1
|
Rodrigues Sousa E, de Brot S, Zoni E, Zeinali S, Brunello A, Scarpa M, De Menna M, La Manna F, Abey Alexander A, Klima I, Freeman DW, Gates BL, Cristaldi DA, Guenat OT, Kruithof BPT, Spike BT, Chouvardas P, Kruithof-de Julio M. CRIPTO's multifaceted role in driving aggressive prostate cancer unveiled by in vivo, organoid, and patient data. Oncogene 2025; 44:462-475. [PMID: 39592836 PMCID: PMC11810784 DOI: 10.1038/s41388-024-03230-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024]
Abstract
CRIPTO (or CR-1 or TDGF1) is a protein that plays an active role in tumor initiation and progression. We have confirmed that increased expression of CRIPTO is associated with clinical and prostate-specific antigen (PSA) progression in human prostate tissues. Our approach involved gaining insight into the role of CRIPTO signaling in castration-resistant Nkx3.1-expressing cells (CARNs), targets for oncogenic transformation in prostate cancer (PCa), by integrating the existing Criptoflox/flox into CARNs model. The most aggressive stage was modeled using an inducible Cre under control of the Nkx3.1 promoter conferring Nkx3.1 inactivation and driving Pten inactivation, oncogenic Kras activation, and lineage tracing with yellow fluorescence protein (EYFP) upon induction. Our findings provide evidence that selective depletion of Cripto in epithelial cells in vivo reduced the invasive phenotype, particularly in more advanced tumor stages. Moreover, in vitro experiments with Cripto overexpression demonstrated alterations in the physical features of organoids, which correlated with increased tumorigenic activity. Transcriptomic analyses revealed a unique CRIPTO/MYC co-activation signature associated with PSA progression in a human PCa cohort. Taken together, our data highlights a role for CRIPTO in tumor invasiveness and progression, which carries implications for biomarkers and targeted therapies.
Collapse
Affiliation(s)
- Elisa Rodrigues Sousa
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Simone de Brot
- COMPATH, Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Eugenio Zoni
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Soheila Zeinali
- Organs-on-chip Technologies Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Andrea Brunello
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Mario Scarpa
- Department for BioMedical Research, Translational Organoid Research, University of Bern, Bern, Switzerland
| | - Marta De Menna
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department for BioMedical Research, Translational Organoid Research, University of Bern, Bern, Switzerland
| | - Federico La Manna
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Allen Abey Alexander
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Irena Klima
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - David W Freeman
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, USA
| | - Brooke L Gates
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, USA
| | | | - Olivier T Guenat
- Organs-on-chip Technologies Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Boudewijn P T Kruithof
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Benjamin T Spike
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, USA
| | - Panagiotis Chouvardas
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marianna Kruithof-de Julio
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Bern, Switzerland.
- Department of Urology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Department for BioMedical Research, Translational Organoid Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
2
|
Budreika A, Phoenix JT, Kostlan RJ, Deegan CD, Ferrari MG, Young KS, Fanning SW, Kregel S. The Homeobox Transcription Factor NKX3.1 Displays an Oncogenic Role in Castration-Resistant Prostate Cancer Cells. Cancers (Basel) 2025; 17:306. [PMID: 39858088 PMCID: PMC11763476 DOI: 10.3390/cancers17020306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Prostate cancer (PCa) is the second leading cause of cancer-related death in men. The increase in incidence rates of more advanced and aggressive forms of the disease year-to-year fuels urgency to find new therapeutic interventions and bolster already established ones. PCa is a uniquely targetable disease in that it is fueled by male hormones (androgens) that drive tumorigenesis via the androgen receptor or AR. Current standard-of-care therapies directly target AR and its aberrant signaling axis but resistance to these therapies commonly arises, and the mechanisms behind the onset of therapy-resistance are still elusive. Research has shown that even with resistant disease, AR remains the main driver of growth and survival of PCa, and AR target genes and cofactors may help mediate resistance to therapy. Here, we focused on a homeobox transcription factor that exhibits a close relationship with AR-NKX3.1. Though NKX3.1 is traditionally thought of as a tumor suppressor, it has been previously reported to promote cancer cell survival by cooperating with AR. The role of NKX3.1 as a tumor suppressor perhaps in early-stage disease also contradicts its profile as a diagnostic biomarker for advanced prostate cancer. METHODS We investigated the physical interaction between NKX3.1 and AR, a modulated NKX3.1 expression in prostate cancer cells via overexpression and knockdown and assayed subsequent viability and downstream target gene expression. RESULTS We find that the expression of NKX3.1 is maintained in advanced PCa, and it is often elevated because of aberrant AR activity. Transient knockdown experiments across various PCa cell line models reveal NKX3.1 expression is necessary for survival. Similarly, stable overexpression of NKX3.1 in PCa cell lines reveals an androgen insensitive phenotype, suggesting NKX3.1 is sufficient to promote growth in the absence of an AR ligand. CONCLUSIONS Our work provides new insight into NKX3.1's oncogenic influence on PCa and the molecular interplay of these transcription factors in models of late-stage prostate cancer.
Collapse
Affiliation(s)
- Audris Budreika
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, 2160 South First Avenue Building 112, Room 205, Maywood, IL 60153, USA; (A.B.); (J.T.P.); (R.J.K.); (C.D.D.); (M.G.F.); (K.S.Y.); (S.W.F.)
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL 60153, USA
| | - John T. Phoenix
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, 2160 South First Avenue Building 112, Room 205, Maywood, IL 60153, USA; (A.B.); (J.T.P.); (R.J.K.); (C.D.D.); (M.G.F.); (K.S.Y.); (S.W.F.)
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Raymond J. Kostlan
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, 2160 South First Avenue Building 112, Room 205, Maywood, IL 60153, USA; (A.B.); (J.T.P.); (R.J.K.); (C.D.D.); (M.G.F.); (K.S.Y.); (S.W.F.)
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Carleen D. Deegan
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, 2160 South First Avenue Building 112, Room 205, Maywood, IL 60153, USA; (A.B.); (J.T.P.); (R.J.K.); (C.D.D.); (M.G.F.); (K.S.Y.); (S.W.F.)
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Marina G. Ferrari
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, 2160 South First Avenue Building 112, Room 205, Maywood, IL 60153, USA; (A.B.); (J.T.P.); (R.J.K.); (C.D.D.); (M.G.F.); (K.S.Y.); (S.W.F.)
| | - Kristen S. Young
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, 2160 South First Avenue Building 112, Room 205, Maywood, IL 60153, USA; (A.B.); (J.T.P.); (R.J.K.); (C.D.D.); (M.G.F.); (K.S.Y.); (S.W.F.)
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Sean W. Fanning
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, 2160 South First Avenue Building 112, Room 205, Maywood, IL 60153, USA; (A.B.); (J.T.P.); (R.J.K.); (C.D.D.); (M.G.F.); (K.S.Y.); (S.W.F.)
| | - Steven Kregel
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, 2160 South First Avenue Building 112, Room 205, Maywood, IL 60153, USA; (A.B.); (J.T.P.); (R.J.K.); (C.D.D.); (M.G.F.); (K.S.Y.); (S.W.F.)
| |
Collapse
|
3
|
Popova L, Carabetta VJ. The Use of Next-Generation Sequencing in Personalized Medicine. Methods Mol Biol 2025; 2866:287-315. [PMID: 39546209 DOI: 10.1007/978-1-0716-4192-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The revolutionary progress in development of next-generation sequencing (NGS) technologies has made it possible to deliver accurate genomic information in a timely manner. Over the past several years, NGS has transformed biomedical and clinical research and found its application in the field of personalized medicine. Here we discuss the rise of personalized medicine and the history of NGS. We discuss current applications and uses of NGS in medicine, including infectious diseases, oncology, genomic medicine, and dermatology. We provide a brief discussion of selected studies where NGS was used to respond to wide variety of questions in biomedical research and clinical medicine. Finally, we discuss the challenges of implementing NGS into routine clinical use.
Collapse
Affiliation(s)
- Liya Popova
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Valerie J Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA.
| |
Collapse
|
4
|
Zhang H, Liu TT, Ricke EA, Ricke WA. Prostatic androgen receptor signaling shows an age-related and lobe-specific alteration in mice. Sci Rep 2024; 14:30302. [PMID: 39638850 PMCID: PMC11621416 DOI: 10.1038/s41598-024-79879-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
Benign prostatic hyperplasia (BPH) is an age-related disease that affects millions of aging males globally. While the pathogenesis of BPH remains incompletely understood, emerging evidence suggests a pivotal role for the androgen receptor (AR) in mediating prostate growth and function. Understanding age-related AR signaling alteration may inform novel BPH treatments. Here, we analyzed the prostatic protein expressions of AR, NKX3.1, and Ki-67 in young (2 months) and aged (24 months) mice. We also examined the potential mechanism of AR protein expression. Compared to young mice, decreased AR and NKX3.1 protein expression was observed in the anterior prostate (AP) and ventral prostate (VP) of aged mice, indicating reduced AR signaling in these prostate lobes. Additionally, we observed decreased protein expression of proliferation maker Ki-67 in aged AP, VP, and dorsal-lateral prostate (DLP), with no difference in apoptosis as compared to young counterparts. We conclude that prostatic androgen receptor signaling shows an age-related and lobe-specific alteration in mice.
Collapse
Affiliation(s)
- Han Zhang
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Teresa T Liu
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Emily A Ricke
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - William A Ricke
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- George M. O'Brien Urology Research Center of Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
5
|
Wang S, Yu Y, Li Y, Zhang T, Jiang W, Wang X, Liu R. Prostatic lineage differentiation from human embryonic stem cells through inducible expression of NKX3-1. Stem Cell Res Ther 2024; 15:274. [PMID: 39218930 PMCID: PMC11367998 DOI: 10.1186/s13287-024-03886-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Understanding the lineage differentiation of human prostate not only is crucial for basic research on human developmental biology but also significantly contributes to the management of prostate-related disorders. Current knowledge mainly relies on studies on rodent models, lacking human-derived alternatives despite clinical samples may provide a snapshot at certain stage. Human embryonic stem cells can generate all the embryonic lineages including the prostate, and indeed a few studies demonstrate such possibility based on co-culture or co-transplantation with urogenital mesenchyme into mouse renal capsule. METHODS To establish a stepwise protocol to obtain prostatic organoids in vitro from human embryonic stem cells, we apply chemicals and growth factors by mimicking the regulation network of transcription factors and signal transduction pathways, and construct cell lines carrying an inducible NKX3-1 expressing cassette, together with three-dimensional culture system. Unpaired t test was applied for statistical analyses. RESULTS We first successfully generate the definitive endoderm, hindgut, and urogenital sinus cells. The embryonic stem cell-derived urogenital sinus cells express prostatic key transcription factors AR and FOXA1, but fail to express NKX3-1. Therefore, we construct NKX3-1-inducible cell line by homologous recombination, which is eventually able to yield AR, FOXA1, and NKX3-1 triple-positive urogenital prostatic lineage cells through stepwise differentiation. Finally, combined with 3D culture we successfully derive prostate-like organoids with certain structures and prostatic cell populations. CONCLUSIONS This study reveals the crucial role of NKX3-1 in prostatic differentiation and offers the inducible NKX3-1 cell line, as well as provides a stepwise differentiation protocol to generate human prostate-like organoids, which should facilitate the studies on prostate development and disease pathogenesis.
Collapse
Affiliation(s)
- Songwei Wang
- Department of Urology, Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Yangyang Yu
- Department of Urology, Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Yinglei Li
- Department of Urology, Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Tianzhe Zhang
- Department of Urology, Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Wei Jiang
- Department of Urology, Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Xinghuan Wang
- Department of Urology, Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
| | - Ran Liu
- Department of Urology, Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
6
|
Sangoi AR, Al-Obaidy KI, Akgul M, Mehra R, Chan E, Williamson SR. Cowper Glands Identified in Prostate and Urethral Specimens: A Comprehensive Immunohistochemical Characterization and Potential Diagnostic Pitfall. Int J Surg Pathol 2024:10668969241268375. [PMID: 39165181 DOI: 10.1177/10668969241268375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Cowper glands recognition remains one of the key histoanatomic benign mimics of prostatic adenocarcinoma. In most instances, these can be identified based on the dimorphic population of lobulated acini and duct(s). However, in the prostate biopsy setting with incomplete/distorted cores, this may not be immediately apparent and may warrant use of immunohistochemistry to argue against prostatic adenocarcinoma. Although immunohistochemical pitfalls in Cowper glands have been described, to our knowledge a comprehensive evaluation of both traditional and purportedly prostate-specific novel markers in Cowper glands has not been previously performed. Herein, we studied the clinicopathological and immunohistochemical features of 21 male patients (age range 39-81 years; mean = 63 years), including 15 prostate biopsies (7 of which also had prostate cancer in the same specimen set and 2 of which had both prostate cancer and Cowper glands in the same biopsy core). Immunohistochemistry showed the following results in Cowper glands: 100% positive for NKX3.1, 100% positive (basal cells) for both high molecular weight keratin and p63, 57% positive for PSAP, 25% positive for PSMA, 5% positive for AMACR, and 0% positive for PSA. In conclusion, for specimens lacking appreciable dimorphic morphology, caution should be rendered when using prostate-specific markers (PSA, PSAP, PSMA, and NKX3.1) as these can show considerable staining in Cowper glands and be a pitfall. Instead, findings from this cohort indicate relying on basal markers (high molecular weight keratin/p63; either individually or in a "cocktail" approach) and PSA are most useful in distinguishing Cowper glands (retained basal cell markers staining) from prostatic adenocarcinoma.
