1
|
Jiang H, Zhang C, Lin M, Yin Y, Deng S, Liu W, Zhuo B, Tian G, Du Y, Meng Z. Deciphering the mechanistic impact of acupuncture on the neurovascular unit in acute ischemic stroke: Insights from basic research in a narrative review. Ageing Res Rev 2024; 101:102536. [PMID: 39384155 DOI: 10.1016/j.arr.2024.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
Ischemic stroke(IS), a severe acute cerebrovascular disease, not only imposes a heavy economic burden on society but also presents numerous challenges in treatment. During the acute phase, while thrombolysis and thrombectomy serve as primary treatments, these approaches are restricted by a narrow therapeutic window. During rehabilitation, commonly used neuroprotective agents struggle with their low drug delivery efficiency and inadequate preclinical testing, and the long-term pharmacological and toxicity effects of nanomedicines remain undefined. Meanwhile, acupuncture as a therapeutic approach is widely acknowledged for its effectiveness in treating IS and has been recommended by the World Health Organization (WHO) as an alternative and complementary therapy, even though its exact mechanisms remain unclear. This review aims to summarize the known mechanisms of acupuncture and electroacupuncture (EA) in the treatment of IS. Research shows that acupuncture treatment mainly protects the neurovascular unit through five mechanisms: 1) reducing neuronal apoptosis and promoting neuronal repair and proliferation; 2) maintaining the integrity of the blood-brain barrier (BBB); 3) inhibiting the overactivation and polarization imbalance of microglia; 4) regulating the movement of vascular smooth muscle (VSM) cells; 5) promoting the proliferation of oligodendrocyte precursors. Through an in-depth analysis, this review reveals the multi-level, multi-dimensional impact of acupuncture treatment on the neurovascular unit (NVU) following IS, providing stronger evidence and a theoretical basis for its clinical application.
Collapse
Affiliation(s)
- Hailun Jiang
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Chao Zhang
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Mengxuan Lin
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yu Yin
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shizhe Deng
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Wei Liu
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Bifang Zhuo
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Guang Tian
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yuzheng Du
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Zhihong Meng
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
2
|
Zhang Y, Shen X, Deng S, Chen Q, Xu B. Neural Regulation of Vascular Development: Molecular Mechanisms and Interactions. Biomolecules 2024; 14:966. [PMID: 39199354 PMCID: PMC11353022 DOI: 10.3390/biom14080966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
As a critical part of the circulatory system, blood vessels transport oxygen and nutrients to every corner of the body, nourishing each cell, and also remove waste and toxins. Defects in vascular development and function are closely associated with many diseases, such as heart disease, stroke, and atherosclerosis. In the nervous system, the nervous and vascular systems are intricately connected in both development and function. First, peripheral blood vessels and nerves exhibit parallel distribution patterns. In the central nervous system (CNS), nerves and blood vessels form a complex interface known as the neurovascular unit. Second, the vascular system employs similar cellular and molecular mechanisms as the nervous system for its development. Third, the development and function of CNS vasculature are tightly regulated by CNS-specific signaling pathways and neural activity. Additionally, vascular endothelial cells within the CNS are tightly connected and interact with pericytes, astrocytes, neurons, and microglia to form the blood-brain barrier (BBB). The BBB strictly controls material exchanges between the blood and brain, maintaining the brain's microenvironmental homeostasis, which is crucial for the normal development and function of the CNS. Here, we comprehensively summarize research on neural regulation of vascular and BBB development and propose directions for future research.
Collapse
Affiliation(s)
- Yu Zhang
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Xinyu Shen
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Shunze Deng
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Qiurong Chen
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Bing Xu
- School of Life Sciences, Nantong University, Nantong 226019, China
| |
Collapse
|
3
|
Alamri A. Sema-3E/PlexinD1 axis modulates dendritic cell phenotypes and functions: Current status and future implications. Hum Immunol 2024; 85:110815. [PMID: 38772051 DOI: 10.1016/j.humimm.2024.110815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/03/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
This comprehensive research review explores the complex interplay between the Sema-3E/PlexinD1 axis and dendritic cells (DCs), highlighting its critical role in immune modulation with implications for clinical application Critical regulators of immune responses Dendritic cells are central to adaptive immunity, and the Sema-3E /PlexinD1 axis emerges as a key modulator affecting their phenotypes and functions Review delineates the impact of this signaling axis on DC maturation, migration, antigen presentation, and cytokine production, unravels its multifaceted role in shaping the immune response. Recognizing the limitations and gaps in current knowledge, the study highlights the need for further studies to condition downstream signaling events and related information experienced by the Sema-3E/PlexinD1 axis emphasizes the clarity of the immune system. The review concludes by identifying opportunities for translation, focusing on therapeutic and diagnostic potential. It highlights the importance of collaborative, interdisciplinary efforts to address the challenges and harness the therapeutic and pathological potential of targeting the Sema-3E/PlexinD1 axis, thus opening the way for transformative advances in immunology and clinical medicine.
Collapse
Affiliation(s)
- Abdulaziz Alamri
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
4
|
Hoard TM, Liu K, Cadigan KM, Giger RJ, Allen BL. Semaphorin Receptors Antagonize Wnt Signaling Through Beta-Catenin Degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596372. [PMID: 38854152 PMCID: PMC11160715 DOI: 10.1101/2024.05.29.596372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Precise control of morphogen signaling levels is essential for proper development. An outstanding question is: what mechanisms ensure proper morphogen activity and correct cellular responses? Previous work has identified Semaphorin (SEMA) receptors, Neuropilins (NRPs) and Plexins (PLXNs), as positive regulators of the Hedgehog (HH) signaling pathway. Here, we provide evidence that NRPs and PLXNs antagonize Wnt signaling in both fibroblasts and epithelial cells. Further, Nrp1/2 deletion in fibroblasts results in elevated baseline Wnt pathway activity and increased maximal responses to Wnt stimulation. Notably, and in contrast to HH signaling, SEMA receptor-mediated Wnt antagonism is independent of primary cilia. Mechanistically, PLXNs and NRPs act downstream of Dishevelled (DVL) to destabilize β-catenin (CTNNB1) in a proteosome-dependent manner. Further, NRPs, but not PLXNs, act in a GSK3β/CK1-dependent fashion to antagonize Wnt signaling, suggesting distinct repressive mechanisms for these SEMA receptors. Overall, this study identifies SEMA receptors as novel Wnt pathway antagonists that may also play larger roles integrating signals from multiple inputs.
Collapse
Affiliation(s)
- Tyler M Hoard
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Katie Liu
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kenneth M Cadigan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Benjamin L Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
5
|
Liu ZZ, Liu LY, Zhu LY, Zhu J, Luo JY, Wang YF, Xu HA. Plexin B3 guides axons to cross the midline in vivo. Front Cell Neurosci 2024; 18:1292969. [PMID: 38628398 PMCID: PMC11018898 DOI: 10.3389/fncel.2024.1292969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/11/2024] [Indexed: 04/19/2024] Open
Abstract
During the development of neural circuits, axons are guided by a variety of molecular cues to navigate through the brain and establish precise connections with correct partners at the right time and place. Many axon guidance cues have been identified and they play pleiotropic roles in not only axon guidance but also axon fasciculation, axon pruning, and synaptogenesis as well as cell migration, angiogenesis, and bone formation. In search of receptors for Sema3E in axon guidance, we unexpectedly found that Plexin B3 is highly expressed in retinal ganglion cells of zebrafish embryos when retinal axons are crossing the midline to form the chiasm. Plexin B3 has been characterized to be related to neurodevelopmental disorders. However, the investigation of its pathological mechanisms is hampered by the lack of appropriate animal model. We provide evidence that Plexin B3 is critical for axon guidance in vivo. Plexin B3 might function as a receptor for Sema3E while Neuropilin1 could be a co-receptor. The intracellular domain of Plexin B3 is required for Semaphorin signaling transduction. Our data suggest that zebrafish could be an ideal animal model for investigating the role and mechanisms of Sema3E and Plexin B3 in vivo.
Collapse
Affiliation(s)
- Zhi-Zhi Liu
- Institute of Biomedical Innovation, Nanchang University, Nanchang, China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang, China
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric diseases, Nanchang, China
| | - Ling-Yan Liu
- Institute of Biomedical Innovation, Nanchang University, Nanchang, China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang, China
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric diseases, Nanchang, China
| | - Lou-Yin Zhu
- Institute of Biomedical Innovation, Nanchang University, Nanchang, China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang, China
| | - Jian Zhu
- Institute of Biomedical Innovation, Nanchang University, Nanchang, China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang, China
| | - Jia-Yu Luo
- Institute of Biomedical Innovation, Nanchang University, Nanchang, China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang, China
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric diseases, Nanchang, China
| | - Ye-Fan Wang
- Institute of Biomedical Innovation, Nanchang University, Nanchang, China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang, China
| | - Hong A. Xu
- Institute of Biomedical Innovation, Nanchang University, Nanchang, China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang, China
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric diseases, Nanchang, China
| |
Collapse
|
6
|
López Gutierrez D, Luna López I, Medina Mata BA, Moreno Castro S, García Rangel FY. Physiopathologic Bases of Moebius Syndrome: Combining Genetic, Vascular, and Teratogenic Theories. Pediatr Neurol 2024; 153:1-10. [PMID: 38306744 DOI: 10.1016/j.pediatrneurol.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/16/2023] [Accepted: 01/05/2024] [Indexed: 02/04/2024]
Abstract
Moebius syndrome (MBS) is a congenital cranial dysinnervation disorder (CCDD) characterized by a bilateral palsy of abducens and facial cranial nerves, which may coexist with other cranial nerves palsies, mostly those found in the dorsal pons and medulla oblongata. MBS is considered a "rare" disease, occurring in only 1:50,000 to 1:500,000 live births, with no gender predominance. Three independent theories have been described to define its etiology: the vascular theory, which talks about a transient blood flow disruption; the genetic theory, which takes place due to mutations related to the facial motor nucleus neurodevelopment; and last, the teratogenic theory, associated with the consumption of agents such as misoprostol during the first trimester of pregnancy. Since the literature has suggested the existence of these theories independently, this review proposes establishing a theory by matching the MBS molecular bases. This review aims to associate the three etiopathogenic theories at a molecular level, thus submitting a combined postulation. MBS is most likely an underdiagnosed disease due to its low prevalence and challenging diagnosis. Researching other elements that may play a key role in the pathogenesis is essential. It is common to assume the difficulty that patients with MBS have in leading an everyday social life. Research by means of PubMed and Google Scholar databases was carried out, same in which 94 articles were collected by using keywords with the likes of "Moebius syndrome," "PLXND1 mutations," "REV3L mutations," "vascular disruption AND teratogens," and "congenital facial nerve palsy." No exclusion criteria were applied.
