, the deletion of specific PRE subfragments from the CD83 mRNA prevented HuR binding in vitro and in vivo. Interestingly, the observed inhibition of HuR binding to CD83 mRNA does not lead to a nuclear trapping of the transcript but rather redirected this transcript from the CRM1- towards the NXF1/TAP-specific nuclear export pathway. Thus, the presence of a functional PRE permits nucleocytoplasmic trafficking of the CD83 transcript via the CRM1 pathway.
Collapse
Affiliation(s)
- Dorothea Pieper
- Department of Cell Biology and Virology, Heinrich Pette Institute - Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Susann Schirmer
- Department of Cell Biology and Virology, Heinrich Pette Institute - Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Alexander T. Prechtel
- Department of Cell Biology and Virology, Heinrich Pette Institute - Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Ralph H. Kehlenbach
- Zentrum für Biochemie und Molekulare Zellbiologie, Universität Göttingen, Göttingen, Germany
| | - Joachim Hauber
- Department of Cell Biology and Virology, Heinrich Pette Institute - Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Jan Chemnitz
- Department of Cell Biology and Virology, Heinrich Pette Institute - Leibniz Institute for Experimental Virology, Hamburg, Germany
- * E-mail:
| |
Collapse
|
37
|
PolyA-specific ribonuclease (PARN-1) function in stage-specific mRNA turnover in Trypanosoma brucei. EUKARYOTIC CELL 2011; 10:1230-40. [PMID: 21743004 DOI: 10.1128/ec.05097-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Deadenylation is often the rate-limiting event in regulating the turnover of cellular mRNAs in eukaryotes. Removal of the poly(A) tail initiates mRNA degradation by one of several decay pathways, including deadenylation-dependent decapping, followed by 5' to 3' exonuclease decay or 3' to 5' exosome-mediated decay. In trypanosomatids, mRNA degradation is important in controlling the expression of differentially expressed genes. Genomic annotation studies have revealed several potential deadenylases. Poly(A)-specific RNase (PARN) is a key deadenylase involved in regulating gene expression in mammals, Xenopus oocytes, and higher plants. Trypanosomatids possess three different PARN genes, PARN-1, -2, and -3, each of which is expressed at the mRNA level in two life-cycle stages of the human parasite Trypanosoma brucei. Here we show that T. brucei PARN-1 is an active deadenylase. To determine the role of PARN-1 on mRNA stability in vivo, we overexpressed this protein and analyzed perturbations in mRNA steady-state levels as well as mRNA half-life. Interestingly, a subset of mRNAs was affected, including a family of mRNAs that encode stage-specific coat proteins. These data suggest that PARN-1 functions in stage-specific protein production.
Collapse
|
38
|
Walser CB, Lipshitz HD. Transcript clearance during the maternal-to-zygotic transition. Curr Opin Genet Dev 2011; 21:431-43. [PMID: 21497081 DOI: 10.1016/j.gde.2011.03.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 03/21/2011] [Indexed: 02/04/2023]
Abstract
In all animals, a key event in the transition from maternal control of development to control by products of the zygotic genome is the elimination of a significant fraction of the mRNAs loaded into the egg by the mother. Clearance of these maternal mRNAs is accomplished by two activities: the first is maternally encoded while the second requires zygotic transcription. Recent advances include identification of RNA-binding proteins that function as specificity factors to direct the maternal degradation machinery to its target mRNAs; small RNAs-most notably microRNAs-that function as components of the zygotically encoded activity; signaling pathways that trigger production and/or activation of the clearance mechanism in early embryos; and mechanisms for spatial control of transcript clearance.