Collapse
Affiliation(s)
- Ankur R Sangoi
- Department of Pathology, Stanford Medical Center, Stanford, CA, USA
| | | | | | - Rohit Mehra
- University of Michigan & Michigan Center for Translational Pathology, Ann Arbor, MI, USA
| | - Emily Chan
- Department of Pathology, Stanford Medical Center, Stanford, CA, USA
| | | |
Collapse
|
7
|
Zhang X, Wang J, Guo W, Zhang H, Zhou B, Yu C, Gao D. The cell fates of intermediate cell population in prostate development. CELL INSIGHT 2024; 3:100182. [PMID: 39100536 PMCID: PMC11295577 DOI: 10.1016/j.cellin.2024.100182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 08/06/2024]
Abstract
Organ development, regeneration and cancer initiation are typically influenced by the proliferation and lineage plasticity of tissue-specific stem cells. Prostate intermediate cells, which exhibit characteristics of both basal and luminal cells, are prevalent in pathological states and during organ development. However, the identity, fate and function of these intermediate cells in prostate development are not well understood. Through single-cell RNA-seq analysis on neonatal urogenital sinus tissue, we identified intermediate cells exhibiting stem cell potential. A notable decline in the population of intermediate cells was observed during prostate development. Prostate intermediate cells were specifically labeled in early and late postnatal development by the enhanced dual-recombinase-mediated genetic tracing systems. Our findings revealed that these cells possess significant stem cell capabilities as demonstrated in organoid formation and cell fate mapping assays. These intermediate cells also exhibited intrinsic bipotential properties, enabling them to differentiate into both basal and luminal cells. Additionally, we discovered a novel transition from intermediate cell expressing neuroendocrine markers to neuroendocrine cell during prostate development. This study highlights intermediate cells as a crucial stem cell population and enhances our understanding of their role in prostate development and the plasticity of prostate cancer lineage.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Wang
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wangxin Guo
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Hongjiong Zhang
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Zhou
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Chen Yu
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Dong Gao
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| |
Collapse
|
8
|
He J, Perera D, Wen W, Ping J, Li Q, Lyu L, Chen Z, Shu X, Long J, Cai Q, Shu XO, Zheng W, Long Q, Guo X. Enhancing Disease Risk Gene Discovery by Integrating Transcription Factor-Linked Trans-located Variants into Transcriptome-Wide Association Analyses. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.10.10.23295443. [PMID: 37873299 PMCID: PMC10593059 DOI: 10.1101/2023.10.10.23295443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Transcriptome-wide association studies (TWAS) have been successful in identifying disease susceptibility genes by integrating cis-variants predicted gene expression with genome-wide association studies (GWAS) data. However, trans-located variants for predicting gene expression remain largely unexplored. Here, we introduce transTF-TWAS, which incorporates transcription factor (TF)-linked trans-located variants to enhance model building. Using data from the Genotype-Tissue Expression project, we predict gene expression and alternative splicing and applied these models to large GWAS datasets for breast, prostate, and lung cancers. We demonstrate that transTF-TWAS outperforms other existing TWAS approaches in both constructing gene prediction models and identifying disease-associated genes, as evidenced by simulations and real data analysis. Our transTF-TWAS approach significantly contributes to the discovery of disease risk genes. Findings from this study have shed new light on several genetically driven key regulators and their associated regulatory networks underlying disease susceptibility.
Collapse
|
9
|
Kaushal JB, Takkar S, Batra SK, Siddiqui JA. Diverse landscape of genetically engineered mouse models: Genomic and molecular insights into prostate cancer. Cancer Lett 2024; 593:216954. [PMID: 38735382 PMCID: PMC11799897 DOI: 10.1016/j.canlet.2024.216954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024]
Abstract
Prostate cancer (PCa) is a significant health concern for men worldwide and is particularly prevalent in the United States. It is a complex disease presenting different molecular subtypes and varying degrees of aggressiveness. Transgenic/genetically engineered mouse models (GEMMs) greatly enhanced our understanding of the intricate molecular processes that underlie PCa progression and have offered valuable insights into potential therapeutic targets for this disease. The integration of whole-exome and whole-genome sequencing, along with expression profiling, has played a pivotal role in advancing GEMMs by facilitating the identification of genetic alterations driving PCa development. This review focuses on genetically modified mice classified into the first and second generations of PCa models. We summarize whether models created by manipulating the function of specific genes replicate the consequences of genomic alterations observed in human PCa, including early and later disease stages. We discuss cases where GEMMs did not fully exhibit the expected human PCa phenotypes and possible causes of the failure. Here, we summarize the comprehensive understanding, recent advances, strengths and limitations of the GEMMs in advancing our insights into PCa, offering genetic and molecular perspectives for developing novel GEMM models.
Collapse
Affiliation(s)
- Jyoti B Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Simran Takkar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE-68198, USA.
| | - Jawed A Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA.
| |
Collapse
|
10
|
Papachristodoulou A, Heidegger I, Virk RK, Di Bernardo M, Kim JY, Laplaca C, Picech F, Schäfer G, De Castro GJ, Hibshoosh H, Loda M, Klocker H, Rubin MA, Zheng T, Benson MC, McKiernan JM, Dutta A, Abate-Shen C. Metformin Overcomes the Consequences of NKX3.1 Loss to Suppress Prostate Cancer Progression. Eur Urol 2024; 85:361-372. [PMID: 37659962 PMCID: PMC10902192 DOI: 10.1016/j.eururo.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/30/2023] [Accepted: 07/26/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND The antidiabetic drug metformin has known anticancer effects related to its antioxidant activity; however, its clinical benefit for prostate cancer (PCa) has thus far been inconclusive. Here, we investigate whether the efficacy of metformin in PCa is related to the expression status of NKX3.1, a prostate-specific homeobox gene that functions in mitochondria to protect the prostate from aberrant oxidative stress. OBJECTIVE To investigate the relationship of NKX3.1 expression and metformin efficacy in PCa. DESIGN, SETTING, AND PARTICIPANTS Functional studies were performed in vivo and in vitro in genetically engineered mouse models and human LNCaP cells, and organotypic cultures having normal or reduced/absent levels of NKX3.1. Correlative studies were performed using two independent retrospective tissue microarray cohorts of radical prostatectomies and a retrospective cohort of prostate biopsies from patients on active surveillance. INTERVENTION Metformin was administered before or after the induction of oxidative stress by treatment with paraquat. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Functional endpoints included analyses of histopathology, tumorigenicity, and mitochondrial function. Correlative endpoints include Kaplan-Meier curves and Cox proportional hazard regression models. RESULTS AND LIMITATIONS Metformin reversed the adverse consequences of NKX3.1 deficiency following oxidative stress in vivo and in vitro, as evident by reduced tumorigenicity and restored mitochondrial function. Patients with low NKX3.1 expression showed a significant clinical benefit from taking metformin. CONCLUSIONS Metformin can overcome the adverse consequences of NKX3.1 loss for PCa progression by protecting against oxidative stress and promoting normal mitochondrial function. These functional activities and clinical correlates were observed only with low NKX3.1 expression. Thus, the clinical benefit of metformin in PCa may depend on the status of NKX3.1 expression. PATIENT SUMMARY Prostate cancer patients with low NKX3.1 are likely to benefit most from metformin treatment to delay disease progression in a precision interception paradigm.
Collapse
Affiliation(s)
- Alexandros Papachristodoulou
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Isabel Heidegger
- Department of Urology, Medical University Innsbruck, Innsbruck, AT, Austria
| | - Renu K Virk
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Matteo Di Bernardo
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Jaime Y Kim
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Caroline Laplaca
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Urology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Florencia Picech
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Georg Schäfer
- Department of Pathology, Medical University Innsbruck, Innsbruck, AT, Austria
| | - Guarionex Joel De Castro
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Urology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Hanina Hibshoosh
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | - Helmut Klocker
- Department of Urology, Medical University Innsbruck, Innsbruck, AT, Austria
| | - Mark A Rubin
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Tian Zheng
- Department of Statistics, Columbia University, New York, NY, USA
| | - Mitchell C Benson
- Department of Urology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - James M McKiernan
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Urology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Aditya Dutta
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| | - Cory Abate-Shen
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Urology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
11
|
Popova L, Carabetta VJ. The use of next-generation sequencing in personalized medicine. ARXIV 2024:arXiv:2403.03688v1. [PMID: 38495572 PMCID: PMC10942477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The revolutionary progress in development of next-generation sequencing (NGS) technologies has made it possible to deliver accurate genomic information in a timely manner. Over the past several years, NGS has transformed biomedical and clinical research and found its application in the field of personalized medicine. Here we discuss the rise of personalized medicine and the history of NGS. We discuss current applications and uses of NGS in medicine, including infectious diseases, oncology, genomic medicine, and dermatology. We provide a brief discussion of selected studies where NGS was used to respond to wide variety of questions in biomedical research and clinical medicine. Finally, we discuss the challenges of implementing NGS into routine clinical use.
Collapse
Affiliation(s)
- Liya Popova
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden NJ, 08103
| | - Valerie J. Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden NJ, 08103
| |
Collapse
|
12
|
Fujii M, Sekine S, Sato T. Decoding the basis of histological variation in human cancer. Nat Rev Cancer 2024; 24:141-158. [PMID: 38135758 DOI: 10.1038/s41568-023-00648-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 12/24/2023]
Abstract
Molecular abnormalities that shape human neoplasms dissociate their phenotypic landscape from that of the healthy counterpart. Through the lens of a microscope, tumour pathology optically captures such aberrations projected onto a tissue slide and has categorized human epithelial neoplasms into distinct histological subtypes based on the diverse morphogenetic and molecular programmes that they manifest. Tumour histology often reflects tumour aggressiveness, patient prognosis and therapeutic vulnerability, and thus has been used as a de facto diagnostic tool and for making clinical decisions. However, it remains elusive how the diverse histological subtypes arise and translate into pleiotropic biological phenotypes. Molecular analysis of clinical tumour tissues and their culture, including patient-derived organoids, and add-back genetic reconstruction of tumorigenic pathways using gene engineering in culture models and rodents further elucidated molecular mechanisms that underlie morphological variations. Such mechanisms include genetic mutations and epigenetic alterations in cellular identity codes that erode hard-wired morphological programmes and histologically digress tumours from the native tissues. Interestingly, tumours acquire the ability to grow independently of the niche-driven stem cell ecosystem along with these morphological alterations, providing a biological rationale for histological diversification during tumorigenesis. This Review comprehensively summarizes our current understanding of such plasticity in the histological and lineage commitment fostered cooperatively by molecular alterations and the tumour environment, and describes basic and clinical implications for future cancer therapy.
Collapse
Affiliation(s)
- Masayuki Fujii
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan.
| | - Shigeki Sekine
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Toshiro Sato
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
13
|
Ding YD, Shu LZ, He RS, Chen KY, Deng YJ, Zhou ZB, Xiong Y, Deng H. Listeria monocytogenes: a promising vector for tumor immunotherapy. Front Immunol 2023; 14:1278011. [PMID: 37868979 PMCID: PMC10587691 DOI: 10.3389/fimmu.2023.1278011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Cancer receives enduring international attention due to its extremely high morbidity and mortality. Immunotherapy, which is generally expected to overcome the limits of traditional treatments, serves as a promising direction for patients with recurrent or metastatic malignancies. Bacteria-based vectors such as Listeria monocytogenes take advantage of their unique characteristics, including preferential infection of host antigen presenting cells, intracellular growth within immune cells, and intercellular dissemination, to further improve the efficacy and minimize off-target effects of tailed immune treatments. Listeria monocytogenes can reshape the tumor microenvironment to bolster the anti-tumor effects both through the enhancement of T cells activity and a decrease in the frequency and population of immunosuppressive cells. Modified Listeria monocytogenes has been employed as a tool to elicit immune responses against different tumor cells. Currently, Listeria monocytogenes vaccine alone is insufficient to treat all patients effectively, which can be addressed if combined with other treatments, such as immune checkpoint inhibitors, reactivated adoptive cell therapy, and radiotherapy. This review summarizes the recent advances in the molecular mechanisms underlying the involvement of Listeria monocytogenes vaccine in anti-tumor immunity, and discusses the most concerned issues for future research.