Collapse
Affiliation(s)
| | - Ingrid Luna López
- Facultad Mexicana de Medicina, Universidad La Salle, Mexico City, Mexico
| | | | | | | |
Collapse
|
7
|
Kim N, Li Y, Yu R, Kwon HS, Song A, Jun MH, Jeong JY, Lee JH, Lim HH, Kim MJ, Kim JW, Oh WJ. Repulsive Sema3E-Plexin-D1 signaling coordinates both axonal extension and steering via activating an autoregulatory factor, Mtss1. eLife 2024; 13:e96891. [PMID: 38526535 PMCID: PMC11001299 DOI: 10.7554/elife.96891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024] Open
Abstract
Axon guidance molecules are critical for neuronal pathfinding because they regulate directionality and growth pace during nervous system development. However, the molecular mechanisms coordinating proper axonal extension and turning are poorly understood. Here, metastasis suppressor 1 (Mtss1), a membrane protrusion protein, ensured axonal extension while sensitizing axons to the Semaphorin 3E (Sema3E)-Plexin-D1 repulsive cue. Sema3E-Plexin-D1 signaling enhanced Mtss1 expression in projecting striatonigral neurons. Mtss1 localized to the neurite axonal side and regulated neurite outgrowth in cultured neurons. Mtss1 also aided Plexin-D1 trafficking to the growth cone, where it signaled a repulsive cue to Sema3E. Mtss1 ablation reduced neurite extension and growth cone collapse in cultured neurons. Mtss1-knockout mice exhibited fewer striatonigral projections and irregular axonal routes, and these defects were recapitulated in Plxnd1- or Sema3e-knockout mice. These findings demonstrate that repulsive axon guidance activates an exquisite autoregulatory program coordinating both axonal extension and steering during neuronal pathfinding.
Collapse
Affiliation(s)
- Namsuk Kim
- Neurovascular Unit Research Group, Korea Brain Research InstituteDaeguRepublic of Korea
| | - Yan Li
- Neurovascular Unit Research Group, Korea Brain Research InstituteDaeguRepublic of Korea
| | - Ri Yu
- Neurovascular Unit Research Group, Korea Brain Research InstituteDaeguRepublic of Korea
| | - Hyo-Shin Kwon
- Neurovascular Unit Research Group, Korea Brain Research InstituteDaeguRepublic of Korea
| | - Anji Song
- Neurovascular Unit Research Group, Korea Brain Research InstituteDaeguRepublic of Korea
| | - Mi-Hee Jun
- Neurovascular Unit Research Group, Korea Brain Research InstituteDaeguRepublic of Korea
| | - Jin-Young Jeong
- Neurovascular Unit Research Group, Korea Brain Research InstituteDaeguRepublic of Korea
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and TechnologyDaeguRepublic of Korea
| | - Ji Hyun Lee
- Neurovascular Unit Research Group, Korea Brain Research InstituteDaeguRepublic of Korea
| | - Hyun-Ho Lim
- Neurovascular Unit Research Group, Korea Brain Research InstituteDaeguRepublic of Korea
| | - Mi-Jin Kim
- Department of Life Sciences, Chung-Ang UniversitySeoulRepublic of Korea
| | - Jung-Woong Kim
- Department of Life Sciences, Chung-Ang UniversitySeoulRepublic of Korea
| | - Won-Jong Oh
- Neurovascular Unit Research Group, Korea Brain Research InstituteDaeguRepublic of Korea
| |
Collapse
|
8
|
Shalabi S, Belayachi A, Larrivée B. Involvement of neuronal factors in tumor angiogenesis and the shaping of the cancer microenvironment. Front Immunol 2024; 15:1284629. [PMID: 38375479 PMCID: PMC10875004 DOI: 10.3389/fimmu.2024.1284629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024] Open
Abstract
Emerging evidence suggests that nerves within the tumor microenvironment play a crucial role in regulating angiogenesis. Neurotransmitters and neuropeptides released by nerves can interact with nearby blood vessels and tumor cells, influencing their behavior and modulating the angiogenic response. Moreover, nerve-derived signals may activate signaling pathways that enhance the production of pro-angiogenic factors within the tumor microenvironment, further supporting blood vessel growth around tumors. The intricate network of communication between neural constituents and the vascular system accentuates the potential of therapeutically targeting neural-mediated pathways as an innovative strategy to modulate tumor angiogenesis and, consequently, neoplastic proliferation. Hereby, we review studies that evaluate the precise molecular interplay and the potential clinical ramifications of manipulating neural elements for the purpose of anti-angiogenic therapeutics within the scope of cancer treatment.
Collapse
Affiliation(s)
- Sharif Shalabi
- Maisonneuve-Rosemont Hospital Research Center, Boulevard de l’Assomption, Montréal, QC, Canada
| | - Ali Belayachi
- Maisonneuve-Rosemont Hospital Research Center, Boulevard de l’Assomption, Montréal, QC, Canada
| | - Bruno Larrivée
- Maisonneuve-Rosemont Hospital Research Center, Boulevard de l’Assomption, Montréal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Montréal, QC, Canada
- Ophthalmology, Université de Montréal, boul. Édouard-Montpetit, Montréal, QC, Canada
| |
Collapse
|
9
|
He J, Blazeski A, Nilanthi U, Menéndez J, Pirani SC, Levic DS, Bagnat M, Singh MK, Raya JG, García-Cardeña G, Torres-Vázquez J. Plxnd1-mediated mechanosensing of blood flow controls the caliber of the Dorsal Aorta via the transcription factor Klf2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.576555. [PMID: 38328196 PMCID: PMC10849625 DOI: 10.1101/2024.01.24.576555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The cardiovascular system generates and responds to mechanical forces. The heartbeat pumps blood through a network of vascular tubes, which adjust their caliber in response to the hemodynamic environment. However, how endothelial cells in the developing vascular system integrate inputs from circulatory forces into signaling pathways to define vessel caliber is poorly understood. Using vertebrate embryos and in vitro-assembled microvascular networks of human endothelial cells as models, flow and genetic manipulations, and custom software, we reveal that Plexin-D1, an endothelial Semaphorin receptor critical for angiogenic guidance, employs its mechanosensing activity to serve as a crucial positive regulator of the Dorsal Aorta's (DA) caliber. We also uncover that the flow-responsive transcription factor KLF2 acts as a paramount mechanosensitive effector of Plexin-D1 that enlarges endothelial cells to widen the vessel. These findings illuminate the molecular and cellular mechanisms orchestrating the interplay between cardiovascular development and hemodynamic forces.
Collapse
Affiliation(s)
- Jia He
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Adriana Blazeski
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA and Harvard Medical School, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Uthayanan Nilanthi
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857
| | - Javier Menéndez
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Samuel C. Pirani
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Daniel S. Levic
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Manvendra K. Singh
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609
| | - José G Raya
- Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
| | - Guillermo García-Cardeña
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA and Harvard Medical School, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jesús Torres-Vázquez
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
10
|
Bhat GP, Maurizio A, Motta A, Podini P, Diprima S, Malpighi C, Brambilla I, Martins L, Badaloni A, Boselli D, Bianchi F, Pellegatta M, Genua M, Ostuni R, Del Carro U, Taveggia C, de Pretis S, Quattrini A, Bonanomi D. Structured wound angiogenesis instructs mesenchymal barrier compartments in the regenerating nerve. Neuron 2024; 112:209-229.e11. [PMID: 37972594 DOI: 10.1016/j.neuron.2023.10.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/19/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
Organ injury stimulates the formation of new capillaries to restore blood supply raising questions about the potential contribution of neoangiogenic vessel architecture to the healing process. Using single-cell mapping, we resolved the properties of endothelial cells that organize a polarized scaffold at the repair site of lesioned peripheral nerves. Transient reactivation of an embryonic guidance program is required to orient neovessels across the wound. Manipulation of this structured angiogenic response through genetic and pharmacological targeting of Plexin-D1/VEGF pathways within an early window of repair has long-term impact on configuration of the nerve stroma. Neovessels direct nerve-resident mesenchymal cells to mold a provisionary fibrotic scar by assembling an orderly system of stable barrier compartments that channel regenerating nerve fibers and shield them from the persistently leaky vasculature. Thus, guided and balanced repair angiogenesis enables the construction of a "bridge" microenvironment conducive for axon regrowth and homeostasis of the regenerated tissue.