Collapse
Affiliation(s)
- Claudia B Walser
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | | |
Collapse
|
39
|
Fan J, Ishmael FT, Fang X, Myers A, Cheadle C, Huang SK, Atasoy U, Gorospe M, Stellato C. Chemokine transcripts as targets of the RNA-binding protein HuR in human airway epithelium. THE JOURNAL OF IMMUNOLOGY 2011; 186:2482-94. [PMID: 21220697 DOI: 10.4049/jimmunol.0903634] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
HuR is a regulator of mRNA turnover or translation of inflammatory genes through binding to adenylate-uridylate-rich elements and related motifs present in the 3'untranslated region (UTR) of mRNAs. We postulate that HuR critically regulates the epithelial response by associating with multiple ARE-bearing, functionally related inflammatory transcripts. We aimed to identify HuR targets in the human airway epithelial cell line BEAS-2B challenged with TNF-α plus IFN-γ, a strong stimulus for inflammatory epithelial responses. Ribonucleoprotein complexes from resting and cytokine-treated cells were immunoprecipitated using anti-HuR and isotype-control Ab, and eluted mRNAs were reverse-transcribed and hybridized to an inflammatory-focused gene array. The chemokines CCL2, CCL8, CXCL1, and CXCL2 ranked highest among 27 signaling and inflammatory genes significantly enriched in the HuR RNP-IP from stimulated cells over the control immunoprecipitation. Among these, 20 displayed published HuR binding motifs. Association of HuR with the four endogenous chemokine mRNAs was validated by single-gene ribonucleoprotein-immunoprecipitation and shown to be 3'UTR-dependent by biotin pull-down assay. Cytokine treatment increased mRNA stability only for CCL2 and CCL8, and transient silencing and overexpression of HuR affected only CCL2 and CCL8 expression in primary and transformed epithelial cells. Cytokine-induced CCL2 mRNA was predominantly cytoplasmic. Conversely, CXCL1 mRNA remained mostly nuclear and unaffected, as CXCL2, by changes in HuR levels. Increase in cytoplasmic HuR and HuR target expression partially relied on the inhibition of AMP-dependent kinase, a negative regulator of HuR nucleocytoplasmic shuttling. HuR-mediated regulation in airway epithelium appears broader than previously appreciated, coordinating numerous inflammatory genes through multiple posttranscriptional mechanisms.
Collapse
Affiliation(s)
- Jinshui Fan
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Drury GL, Di Marco S, Dormoy-Raclet V, Desbarats J, Gallouzi IE. FasL expression in activated T lymphocytes involves HuR-mediated stabilization. J Biol Chem 2010; 285:31130-8. [PMID: 20675370 PMCID: PMC2951186 DOI: 10.1074/jbc.m110.137919] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Revised: 07/14/2010] [Indexed: 01/02/2023] Open
Abstract
A prolonged activation of the immune system is one of the main causes of hyperproliferation of lymphocytes leading to defects in immune tolerance and autoimmune diseases. Fas ligand (FasL), a member of the TNF superfamily, plays a crucial role in controlling this excessive lymphoproliferation by inducing apoptosis in T cells leading to their rapid elimination. Here, we establish that posttranscriptional regulation is part of the molecular mechanisms that modulate FasL expression, and we show that in activated T cells FasL mRNA is stable. Our sequence analysis indicates that the FasL 3'-untranslated region (UTR) contains two AU-rich elements (AREs) that are similar in sequence and structure to those present in the 3'-UTR of TNFα mRNA. Through these AREs, the FasL mRNA forms a complex with the RNA-binding protein HuR both in vitro and ex vivo. Knocking down HuR in HEK 293 cells prevented the phorbol 12-myristate 13-acetate-induced expression of a GFP reporter construct fused to the FasL 3'-UTR. Collectively, our data demonstrate that the posttranscriptional regulation of FasL mRNA by HuR represents a novel mechanism that could play a key role in the maintenance and proper functioning of the immune system.