Collapse
Affiliation(s)
- Yi-Dan Ding
- Medical College, Nanchang University, Nanchang, China
| | - Lin-Zhen Shu
- Medical College, Nanchang University, Nanchang, China
| | - Rui-Shan He
- Medical College, Nanchang University, Nanchang, China
| | - Kai-Yun Chen
- Office of Clinical Trials Administration, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yan-Juan Deng
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
- Tumor Immunology Institute, Nanchang University, Nanchang, China
| | - Zhi-Bin Zhou
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
- Tumor Immunology Institute, Nanchang University, Nanchang, China
| | - Ying Xiong
- Department of General Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huan Deng
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
- Tumor Immunology Institute, Nanchang University, Nanchang, China
| |
Collapse
|
14
|
Xie H, Guo L, Ma Q, Zhang W, Yang Z, Wang Z, Peng S, Wang K, Wen S, Shang Z, Niu Y. YAP is required for prostate development, regeneration, and prostate stem cell function. Cell Death Discov 2023; 9:339. [PMID: 37689711 PMCID: PMC10492789 DOI: 10.1038/s41420-023-01637-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023] Open
Abstract
Prostate development and regeneration depend on prostate stem cell function, the delicate balance of stem cell self-renewal and differentiation. However, mechanisms modulating prostate stem cell function remain poorly identified. Here, we explored the roles of Yes-associated protein 1 (YAP) in prostate stem cells, prostate development and regeneration. Using YAPfl/fl, CD133-CreER mice, we found that stem cell-specific YAP-deficient mice had compromised branching morphogenesis and epithelial differentiation, resulting in damaged prostate development. YAP inhibition also significantly affected the regeneration process of mice prostate, leading to impaired regenerated prostate. Furthermore, YAP ablation in prostate stem cells significantly reduced its self-renewal activity in vitro, and attenuated prostate regeneration of prostate grafts in vivo. Further analysis revealed a decrease in Notch and Hedgehog pathways expression in YAP inhibition cells, and treatment with exogenous Shh partially restored the self-renewal ability of prostate sphere cells. Taken together, our results revealed the roles of YAP in prostate stem cell function and prostate development and regeneration through regulation of the Notch and Hedgehog signaling pathways.
Collapse
Affiliation(s)
- Hui Xie
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Linpei Guo
- Gene and Immunotherapy Center, The Second Hospital of Shandong University, 250033, Jinan, Shandong, China
| | - Qianwang Ma
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Wenyi Zhang
- Department of Radiology, The second hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Zhao Yang
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Zhun Wang
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Shuanghe Peng
- Department of Pathology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Keruo Wang
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Simeng Wen
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Zhiqun Shang
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, 300211, Tianjin, China.
| | - Yuanjie Niu
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, 300211, Tianjin, China.
| |
Collapse
|
15
|
Thomsen MK, Busk M. Pre-Clinical Models to Study Human Prostate Cancer. Cancers (Basel) 2023; 15:4212. [PMID: 37686488 PMCID: PMC10486646 DOI: 10.3390/cancers15174212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Prostate cancer is a common cancer among men and typically progresses slowly for several decades before becoming aggressive and spreading to other organs, leaving few treatment options. While large animals have been studied, the dog's prostate is anatomically similar to humans and has been used to study spontaneous prostate cancer. However, most research currently focuses on the mouse as a model organism due to the ability to genetically modify their prostatic tissues for molecular analysis. One milestone in this research was the identification of the prostate-specific promoter Probasin, which allowed for the prostate-specific expression of transgenes. This has led to the generation of mice with aggressive prostatic tumors through overexpression of the SV40 oncogene. The Probasin promoter is also used to drive Cre expression and has allowed researchers to generate prostate-specific loss-of-function studies. Another landmark moment in the process of modeling prostate cancer in mice was the orthoptic delivery of viral particles. This technology allows the selective overexpression of oncogenes from lentivirus or the use of CRISPR to generate complex loss-of-function studies. These genetically modified models are complemented by classical xenografts of human prostate tumor cells in immune-deficient mice. Overall, pre-clinical models have provided a portfolio of model systems to study and address complex mechanisms in prostate cancer for improved treatment options. This review will focus on the advances in each technique.
Collapse
Affiliation(s)
| | - Morten Busk
- Department of Experimental Clinical Oncology, Aarhus University Hospital, 8200 Aarhus, Denmark;
- Danish Centre for Particle Therapy, Aarhus University Hospital, 8200 Aarhus, Denmark
| |
Collapse
|
16
|
Li H, Chaitankar V, Cui L, Chen W, Chin K, Zhu J, Liu W, Rodgers GP. Characterization of olfactomedin 4+ cells in prostate and urethral-tube epithelium during murine postnatal development and in adult mice. Sci Rep 2023; 13:10290. [PMID: 37357228 DOI: 10.1038/s41598-023-37320-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023] Open
Abstract
Olfactomedin4 (Olfm4) is expressed in normal mouse prostate. However, Olfm4+ cells in the murine prostate have not been well characterized. In this study, we generated an Olfm4eGFP reporter mouse line with C57BL/6 mice and investigated the distribution of Olfm4/eGFP-expressing cells during postnatal development from P1, P7, P14, P20, P42, P56 to adult male mouse prostate and urethral tube. We observed Olfm4/eGFP expression in urogenital and prostatic epithelial cells during early postnatal development, which persisted into adulthood in urethral-tube and anterior-prostate (AP) epithelium. We found Olfm4+ cells are E-cadherin+/CD44+/Foxa1+ and some of subpopulation are Ck8+/Ck5+/Sca-1-/Ck4-/Syn- in the adult mouse AP epithelium. Functional studies of single-cell preparations of Olfm4/eGFP-expressing cells isolated from adult Olfm4eGFP mouse prostate demonstrated that Olfm4+ cells can grow and form colonies, spheres, or organoids in culture. Bioinformatic analysis of Olfm4+ cells using single-cell RNA sequencing meta data in adult mouse urethra (GSE145865) identified upregulation of genes related to cell and tissue migration and development, as well as upregulation of xenobiotic metabolism signaling pathways. In conclusion, Olfm4eGFP mouse is a novel model to further study Olfm4's biological functions and Olfm4+ cells may contribute importantly to cellular processes supporting development and homeostasis of the epithelium in murine prostate and urethral tube.
Collapse
Affiliation(s)
- Hongzhen Li
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10, Room 9N119, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Vijender Chaitankar
- Bioinformatics and Systems Biology Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lena Cui
- Genomics Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Weiping Chen
- Genomics Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kyung Chin
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10, Room 9N119, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Jianqiong Zhu
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10, Room 9N119, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Wenli Liu
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10, Room 9N119, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Griffin P Rodgers
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10, Room 9N119, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
17
|
Glauser S, Ameline B, Andrei V, Harder D, Pauli C, Trautmann M, Hartmann W, Baumhoer D. NKX3.1 immunohistochemistry and methylome profiling in mesenchymal chondrosarcoma: additional diagnostic value for a well-defined disease? Pathology 2023:S0031-3025(23)00117-4. [PMID: 37225644 DOI: 10.1016/j.pathol.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/26/2023] [Accepted: 03/01/2023] [Indexed: 05/26/2023]
Abstract
Mesenchymal chondrosarcoma (MCS) is a rare and highly aggressive tumour of soft tissue and bone that is defined by an underlying and highly specific fusion transcript involving HEY1 and NCOA2. Histologically, the tumours show a biphasic appearance consisting of an undifferentiated blue and round cell component as well as islands of highly differentiated cartilage. Particularly in core needle biopsies, the chondromatous component can be missed and the non-specific morphology and immunophenotype of the round cell component can cause diagnostic challenges. We applied NKX3.1 immunohistochemistry which was recently reported as a highly specific marker as well as methylome and copy number profiling to a set of 45 well characterised MCS cases to evaluate their potential diagnostic value. Methylome profiling revealed a highly distinct cluster for MCS. Notably, the findings were reproducible also when analysing the round cell and cartilaginous component separately. Furthermore, four outliers were identified by methylome profiling for which the diagnosis had to be revised. NKX3.1 immunohistochemistry showed positivity in 36% of tumours, the majority of which was rather focal and weak. Taken together, NKX3.1 expression showed a low sensitivity but a high specificity in our analysis. Methylome profiling on the other hand represents a sensitive, specific and reliable tool to support the diagnosis of MCS, particularly if only the round cell component is obtained in a biopsy and the diagnosis is not suspected. Furthermore, it can aid in confirming the diagnosis in case RNA sequencing for the HEY1::NCOA2 fusion transcript is not available.
Collapse
Affiliation(s)
- Salomé Glauser
- Bone Tumour Reference Centre, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Baptiste Ameline
- Bone Tumour Reference Centre, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Vanghelita Andrei
- Bone Tumour Reference Centre, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Dorothee Harder
- Department of Radiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Chantal Pauli
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland
| | - Marcel Trautmann
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany; Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Wolfgang Hartmann
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany; Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Daniel Baumhoer
- Bone Tumour Reference Centre, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland.
| |
Collapse
|
18
|
Uno W, Ofuji K, Wymeersch FJ, Takasato M. In vitro induction of prostate buds from murine urogenital epithelium in the absence of mesenchymal cells. Dev Biol 2023; 498:49-60. [PMID: 36963625 DOI: 10.1016/j.ydbio.2023.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/08/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023]
Abstract
The prostate is a male reproductive gland which secretes prostatic fluid that enhances male fertility. During development and instigated by fetal testosterone, prostate cells arise caudal to the bladder at the urogenital sinus (UGS), when the urogenital mesenchyme (UGM) secretes signals to the urogenital epithelium (UGE). These initial mesenchymal signals induce prostate-specific gene expression in the UGE, after which epithelial progenitor cells form prostatic buds. Although many important factors for prostate development have been described using UGS organ cultures, those necessary and sufficient for prostate budding have not been clearly identified. This has been in part due to the difficulty to dissect the intricate signaling and feedback between epithelial and mesenchymal UGS cells. In this study, we separated the UGM from the UGE and tested candidate growth factors to show that when FGF10 is present, testosterone is not required for initiating prostate budding from the UGE. Moreover, in the presence of low levels of FGF10, canonical WNT signaling enhances the expression of several prostate progenitor markers in the UGE before budding of the prostate occurs. At the later budding stage, higher levels of FGF10 are required to increase budding and retinoic acid is indispensable for the upregulation of prostate-specific genes. Lastly, we show that under optimized conditions, female UGE can be instructed towards a prostatic fate, and in vitro generated prostate buds from male UGE can differentiate into a mature prostate epithelium after in vivo transplantation. Taken together, our results clarify the signals that can induce fetal prostate buds in the urogenital epithelium in the absence of the surrounding, instructive mesenchyme.
Collapse
Affiliation(s)
- Wataru Uno
- Laboratory for Human Organogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan; Laboratory of Molecular Cell Biology and Development, Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Kazuhiro Ofuji
- Laboratory for Human Organogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| | - Filip J Wymeersch
- Laboratory for Human Organogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| | - Minoru Takasato
- Laboratory for Human Organogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan; Laboratory of Molecular Cell Biology and Development, Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
19
|
Sailer V, von Amsberg G, Duensing S, Kirfel J, Lieb V, Metzger E, Offermann A, Pantel K, Schuele R, Taubert H, Wach S, Perner S, Werner S, Aigner A. Experimental in vitro, ex vivo and in vivo models in prostate cancer research. Nat Rev Urol 2023; 20:158-178. [PMID: 36451039 DOI: 10.1038/s41585-022-00677-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 12/02/2022]
Abstract
Androgen deprivation therapy has a central role in the treatment of advanced prostate cancer, often causing initial tumour remission before increasing independence from signal transduction mechanisms of the androgen receptor and then eventual disease progression. Novel treatment approaches are urgently needed, but only a fraction of promising drug candidates from the laboratory will eventually reach clinical approval, highlighting the demand for critical assessment of current preclinical models. Such models include standard, genetically modified and patient-derived cell lines, spheroid and organoid culture models, scaffold and hydrogel cultures, tissue slices, tumour xenograft models, patient-derived xenograft and circulating tumour cell eXplant models as well as transgenic and knockout mouse models. These models need to account for inter-patient and intra-patient heterogeneity, the acquisition of primary or secondary resistance, the interaction of tumour cells with their microenvironment, which make crucial contributions to tumour progression and resistance, as well as the effects of the 3D tissue network on drug penetration, bioavailability and efficacy.