Collapse
Affiliation(s)
- Ganesh Parameshwar Bhat
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Aurora Maurizio
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alessia Motta
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Paola Podini
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Santo Diprima
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Chiara Malpighi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Ilaria Brambilla
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Luis Martins
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Aurora Badaloni
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Daniela Boselli
- FRACTAL-Flow cytometry Resource Advanced Cytometry Technical Applications Laboratory, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Francesca Bianchi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Marta Pellegatta
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Marco Genua
- San Raffaele Telethon Institute for Gene therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Renato Ostuni
- San Raffaele Telethon Institute for Gene therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ubaldo Del Carro
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Carla Taveggia
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Stefano de Pretis
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Angelo Quattrini
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Dario Bonanomi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy.
| |
Collapse
|
11
|
Wälchli T, Bisschop J, Carmeliet P, Zadeh G, Monnier PP, De Bock K, Radovanovic I. Shaping the brain vasculature in development and disease in the single-cell era. Nat Rev Neurosci 2023; 24:271-298. [PMID: 36941369 PMCID: PMC10026800 DOI: 10.1038/s41583-023-00684-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 03/23/2023]
Abstract
The CNS critically relies on the formation and proper function of its vasculature during development, adult homeostasis and disease. Angiogenesis - the formation of new blood vessels - is highly active during brain development, enters almost complete quiescence in the healthy adult brain and is reactivated in vascular-dependent brain pathologies such as brain vascular malformations and brain tumours. Despite major advances in the understanding of the cellular and molecular mechanisms driving angiogenesis in peripheral tissues, developmental signalling pathways orchestrating angiogenic processes in the healthy and the diseased CNS remain incompletely understood. Molecular signalling pathways of the 'neurovascular link' defining common mechanisms of nerve and vessel wiring have emerged as crucial regulators of peripheral vascular growth, but their relevance for angiogenesis in brain development and disease remains largely unexplored. Here we review the current knowledge of general and CNS-specific mechanisms of angiogenesis during brain development and in brain vascular malformations and brain tumours, including how key molecular signalling pathways are reactivated in vascular-dependent diseases. We also discuss how these topics can be studied in the single-cell multi-omics era.
Collapse
Affiliation(s)
- Thomas Wälchli
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, and Division of Neurosurgery, University and University Hospital Zurich, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland.
- Group of Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada.
| | - Jeroen Bisschop
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, and Division of Neurosurgery, University and University Hospital Zurich, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Group of Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB & Department of Oncology, KU Leuven, Leuven, Belgium
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Gelareh Zadeh
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Philippe P Monnier
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Donald K. Johnson Research Institute, Krembil Research Institute, Krembil Discovery Tower, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Science and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Ivan Radovanovic
- Group of Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
| |
Collapse
|
12
|
Kim HJ, Kim G, Chi KY, Kim H, Jang YJ, Jo S, Lee J, Lee Y, Woo DH, Han C, Kim SK, Park HJ, Kim JH. Generation of multilineage liver organoids with luminal vasculature and bile ducts from human pluripotent stem cells via modulation of Notch signaling. Stem Cell Res Ther 2023; 14:19. [PMID: 36737811 PMCID: PMC9898924 DOI: 10.1186/s13287-023-03235-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/03/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The generation of liver organoids recapitulating parenchymal and non-parenchymal cell interplay is essential for the precise in vitro modeling of liver diseases. Although different types of multilineage liver organoids (mLOs) have been generated from human pluripotent stem cells (hPSCs), the assembly and concurrent differentiation of multiple cell types in individual mLOs remain a major challenge. Particularly, most studies focused on the vascularization of mLOs in host tissue after transplantation in vivo. However, relatively little information is available on the in vitro formation of luminal vasculature in mLOs themselves. METHODS The mLOs with luminal blood vessels and bile ducts were generated by assembling hepatic endoderm, hepatic stellate cell-like cells (HscLCs), and endothelial cells derived entirely from hPSCs using 96-well ultra-low attachment plates. We analyzed the effect of HscLC incorporation and Notch signaling modulation on the formation of both bile ducts and vasculature in mLOs using immunofluorescence staining, qRT-PCR, ELISA, and live-perfusion imaging. The potential use of the mLOs in fibrosis modeling was evaluated by histological and gene expression analyses after treatment with pro-fibrotic cytokines. RESULTS We found that hPSC-derived HscLCs are crucial for generating functional microvasculature in mLOs. HscLC incorporation and subsequent vascularization substantially reduced apoptotic cell death and promoted the survival and growth of mLOs with microvessels. In particular, precise modulation of Notch signaling during a specific time window in organoid differentiation was critical for generating both bile ducts and vasculature. Live-cell imaging, a series of confocal scans, and electron microscopy demonstrated that blood vessels were well distributed inside mLOs and had perfusable lumens in vitro. In addition, exposure of mLOs to pro-fibrotic cytokines induced early fibrosis-associated events, including upregulation of genes associated with fibrotic induction and endothelial cell activation (i.e., collagen I, α-SMA, and ICAM) together with destruction of tissue architecture and organoid shrinkage. CONCLUSION Our results demonstrate that mLOs can reproduce parenchymal and non-parenchymal cell interactions and suggest that their application can advance the precise modeling of liver diseases in vitro.
Collapse
Affiliation(s)
- Hyo Jin Kim
- grid.222754.40000 0001 0840 2678Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841 South Korea
| | - Gyeongmin Kim
- grid.222754.40000 0001 0840 2678Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841 South Korea
| | - Kyun Yoo Chi
- grid.222754.40000 0001 0840 2678Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841 South Korea
| | - Hyemin Kim
- grid.418982.e0000 0004 5345 5340Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114 South Korea
| | - Yu Jin Jang
- grid.89336.370000 0004 1936 9924Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
| | - Seongyea Jo
- grid.222754.40000 0001 0840 2678Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841 South Korea ,grid.418982.e0000 0004 5345 5340Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114 South Korea
| | - Jihun Lee
- grid.222754.40000 0001 0840 2678Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841 South Korea
| | - Youngseok Lee
- grid.222754.40000 0001 0840 2678Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841 South Korea
| | - Dong-Hun Woo
- Department of Stem Cell Biology, NEXEL Co., Ltd, Seoul, 07802 South Korea
| | - Choongseong Han
- Department of Stem Cell Biology, NEXEL Co., Ltd, Seoul, 07802 South Korea
| | - Sang Kyum Kim
- grid.254230.20000 0001 0722 6377College of Pharmacy, Chungnam National University, Daejeon, 34134 South Korea
| | - Han-Jin Park
- grid.418982.e0000 0004 5345 5340Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114 South Korea
| | - Jong-Hoon Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, South Korea.
| |
Collapse
|
13
|
Targeting the Semaphorin3E-plexinD1 complex in allergic asthma. Pharmacol Ther 2023; 242:108351. [PMID: 36706796 DOI: 10.1016/j.pharmthera.2023.108351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
Asthma is a heterogenous airway disease characterized by airway inflammation and remodeling. It affects more than 300 million people worldwide and poses a significant burden on society. Semaphorins, discovered initially as neural guidance molecules, are ubiquitously expressed in various organs and regulate multiple signaling pathways. Interestingly, Semaphorin3E is a critical molecule in lung pathophysiology through its role in both lung development and homeostasis. Semaphorin3E binds to plexinD1, mediating regulatory effects on cell migration, proliferation, and angiogenesis. Recent in vitro and in vivo studies have demonstrated that the Semaphorin3E-plexinD1 axis is implicated in asthma, impacting inflammatory and structural cells associated with airway inflammation, tissue remodeling, and airway hyperresponsiveness. This review details the Semaphorin3E-plexinD1 axis in various aspects of asthma and highlights future directions in research including its potential role as a therapeutic target in airway allergic diseases.
Collapse
|
14
|
Li M, Gao L, Zhao L, Zou T, Xu H. Toward the next generation of vascularized human neural organoids. Med Res Rev 2023; 43:31-54. [PMID: 35993813 DOI: 10.1002/med.21922] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/22/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
Abstract
Thanks to progress in the development of three-dimensional (3D) culture technologies, human central nervous system (CNS) development and diseases have been gradually deciphered by using organoids derived from human embryonic stem cells (hESCs) or human induced pluripotent stem cells (hiPSCs). Selforganized neural organoids (NOs) have been used to mimic morphogenesis and functions of specific organs in vitro. Many NOs have been reproduced in vitro, such as those mimicking the human brain, retina, and spinal cord. However, NOs fail to capitulate to the maturation and complexity of in vivo neural tissues. The persistent issues with current NO cultivation protocols are inadequate oxygen supply and nutrient diffusion due to the absence of vascular networks. In vivo, the developing CNS is interpenetrated by vasculature that not only supplies oxygen and nutrients but also provides a structural template for neuronal growth. To address these deficiencies, recent studies have begun to couple NO culture with bioengineering techniques and methodologies, including genetic engineering, coculture, multidifferentiation, microfluidics and 3D bioprinting, and transplantation, which might promote NO maturation and create more functional NOs. These cutting-edge methods could generate an ever more reliable NO model in vitro for deciphering the codes of human CNS development, disease progression, and translational application. In this review, we will summarize recent technological advances in culture strategies to generate vascularized NOs (vNOs), with a special focus on cerebral- and retinal-organoid models.