Collapse
Affiliation(s)
- Gillian L. Drury
- the Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Sergio Di Marco
- From the Department of Biochemistry and Rosalind and Morris Goodman Cancer Center and
| | | | - Julie Desbarats
- the Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Imed-Eddine Gallouzi
- From the Department of Biochemistry and Rosalind and Morris Goodman Cancer Center and
| |
Collapse
|
41
|
Rodriguez PC, Hernandez CP, Morrow K, Sierra R, Zabaleta J, Wyczechowska DD, Ochoa AC. L-arginine deprivation regulates cyclin D3 mRNA stability in human T cells by controlling HuR expression. THE JOURNAL OF IMMUNOLOGY 2010; 185:5198-204. [PMID: 20889542 DOI: 10.4049/jimmunol.1001224] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Myeloid-derived suppressor cells are a major mechanism of tumor-induced immune suppression in cancer. Arginase I-producing myeloid-derived suppressor cells deplete l-arginine (L-Arg) from the microenvironment, which arrests T cells in the G(0)-G(1) phase of the cell cycle. This cell cycle arrest correlated with an inability to increase cyclin D3 expression resulting from a decreased mRNA stability and an impaired translation. We sought to determine the mechanisms leading to a decreased cyclin D3 mRNA stability in activated T cells cultured in medium deprived of L-Arg. Results show that cyclin D3 mRNA instability induced by L-Arg deprivation is dependent on response elements found in its 3'-untranslated region (UTR). RNA-binding protein HuR was found to be increased in T cells cultured in medium with L-Arg and bound to the 3'-untranslated region of cyclin D3 mRNA in vitro and endogenously in activated T cells. Silencing of HuR expression significantly impaired cyclin D3 mRNA stability. L-Arg deprivation inhibited the expression of HuR through a global arrest in de novo protein synthesis, but it did not affect its mRNA expression. This alteration is dependent on the expression of the amino acid starvation sensor general control nonderepressible 2 kinase. These data contribute to an understanding of a central mechanism by which diseases characterized by increased arginase I production may cause T cell dysfunction.
Collapse
Affiliation(s)
- Paulo C Rodriguez
- Tumor Immunology Program, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Lutz CS, Moreira A. Alternative mRNA polyadenylation in eukaryotes: an effective regulator of gene expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 2:22-31. [PMID: 21956967 DOI: 10.1002/wrna.47] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Alternative RNA processing mechanisms, including alternative splicing and alternative polyadenylation, are increasingly recognized as important regulators of gene expression. This article will focus on what has recently been described about alternative polyadenylation in development, differentiation, and disease in higher eukaryotes. We will also describe how the evolving global methodologies for examining the cellular transcriptome, both experimental and bioinformatic, are revealing new details about the complex nature of alternative 3(') end formation as well as interactions with other RNA-mediated and RNA processing mechanisms.
Collapse
Affiliation(s)
- Carol S Lutz
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, Newark, NJ, USA.
| | | |
Collapse
|
43
|
Yoo J, Kang J, Lee HN, Aguilar B, Kafka D, Lee S, Choi I, Lee J, Ramu S, Haas J, Koh CJ, Hong YK. Kaposin-B enhances the PROX1 mRNA stability during lymphatic reprogramming of vascular endothelial cells by Kaposi's sarcoma herpes virus. PLoS Pathog 2010; 6:e1001046. [PMID: 20730087 PMCID: PMC2921153 DOI: 10.1371/journal.ppat.1001046] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 07/15/2010] [Indexed: 01/16/2023] Open
Abstract
Kaposi's sarcoma (KS) is the most common cancer among HIV-positive patients. Histogenetic origin of KS has long been elusive due to a mixed expression of both blood and lymphatic endothelial markers in KS tumor cells. However, we and others discovered that Kaposi's sarcoma herpes virus (KSHV) induces lymphatic reprogramming of blood vascular endothelial cells by upregulating PROX1, which functions as the master regulator for lymphatic endothelial differentiation. Here, we demonstrate that the KSHV latent gene kaposin-B enhances the PROX1 mRNA stability and plays an important role in KSHV-mediated PROX1 upregulation. We found that PROX1 mRNA contains a canonical AU-rich element (ARE) in its 3′-untranslated region that promotes PROX1 mRNA turnover and that kaposin-B stimulates cytoplasmic accumulation of the ARE-binding protein HuR through activation of the p38/MK2 pathway. Moreover, HuR binds to and stabilizes PROX1 mRNA through its ARE and is necessary for KSHV-mediated PROX1 mRNA stabilization. Together, our study demonstrates that kaposin-B plays a key role in PROX1 upregulation during lymphatic reprogramming of blood vascular endothelial cells by KSHV. Kaposi's sarcoma (KS) is the most common cancer in HIV-positive patients and KS-associated herpes virus (KSHV) was identified as its causing agent. We and others have discovered that when the virus infects endothelial cells of blood vessels, KSHV reprograms the cell type resembling endothelial cells in lymphatic vessels. Although endothelial cells of the blood vascular system and of the lymphatic system share functional similarities, the cell type-reprogramming does not occur under a normal physiological condition. Therefore, cell-fate reprogramming by the cancer-causing virus KSHV provides an important insight into the molecular mechanism for viral pathogenesis. Our current study investigates the molecular mechanism underlying the KSHV-mediated cell fate reprogramming. We identified that a KSHV latent gene kaposin-B plays an important role in KSHV-mediated regulation of PROX1 to promote PROX1 mRNA stability. This study will provide a better understanding on the tumorigenesis and pathogenesis of KS with a potential implication toward new KS therapy.