Collapse
Affiliation(s)
- Verena Sailer
- Institute for Pathology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Gunhild von Amsberg
- Department of Oncology and Hematology, University Cancer Center Hamburg Eppendorf and Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Stefan Duensing
- Section of Molecular Urooncology, Department of Urology, University Hospital Heidelberg and National Center for Tumour Diseases, Heidelberg, Germany
| | - Jutta Kirfel
- Institute for Pathology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Verena Lieb
- Research Division Molecular Urology, Department of Urology and Paediatric Urology, University Hospital Erlangen, Erlangen, Germany
| | - Eric Metzger
- Department of Urology, Center for Clinical Research, University of Freiburg Medical Center, Freiburg, Germany
| | - Anne Offermann
- Institute for Pathology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Klaus Pantel
- Institute for Tumour Biology, Center for Experimental Medicine, University Clinics Hamburg-Eppendorf, Hamburg, Germany
- Mildred-Scheel-Nachwuchszentrum HaTRiCs4, University Cancer Center Hamburg, Hamburg, Germany
| | - Roland Schuele
- Department of Urology, Center for Clinical Research, University of Freiburg Medical Center, Freiburg, Germany
| | - Helge Taubert
- Research Division Molecular Urology, Department of Urology and Paediatric Urology, University Hospital Erlangen, Erlangen, Germany
| | - Sven Wach
- Research Division Molecular Urology, Department of Urology and Paediatric Urology, University Hospital Erlangen, Erlangen, Germany
| | - Sven Perner
- University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Pathology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Stefan Werner
- Institute for Tumour Biology, Center for Experimental Medicine, University Clinics Hamburg-Eppendorf, Hamburg, Germany
- Mildred-Scheel-Nachwuchszentrum HaTRiCs4, University Cancer Center Hamburg, Hamburg, Germany
| | - Achim Aigner
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Medical Faculty, Leipzig, Germany.
| |
Collapse
|
20
|
Luo F, Tshering LF, Tutuska K, Szenk M, Rubel D, Rail JG, Russ S, Liu J, Nemajerova A, Balázsi G, Talos F. A luminal intermediate cell state maintains long-term prostate homeostasis and contributes to tumorigenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529762. [PMID: 36909551 PMCID: PMC10002646 DOI: 10.1101/2023.02.24.529762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Cellular heterogeneity poses tremendous challenges for developing cell-targeted therapies and biomarkers of clinically significant prostate cancer. The origins of this heterogeneity within normal adult and aging tissue remain unknown, leaving cellular states and transcriptional programs that allow expansions of malignant clones unidentified. To define cell states that contribute to early cancer development, we performed clonal analyses and single cell transcriptomics of normal prostate from genetically-engineered mouse models. We uncovered a luminal transcriptional state with a unique "basal-like" Wnt/p63 signaling ( luminal intermediate , LumI) which contributes to the maintenance of long-term prostate homeostasis. Moreover, LumI cells greatly expand during early stages of tumorigenesis in several mouse models of prostate cancer. Genetic ablation of p63 in vivo in luminal cells reduced the formation of aggressive clones in mouse prostate tumor models. Finally, the LumI cells and Wnt signaling appear to significantly increase in human aging prostate and prostate cancer samples, highlighting the importance of this hybrid cell state for human pathologies with potential translational impact.
Collapse
|
21
|
Iacob R, Stoicescu ER, Cerbu S, Manolescu DL, Bardan R, Cumpănaş A. Could Biparametric MRI Replace Multiparametric MRI in the Management of Prostate Cancer? Life (Basel) 2023; 13:465. [PMID: 36836822 PMCID: PMC9961917 DOI: 10.3390/life13020465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Prostate cancer (PCa) is a worldwide epidemiological problem, since it is one of the most prevalent types of neoplasia among men, and the third-leading cause of cancer-related deaths, after lung and colorectal tumors. Unfortunately, the early stages of PCa have a wide range of unspecific symptoms. For these reasons, early diagnosis and accurate evaluation of suspicious lesions are crucial. Multiparametric MRI (mpMRI) is currently the imaging modality of choice for diagnostic screening and local staging of PCa, but also has a leading role in guiding biopsies and in treatment biparametric MRI (bpMRI) could partially replace mpMRI due to its lack of adverse reactions caused by contrast agents, relatively lower costs, and shorter acquisition time. Further, 31 relevant articles regarding the advantages and disadvantages of the aforementioned imaging techniques were scanned. As a result, while bpMRI has comparable accuracy in detecting PCa, its roles in the other steps of PCa management are limited.
Collapse
Affiliation(s)
- Roxana Iacob
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Discipline of Radiology and Medical Imaging, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Emil-Robert Stoicescu
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Discipline of Radiology and Medical Imaging, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Simona Cerbu
- Discipline of Radiology and Medical Imaging, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Diana-Luminiţa Manolescu
- Discipline of Radiology and Medical Imaging, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases (CRIPMRD), “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Răzvan Bardan
- Discipline of Urology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Alin Cumpănaş
- Discipline of Urology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| |
Collapse
|
22
|
Manzar N, Ganguly P, Khan UK, Ateeq B. Transcription networks rewire gene repertoire to coordinate cellular reprograming in prostate cancer. Semin Cancer Biol 2023; 89:76-91. [PMID: 36702449 DOI: 10.1016/j.semcancer.2023.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023]
Abstract
Transcription factors (TFs) represent the most commonly deregulated DNA-binding class of proteins associated with multiple human cancers. They can act as transcriptional activators or repressors that rewire the cistrome, resulting in cellular reprogramming during cancer progression. Deregulation of TFs is associated with the onset and maintenance of various cancer types including prostate cancer. An emerging subset of TFs has been implicated in the regulation of multiple cancer hallmarks during tumorigenesis. Here, we discuss the role of key TFs which modulate transcriptional cicuitries involved in the development and progression of prostate cancer. We further highlight the role of TFs associated with key cancer hallmarks, including, chromatin remodeling, genome instability, DNA repair, invasion, and metastasis. We also discuss the pluripotent function of TFs in conferring lineage plasticity, that aids in disease progression to neuroendocrine prostate cancer. At the end, we summarize the current understanding and approaches employed for the therapeutic targeting of TFs and their cofactors in the clinical setups to prevent disease progression.
Collapse
Affiliation(s)
- Nishat Manzar
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Promit Ganguly
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Umar Khalid Khan
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Bushra Ateeq
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| |
Collapse
|
23
|
Tomalty D, Giovannetti O, Gaudet D, Clohosey D, Harvey MA, Johnston S, Komisaruk B, Hannan J, Goldstein S, Goldstein I, Adams MA. The prostate in women: an updated histological and immunohistochemical profile of the female periurethral glands and their relationship to an implanted midurethral sling. J Sex Med 2023; 20:612-625. [PMID: 36763941 DOI: 10.1093/jsxmed/qdac046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/11/2022] [Accepted: 12/09/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND There is evidence of glandular tissue in the region of the anterior vaginal wall-female periurethral tissue (AVW-FPT) that has similar morphology and immunohistochemistry to the prostate in men. Surgical injury to this tissue has been suggested as a potential cause of sexual dysfunction following midurethral sling (MUS) procedures. However, the anatomy and embryology of these glands have not been fully resolved. This has led to difficulties in classifying this tissue as a prostate and defining its clinical significance related to MUS procedures. AIM To describe the histological and immunohistochemical characteristics of the female periurethral glands using markers of prostate tissue and innervation and to examine their anatomical relationships to an implanted MUS. METHODS Using gross and fine dissection, the AVW-FPT was dissected from 9 cadavers. Prior to dissection, 2 cadavers underwent simulation of the MUS procedure by a urogynecologist. Samples were paraffin embedded and serially sectioned. Immunohistochemistry was performed using markers of prostate tissue and innervation. OUTCOMES Redundant immunohistochemical localization of markers for prostatic tissue and innervation of the glandular tissue of the AVW-FPT, including the region of MUS implantation. RESULTS Female periurethral glands were immunoreactive for markers of male prostatic tissue, including prostate-specific antigen, androgen receptor, HOXB13, and NKX3.1. Markers of innervation (protein gene product 9.5, choline acetyl transferase, and vasoactive intestinal polypeptide) also localized to certain regions of the glandular tissue and associated blood supply. Surgical simulation of the MUS procedure demonstrated that some periurethral glands are located in close proximity to an implanted sling. CLINICAL TRANSLATION The AVW-FPT contains glandular tissue in the surgical field of MUS implantation. Iatrogenic damage to the female periurethral glands and the associated innervation during surgery could explain the negative impacts on sexual dysfunction reported following MUS procedures. STRENGTHS AND LIMITATIONS This is the first study to characterize the female periurethral glands using markers of prostatic tissue in concert with markers of general and autonomic innervation and characterize their anatomical relationships within the surgical field of MUS implantation. The small sample size is a limitation of this study. CONCLUSION We provide further evidence that the AVW-FPT contains innervated glands that are phenotypically similar to the male prostate and may share a common embryonic origin. The microscopic and immunohistochemical features of the periurethral glands may be indicative of their functional capacity in sexual responses. The location of these glands in the surgical field of MUS procedures underscores the clinical significance of this tissue.
Collapse
Affiliation(s)
- Diane Tomalty
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Olivia Giovannetti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Dionne Gaudet
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Diandra Clohosey
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Marie-Andrée Harvey
- Obstetrics and Gynaecology, Kingston General Hospital, Kingston, ON, K7L 2V7, Canada
| | - Shawna Johnston
- Obstetrics and Gynaecology, Kingston General Hospital, Kingston, ON, K7L 2V7, Canada
| | - Barry Komisaruk
- Department of Psychology, Rutgers University, Newark, NJ 07102, United States
| | - Johanna Hannan
- Department of Physiology, East Carolina University, Greenville, NC 27834, United States
| | - Sue Goldstein
- San Diego Sexual Medicine, San Diego, CA 92120, United States
| | - Irwin Goldstein
- San Diego Sexual Medicine, San Diego, CA 92120, United States
| | - Michael A Adams
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
24
|
Adamiecki R, Hryniewicz-Jankowska A, Ortiz MA, Li X, Porter-Hansen BA, Nsouli I, Bratslavsky G, Kotula L. In Vivo Models for Prostate Cancer Research. Cancers (Basel) 2022; 14:5321. [PMID: 36358740 PMCID: PMC9654339 DOI: 10.3390/cancers14215321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/28/2022] Open
Abstract
In 2022, prostate cancer (PCa) is estimated to be the most commonly diagnosed cancer in men in the United States-almost 270,000 American men are estimated to be diagnosed with PCa in 2022. This review compares and contrasts in vivo models of PCa with regards to the altered genes, signaling pathways, and stages of tumor progression associated with each model. The main type of model included in this review are genetically engineered mouse models, which include conditional and constitutive knockout model. 2D cell lines, 3D organoids and spheroids, xenografts and allografts, and patient derived models are also included. The major applications, advantages and disadvantages, and ease of use and cost are unique to each type of model, but they all make it easier to translate the tumor progression that is seen in the mouse prostate to the human prostate. Although both human and mouse prostates are androgen-dependent, the fact that the native, genetically unaltered prostate in mice cannot give rise to carcinoma is an especially critical component of PCa models. Thanks to the similarities between the mouse and human genome, our knowledge of PCa has been expanded, and will continue to do so, through models of PCa.
Collapse
Affiliation(s)
- Robert Adamiecki
- Rutgers New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
| | - Anita Hryniewicz-Jankowska
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Maria A. Ortiz
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
| | - Xiang Li
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
| | - Baylee A. Porter-Hansen
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
| | - Imad Nsouli
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
| | - Gennady Bratslavsky
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
- Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
| | - Leszek Kotula
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
- Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
| |
Collapse
|
25
|
Baca SC, Singler C, Zacharia S, Seo JH, Morova T, Hach F, Ding Y, Schwarz T, Huang CCF, Anderson J, Fay AP, Kalita C, Groha S, Pomerantz MM, Wang V, Linder S, Sweeney CJ, Zwart W, Lack NA, Pasaniuc B, Takeda DY, Gusev A, Freedman ML. Genetic determinants of chromatin reveal prostate cancer risk mediated by context-dependent gene regulation. Nat Genet 2022; 54:1364-1375. [PMID: 36071171 PMCID: PMC9784646 DOI: 10.1038/s41588-022-01168-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/19/2022] [Indexed: 12/25/2022]
Abstract
Many genetic variants affect disease risk by altering context-dependent gene regulation. Such variants are difficult to study mechanistically using current methods that link genetic variation to steady-state gene expression levels, such as expression quantitative trait loci (eQTLs). To address this challenge, we developed the cistrome-wide association study (CWAS), a framework for identifying genotypic and allele-specific effects on chromatin that are also associated with disease. In prostate cancer, CWAS identified regulatory elements and androgen receptor-binding sites that explained the association at 52 of 98 known prostate cancer risk loci and discovered 17 additional risk loci. CWAS implicated key developmental transcription factors in prostate cancer risk that are overlooked by eQTL-based approaches due to context-dependent gene regulation. We experimentally validated associations and demonstrated the extensibility of CWAS to additional epigenomic datasets and phenotypes, including response to prostate cancer treatment. CWAS is a powerful and biologically interpretable paradigm for studying variants that influence traits by affecting transcriptional regulation.