Collapse
Affiliation(s)
- Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Lixiong Gao
- Department of Ophthalmology, Third Medical Center of PLA General Hospital, Beijing, China
| | - Ling Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ting Zou
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| |
Collapse
|
15
|
Riesgo A, Santodomingo N, Koutsouveli V, Kumala L, Leger MM, Leys SP, Funch P. Molecular machineries of ciliogenesis, cell survival, and vasculogenesis are differentially expressed during regeneration in explants of the demosponge Halichondria panicea. BMC Genomics 2022; 23:858. [PMID: 36581804 PMCID: PMC9798719 DOI: 10.1186/s12864-022-09035-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 11/21/2022] [Indexed: 12/30/2022] Open
Abstract
Sponges are interesting animal models for regeneration studies, since even from dissociated cells, they are able to regenerate completely. In particular, explants are model systems that can be applied to many sponge species, since small fragments of sponges can regenerate all elements of the adult, including the oscula and the ability to pump water. The morphological aspects of regeneration in sponges are relatively well known, but the molecular machinery is only now starting to be elucidated for some sponge species. Here, we have used an explant system of the demosponge Halichondria panicea to understand the molecular machinery deployed during regeneration of the aquiferous system. We sequenced the transcriptomes of four replicates of the 5-day explant without an osculum (NOE), four replicates of the 17-18-day explant with a single osculum and pumping activity (PE) and also four replicates of field-collected individuals with regular pumping activity (PA), and performed differential gene expression analysis. We also described the morphology of NOE and PE samples using light and electron microscopy. Our results showed a highly disorganised mesohyl and disarranged aquiferous system in NOE that is coupled with upregulated pathways of ciliogenesis, organisation of the ECM, and cell proliferation and survival. Once the osculum is formed, genes involved in "response to stimulus in other organisms" were upregulated. Interestingly, the main molecular machinery of vasculogenesis described in vertebrates was activated during the regeneration of the aquiferous system. Notably, vasculogenesis markers were upregulated when the tissue was disorganised and about to start forming canals (NOE) and angiogenic stimulators and ECM remodelling machineries were differentially expressed once the aquiferous system was in place (PE and PA). Our results are fundamental to better understanding the molecular mechanisms involved in the formation of the aquiferous system in sponges, and its similarities with the early onset of blood-vessel formation in animal evolution.
Collapse
Affiliation(s)
- Ana Riesgo
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Calle José Gutiérrez Abascal 2, 28006, Madrid, Spain.
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW5 7BD, UK.
| | - Nadia Santodomingo
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW5 7BD, UK
- Department of Earth Sciences, Oxford University, South Parks Road, Oxford, OX1 3AN, UK
| | - Vasiliki Koutsouveli
- Marine Symbioses Research Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, D-24105, Kiel, Germany
| | - Lars Kumala
- Nordcee, Department of Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
- Marine Biological Research Center, University of Southern Denmark, Hindsholmvej 11, 5300, Kerteminde, Denmark
| | - Michelle M Leger
- Institute of Evolutionary Biology (CSIC-UPF), Paseo Marítimo de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Sally P Leys
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, T6G 2R3, Canada
| | - Peter Funch
- Department of Biology, Aarhus University, Ny Munkegade, 114-116, Aarhus C, Denmark
| |
Collapse
|
16
|
Vieira JR, Shah B, Dupraz S, Paredes I, Himmels P, Schermann G, Adler H, Motta A, Gärtner L, Navarro-Aragall A, Ioannou E, Dyukova E, Bonnavion R, Fischer A, Bonanomi D, Bradke F, Ruhrberg C, Ruiz de Almodóvar C. Endothelial PlexinD1 signaling instructs spinal cord vascularization and motor neuron development. Neuron 2022; 110:4074-4089.e6. [PMID: 36549270 PMCID: PMC9796814 DOI: 10.1016/j.neuron.2022.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/04/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022]
Abstract
How the vascular and neural compartment cooperate to achieve such a complex and highly specialized structure as the central nervous system is still unclear. Here, we reveal a crosstalk between motor neurons (MNs) and endothelial cells (ECs), necessary for the coordinated development of MNs. By analyzing cell-to-cell interaction profiles of the mouse developing spinal cord, we uncovered semaphorin 3C (Sema3C) and PlexinD1 as a communication axis between MNs and ECs. Using cell-specific knockout mice and in vitro assays, we demonstrate that removal of Sema3C in MNs, or its receptor PlexinD1 in ECs, results in premature and aberrant vascularization of MN columns. Those vascular defects impair MN axon exit from the spinal cord. Impaired PlexinD1 signaling in ECs also causes MN maturation defects at later stages. This study highlights the importance of a timely and spatially controlled communication between MNs and ECs for proper spinal cord development.
Collapse
Affiliation(s)
- José Ricardo Vieira
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13-17, 68167 Mannheim, Germany; Faculty of Biosciences, Heidelberg University, Im Neuenheimer 234, 69120 Heidelberg, Germany
| | - Bhavin Shah
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13-17, 68167 Mannheim, Germany
| | - Sebastian Dupraz
- Institute for Neurovascular Cell Biology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Isidora Paredes
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13-17, 68167 Mannheim, Germany; Faculty of Biosciences, Heidelberg University, Im Neuenheimer 234, 69120 Heidelberg, Germany
| | - Patricia Himmels
- Faculty of Biosciences, Heidelberg University, Im Neuenheimer 234, 69120 Heidelberg, Germany
| | - Géza Schermann
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13-17, 68167 Mannheim, Germany; Institute for Neurovascular Cell Biology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Heike Adler
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13-17, 68167 Mannheim, Germany
| | - Alessia Motta
- San Raffaele Scientific Institute, Division of Neuroscience, via Olgettina 60, 20132 Milan, Italy
| | - Lea Gärtner
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13-17, 68167 Mannheim, Germany
| | - Ariadna Navarro-Aragall
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, EC1V 9EL London, UK
| | - Elena Ioannou
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, EC1V 9EL London, UK
| | - Elena Dyukova
- Max-Planck-Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad Nauheim, Germany
| | - Remy Bonnavion
- Max-Planck-Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad Nauheim, Germany
| | - Andreas Fischer
- Department of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany; Division Vascular Signaling and Cancer, German Cancer Research Center Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Dario Bonanomi
- San Raffaele Scientific Institute, Division of Neuroscience, via Olgettina 60, 20132 Milan, Italy
| | - Frank Bradke
- Laboratory of Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, EC1V 9EL London, UK
| | - Carmen Ruiz de Almodóvar
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13-17, 68167 Mannheim, Germany; Institute for Neurovascular Cell Biology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Schlegel Chair for Neurovascular Cell Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| |
Collapse
|
17
|
Britto DD, He J, Misa JP, Chen W, Kakadia PM, Grimm L, Herbert CD, Crosier KE, Crosier PS, Bohlander SK, Hogan BM, Hall CJ, Torres-Vázquez J, Astin JW. Plexin D1 negatively regulates zebrafish lymphatic development. Development 2022; 149:dev200560. [PMID: 36205097 PMCID: PMC9720674 DOI: 10.1242/dev.200560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Lymphangiogenesis is a dynamic process that involves the directed migration of lymphatic endothelial cells (LECs) to form lymphatic vessels. The molecular mechanisms that underpin lymphatic vessel patterning are not fully elucidated and, to date, no global regulator of lymphatic vessel guidance is known. In this study, we identify the transmembrane cell signalling receptor Plexin D1 (Plxnd1) as a negative regulator of both lymphatic vessel guidance and lymphangiogenesis in zebrafish. plxnd1 is expressed in developing lymphatics and is required for the guidance of both the trunk and facial lymphatic networks. Loss of plxnd1 is associated with misguided intersegmental lymphatic vessel growth and aberrant facial lymphatic branches. Lymphatic guidance in the trunk is mediated, at least in part, by the Plxnd1 ligands, Semaphorin 3AA and Semaphorin 3C. Finally, we show that Plxnd1 normally antagonises Vegfr/Erk signalling to ensure the correct number of facial LECs and that loss of plxnd1 results in facial lymphatic hyperplasia. As a global negative regulator of lymphatic vessel development, the Sema/Plxnd1 signalling pathway is a potential therapeutic target for treating diseases associated with dysregulated lymphatic growth.