Collapse
Affiliation(s)
- Jaehyuk Yoo
- Departments of Surgery and Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jinjoo Kang
- Departments of Surgery and Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Ha Neul Lee
- Departments of Surgery and Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Berenice Aguilar
- Departments of Surgery and Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Darren Kafka
- Departments of Surgery and Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Sunju Lee
- Departments of Surgery and Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Inho Choi
- Departments of Surgery and Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Juneyong Lee
- Departments of Surgery and Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Swapnika Ramu
- Departments of Surgery and Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Juergen Haas
- Max-von-Pettenkofer Institut, Ludwig-Maximilians-Universität München, München, Germany
| | - Chester J. Koh
- Division of Pediatric Urology, Childrens Hospital Los Angeles and Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Young-Kwon Hong
- Departments of Surgery and Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
44
|
Bak RO, Mikkelsen JG. Regulation of cytokines by small RNAs during skin inflammation. J Biomed Sci 2010; 17:53. [PMID: 20594301 PMCID: PMC2905360 DOI: 10.1186/1423-0127-17-53] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 07/01/2010] [Indexed: 02/08/2023] Open
Abstract
Intercellular signaling by cytokines is a vital feature of the innate immune system. In skin, an inflammatory response is mediated by cytokines and an entwined network of cellular communication between T-cells and epidermal keratinocytes. Dysregulated cytokine production, orchestrated by activated T-cells homing to the skin, is believed to be the main cause of psoriasis, a common inflammatory skin disorder. Cytokines are heavily regulated at the transcriptional level, but emerging evidence suggests that regulatory mechanisms that operate after transcription play a key role in balancing the production of cytokines. Herein, we review the nature of cytokine signaling in psoriasis with particular emphasis on regulation by mRNA destabilizing elements and the potential targeting of cytokine-encoding mRNAs by miRNAs. The proposed linkage between mRNA decay mediated by AU-rich elements and miRNA association is described and discussed as a possible general feature of cytokine regulation in skin. Moreover, we describe the latest attempts to therapeutically target cytokines at the RNA level in psoriasis by exploiting the cellular RNA interference machinery. The applicability of cytokine-encoding mRNAs as future clinical drug targets is evaluated, and advances and obstacles related to topical administration of RNA-based drugs targeting the cytokine circuit in psoriasis are described.
Collapse
Affiliation(s)
- Rasmus O Bak
- Department of Human Genetics, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | |
Collapse
|
45
|
Kim TD, Park JY, Choi I. Post-transcriptional Regulation of NK Cell Activation. Immune Netw 2009; 9:115-21. [PMID: 20157597 PMCID: PMC2816943 DOI: 10.4110/in.2009.9.4.115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 06/02/2009] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cells play key roles in innate and adaptive immune defenses. NK cell responses are mediated by two major mechanisms: the direct cytolysis of target cells, and immune regulation by production of various cytokines. Many previous reports show that the complex NK cell activation process requires de novo gene expression regulated at both transcriptional and post-transcriptional levels. Specialized un-translated regions (UTR) of mRNAs are the main mechanisms of post-transcriptional regulation. Analysis of post-transcriptional regulation is needed to clearly understand NK cell biology and, furthermore, harness the power of NK cells for therapeutic aims. This review summarizes the current understanding of mRNA metabolism during NK cell activation, focusing primarily on post-transcriptional regulation.