Collapse
Affiliation(s)
- Sylvan C. Baca
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA,The Eli and Edythe L. Broad Institute, Cambridge, MA, USA
| | - Cassandra Singler
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Soumya Zacharia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ji-Heui Seo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Tunc Morova
- Vancouver Prostate Centre University of British Columbia, Vancouver, BC, Canada
| | - Faraz Hach
- Vancouver Prostate Centre University of British Columbia, Vancouver, BC, Canada
| | - Yi Ding
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA
| | - Tommer Schwarz
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA
| | | | - Jacob Anderson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - André P. Fay
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Cynthia Kalita
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Division of Genetics, Brigham & Women’s Hospital, Boston, MA, USA
| | - Stefan Groha
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,The Eli and Edythe L. Broad Institute, Cambridge, MA, USA
| | - Mark M. Pomerantz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Victoria Wang
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA,Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
| | - Simon Linder
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands,Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands,Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Nathan A. Lack
- Vancouver Prostate Centre University of British Columbia, Vancouver, BC, Canada,School of Medicine, Koç University, Istanbul, Turkey
| | - Bogdan Pasaniuc
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA,Department of Computational Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA USA,Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - David Y. Takeda
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Alexander Gusev
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,The Eli and Edythe L. Broad Institute, Cambridge, MA, USA,Division of Genetics, Brigham & Women’s Hospital, Boston, MA, USA,These authors jointly supervised this work. Correspondence should be directed to M.L.F or A.G. ()
| | - Matthew L. Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA,The Eli and Edythe L. Broad Institute, Cambridge, MA, USA,These authors jointly supervised this work. Correspondence should be directed to M.L.F or A.G. ()
| |
Collapse
|
26
|
Abstract
Most prostate cancers initially respond to androgen deprivation therapy (ADT). With the long-term application of ADT, localized prostate cancer will progress to castration-resistant prostate cancer (CRPC), metastatic CRPC (mCRPC), and neuroendocrine prostate cancer (NEPC), and the transcriptional network shifted. Forkhead box protein A1 (FOXA1) may play a key role in this process through multiple mechanisms. To better understand the role of FOXA1 in prostate cancer, we review the interplay among FOXA1-targeted genes, modulators of FOXA1, and FOXA1 with a particular emphasis on androgen receptor (AR) function. Furthermore, we discuss the distinct role of FOXA1 mutations in prostate cancer and clinical significance of FOXA1. We summarize possible regulation pathways of FOXA1 in different stages of prostate cancer. We focus on links between FOXA1 and AR, which may play different roles in various types of prostate cancer. Finally, we discuss FOXA1 mutation and its clinical significance in prostate cancer. FOXA1 regulates the development of prostate cancer through various pathways, and it could be a biomarker for mCRPC and NEPC. Future efforts need to focus on mechanisms underlying mutation of FOXA1 in advanced prostate cancer. We believe that FOXA1 would be a prognostic marker and therapeutic target in prostate cancer.
Collapse
Affiliation(s)
- Hui-Yu Dong
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.,Department of Clinical Medicine, Suzhou Vocational Health College, Suzhou 215009, China
| | - Lei Ding
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tian-Ren Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tao Yan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jie Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
27
|
Bleeker J, Wang ZA. Applications of Vertebrate Models in Studying Prostatitis and Inflammation-Associated Prostatic Diseases. Front Mol Biosci 2022; 9:898871. [PMID: 35865005 PMCID: PMC9294738 DOI: 10.3389/fmolb.2022.898871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/17/2022] [Indexed: 12/05/2022] Open
Abstract
It has long been postulated that the inflammatory environment favors cell proliferation, and is conducive to diseases such as cancer. In the prostate gland, clinical data implicate important roles of prostatitis in the progression of both benign prostatic hyperplasia (BPH) and prostate cancer (PCa). However, their causal relationships have not been firmly established yet due to unresolved molecular and cellular mechanisms. By accurately mimicking human disease, vertebrate animals provide essential in vivo models to address this question. Here, we review the vertebrate prostatitis models that have been developed and discuss how they may reveal possible mechanisms by which prostate inflammation promotes BPH and PCa. Recent studies, particularly those involving genetically engineered mouse models (GEMMs), suggest that such mechanisms are multifaceted, which include epithelium barrier disruption, DNA damage and cell proliferation induced by paracrine signals, and expansion of potential cells of origin for cancer. Future research using rodent prostatitis models should aim to distinguish the etiologies of BPH and PCa, and facilitate the development of novel clinical approaches for prostatic disease prevention.
Collapse
|
28
|
Mai CW, Chin KY, Foong LC, Pang KL, Yu B, Shu Y, Chen S, Cheong SK, Chua CW. Modeling prostate cancer: What does it take to build an ideal tumor model? Cancer Lett 2022; 543:215794. [PMID: 35718268 DOI: 10.1016/j.canlet.2022.215794] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
Prostate cancer is frequently characterized as a multifocal disease with great intratumoral heterogeneity as well as a high propensity to metastasize to bone. Consequently, modeling prostate tumor has remained a challenging task for researchers in this field. In the past decades, genomic advances have led to the identification of key molecular alterations in prostate cancer. Moreover, resistance towards second-generation androgen-deprivation therapy, namely abiraterone and enzalutamide has unveiled androgen receptor-independent diseases with distinctive histopathological and clinical features. In this review, we have critically evaluated the commonly used preclinical models of prostate cancer with respect to their capability of recapitulating the key genomic alterations, histopathological features and bone metastatic potential of human prostate tumors. In addition, we have also discussed the potential use of the emerging organoid models in prostate cancer research, which possess clear advantages over the commonly used preclinical tumor models. We anticipate that no single model can faithfully recapitulate the complexity of prostate cancer, and thus, propose the use of a cost- and time-efficient integrated tumor modeling approach for future prostate cancer investigations.
Collapse
Affiliation(s)
- Chun-Wai Mai
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, 43000, Malaysia
| | - Kok-Yong Chin
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, 56000, Malaysia
| | - Lian-Chee Foong
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, 43000, Malaysia
| | - Kok-Lun Pang
- Newcastle University Medicine Malaysia, Iskandar Puteri, 79200, Malaysia
| | - Bin Yu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yu Shu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Sisi Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Soon-Keng Cheong
- Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, 43000, Malaysia
| | - Chee Wai Chua
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
29
|
Pletcher A, Shibata M. Prostate organogenesis. Development 2022; 149:275758. [DOI: 10.1242/dev.200394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Prostate organogenesis begins during embryonic development and continues through puberty when the prostate becomes an important exocrine gland of the male reproductive system. The specification and growth of the prostate is regulated by androgens and is largely a result of cell-cell communication between the epithelium and mesenchyme. The fields of developmental and cancer biology have long been interested in prostate organogenesis because of its relevance for understanding prostate diseases, and research has expanded in recent years with the advent of novel technologies, including genetic-lineage tracing, single-cell RNA sequencing and organoid culture methods, that have provided important insights into androgen regulation, epithelial cell origins and cellular heterogeneity. We discuss these findings, putting them into context with what is currently known about prostate organogenesis.
Collapse
Affiliation(s)
- Andrew Pletcher
- The George Washington University School of Medicine and Health Sciences 1 Department of Anatomy and Cell Biology , , Washington, DC 20052, USA
- The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences 2 , Washington, DC 20052, USA
| | - Maho Shibata
- The George Washington University School of Medicine and Health Sciences 1 Department of Anatomy and Cell Biology , , Washington, DC 20052, USA
- The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences 2 , Washington, DC 20052, USA
| |
Collapse
|
30
|
Gangavarapu KJ, Jowdy PF, Foster BA, Huss WJ. Role of prostate stem cells and treatment strategies in benign prostate hyperplasia. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2022; 10:154-169. [PMID: 35874288 PMCID: PMC9301063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Benign prostate hyperplasia (BPH) is a progressive disease with a direct correlation between incidence and age. Since the treatment and management of BPH involve harmful side effects and decreased quality of life for the patient, the primary focus of research should be to find better and longer-lasting therapeutic options. The mechanisms regulating prostate stem cells in development can be exploited to decrease prostate growth. BPH is defined as the overgrowth of the prostate, and BPH is often diagnosed when lower urinary tract symptoms (LUTS) of urine storage or voiding symptoms cause patients to seek treatment. While multiple factors are involved in the hyperplastic growth of the stromal and epithelial compartments of the prostate, the clonal proliferation of stem cells is considered one of the main reasons for BPH initiation and regrowth of the prostate after therapies for BPH fail. Several theories explain possible reasons for the involvement of stem cells in the development, progression, and pathogenesis of BPH. The aim of the current review is to discuss current literature on the fundamentals of prostate development and the role of stem cells in BPH. This review examines the rationale for the hypothesis that unregulated stem cell properties can lead to BPH and therapeutic targeting of stem cells may reduce treatment-related side effects and prevent the regrowth of the prostate.
Collapse
Affiliation(s)
- Kalyan J Gangavarapu
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| | - Peter F Jowdy
- Department of Dermatology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
- Jacobs School of Medicine and Biomedical Sciences, University at BuffaloBuffalo, NY 14203, USA
| | - Barbara A Foster
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| | - Wendy J Huss
- Department of Dermatology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| |
Collapse
|
31
|
Papachristodoulou A, Abate-Shen C. Precision intervention for prostate cancer: Re-evaluating who is at risk. Cancer Lett 2022; 538:215709. [DOI: 10.1016/j.canlet.2022.215709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 02/08/2023]
|
32
|
Lorenzoni M, De Felice D, Beccaceci G, Di Donato G, Foletto V, Genovesi S, Bertossi A, Cambuli F, Lorenzin F, Savino A, Avalle L, Cimadamore A, Montironi R, Weber V, Carbone FG, Barbareschi M, Demichelis F, Romanel A, Poli V, Del Sal G, Julio MKD, Gaspari M, Alaimo A, Lunardi A. ETS-related gene (ERG) undermines genome stability in mouse prostate progenitors via Gsk3β dependent Nkx3.1 degradation. Cancer Lett 2022; 534:215612. [PMID: 35259458 PMCID: PMC8968219 DOI: 10.1016/j.canlet.2022.215612] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/13/2022]
Abstract
21q22.2–3 deletion is the most common copy number alteration in prostate cancer (PCa). The genomic rearrangement results in the androgen-dependent de novo expression of ETS-related gene (ERG) in prostate cancer cells, a condition promoting tumor progression to advanced stages of the disease. Interestingly, ERG expression characterizes 5–30% of tumor precursor lesions – High Grade Prostatic Intraepithelial Neoplasia (HGPIN) - where its role remains unclear. Here, by combining organoids technology with Click-chemistry coupled Mass Spectrometry, we demonstrate a prominent role of ERG in remodeling the protein secretome of prostate progenitors. Functionally, by lowering autocrine Wnt-4 signaling, ERG represses canonical Wnt pathway in prostate progenitors, and, in turn, promotes the accumulation of DNA double strand breaks via Gsk3β-dependent degradation of the tumor suppressor Nkx3.1. On the other hand, by shaping extracellular paracrine signals, ERG strengthens the pro-oxidative transcriptional signature of inflammatory macrophages, which we demonstrate to infiltrate pre-malignant ERG positive prostate lesions. These findings highlight previously unrecognized functions of ERG in undermining adult prostate progenitor niche through cell autonomous and non-autonomous mechanisms. Overall, by supporting the survival and proliferation of prostate progenitors in the absence of growth stimuli and promoting the accumulation of DNA damage through destabilization of Nkx3.1, ERG could orchestrate the prelude to neoplastic transformation. Expression of ERGM40 in mouse prostate organoids promotes their survival and growth in the absence of Egf. ERGM40 alters the extracellular signaling network of mouse prostate organoids. Canonical Wnt pathway is substantially reduced in ERG + prostate organoids due to decreased autocrine signaling of Wnt4. Gsk3b promotes Nkx3.1 proteolysis and, in turn, accumulation of double strand breaks in ERG + prostate organoids. Paracrine signaling of ERG + prostate organoids modulates Arginase 1 expression in M1-polarized macrophages.
Collapse
Affiliation(s)
- Marco Lorenzoni
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Dario De Felice
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Giulia Beccaceci
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Giorgia Di Donato
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Veronica Foletto
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Sacha Genovesi
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Arianna Bertossi
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Francesco Cambuli
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Francesca Lorenzin
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Aurora Savino
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Lidia Avalle
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Alessia Cimadamore
- Pathological Anatomy, School of Medicine, United Hospitals, Polytechnic University of the Marche Region, Ancona, Italy
| | - Rodolfo Montironi
- Molecular Medicine and Cell Therapy Foundation, Polytechnic University of the Marche Region, Via Tronto, 10, Ancona, Italy
| | - Veronica Weber
- Unit of Surgical Pathology, Santa Chiara Hospital, Trento, Italy
| | | | | | - Francesca Demichelis
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Alessandro Romanel
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Valeria Poli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Giannino Del Sal
- University of Trieste Department Life Sciences, ICGEB-Area Science Park Trieste, IFOM, Milan, Italy
| | - Marianna Kruithof-de Julio
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, Bern, Switzerland; Translational Organoid Resource CORE, Department for BioMedical Research, University of Bern, Bern, Switzerland; Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, Bern, Switzerland; Department of Urology, Inselspital, University Hospital of Bern, Bern, Switzerland
| | - Marco Gaspari
- Research Centre for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy.
| | - Alessandro Alaimo
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy.
| | - Andrea Lunardi
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy.
| |
Collapse
|
33
|
Abstract
NKX3.1 is a multifaceted protein with roles in prostate development and protection from oxidative stress. Acting as a pioneer factor, NKX3.1 interacts with chromatin at enhancers to help integrate androgen regulated signalling. In prostate cancer, NKX3.1 activity is frequently reduced through a combination of mutational and post-translational events. Owing to its specificity for prostate tissue, NKX3.1 has found use as an immunohistochemical marker in routine histopathology practice.