Collapse
Affiliation(s)
- Denver D. Britto
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Jia He
- Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - June P. Misa
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Wenxuan Chen
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Purvi M. Kakadia
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Lin Grimm
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
- Department of Anatomy and Physiology, University of Melbourne, Melbourne 3010, Australia
| | - Caitlin D. Herbert
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Kathryn E. Crosier
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Philip S. Crosier
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Stefan K. Bohlander
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Benjamin M. Hogan
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
- Department of Anatomy and Physiology, University of Melbourne, Melbourne 3010, Australia
| | - Christopher J. Hall
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Jesús Torres-Vázquez
- Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jonathan W. Astin
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
18
|
Transcriptomic Profiling of Electroacupuncture Regulating the Molecular Network in Hippocampus of Rats with Cerebral Ischemia-Reperfusion Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6053106. [PMID: 36091595 PMCID: PMC9463016 DOI: 10.1155/2022/6053106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/26/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
Objective. To explore the mechanism of electroacupuncture stimulation of the hand-taiyin meridian in regulating the molecular network of rats with cerebral ischemia-reperfusion injury based on transcriptomics. Methods. Male SD rats were randomly divided into sham operation group, model group, and electroacupuncture (EA) group. Middle cerebral artery embolization/reperfusion injury (MCAO/R) was used to establish the model group and EA group. The sham operation group only performed sham operation without modeling and any intervention, and the model group was bound daily. The EA group received electroacupuncture to stimulate the acupoints of hand-taiyin meridian for 14 days. Then, neurological scores, pathomorphological observations, and Tunel staining were performed. Finally, the affected hippocampus of the rat was used for transcriptome sequencing and RT-PCR detection. Results. After electroacupuncture intervention in rats, neurological function scores were improved, and neuronal apoptosis was reduced. The results of transcriptomics showed that a total of 1097 differentially expressed genes were obtained, of which 422 were upregulated and 675 were downregulated. The bioinformatics analysis showed that those differentially expressed genes were related to axon development, neuron projection development, neuron projection morphogenesis, plasma membrane cell projection morphogenesis, cell part morphogenesis, notch signaling pathway, long-term potentiation, MAPK signaling pathway, Hedgehog signaling pathway, and so on. The results of RT-PCR showed that Caspase 9 mRNA increased and BDNF, Grin2a, and PlexinD1 mRNA decreased after electroacupuncture intervention
. Conclusion. Electroacupuncture intervention on hand-taiyin meridian may reduce neurological function scores, inhibit neuron apoptosis, and enhance neuronal repair neuroreparation in MCAO/R rats, which may be related to the regulation of genes such as Caspase 9, BDNF, Grin2a, and PlexinD1.
Collapse
|
19
|
Thomas R, Wang S, Rashu R, Peng Y, Gounni AS, Yang X. Exogenous Semaphorin 3E treatment protects against chlamydial lung infection in mice. Front Immunol 2022; 13:882412. [PMID: 35983029 PMCID: PMC9379098 DOI: 10.3389/fimmu.2022.882412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Recent studies reported that semaphorins play a significant role in various settings of the immune response. In particular, Semaphorin 3E (Sema3E), a secreted semaphorin protein, is involved in cell proliferation, migration, inflammatory responses, and host defence against infections. However, the therapeutic function of Sema3E in bacterial infection has not been investigated. Our data showed that exogenous Sema3E treatment protects mice from chlamydial infection with lower bacterial burden, reduced body weight loss, and pathological lung changes. Cytokine analysis in the lung and spleen revealed that Sema3E-Fc treated mice, compared to saline-Fc treated mice, showed enhanced production of IFN-γ and IL-17 but reduced IL-4 and IL-10 production. Cellular analysis showed that Sema3E treatment leads to enhanced Th1/Th17 response but reduced Treg response in lungs following chlamydial infection. Moreover, Sema3E treatment also enhanced the recruitment of pulmonary dendritic cells, which express higher co-stimulatory but lower inhibitory surface molecules. The data demonstrate that Sema3E plays a vital role in protective immunity against chlamydial lung infection, mainly through coordinating functions of T cells and DCs.
Collapse
|
20
|
Low Doses of PFOA Promote Prostate and Breast Cancer Cells Growth through Different Pathways. Int J Mol Sci 2022; 23:ijms23147900. [PMID: 35887249 PMCID: PMC9318902 DOI: 10.3390/ijms23147900] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/13/2022] Open
Abstract
Endocrine Disrupting Compounds (EDCs) are found in everyday products. Widely distributed throughout the environment, persistent organic pollutants (POPs) are a specific class of EDCs that can accumulate in adipose tissue. Many of them induce adverse effects on human health—such as obesity, fertility disorders and cancers—by perturbing hormone effects. We previously identified many compounds with EDC activity in the circulation of obese patients who underwent bariatric surgery. Herein, we analyzed the effects of four of them (aldrin, BDE28, PFOA and PCB153) on two cancer cell lines of hormone-sensitive organs (prostate and breast). Each cell line was exposed to serial dilutions of EDCs from 10−6 M to 10−12 M; cytotoxicity and proliferation were monitored using the IncuCyte® technology. We showed that none of these EDCs induce cytotoxicity and that PFOA and PCB153, only at very low doses (10−12 M), increase the proliferation of DU145 (prostate cancer) and MCF7 (breast cancer) cells, while the same effects are observed with high concentrations (10−6 M) for aldrin or BDE28. Regarding the mechanistic aspects, PFOA uses two different signaling pathways between the two lines (the Akt/mTORC1 and PlexinD1 in MCF7 and DU145, respectively). Thus, our study demonstrates that even at picomolar (10−12 M) concentrations PFOA and PCB153 increase the proliferation of prostate and breast cancer cell lines and can be considered possible carcinogens.
Collapse
|
21
|
Rattner A, Wang Y, Nathans J. Signaling Pathways in Neurovascular Development. Annu Rev Neurosci 2022; 45:87-108. [PMID: 35803586 DOI: 10.1146/annurev-neuro-111020-102127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During development, the central nervous system (CNS) vasculature grows to precisely meet the metabolic demands of neurons and glia. In addition, the vast majority of the CNS vasculature acquires a unique set of molecular and cellular properties-collectively referred to as the blood-brain barrier-that minimize passive diffusion of molecules between the blood and the CNS parenchyma. Both of these processes are controlled by signals emanating from neurons and glia. In this review, we describe the nature and mechanisms-of-action of these signals, with an emphasis on vascular endothelial growth factor (VEGF) and beta-catenin (canonical Wnt) signaling, the two best-understood systems that regulate CNS vascular development. We highlight foundational discoveries, interactions between different signaling systems, the integration of genetic and cell biological studies, advances that are of clinical relevance, and questions for future research.
Collapse
Affiliation(s)
- Amir Rattner
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States;
| | - Yanshu Wang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; .,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; .,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Departments of Neuroscience and Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
22
|
Ben-Zvi A, Liebner S. Developmental regulation of barrier- and non-barrier blood vessels in the CNS. J Intern Med 2022; 292:31-46. [PMID: 33665890 DOI: 10.1111/joim.13263] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/01/2021] [Indexed: 12/22/2022]
Abstract
The blood-brain barrier (BBB) is essential for creating and maintaining tissue homeostasis in the central nervous system (CNS), which is key for proper neuronal function. In most vertebrates, the BBB is localized to microvascular endothelial cells that acquire barrier properties during angiogenesis of the neuroectoderm. Complex and continuous tight junctions, and the lack of fenestrae combined with low pinocytotic activity render the BBB endothelium a tight barrier for water-soluble molecules that may only enter the CNS via specific transporters. The differentiation of these unique endothelial properties during embryonic development is initiated by endothelial-specific flavours of the Wnt/β-catenin pathway in a precise spatiotemporal manner. In this review, we summarize the currently known cellular (neural precursor and endothelial cells) and molecular (VEGF and Wnt/β-catenin) mechanisms mediating brain angiogenesis and barrier formation. Moreover, we introduce more recently discovered crosstalk with cellular and acellular elements within the developing CNS such as the extracellular matrix. We discuss recent insights into the downstream molecular mechanisms of Wnt/β-catenin in particular, the recently identified target genes like Foxf2, Foxl2, Foxq1, Lef1, Ppard, Zfp551, Zic3, Sox17, Apcdd1 and Fgfbp1 that are involved in refining and maintaining barrier characteristics in the mature BBB endothelium. Additionally, we elute to recent insight into barrier heterogeneity and differential endothelial barrier properties within the CNS, focussing on the circumventricular organs as well as on the neurogenic niches in the subventricular zone and the hippocampus. Finally, open questions and future BBB research directions are highlighted in the context of taking benefit from understanding BBB development for strategies to modulate BBB function under pathological conditions.
Collapse
Affiliation(s)
- A Ben-Zvi
- From the, The Department of Developmental Biology and Cancer Research, Institute for Medical Research IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - S Liebner
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.,Excellence Cluster Cardio-Pulmonary Systems (ECCPS), Partner Site Frankfurt, Frankfurt am Main, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Frankfurt am Main, Germany
| |
Collapse
|
23
|
Neurovascular abnormalities in retinopathy of prematurity and emerging therapies. J Mol Med (Berl) 2022; 100:817-828. [PMID: 35394143 DOI: 10.1007/s00109-022-02195-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/01/2022] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
Abstract
Blood vessels in the developing retina are formed in concert with neural growth, resulting in functional neurovascular network. Disruption of the neurovascular coordination contributes to the pathogenesis of retinopathy of prematurity (ROP), a potentially blinding retinal neovascular disease in preterm infants that currently lacks an approved drug therapy in the USA. Despite vasculopathy as predominant clinical manifestations, an increasing number of studies revealed complex neurovascular interplays among neurons, glial cells and blood vessels during ROP. Coordinated expression of glia-derived vascular endothelial growth factor (VEGF) in spatio-temporal gradients is pivotal to the formation of well-organized vascular plexuses in the healthy retina, whereas uncoordinated VEGF expression triggers pathological angiogenesis with disorganized vascular tufts in ROP. In contrast with VEGF driving both pathological and physiological angiogenesis, neuron-derived angiogenic factor secretogranin III (Scg3) stringently regulates ROP but not healthy retinal vessels in animal models. Anti-VEGF and anti-Scg3 therapies confer similar high efficacies to alleviate ROP in preclinical studies but are distinct in their disease selectivity and safety. This review discusses neurovascular communication among retinal blood vessels, neurons and glial cells during retinal development and ROP pathogenesis and summarizes the current and emerging therapies to address unmet clinical needs for the disease.