Collapse
Affiliation(s)
- Tae-Don Kim
- Cell Therapy Research Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology, Daejeon 305-806, Korea
| | | | | |
Collapse
|
46
|
Ogilvie RL, Sternjohn JR, Rattenbacher B, Vlasova IA, Williams DA, Hau HH, Blackshear PJ, Bohjanen PR. Tristetraprolin mediates interferon-gamma mRNA decay. J Biol Chem 2009; 284:11216-23. [PMID: 19258311 DOI: 10.1074/jbc.m901229200] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Tristetraprolin (TTP) regulates expression at the level of mRNA decay of several cytokines, including the T cell-specific cytokine, interleukin-2. We performed experiments to determine whether another T cell-specific cytokine, interferon-gamma (IFN-gamma), is also regulated by TTP and found that T cell receptor-activated T cells from TTP knock-out mice overproduced IFN-gamma mRNA and protein compared with activated T cells from wild-type mice. The half-life of IFN-gamma mRNA was 23 min in anti-CD3-stimulated T cells from wild-type mice, whereas it was 51 min in anti-CD3-stimulated T cells from TTP knock-out mice, suggesting that the overexpression of IFN-gamma mRNA in TTP knock-out mice was due to stabilization of IFN-gamma mRNA. Insertion of a 70-nucleotide AU-rich sequence from the murine IFN-gamma 3'-untranslated region, which contained a high affinity binding site for TTP, into the 3'-untranslated region of a beta-globin reporter transcript conferred TTP-dependent destabilization on the beta-globin transcript. Together these results suggest that TTP binds to a functional AU-rich element in the 3'-untranslated region of IFN-gamma mRNA and mediates rapid degradation of the IFN-gamma transcript. Thus, TTP plays an important role in turning off IFN-gamma expression at the appropriate time during an immune response.
Collapse
Affiliation(s)
- Rachel L Ogilvie
- Centers for Infectious Diseases and Microbiology Translational Research and Immunology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Wilusz JE, Freier SM, Spector DL. 3' end processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell 2008; 135:919-32. [PMID: 19041754 DOI: 10.1016/j.cell.2008.10.012] [Citation(s) in RCA: 566] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2008] [Revised: 07/25/2008] [Accepted: 10/07/2008] [Indexed: 02/06/2023]
Abstract
MALAT1 is a long noncoding RNA known to be misregulated in many human cancers. We have identified a highly conserved small RNA of 61 nucleotides originating from the MALAT1 locus that is broadly expressed in human tissues. Although the long MALAT1 transcript localizes to nuclear speckles, the small RNA is found exclusively in the cytoplasm. RNase P cleaves the nascent MALAT1 transcript downstream of a genomically encoded poly(A)-rich tract to simultaneously generate the 3' end of the mature MALAT1 transcript and the 5' end of the small RNA. Enzymes involved in tRNA biogenesis then further process the small RNA, consistent with its adoption of a tRNA-like structure. Our findings reveal a 3' end processing mechanism by which a single gene locus can yield both a stable nuclear-retained noncoding RNA with a short poly(A) tail-like moiety and a small tRNA-like cytoplasmic RNA.