Collapse
Affiliation(s)
- Jon Griffin
- Histopathology Department, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK .,Healthy Lifespan and Neuroscience Institute, Department of Biosciences, The University of Sheffield, Sheffield, UK
| | - Yuqing Chen
- Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - James W F Catto
- Academic Urology Unit, The University of Sheffield, Sheffield, UK.,Urology Department, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Sherif El-Khamisy
- Healthy Lifespan and Neuroscience Institute, Department of Biosciences, The University of Sheffield, Sheffield, UK
| |
Collapse
|
34
|
Vorontsova SK, Zavarzin IV, Shirinian VZ, Bozhenko EI, Andreeva OE, Sorokin DV, Scherbakov AM, Minyaev ME. Synthesis and crystal structures of D-annulated pentacyclic steroids: looking within and beyond AR signalling in prostate cancer. CrystEngComm 2022. [DOI: 10.1039/d1ce01417j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbocyclic steroids D-annulated at 16α and 17α positions with a 5-membered ring E are easily accessible via the interrupted Nazarov cyclization. Three steroid series have been structurally studied: chlorine-containing D-annulated...
Collapse
|
35
|
Chen CL, Lin CY, Kung HJ. Targeting Mitochondrial OXPHOS and Their Regulatory Signals in Prostate Cancers. Int J Mol Sci 2021; 22:13435. [PMID: 34948229 PMCID: PMC8708687 DOI: 10.3390/ijms222413435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/26/2022] Open
Abstract
Increasing evidence suggests that tumor development requires not only oncogene/tumor suppressor mutations to drive the growth, survival, and metastasis but also metabolic adaptations to meet the increasing energy demand for rapid cellular expansion and to cope with the often nutritional and oxygen-deprived microenvironment. One well-recognized strategy is to shift the metabolic flow from oxidative phosphorylation (OXPHOS) or respiration in mitochondria to glycolysis or fermentation in cytosol, known as Warburg effects. However, not all cancer cells follow this paradigm. In the development of prostate cancer, OXPHOS actually increases as compared to normal prostate tissue. This is because normal prostate epithelial cells divert citrate in mitochondria for the TCA cycle to the cytosol for secretion into seminal fluid. The sustained level of OXPHOS in primary tumors persists in progression to an advanced stage. As such, targeting OXPHOS and mitochondrial activities in general present therapeutic opportunities. In this review, we summarize the recent findings of the key regulators of the OXPHOS pathway in prostate cancer, ranging from transcriptional regulation, metabolic regulation to genetic regulation. Moreover, we provided a comprehensive update of the current status of OXPHOS inhibitors for prostate cancer therapy. A challenge of developing OXPHOS inhibitors is to selectively target cancer mitochondria and spare normal counterparts, which is also discussed.
Collapse
Affiliation(s)
- Chia-Lin Chen
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (C.-L.C.); (C.-Y.L.)
| | - Ching-Yu Lin
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (C.-L.C.); (C.-Y.L.)
| | - Hsing-Jien Kung
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (C.-L.C.); (C.-Y.L.)
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan
- Comprehensive Cancer Center, Department of Biochemistry and Molecular Medicine, University of California at Davis, Sacramento, CA 95817, USA
| |
Collapse
|
36
|
Buskin A, Singh P, Lorenz O, Robson C, Strand DW, Heer R. A Review of Prostate Organogenesis and a Role for iPSC-Derived Prostate Organoids to Study Prostate Development and Disease. Int J Mol Sci 2021; 22:ijms222313097. [PMID: 34884905 PMCID: PMC8658468 DOI: 10.3390/ijms222313097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 01/09/2023] Open
Abstract
The prostate is vulnerable to two major age-associated diseases, cancer and benign enlargement, which account for significant morbidity and mortality for men across the globe. Prostate cancer is the most common cancer reported in men, with over 1.2 million new cases diagnosed and 350,000 deaths recorded annually worldwide. Benign prostatic hyperplasia (BPH), characterised by the continuous enlargement of the adult prostate, symptomatically afflicts around 50% of men worldwide. A better understanding of the biological processes underpinning these diseases is needed to generate new treatment approaches. Developmental studies of the prostate have shed some light on the processes essential for prostate organogenesis, with many of these up- or downregulated genes expressions also observed in prostate cancer and/or BPH progression. These insights into human disease have been inferred through comparative biological studies relying primarily on rodent models. However, directly observing mechanisms of human prostate development has been more challenging due to limitations in accessing human foetal material. Induced pluripotent stem cells (iPSCs) could provide a suitable alternative as they can mimic embryonic cells, and iPSC-derived prostate organoids present a significant opportunity to study early human prostate developmental processes. In this review, we discuss the current understanding of prostate development and its relevance to prostate-associated diseases. Additionally, we detail the potential of iPSC-derived prostate organoids for studying human prostate development and disease.
Collapse
Affiliation(s)
- Adriana Buskin
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O’Gorman Building, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.S.); (C.R.)
- Correspondence: (A.B.); (R.H.)
| | - Parmveer Singh
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O’Gorman Building, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.S.); (C.R.)
| | - Oliver Lorenz
- Newcastle University School of Computing, Digital Institute, Urban Sciences Building, Newcastle University, Newcastle upon Tyne NE4 5TG, UK;
| | - Craig Robson
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O’Gorman Building, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.S.); (C.R.)
| | - Douglas W. Strand
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Rakesh Heer
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O’Gorman Building, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.S.); (C.R.)
- Department of Urology, Freeman Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
- Correspondence: (A.B.); (R.H.)
| |
Collapse
|
37
|
Giambartolomei C, Seo JH, Schwarz T, Freund MK, Johnson RD, Spisak S, Baca SC, Gusev A, Mancuso N, Pasaniuc B, Freedman ML. H3K27ac HiChIP in prostate cell lines identifies risk genes for prostate cancer susceptibility. Am J Hum Genet 2021; 108:2284-2300. [PMID: 34822763 PMCID: PMC8715276 DOI: 10.1016/j.ajhg.2021.11.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 11/02/2021] [Indexed: 12/26/2022] Open
Abstract
Genome-wide association studies (GWASs) have identified more than 200 prostate cancer (PrCa) risk regions, which provide potential insights into causal mechanisms. Multiple lines of evidence show that a significant proportion of PrCa risk can be explained by germline causal variants that dysregulate nearby target genes in prostate-relevant tissues, thus altering disease risk. The traditional approach to explore this hypothesis has been correlating GWAS variants with steady-state transcript levels, referred to as expression quantitative trait loci (eQTLs). In this work, we assess the utility of chromosome conformation capture (3C) coupled with immunoprecipitation (HiChIP) to identify target genes for PrCa GWAS risk loci. We find that interactome data confirm previously reported PrCa target genes identified through GWAS/eQTL overlap (e.g., MLPH). Interestingly, HiChIP identifies links between PrCa GWAS variants and genes well-known to play a role in prostate cancer biology (e.g., AR) that are not detected by eQTL-based methods. HiChIP predicted enhancer elements at the AR and NKX3-1 prostate cancer risk loci, and both were experimentally confirmed to regulate expression of the corresponding genes through CRISPR interference (CRISPRi) perturbation in LNCaP cells. Our results demonstrate that looping data harbor additional information beyond eQTLs and expand the number of PrCa GWAS loci that can be linked to candidate susceptibility genes.
Collapse
Affiliation(s)
- Claudia Giambartolomei
- Central RNA Lab, Istituto Italiano di Tecnologia, Genova 16163, Italy; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ji-Heui Seo
- Department of Medical Oncology, The Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02215, USA; The Center for Cancer Genome Discovery, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Tommer Schwarz
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Malika Kumar Freund
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ruth Dolly Johnson
- Department of Computer Science, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sandor Spisak
- Department of Medical Oncology, The Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Sylvan C Baca
- Department of Medical Oncology, The Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Alexander Gusev
- Department of Medical Oncology, The Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Nicholas Mancuso
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
| | - Bogdan Pasaniuc
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Computational Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Johnson Comprehensive Cancer Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Matthew L Freedman
- Department of Medical Oncology, The Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02215, USA; The Center for Cancer Genome Discovery, Dana Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
38
|
Shetty A, Seo JH, Bell CA, O’Connor EP, Pomerantz MM, Freedman ML, Gusev A. Allele-specific epigenetic activity in prostate cancer and normal prostate tissue implicates prostate cancer risk mechanisms. Am J Hum Genet 2021; 108:2071-2085. [PMID: 34699744 DOI: 10.1016/j.ajhg.2021.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/15/2021] [Indexed: 11/26/2022] Open
Abstract
Genome-wide association studies (GWASs) of prostate cancer have identified >250 significant risk loci, but the causal variants and mechanisms for these loci remain largely unknown. Here, we sought to identify and characterize risk-harboring regulatory elements by integrating epigenomes from primary prostate tumor and normal tissues of 27 individuals across the H3K27ac, H3K4me3, and H3K4me2 histone marks and FOXA1 and HOXB13 transcription factors. We identified 7,371 peaks with significant allele specificity (allele-specific quantitative trait locus [asQTL] peaks). Showcasing their relevance to prostate cancer risk, H3K27ac T-asQTL peaks were the single annotation most enriched for prostate cancer GWAS heritability (40×), significantly higher than corresponding non-asQTL H3K27ac peaks (14×) or coding regions (14×). Surprisingly, fine-mapped GWAS risk variants were most significantly enriched for asQTL peaks observed in tumors, including asQTL peaks that were differentially imbalanced with respect to tumor-normal states. These data pinpointed putative causal regulatory elements at 20 GWAS loci, of which 11 were detected only in the tumor samples. More broadly, tumor-specific asQTLs were enriched for expression QTLs in benign tissues as well as accessible regions found in stem cells, supporting a hypothesis where some germline variants become reactivated during or after transformation and can be captured by epigenomic profiling of the tumor. Our study demonstrates the power of allele specificity in chromatin signals to uncover GWAS mechanisms, highlights the relevance of tumor-specific regulation in the context of cancer risk, and prioritizes multiple loci for experimental follow-up.
Collapse
|
39
|
Khayer N, Jalessi M, Jahanbakhshi A, Tabib Khooei A, Mirzaie M. Nkx3-1 and Fech genes might be switch genes involved in pituitary non-functioning adenoma invasiveness. Sci Rep 2021; 11:20943. [PMID: 34686726 PMCID: PMC8536755 DOI: 10.1038/s41598-021-00431-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Non-functioning pituitary adenomas (NFPAs) are typical pituitary macroadenomas in adults associated with increased mortality and morbidity. Although pituitary adenomas are commonly considered slow-growing benign brain tumors, numerous of them possess an invasive nature. Such tumors destroy sella turcica and invade the adjacent tissues such as the cavernous sinus and sphenoid sinus. In these cases, the most critical obstacle for complete surgical removal is the high risk of damaging adjacent vital structures. Therefore, the development of novel therapeutic strategies for either early diagnosis through biomarkers or medical therapies to reduce the recurrence rate of NFPAs is imperative. Identification of gene interactions has paved the way for decoding complex molecular mechanisms, including disease-related pathways, and identifying the most momentous genes involved in a specific disease. Currently, our knowledge of the invasion of the pituitary adenoma at the molecular level is not sufficient. The current study aimed to identify critical biomarkers and biological pathways associated with invasiveness in the NFPAs using a three-way interaction model for the first time. In the current study, the Liquid association method was applied to capture the statistically significant triplets involved in NFPAs invasiveness. Subsequently, Random Forest analysis was applied to select the most important switch genes. Finally, gene set enrichment (GSE) and gene regulatory network (GRN) analyses were applied to trace the biological relevance of the statistically significant triplets. The results of this study suggest that "mRNA processing" and "spindle organization" biological processes are important in NFAPs invasiveness. Specifically, our results suggest Nkx3-1 and Fech as two switch genes in NFAPs invasiveness that may be potential biomarkers or target genes in this pathology.
Collapse
Affiliation(s)
- Nasibeh Khayer
- Skull Base Research Center, The Five Senses Health Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Jalessi
- Skull Base Research Center, The Five Senses Health Institute, Iran University of Medical Sciences, Tehran, Iran.