Collapse
|
24
|
Shen M, Chen Y, Tang W, Ming M, Tian Y, Ding F, Wu H, Ji Y. Semaphorin 3E promote Schwann cell proliferation and migration. Exp Cell Res 2022; 412:113019. [DOI: 10.1016/j.yexcr.2022.113019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 11/24/2022]
|
25
|
Elorza Ridaura I, Sorrentino S, Moroni L. Parallels between the Developing Vascular and Neural Systems: Signaling Pathways and Future Perspectives for Regenerative Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101837. [PMID: 34693660 PMCID: PMC8655224 DOI: 10.1002/advs.202101837] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/23/2021] [Indexed: 05/10/2023]
Abstract
Neurovascular disorders, which involve the vascular and nervous systems, are common. Research on such disorders usually focuses on either vascular or nervous components, without looking at how they interact. Adopting a neurovascular perspective is essential to improve current treatments. Therefore, comparing molecular processes known to be involved in both systems separately can provide insight into promising areas of future research. Since development and regeneration share many mechanisms, comparing signaling molecules involved in both the developing vascular and nervous systems and shedding light to those that they have in common can reveal processes, which have not yet been studied from a regenerative perspective, yet hold great potential. Hence, this review discusses and compares processes involved in the development of the vascular and nervous systems, in order to provide an overview of the molecular mechanisms, which are most promising with regards to treatment for neurovascular disorders. Vascular endothelial growth factor, semaphorins, and ephrins are found to hold the most potential, while fibroblast growth factor, bone morphogenic protein, slits, and sonic hedgehog are shown to participate in both the developing vascular and nervous systems, yet have not been studied at the neurovascular level, therefore being of special interest for future research.
Collapse
Affiliation(s)
- Idoia Elorza Ridaura
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Stefano Sorrentino
- CNR Nanotec – Institute of NanotechnologyCampus Ecotekne, via MonteroniLecce73100Italy
| | - Lorenzo Moroni
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
- CNR Nanotec – Institute of NanotechnologyCampus Ecotekne, via MonteroniLecce73100Italy
| |
Collapse
|
26
|
Comparative genomics provides insights into the aquatic adaptations of mammals. Proc Natl Acad Sci U S A 2021; 118:2106080118. [PMID: 34503999 PMCID: PMC8449357 DOI: 10.1073/pnas.2106080118] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 12/30/2022] Open
Abstract
Divergent lineages can respond to common environmental factors through convergent processes involving shared genomic components or pathways, but the molecular mechanisms are poorly understood. Here, we provide genomic resources and insights into the evolution of mammalian lineages adapting to aquatic life. Our data suggest convergent evolution, for example, in association with thermoregulation through genes associated with a surface heat barrier (NFIA) and internal heat exchange (SEMA3E). Combined with the support of previous reports showing that the UCP1 locus has been lost in many marine mammals independently, our results suggest that the thermostatic strategy of marine mammals shifted from enhancing heat production to limiting heat loss. The ancestors of marine mammals once roamed the land and independently committed to an aquatic lifestyle. These macroevolutionary transitions have intrigued scientists for centuries. Here, we generated high-quality genome assemblies of 17 marine mammals (11 cetaceans and six pinnipeds), including eight assemblies at the chromosome level. Incorporating previously published data, we reconstructed the marine mammal phylogeny and population histories and identified numerous idiosyncratic and convergent genomic variations that possibly contributed to the transition from land to water in marine mammal lineages. Genes associated with the formation of blubber (NFIA), vascular development (SEMA3E), and heat production by brown adipose tissue (UCP1) had unique changes that may contribute to marine mammal thermoregulation. We also observed many lineage-specific changes in the marine mammals, including genes associated with deep diving and navigation. Our study advances understanding of the timing, pattern, and molecular changes associated with the evolution of mammalian lineages adapting to aquatic life.
Collapse
|
27
|
Watterston C, Halabi R, McFarlane S, Childs SJ. Endothelial Semaphorin 3fb regulates Vegf pathway-mediated angiogenic sprouting. PLoS Genet 2021; 17:e1009769. [PMID: 34424892 PMCID: PMC8412281 DOI: 10.1371/journal.pgen.1009769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 09/02/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Vessel growth integrates diverse extrinsic signals with intrinsic signaling cascades to coordinate cell migration and sprouting morphogenesis. The pro-angiogenic effects of Vascular Endothelial Growth Factor (VEGF) are carefully controlled during sprouting to generate an efficiently patterned vascular network. We identify crosstalk between VEGF signaling and that of the secreted ligand Semaphorin 3fb (Sema3fb), one of two zebrafish paralogs of mammalian Sema3F. The sema3fb gene is expressed by endothelial cells in actively sprouting vessels. Loss of sema3fb results in abnormally wide and stunted intersegmental vessel artery sprouts. Although the sprouts initiate at the correct developmental time, they have a reduced migration speed. These sprouts have persistent filopodia and abnormally spaced nuclei suggesting dysregulated control of actin assembly. sema3fb mutants show simultaneously higher expression of pro-angiogenic (VEGF receptor 2 (vegfr2) and delta-like 4 (dll4)) and anti-angiogenic (soluble VEGF receptor 1 (svegfr1)/ soluble Fms Related Receptor Tyrosine Kinase 1 (sflt1)) pathway components. We show increased phospho-ERK staining in migrating angioblasts, consistent with enhanced Vegf activity. Reducing Vegfr2 kinase activity in sema3fb mutants rescues angiogenic sprouting. Our data suggest that Sema3fb plays a critical role in promoting endothelial sprouting through modulating the VEGF signaling pathway, acting as an autocrine cue that modulates intrinsic growth factor signaling.
Collapse
Affiliation(s)
- Charlene Watterston
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Rami Halabi
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Sarah McFarlane
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Canada
| | - Sarah J. Childs
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| |
Collapse
|
28
|
Aggarwal V, Tuli HS, Varol M, Tuorkey M, Sak K, Parashar NC, Barwal TS, Sharma U, Iqubal A, Parashar G, Jain A. NOTCH signaling: Journey of an evolutionarily conserved pathway in driving tumor progression and its modulation as a therapeutic target. Crit Rev Oncol Hematol 2021; 164:103403. [PMID: 34214610 DOI: 10.1016/j.critrevonc.2021.103403] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Notch signaling, an evolutionarily conserved signaling cascade, is critical for normal biological processes of cell differentiation, development, and homeostasis. Deregulation of the Notch signaling pathway has been associated with tumor progression. Thus, Notch presents as an interesting target for a variety of cancer subtypes and its signaling mechanisms have been actively explored from the therapeutic viewpoint. However, besides acting as an oncogene, Notch pathway can possess also tumor suppressive functions, being implicated in inhibition of cancer development. Given such interesting dual and dynamic role of Notch, in this review, we discuss how the evolutionarily conserved Notch signaling pathway drives hallmarks of tumor progression and how it could be targeted for a promising treatment and management of cancer. In addition, the up-to-date information on the inhibitors currently under clinical trials for Notch targets is presented along with how NOTCH inhibitors can be used in conjunction with established chemotherapy/radiotherapy regimes.
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, USA.
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India.
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, TR48000, Turkey.
| | - Muobarak Tuorkey
- Division of Physiology, Zoology Department, Faculty of Science, Damanhour University, Damanhour, Egypt.
| | | | - Nidarshana Chaturvedi Parashar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India.
| | - Tushar Singh Barwal
- Department of Zoology, Central University of Punjab, Village-Ghudda, 151 401, Punjab, India.
| | - Uttam Sharma
- Department of Zoology, Central University of Punjab, Village-Ghudda, 151 401, Punjab, India.
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research (Formerly Faculty of Pharmacy), Jamia Hamdard (Deemed to be University), Delhi, India.
| | - Gaurav Parashar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India.
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Village-Ghudda, 151 401, Punjab, India.
| |
Collapse
|
29
|
Jones I, Hägglund AC, Carlsson L. Reduced mTORC1-signaling in retinal ganglion cells leads to vascular retinopathy. Dev Dyn 2021; 251:321-335. [PMID: 34148274 DOI: 10.1002/dvdy.389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The coordinated wiring of neurons, glia and endothelial cells into neurovascular units is critical for central nervous system development. This is best exemplified in the mammalian retina where interneurons, astrocytes and retinal ganglion cells sculpt their vascular environment to meet the metabolic demands of visual function. Identifying the molecular networks that underlie neurovascular unit formation is an important step towards a deeper understanding of nervous system development and function. RESULTS Here, we report that cell-to-cell mTORC1-signaling is essential for neurovascular unit formation during mouse retinal development. Using a conditional knockout approach we demonstrate that reduced mTORC1 activity in asymmetrically positioned retinal ganglion cells induces a delay in postnatal vascular network formation in addition to the production of rudimentary and tortuous vessel networks in adult animals. The severity of this vascular phenotype is directly correlated to the degree of mTORC1 down regulation within the neighboring retinal ganglion cell population. CONCLUSIONS This study establishes a cell nonautonomous role for mTORC1-signaling during retinal development. These findings contribute to our current understanding of neurovascular unit formation and demonstrate how ganglion cells actively sculpt their local environment to ensure that the retina is perfused with an appropriate supply of oxygen and nutrients.