Collapse
Affiliation(s)
- Jeremy E Wilusz
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | |
Collapse
|
48
|
Moulton VR, Kyttaris VC, Juang YT, Chowdhury B, Tsokos GC. The RNA-stabilizing protein HuR regulates the expression of zeta chain of the human T cell receptor-associated CD3 complex. J Biol Chem 2008; 283:20037-44. [PMID: 18505733 DOI: 10.1074/jbc.m710434200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
T cell dysfunction is crucial to the pathogenesis of systemic lupus erythematosus (SLE); however, the molecular mechanisms involved in the deficient expression of the T cell receptor-associated CD3zeta chain in SLE are not clear. SLE T cells express abnormally increased levels of an alternatively spliced isoform of CD3zeta that lacks a 562-bp region in its 3'-untranslated region (UTR). We showed previously that two adenosine/uridine-rich elements (ARE) in this splice-deleted region of CD3zeta transcript are critical for the mRNA stability and protein expression of CD3zeta. In this study we show for the first time that the mRNA-stabilizing protein HuR binds to these two ARE bearing regions of CD3zeta 3'-UTR. Knockdown of HuR resulted in decreased expression of the CD3zeta chain, whereas overexpression led to the increase of CD3zeta chain levels. Additionally, overexpression of HuR in human T cells resulted in increased mRNA stability of CD3zeta. Our results identify the 3'-UTR of CD3zeta as a novel target for the mRNA-stabilizing protein HuR. Thus, the absence of two critical AREs in the alternatively spliced CD3zeta 3'-UTR found in SLE T cells may result in decreased HuR binding, representing a possible molecular mechanism contributing to the reduced stability and expression of CD3zeta in SLE.
Collapse
Affiliation(s)
- Vaishali R Moulton
- Department of Medicine, Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
49
|
Sokoloski K, Anderson JR, Wilusz J. Development of an in vitro mRNA decay system in insect cells. Methods Mol Biol 2008; 419:277-88. [PMID: 18369990 DOI: 10.1007/978-1-59745-033-1_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytoplasmic extracts have proven to be a versatile system for assaying the mechanisms and interactions of RNA metabolism. Using Aedes albopictus (C6/36) cells adapted to suspension culture, we have been able to faithfully reproduce and manipulate all aspects of mRNA decay in vitro. Described in this chapter are the processes for both producing an active cytoplasmic extract and the subsequent applications of the extract with respect to mRNA decay. The following protocol for the production of cytoplasmic extracts from C6/36 cells can be altered to encompass a wide variety of cell types, including mammalian cell lines. In addition, a method for designing and implementing an in vitro transcription template to produce specific products are described in detail. Applications of the in vitro transcripts, specifically the deadenylation and exosome assays by which the decay of reporter transcripts is observed, are also examined in detail.
Collapse
Affiliation(s)
- Kevin Sokoloski
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | | | | |
Collapse
|
50
|
Abstract
OSM (oncostatin M) is a pleiotropic cytokine belonging to the IL (interleukin) 6 family that modulates the growth of some cancer cell lines. We have found that PMA treatment of human U937 lymphoma cells increased the steady-state levels of OSM mRNA. Furthermore, the half-life of OSM mRNA was increased from 2.3 to 6.2 h. Measurement of mRNA/hnRNA (heterogeneous nuclear RNA) ratios in PMA-treated cells suggests further that the increase in OSM mRNA is due to enhanced mRNA stability. Consistent with this, synthetic OSM mRNA transcripts decayed faster in extracts of untreated U937 cells than in extracts of PMA-treated cells. The 3'-untranslated region of OSM mRNA contains a putative ARE (AU-rich element) that may play a role in mRNA stabilization. Addition of the OSM ARE motif to the 3'-end of beta-globin mRNA increased its decay rate in vitro. Decay assays with beta-globin-ARE(OSM) and beta-globin transcripts indicate that PMA induces mRNA stabilization in an ARE-dependent manner. PMA also induces at least five OSM ARE-binding proteins. Supershift assays indicated that HuR is present in PMA-induced OSM mRNA-protein complexes. PMA treatment appears to induce translocation of HuR from the nucleus to the cytoplasm. RNA-decay assays indicated that HuR stabilizes OSM RNA in vitro. Additionally, immunodepletion of HuR from U937 cell extracts led to more rapid decay of OSM transcripts. Collectively, these findings suggest that the ARE plays a role in PMA-induced stabilization of OSM mRNA and that this process involves multiple ARE-binding proteins, including HuR.
Collapse
|