- ENT and Head & Neck Research Center and Department, Hazrat Rasoul Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Amin Jahanbakhshi
- Skull Base Research Center, The Five Senses Health Institute, Iran University of Medical Sciences, Tehran, Iran
- Neurology Department, Hazrat Rasoul Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Tabib Khooei
- Neurology Department, Hazrat Rasoul Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mirzaie
- Department of Applied Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
40
|
Sooreshjani MA, Kamra M, Zoubeidi A, Shah K. Reciprocal deregulation of NKX3.1 and AURKA axis in castration-resistant prostate cancer and NEPC models. J Biomed Sci 2021; 28:68. [PMID: 34625072 PMCID: PMC8499580 DOI: 10.1186/s12929-021-00765-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/27/2021] [Indexed: 11/27/2022] Open
Abstract
Background NKX3.1, a prostate-specific tumor suppressor, is either genomically lost or its protein levels are severely downregulated, which are invariably associated with poor prognosis in prostate cancer (PCa). Nevertheless, a clear disconnect exists between its mRNA and protein levels, indicating that its post-translational regulation may be critical in maintaining its protein levels. Similarly, AURKA is vastly overexpressed in all stages of prostate cancer (PCa), including castration-resistant PCa (CRPC) and neuroendocrine PCa (NEPC), although its transcripts are only increased in ~ 15% of cases, hinting at additional mechanisms of deregulation. Thus, identifying the upstream regulators that control AURKA and NKX3.1’s levels and/or their downstream effectors offer an alternative route to inhibit AURKA and upregulate NKX3.1 in highly fatal CRPC and NEPC. AURKA and NKX3.1 have not linked to each other in any study to date. Methods A chemical genetic screen revealed NKX3.1 as a direct target of AURKA. AURKA-NKX3.1 cross-talk was analyzed using several biochemical techniques in CRPC and NEPC cells. Results We uncovered a reciprocal loop between AURKA and NKX3.1 in CRPC and NEPC cells. We observed that AURKA-mediated NKX3.1 downregulation is a major mechanism that drives CRPC pathogenesis and NEPC differentiation. AURKA phosphorylates NKX3.1 at three sites, which degrades it, but AURKA does not regulate NKX3.1 mRNA levels. NKX3.1 degradation drives highly aggressive oncogenic phenotypes in cells. NKX3.1 also degrades AURKA in a feedback loop. NKX3.1-AURKA loop thus upregulates AKT, ARv7 and Androgen Receptor (AR)-signaling in tandem promoting highly malignant phenotypes. Just as importantly, we observed that NKX3.1 overexpression fully abolished synaptophysin and enolase expression in NEPC cells, uncovering a strong negative relationship between NKX3.1 and neuroendocrine phenotypes, which was further confirmed be measuring neurite outgrowth. While WT-NKX3.1 inhibited neuronal differentiation, 3A-NKX3.1 expression obliterated it. Conclusions NKX3.1 loss could be a major mechanism causing AURKA upregulation in CRPC and NEPC and vice versa. NKX3.1 genomic loss requires gene therapy, nonetheless, targeting AURKA provides a powerful tool to maintain NKX3.1 levels. Conversely, when NKX3.1 upregulation strategy using small molecules comes to fruition, AURKA inhibition should work synergistically due to the reciprocal loop in these highly aggressive incurable diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-021-00765-z.
Collapse
Affiliation(s)
- Moloud Aflaki Sooreshjani
- Department of Chemistry and Purdue University Center for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Mohini Kamra
- Department of Chemistry and Purdue University Center for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Amina Zoubeidi
- Urologic Sciences, University of British Columbia, Vancouver, V6H 3Z6, Canada
| | - Kavita Shah
- Department of Chemistry and Purdue University Center for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA.
| |
Collapse
|
41
|
Papachristodoulou A, Rodriguez-Calero A, Panja S, Margolskee E, Virk RK, Milner TA, Martina LP, Kim JY, Di Bernardo M, Williams AB, Maliza EA, Caputo JM, Haas C, Wang V, De Castro GJ, Wenske S, Hibshoosh H, McKiernan JM, Shen MM, Rubin MA, Mitrofanova A, Dutta A, Abate-Shen C. NKX3.1 Localization to Mitochondria Suppresses Prostate Cancer Initiation. Cancer Discov 2021; 11:2316-2333. [PMID: 33893149 PMCID: PMC7611624 DOI: 10.1158/2159-8290.cd-20-1765] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/20/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022]
Abstract
Mitochondria provide the first line of defense against the tumor-promoting effects of oxidative stress. Here we show that the prostate-specific homeoprotein NKX3.1 suppresses prostate cancer initiation by protecting mitochondria from oxidative stress. Integrating analyses of genetically engineered mouse models, human prostate cancer cells, and human prostate cancer organotypic cultures, we find that, in response to oxidative stress, NKX3.1 is imported to mitochondria via the chaperone protein HSPA9, where it regulates transcription of mitochondrial-encoded electron transport chain (ETC) genes, thereby restoring oxidative phosphorylation and preventing cancer initiation. Germline polymorphisms of NKX3.1 associated with increased cancer risk fail to protect from oxidative stress or suppress tumorigenicity. Low expression levels of NKX3.1 combined with low expression of mitochondrial ETC genes are associated with adverse clinical outcome, whereas high levels of mitochondrial NKX3.1 protein are associated with favorable outcome. This work reveals an extranuclear role for NKX3.1 in suppression of prostate cancer by protecting mitochondrial function. SIGNIFICANCE: Our findings uncover a nonnuclear function for NKX3.1 that is a key mechanism for suppression of prostate cancer. Analyses of the expression levels and subcellular localization of NKX3.1 in patients at risk of cancer progression may improve risk assessment in a precision prevention paradigm, particularly for men undergoing active surveillance.See related commentary by Finch and Baena, p. 2132.This article is highlighted in the In This Issue feature, p. 2113.
Collapse
Affiliation(s)
- Alexandros Papachristodoulou
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York
| | - Antonio Rodriguez-Calero
- Department of Biomedical Research, University of Bern, Bern, Switzerland
- Institute of Pathology, University of Bern and Inselspital, Bern, Switzerland
| | - Sukanya Panja
- Department of Health Informatics, Rutgers School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Elizabeth Margolskee
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Renu K Virk
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| | - Luis Pina Martina
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Jaime Y Kim
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York
| | - Matteo Di Bernardo
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York
| | - Alanna B Williams
- Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Elvis A Maliza
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York
| | - Joseph M Caputo
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Christopher Haas
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Vinson Wang
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Guarionex Joel De Castro
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Sven Wenske
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Hanina Hibshoosh
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - James M McKiernan
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Michael M Shen
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Mark A Rubin
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Antonina Mitrofanova
- Department of Health Informatics, Rutgers School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Aditya Dutta
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York.
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Cory Abate-Shen
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York.
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
42
|
Cunha GR, Cao M, Derpinghaus A, Baskin LS. Human urogenital sinus mesenchyme is an inducer of prostatic epithelial development. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2021; 9:329-336. [PMID: 34541031 PMCID: PMC8446767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To determine whether human fetal urogenital sinus mesenchyme (UGM) can induce prostatic development in a responsive mouse epithelium. METHOD Male and female human fetal UGM was combined with mouse urinary bladder epithelium (BLE), and the resultant human UGM + mouse BLE tissue recombinants were grown under renal capsules of male athymic mice. Human male and female UGM was derived from reproductive tracts 9 and 14 weeks of gestation obtained following elective termination of pregnancy. At these ages prostatic ducts had already emerged from the urogenital sinus epithelium, and the human UGM remained contaminated with human prostatic epithelium. This unavoidable problem was tolerated because the induced mouse prostatic epithelium could be distinguished from contaminating human prostatic epithelium. RESULTS The simple columnar epithelium induced from mouse bladder epithelium by human male and female UGM resembled mouse prostatic epithelium by: (a) histology, (b) the pattern of basal cell distribution, (c) Hoechst dye nuclear staining, (d) expression of NKX3.1, (e) the pattern of androgen receptor expression and (f) the expression of probasin, a mouse prostatic secretory protein. Summary/Interpretation: These findings provide validation for mouse as a model of human prostatic development as the molecular dialogue involved in mesenchymal-epithelial interactions are sufficiently conserved that human UGM can induce mouse bladder epithelium to undergo prostatic development.
Collapse
Affiliation(s)
- Gerald R Cunha
- Department of Urology, University of California 400 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Mei Cao
- Department of Urology, University of California 400 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Amber Derpinghaus
- Department of Urology, University of California 400 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Laurence S Baskin
- Department of Urology, University of California 400 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
43
|
Safety and preliminary immunogenicity of JNJ-64041809, a live-attenuated, double-deleted Listeria monocytogenes-based immunotherapy, in metastatic castration-resistant prostate cancer. Prostate Cancer Prostatic Dis 2021; 25:219-228. [PMID: 34257408 PMCID: PMC9184270 DOI: 10.1038/s41391-021-00402-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/06/2021] [Accepted: 05/27/2021] [Indexed: 12/24/2022]
Abstract
Background The safety and immunogenicity of JNJ-64041809 (JNJ-809), a live-attenuated, double-deleted Listeria monocytogenes (LADD Lm)-based immunotherapy targeting 4 relevant prostate cancer antigens, was evaluated in a phase 1 study in patients with metastatic castration-resistant prostate cancer (mCRPC). Methods Men with progressive mCRPC who had received ≥2 prior approved therapies were enrolled. Primary study objectives were to determine the recommended phase 2 dose (RP2D) and to evaluate the safety and immunogenicity of JNJ-809. Results A total of 26 patients received JNJ-809 (1 × 108 CFU (n = 6); 1 × 109 CFU (n = 20)). No dose-limiting toxicities were reported, and 1 × 109 CFU was selected as the RP2D. The most common adverse events (AEs) reported were chills (92%), pyrexia (81%), and fatigue (62%). The most frequent grade ≥3 AEs were lymphopenia (27%) and hypertension (23%). Serious AEs were reported in 27% of patients including 1 patient with grade 3 intestinal obstruction. JNJ-809 transiently induced peripheral cytokines, including interferon-γ, interleukin-10, and tumor necrosis factor-α. Of the 7 patients evaluable for T cell responses at the 1 × 109 CFU dose, evidence of post-treatment antigenic responses were observed in 6 to the Listeria antigen listeriolysin O and in 5 to ≥1 of the 4 encoded tumor antigens. Best overall response was stable disease in 13/25 response-evaluable patients. The study was terminated early as data collected were considered sufficient to evaluate safety and immunogenicity. Conclusions JNJ-809 has manageable safety consistent with other LADD Lm-based therapies. Limited antigen-specific immune responses were observed, which did not translate into objective clinical responses.
Collapse
|
44
|
Nascimento-Gonçalves E, Seixas F, Ferreira R, Colaço B, Parada B, Oliveira PA. An overview of the latest in state-of-the-art murine models for prostate cancer. Expert Opin Drug Discov 2021; 16:1349-1364. [PMID: 34224283 DOI: 10.1080/17460441.2021.1943354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Prostate cancer (PCa) is a complex, heterogenous and multifocal disease, which is debilitating for patients and often fatal - due to bone metastasis and castration-resistant cancer. The use of murine models that mimic human disease has been crucial in the development of innovative therapies and for better understanding the mechanisms associated with initiation and progression of PCa. AREAS COVERED This review presents a critical analysis of murine models for the study of PCa, highlighting their strengths, weaknesses and applications. EXPERT OPINION In animal models, disease may not occur exactly as it does in humans, and sometimes the levels of efficacy that certain treatments obtain in animal models cannot be translated into clinical practice. To choose the most appropriate animal model for each research work, it is crucial to understand the anatomical and physiological differences between the mouse and the human prostate, while it is also important to identify biological similarities and differences between murine and human prostate tumors. Although significant progress has already been made, thanks to many years of research and study, the number of new challenges and obstacles to overcome mean there is a long and difficult road still to travel.