Collapse
Affiliation(s)
- Iwan Jones
- Umeå Center for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
| | | | - Leif Carlsson
- Umeå Center for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
| |
Collapse
|
30
|
Semaphorin3E/plexinD1 Axis in Asthma: What We Know So Far! ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:205-213. [PMID: 34019271 DOI: 10.1007/978-3-030-68748-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Semaphorin3E belongs to the large family of semaphorin proteins. Semaphorin3E was initially identified as axon guidance cues in the neural system. It is universally expressed beyond the nervous system and contributes to regulating essential cell functions such as cell migration, proliferation, and adhesion. Binding of semaphorin3E to its receptor, plexinD1, triggers diverse signaling pathways involved in the pathogenesis of various diseases from cancer to autoimmune and allergic disorders. Here, we highlight the novel findings on the role of semaphorin3E in airway biology. In particular, we highlight our recent findings on the function and potential mechanisms by which semaphorin3E and its receptor, plexinD1, impact airway inflammation, airway hyperresponsiveness, and remodeling in the context of asthma.
Collapse
|
31
|
Yu R, Kim NS, Li Y, Jeong JY, Park SJ, Zhou B, Oh WJ. Vascular Sema3E-Plexin-D1 Signaling Reactivation Promotes Post-stroke Recovery through VEGF Downregulation in Mice. Transl Stroke Res 2021; 13:142-159. [PMID: 33978913 PMCID: PMC8766426 DOI: 10.1007/s12975-021-00914-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022]
Abstract
Post-stroke vascular remodeling, including angiogenesis, facilitates functional recovery. Proper vascular repair is important for efficient post-stroke recovery; however, the underlying mechanisms coordinating the diverse signaling pathways involved in vascular remodeling remain largely unknown. Recently, axon guidance molecules were revealed as key players in injured vessel remodeling. One such molecule, Semaphorin 3E (Sema3E), and its receptor, Plexin-D1, control vascular development by regulating vascular endothelial growth factor (VEGF) signaling. In this study, using a mouse model of transient brain infarction, we aimed to investigate whether Sema3E-Plexin-D1 signaling was involved in cerebrovascular remodeling after ischemic injury. We found that ischemic damage rapidly induced Sema3e expression in the neurons of peri-infarct regions, followed by Plexin-D1 upregulation in remodeling vessels. Interestingly, Plexin-D1 reemergence was concurrent with brain vessels entering an active angiogenic process. In line with this, Plxnd1 ablation worsened neurological deficits, infarct volume, neuronal survival rate, and blood flow recovery. Furthermore, reduced and abnormal vascular morphogenesis was caused by aberrantly increased VEGF signaling. In Plxnd1 knockout mice, we observed significant extravasation of intravenously administered tracers in the brain parenchyma, junctional protein downregulation, and mislocalization in regenerating vessels. This suggested that the absence of Sema3E-Plexin-D1 signaling is associated with blood–brain barrier (BBB) impairment. Finally, the abnormal behavioral performance, aberrant vascular phenotype, and BBB breakdown defects in Plxnd1 knockout mice were restored following the inhibition of VEGF signaling during vascular remodeling. These findings demonstrate that Sema3E-Plexin-D1 signaling can promote functional recovery by downregulating VEGF signaling in the injured adult brain.
Collapse
Affiliation(s)
- Ri Yu
- Neurovascular Biology Laboratory, Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea.,College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Nam-Suk Kim
- Neurovascular Biology Laboratory, Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Yan Li
- Neurovascular Biology Laboratory, Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Jin-Young Jeong
- Neurovascular Biology Laboratory, Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea.,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988, Republic of Korea
| | - Sang-Joon Park
- College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Bin Zhou
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Won-Jong Oh
- Neurovascular Biology Laboratory, Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea.
| |
Collapse
|
32
|
Ithal D, Sukumaran SK, Bhattacharjee D, Vemula A, Nadella R, Mahadevan J, Sud R, Viswanath B, Purushottam M, Jain S. Exome hits demystified: The next frontier. Asian J Psychiatr 2021; 59:102640. [PMID: 33892377 DOI: 10.1016/j.ajp.2021.102640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022]
Abstract
Severe mental illnesses such as schizophrenia and bipolar disorder have complex inheritance patterns, involving both common and rare variants. Whole exome sequencing is a promising approach to find out the rare genetic variants. We had previously reported several rare variants in multiplex families with severe mental illnesses. The current article tries to summarise the biological processes and pattern of expression of genes harbouring the aforementioned variants, linking them to known clinical manifestations through a methodical narrative review. Of the 28 genes considered for this review from 7 families with multiple affected individuals, 6 genes are implicated in various neuropsychiatric manifestations including some variations in the brain morphology assessed by magnetic resonance imaging. Another 15 genes, though associated with neuropsychiatric manifestations, did not have established brain morphological changes whereas the remaining 7 genes did not have any previously recorded neuropsychiatric manifestations at all. Wnt/b-catenin signaling pathway was associated with 6 of these genes and PI3K/AKT, calcium signaling, ERK, RhoA and notch signaling pathways had at least 2 gene associations. We present a comprehensive review of biological and clinical knowledge about the genes previously reported in multiplex families with severe mental illness. A 'disease in dish approach' can be helpful to further explore the fundamental mechanisms.
Collapse
Affiliation(s)
- Dhruva Ithal
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Salil K Sukumaran
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Debanjan Bhattacharjee
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Alekhya Vemula
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Ravi Nadella
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Jayant Mahadevan
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Reeteka Sud
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Biju Viswanath
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Meera Purushottam
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India.
| | - Sanjeev Jain
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| |
Collapse
|
33
|
Zhang YF, Zhang Y, Jia DD, Yang HY, Cheng MD, Zhu WX, Xin H, Li PF, Zhang YF. Insights into the regulatory role of Plexin D1 signalling in cardiovascular development and diseases. J Cell Mol Med 2021; 25:4183-4194. [PMID: 33837646 PMCID: PMC8093976 DOI: 10.1111/jcmm.16509] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/04/2021] [Accepted: 03/22/2021] [Indexed: 12/30/2022] Open
Abstract
Plexin D1 (PLXND1), which was previously thought to mediate semaphorin signalling, belongs to the Plexin family of transmembrane proteins. PLXND1 cooperates mostly with the coreceptor neuropilin and participates in many aspects of axonal guidance. PLXND1 can also act as both a tumour promoter and a tumour suppressor. Emerging evidence suggests that mutations in PLXND1 or Semaphorin 3E, the canonical ligand of PLXND1, can lead to serious cardiovascular diseases, such as congenital heart defects, CHARGE syndrome and systemic sclerosis. Upon ligand binding, PLXND1 can act as a GTPase‐activating protein (GAP) and modulate integrin‐mediated cell adhesion, cytoskeletal dynamics and cell migration. These effects may play regulatory roles in the development of the cardiovascular system and disease. The cardiovascular effects of PLXND1 signalling have gradually been elucidated. PLXND1 was recently shown to detect physical forces and translate them into intracellular biochemical signals in the context of atherosclerosis. Therefore, the role of PLXND1 in cardiovascular development and diseases is gaining research interest because of its potential as a biomarker and therapeutic target. In this review, we describe the cardiac effects, vascular effects and possible molecular mechanisms of PLXND1 signalling.
Collapse
Affiliation(s)
- Yi-Fei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Dong-Dong Jia
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Hong-Yu Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Meng-Die Cheng
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wen-Xiu Zhu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Xin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
34
|
Thomas R, Wang S, Shekhar S, Peng Y, Qiao S, Zhang C, Shan L, Movassagh H, Gounni AS, Yang J, Yang X. Semaphorin 3E Protects against Chlamydial Infection by Modulating Dendritic Cell Functions. THE JOURNAL OF IMMUNOLOGY 2021; 206:1251-1265. [PMID: 33504621 DOI: 10.4049/jimmunol.2001013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/01/2021] [Indexed: 12/27/2022]
Abstract
Recent studies have identified semaphorin 3E (Sema3E) as a novel mediator of immune responses. However, its function in immunity to infection has yet to be investigated. Using a mouse model of chlamydial lung infection, we show that Sema3E plays a significant role in the host immune response to the infection. We found that Sema3E is induced in the lung after chlamydial infection, and Sema3E deficiency has a detrimental impact on disease course, dendritic cell (DC) function, and T cell responses. Specifically, we found that Sema3E knockout (KO) mice exhibited higher bacterial burden, severe body weight loss, and pathological changes after Chlamydia muridarum lung infection compared with wild-type (WT) mice. The severity of disease in Sema3E KO mice was correlated with reduced Th1/Th17 cytokine responses, increased Th2 response, altered Ab response, and a higher number of regulatory CD4 T cells. Moreover, DCs isolated from Sema3E KO mice showed lower surface expression of costimulatory molecules and production of IL-12, but higher expression of PD-L1, PD-L2, and IL-10 production. Functional DC-T cell coculture studies revealed that DCs from infected Sema3E KO mice failed to induce Th1 and Th17 cell responses compared with DCs from infected WT mice. Upon adoptive transfer, mice receiving DCs from Sema3E KO mice, unlike those receiving DCs from WT mice, were not protected against challenge infection. In conclusion, our data evidenced that Sema3E acts as a critical factor for protective immunity against intracellular bacterial infection by modulating DC functions and T cell subsets.