Collapse
Affiliation(s)
- Elisabete Nascimento-Gonçalves
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, UTAD, Vila Real, Portugal.,Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (Laqv-requimte),department of Chemistry, University of Aveiro (UA), Portugal
| | - Fernanda Seixas
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Animal and Veterinary Research Centre (CECAV), UTAD, Vila Real, Portugal
| | - Rita Ferreira
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (Laqv-requimte),department of Chemistry, University of Aveiro (UA), Portugal
| | - Bruno Colaço
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, UTAD, Vila Real, Portugal.,Department of Zootechnics, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Belmiro Parada
- Faculty of Medicine, University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (Icbr), Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,Urology and Renal Transplantation Department, Coimbra University Hospital Centre (CHUC), Coimbra, Portugal
| | - Paula A Oliveira
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, UTAD, Vila Real, Portugal
| |
Collapse
|
45
|
Legoff L, D'Cruz SC, Lebosq M, Gely-Pernot A, Bouchekhchoukha K, Monfort C, Kernanec PY, Tevosian S, Multigner L, Smagulova F. Developmental exposure to chlordecone induces transgenerational effects in somatic prostate tissue which are associated with epigenetic histone trimethylation changes. ENVIRONMENT INTERNATIONAL 2021; 152:106472. [PMID: 33711761 DOI: 10.1016/j.envint.2021.106472] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/11/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Chlordecone (CD), also known as Kepone, is an organochlorine insecticide that has been used in banana crops in the French West Indies. Due to long-term contamination of soils and water, the population is still exposed to CD. Exposure to CD in adulthood is associated with an increased risk of prostate cancer (PCa). OBJECTIVES We examined the transgenerational effects of CD on murine prostate tissue. METHODS We exposed pregnant Swiss mice to CD. The prostates from directly exposed (F1) and non-exposed (F3) male progeny were analyzed. We used immunofluorescence, RNA-seq and ChIP-seq techniques for the comprehensive analyses of chromatin states in prostate. RESULTS We observed an increased prostatic intraepithelial neoplasia phenotype (PIN) in both F1 and F3 generations. Transcriptomic analysis in CD-derived F1 and F3 prostate using RNA-seq revealed that 970 genes in F1 and 218 in F3 genes were differentially expressed. The differentially expressed genes in both datasets could be clustered accordingly to common biological processes, "cell differentiation", "developmental process", "regulating of signaling", suggesting that in both generations similar processes were perturbed. We detected that in both datasets several Hox genes were upregulated; in F1, the expression was detected mainly in Hoxb and Hoxd, and in F3, in Hoxa family genes. Using a larger number of biological replicates and RT-qPCR we showed that genes implicated in testosterone synthesis (Akr1b3, Cyp11a1, Cyp17a1, Srd5a1) were dramatically upregulated in PIN samples; Cyp19a1, converting testosterone to estradiol was elevated as well. We found a dramatic increase in Esr2 expression both in F1 and F3 prostates containing PIN. The PIN-containing samples have a strong increase in expression of self-renewal-related genes (Nanog, Tbx3, Sox2, Sox3, Rb1). We observed changes in liver, F1 CD-exposed males have an increased expression of genes related to DNA repair, matrix collagen and inflammation related pathways in F1 but not in F3 adult CD-derived liver. The changes in RNA transcription were associated with epigenetic changes. Specifically, we found a global increase in H3K4 trimethylation (H3K4me3) and a decrease in H3K27 trimethylation (H3K27me3) in prostate of F1 mice. ChIP-seq analysis showed that 129 regions in F1 and 240 in F3 acquired altered H3K4me3 occupancy in CD-derived prostate, including highest increase at several promoters of Hoxa family genes in both datasets. The alteration in H3K4me3 in both generations overlap 73 genes including genes involved in proliferation regulation, Tbx2, Stat3, Stat5a, Pou2f3 and homeobox genes Hoxa13, Hoxa9. CONCLUSIONS Our data suggest that developmental exposure to CD leads to epigenetic changes in prostate tissue. The PIN containing samples showed evidence of implication in hormonal pathway and self-renewal gene expression that have the capacity to promote neoplasia in CD-exposed mice.
Collapse
Affiliation(s)
- Louis Legoff
- Univ. Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Shereen Cynthia D'Cruz
- Univ. Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Morgane Lebosq
- Univ. Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Aurore Gely-Pernot
- Univ. Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Katia Bouchekhchoukha
- Univ. Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Christine Monfort
- Univ. Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Pierre-Yves Kernanec
- Univ. Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Sergei Tevosian
- University of Florida, Department of Physiological Sciences, Box 100144, 1333 Center Drive, 32610 Gainesville, FL, USA.
| | - Luc Multigner
- Univ. Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Fatima Smagulova
- Univ. Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|
46
|
Sooreshjani MA, Nikhil K, Kamra M, Nguyen DN, Kumar D, Shah K. LIMK2-NKX3.1 Engagement Promotes Castration-Resistant Prostate Cancer. Cancers (Basel) 2021; 13:2324. [PMID: 34066036 PMCID: PMC8151535 DOI: 10.3390/cancers13102324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Prostate cancer is the principal cause of cancer-related mortality in men. While localized tumors can be successfully treated by orchiectomy or medical castration, most of the patients ultimately progress to the castration-resistant prostate cancer (CRPC) stage, which is incurable at present. Thus, uncovering the underlying mechanisms that cause CRPC could result in promising therapeutics. Our laboratory has identified LIMK2 kinase as an actionable target for CRPC. LIMK2 is vastly expressed in CRPC but minimally in normal prostates. LIMK2 knockout mice are healthy, indicating that LIMK2 inhibition should have minimal toxicity. LIMK2 is also expressed in other aggressive cancers; however, the molecular mechanisms leading to malignancy remain mostly unknown. This study identified that LIMK2 downregulates a prostate-specific tumor suppressor protein-NKX3.1 using two mechanisms. NKX3.1 loss is strongly associated with prostate cancer. Thus, LIMK2 inhibitor provides a powerful opportunity to rescue NKX3.1 loss, thereby preventing and/or delaying prostate cancer progression. Abstract NKX3.1’s downregulation is strongly associated with prostate cancer (PCa) initiation, progression, and CRPC development. Nevertheless, a clear disagreement exists between NKX3.1 protein and mRNA levels in PCa tissues, indicating that its regulation at a post-translational level plays a vital role. This study identified a strong negative relationship between NKX3.1 and LIMK2, which is critical in CRPC pathogenesis. We identified that NKX3.1 degradation by direct phosphorylation by LIMK2 is crucial for promoting oncogenicity in CRPC cells and in vivo. LIMK2 also downregulates NKX3.1 mRNA levels. In return, NKX3.1 promotes LIMK2’s ubiquitylation. Thus, the negative crosstalk between LIMK2-NKX3.1 regulates AR, ARv7, and AKT signaling, promoting aggressive phenotypes. We also provide a new link between NKX3.1 and PTEN, both of which are downregulated by LIMK2. PTEN loss is strongly linked with NKX3.1 downregulation. As NKX3.1 is a prostate-specific tumor suppressor, preserving its levels by LIMK2 inhibition provides a tremendous opportunity for developing targeted therapy in CRPC. Further, as NKX3.1 downregulates AR transcription and inhibits AKT signaling, restoring its levels by inhibiting LIMK2 is expected to be especially beneficial by co-targeting two driver pathways in tandem, a highly desirable requisite for developing effective PCa therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | - Kavita Shah
- Department of Chemistry and Purdue University Center for Cancer Research, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA; (M.A.S.); (K.N.); (M.K.); (D.N.N.); (D.K.)
| |
Collapse
|
47
|
Peng Q, Wong CYP, Cheuk IWY, Teoh JYC, Chiu PKF, Ng CF. The Emerging Clinical Role of Spermine in Prostate Cancer. Int J Mol Sci 2021; 22:ijms22094382. [PMID: 33922247 PMCID: PMC8122740 DOI: 10.3390/ijms22094382] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 01/31/2023] Open
Abstract
Spermine, a member of polyamines, exists in all organisms and is essential for normal cell growth and function. It is highly expressed in the prostate compared with other organs and is detectable in urine, tissue, expressed prostatic secretions, and erythrocyte. A significant reduction of spermine level was observed in prostate cancer (PCa) tissue compared with benign prostate tissue, and the level of urinary spermine was also significantly lower in men with PCa. Decreased spermine level may be used as an indicator of malignant phenotype transformation from normal to malignant tissue in prostate. Studies targeting polyamines and key rate-limiting enzymes associated with spermine metabolism as a tool for PCa therapy and chemoprevention have been conducted with various polyamine biosynthesis inhibitors and polyamine analogues. The mechanism between spermine and PCa development are possibly related to the regulation of polyamine metabolism, cancer-driving pathways, oxidative stress, anticancer immunosurveillance, and apoptosis regulation. Although the specific mechanism of spermine in PCa development is still unclear, ongoing research in spermine metabolism and its association with PCa pathophysiology opens up new opportunities in the diagnostic and therapeutic roles of spermine in PCa management.
Collapse
Affiliation(s)
| | | | | | | | | | - Chi-Fai Ng
- Correspondence: (P.K.-F.C.); (C.-F.N.); Tel.: +85-235-052-625 (C.-F.N.)
| |
Collapse
|
48
|
The brominated flame retardants TBECH and DPTE alter prostate growth, histology and gene expression patterns in the mouse. Reprod Toxicol 2021; 102:43-55. [PMID: 33848595 DOI: 10.1016/j.reprotox.2021.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/22/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
The brominated flame retardants (BFRs), 1,2-dibromo-4-(1,2 dibromoethyl)cyclohexane (TBECH) and 2,3-dibromopropyl-2,4,6-tribromophenyl ether (DPTE) bind to the androgen receptor (AR). in vitro bioassays have shown that TBECH is a potent androgen agonist while DPTE is a potent AR antagonist. Both TBECH and DPTE alter gene expression associated with AR regulation. However, it remains to be determined if TBECH and DPTE can affect the prostate. For this reason, we exposed CD1 mice to a 1:1 mixture of TBECH diastereomers α and β, a 1:1 mixture of γ and δ, and to DPTE, and tested their effects on prostate growth, histology and gene expression profiles. Castrated mice were used to study the androgenic effects of TBECHαβ and TBECHγδ while the antagonistic effects of DPTE were studied in non-castrated mice. We observed that testosterone and TBECHγδ increased body and prostate weights while TBECHαβ affected neither of them; and that DPTE had no effect on body weight but reduced prostate weight drastically. Histomorphometric analysis of the prostate revealed epithelial and glandular alterations in the TBECHγδ group comparable to those in testosterone group while alterations in the TBECHαβ group were less pronounced. DPTE displayed androgen antagonist activity reminiscent of castration. The transcription profile of the prostate was altered by castration and exposure to testosterone and to TBECHγδ reversed several of these changes. Testosterone and TBECHγδ also regulated the expression of several androgen responsive genes implicated in prostate growth and cancer. While DPTE resulted in a drastic reduction in prostate weight, it only affected a small number of genes. The results indicate that TBECHγδ and DPTE are of high human health concern as they may contribute to changes in prostate growth, histology and function.
Collapse
|
49
|
Hewa Bostanthirige D, Komaragiri SK, Joshi JB, Alzahrani M, Saini I, Jain S, Bowen NJ, Havrda MC, Chaudhary J. The helix-loop-helix transcriptional regulator Id4 is required for terminal differentiation of luminal epithelial cells in the prostate. Oncoscience 2021; 8:14-30. [PMID: 33884281 PMCID: PMC8045964 DOI: 10.18632/oncoscience.524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/16/2021] [Indexed: 11/25/2022] Open
Abstract
Inhibitor of differentiation 4 (Id4), a member of the helix-loop-helix family of transcriptional regulators has emerged as a tumor suppressor in prostate cancer. In this study we investigated the effect of loss of Id4 (Id4-/-) on mouse prostate development. Histological analysis was performed on prostates from 25 days, 3 months and 6 months old Id4-/- mice. Expression of Amacr, Ck8, Ck18, Fkbp51, Fkbp52, androgen receptor, Pten, sca-1 and Nkx3.1 was investigated by immunohistochemistry. Results were compared to the prostates from Nkx3.1-/- mice. Id4-/- mice had smaller prostates with fewer and smaller tubules. Subtle PIN like lesions were observed at 6mo. Decreased Nkx3.1 and Pten and increased stem cell marker sca-1, PIN marker Amacr and basal cell marker p63 was observed at all ages. Persistent Ck8 and Ck18 expression suggested that loss of Id4 results in epithelial commitment but not terminal differentiation in spite of active Ar. Loss of Id4 attenuates normal prostate development and promotes hyperplasia/ dysplasia with PIN like lesions. The results suggest that loss of Id4 maintains stem cell phenotype of "luminal committed basal cells", identifying a unique prostate developmental pathway regulated by Id4.
Collapse
Affiliation(s)
| | - Shravan K. Komaragiri
- Center for Cancer Research and Therapeutics Development, Clark Atlanta University, Atlanta GA, USA
| | - Jugal B. Joshi
- Center for Cancer Research and Therapeutics Development, Clark Atlanta University, Atlanta GA, USA
| | - Majid Alzahrani
- Center for Cancer Research and Therapeutics Development, Clark Atlanta University, Atlanta GA, USA
| | - Isha Saini
- Lifeline Pathology Lab and Diagnostic Center, Karnal, India
| | - Sanjay Jain
- Morehouse School of Medicine, Atlanta, GA, USA
| | - Nathan J. Bowen
- Center for Cancer Research and Therapeutics Development, Clark Atlanta University, Atlanta GA, USA
| | | | - Jaideep Chaudhary
- Center for Cancer Research and Therapeutics Development, Clark Atlanta University, Atlanta GA, USA
| |
Collapse
|
50
|
Antao AM, Ramakrishna S, Kim KS. The Role of Nkx3.1 in Cancers and Stemness. Int J Stem Cells 2021; 14:168-179. [PMID: 33632988 PMCID: PMC8138659 DOI: 10.15283/ijsc20121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/17/2020] [Accepted: 12/14/2020] [Indexed: 12/23/2022] Open
Abstract
The well-known androgen-regulated homeobox gene, NKX3.1, is located on the short arm of chromosome 8. It is the first known prostate epithelium-specific marker, and is a transcription factor involved in development of the testes and prostate. In addition to specifying the prostate epithelium and maintaining normal prostate secretory function, Nkx3.1 is an established marker for prostate cancer. Over the years, however, this gene has been implicated in various other cancers, and technological advances have allowed determination of its role in other cellular functions. Nkx3.1 has also been recently identified as a factor capable of replacing Oct4 in cellular reprogramming. This review highlights the role of this tumor suppressor and briefly describes its functions, ranging from prostate development to maintenance of stemness and cellular reprogramming.
Collapse
Affiliation(s)
- Ainsley Mike Antao
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea.,College of Medicine, Hanyang University, Seoul, Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea.,College of Medicine, Hanyang University, Seoul, Korea
| |
Collapse
|