Collapse
Affiliation(s)
- Rony Thomas
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Shuhe Wang
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Sudhanshu Shekhar
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Ying Peng
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Sai Qiao
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Chunyan Zhang
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Lianyu Shan
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Hesam Movassagh
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Abdelilah S Gounni
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Jie Yang
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Xi Yang
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| |
Collapse
|
35
|
Noueihed B, Rivera JC, Dabouz R, Abram P, Omri S, Lahaie I, Chemtob S. Mesenchymal Stromal Cells Promote Retinal Vascular Repair by Modulating Sema3E and IL-17A in a Model of Ischemic Retinopathy. Front Cell Dev Biol 2021; 9:630645. [PMID: 33553187 PMCID: PMC7859341 DOI: 10.3389/fcell.2021.630645] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
Ischemic retinopathies (IRs), such as retinopathy of prematurity and diabetic retinopathy, are characterized by an initial phase of microvascular degeneration that results in retinal ischemia, followed by exaggerated pathologic neovascularization (NV). Mesenchymal stromal cells (MSCs) have potent pro-angiogenic and anti-inflammatory properties associated with tissue repair and regeneration, and in this regard exert protection to neurons in ischemic and degenerative conditions; however, the exact mechanisms underlying these functions remain largely unknown. Class III Semaphorins (A–G) are particularly implicated in regulating neural blood supply (as well as neurogenesis) by suppressing angiogenesis and affecting myeloid cell function; this is the case for distinct neuropillin-activating Sema3A as well as PlexinD1-activating Sema3E; but during IR the former Sema3A increases while Sema3E decreases. We investigated whether retinal vascular repair actions of MSCs are exerted by normalizing Semaphorin and downstream cytokines in IR. Intravitreal administration of MSCs or their secretome (MSCs-conditioned media [MSCs-CM]) significantly curtailed vasoobliteration as well as aberrant preretinal NV in a model of oxygen-induced retinopathy (OIR). The vascular repair effects of MSCs-CM in the ischemic retina were associated with restored levels of Sema3E. Vascular benefits of MSCs-CM were reversed by anti-Sema3E; while intravitreal injection of anti-angiogenic recombinant Sema3E (rSema3E) in OIR-subjected mice reproduced effects of MSCs-CM by inhibiting as expected preretinal NV but also by decreasing vasoobliteration. To explain these opposing vascular effects of Sema3E we found in OIR high retinal levels, respectively, of the pro- and anti-angiogenic IL-17A and Sema3A-regulating IL-1β; IL-17A positively affected expression of IL-1β. rSema3E decreased concentrations of these myeloid cell-derived pro-inflammatory cytokines in vitro and in vivo. Importantly, IL-17A suppression by MSCs-CM was abrogated by anti-Sema3E neutralizing antibody. Collectively, our findings provide novel evidence by which MSCs inhibit aberrant NV and diminish vasoobliteration (promoting revascularization) in retinopathy by restoring (at least in part) neuronal Sema3E levels that reduce pathological levels of IL-17A (and in turn other proinflammatory factors) in myeloid cells. The ability of MSCs to generate a microenvironment permissive for vascular regeneration by controlling the production of neuronal factors involved in immunomodulatory activities is a promising opportunity for stem cell therapy in ocular degenerative diseases.
Collapse
Affiliation(s)
- Baraa Noueihed
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - José Carlos Rivera
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Rabah Dabouz
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada
| | - Pénélope Abram
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada
| | - Samy Omri
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada
| | - Isabelle Lahaie
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada
| | - Sylvain Chemtob
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| |
Collapse
|
36
|
Endothelial mechanotransduction in cardiovascular development and regeneration: emerging approaches and animal models. CURRENT TOPICS IN MEMBRANES 2021; 87:131-151. [PMID: 34696883 PMCID: PMC9113082 DOI: 10.1016/bs.ctm.2021.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Living cells are exposed to multiple mechanical stimuli from the extracellular matrix or from surrounding cells. Mechanoreceptors are molecules that display status changes in response to mechanical stimulation, transforming physical cues into biological responses to help the cells adapt to dynamic changes of the microenvironment. Mechanical stimuli are responsible for shaping the tridimensional development and patterning of the organs in early embryonic stages. The development of the heart is one of the first morphogenetic events that occur in embryos. As the circulation is established, the vascular system is exposed to constant shear stress, which is the force created by the movement of blood. Both spatial and temporal variations in shear stress differentially modulate critical steps in heart development, such as trabeculation and compaction of the ventricular wall and the formation of the heart valves. Zebrafish embryos are small, transparent, have a short developmental period and allow for real-time visualization of a variety of fluorescently labeled proteins to recapitulate developmental dynamics. In this review, we will highlight the application of zebrafish models as a genetically tractable model for investigating cardiovascular development and regeneration. We will introduce our approaches to manipulate mechanical forces during critical stages of zebrafish heart development and in a model of vascular regeneration, as well as advances in imaging technologies to capture these processes at high resolution. Finally, we will discuss the role of molecules of the Plexin family and Piezo cation channels as major mechanosensors recently implicated in cardiac morphogenesis.
Collapse
|
37
|
Fard D, Tamagnone L. Semaphorins in health and disease. Cytokine Growth Factor Rev 2020; 57:55-63. [PMID: 32900601 DOI: 10.1016/j.cytogfr.2020.05.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 05/12/2020] [Indexed: 11/18/2022]
Abstract
Cell-cell communication is pivotal to guide embryo development, as well as to maintain adult tissues homeostasis and control immune response. Among extracellular factors responsible for this function, are the Semaphorins, a broad family of around 20 different molecular cues conserved in evolution and widely expressed in all tissues. The signaling cascades initiated by semaphorins depend on a family of conserved receptors, called Plexins, and on several additional molecules found in the receptor complexes. Moreover, multiple intracellular pathways have been described to act downstream of semaphorins, highlighting significant diversity in the signaling cascades controlled by this family. Notably, semaphorin expression is altered in many human diseases, such as immunopathologies, neurodegenerative diseases and cancer. This underscores the importance of semaphorins as regulatory factors in the tissue microenvironment and has prompted growing interest for assessing their potential relevance in medicine. This review article surveys the main contexts in which semaphorins have been found to regulate developing and healthy adult tissues, and the signaling cascades implicated in these functions. Vis a vis, we will highlight the main pathological processes in which semaphorins are thought to have a role thereof.
Collapse
Affiliation(s)
- Damon Fard
- University of Torino School of Medicine, Torino, Italy
| | - Luca Tamagnone
- Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy.
| |
Collapse
|
38
|
The role of semaphorins in small vessels of the eye and brain. Pharmacol Res 2020; 160:105044. [PMID: 32590102 DOI: 10.1016/j.phrs.2020.105044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022]
Abstract
Small vessel diseases, such as ischemic retinopathy and cerebral small vessel disease (CSVD), are increasingly recognized in patients with diabetes, dementia and cerebrovascular disease. The mechanisms of small vessel diseases are poorly understood, but the latest studies suggest a role for semaphorins. Initially identified as axon guidance cues, semaphorins are mainly studied in neuronal morphogenesis, neural circuit assembly, and synapse assembly and refinement. In recent years, semaphorins have been found to play important roles in regulating vascular growth and development and in many pathophysiological processes, including atherosclerosis, angiogenesis after stroke and retinopathy. Growing evidence indicates that semaphorins affect the occurrence, perfusion and regression of both the macrovasculature and microvasculature by regulating the proliferation, apoptosis, migration, barrier function and inflammatory response of endothelial cells, vascular smooth muscle cells (VSMCs) and pericytes. In this review, we concentrate on the regulatory effects of semaphorins on the cell components of the vessel wall and their potential roles in microvascular diseases, especially in the retina and cerebral small vessel. Finally, we discuss potential molecular approaches in targeting semaphorins as therapies for microvascular disorders in the eye and brain.
Collapse
|
39
|
Germline Mutation Enrichment in Pathways Controlling Endothelial Cell Homeostasis in Patients with Brain Arteriovenous Malformation: Implication for Molecular Diagnosis. Int J Mol Sci 2020; 21:ijms21124321. [PMID: 32560555 PMCID: PMC7352422 DOI: 10.3390/ijms21124321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/19/2022] Open
Abstract
Brain arteriovenous malformation (bAVM) is a congenital defect affecting brain microvasculature, characterized by a direct shunt from arterioles to venules. Germline mutations in several genes related to transforming growth factor beta (TGF-β)/BMP signaling are linked to both sporadic and hereditary phenotypes. However, the low incidence of inherited cases makes the genetic bases of the disease unclear. To increase this knowledge, we performed a whole exome sequencing on five patients, on DNA purified by peripheral blood. Variants were filtered based on frequency and functional class. Those selected were validated by Sanger sequencing. Genes carrying selected variants were prioritized to relate these genes with those already known to be linked to bAVM development. Most of the prioritized genes showed a correlation with the TGF-βNotch signaling and vessel morphogenesis. However, two novel pathways related to cilia morphogenesis and ion homeostasis were enriched in mutated genes. These results suggest novel insights on sporadic bAVM onset and confirm its genetic heterogeneity. The high frequency of germline variants in genes related to TGF-β signaling allows us to hypothesize bAVM as a complex trait resulting from the co-existence of low-penetrance loci. Deeper knowledge on bAVM genetics can improve personalized diagnosis and can be helpful with genotype–phenotype correlations.
Collapse
|
40
|
Fukushima Y, Nishiyama K, Kataoka H, Fruttiger M, Fukuhara S, Nishida K, Mochizuki N, Kurihara H, Nishikawa SI, Uemura A. RhoJ integrates attractive and repulsive cues in directional migration of endothelial cells. EMBO J 2020; 39:e102930. [PMID: 32347571 DOI: 10.15252/embj.2019102930] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 12/19/2022] Open
Abstract
During angiogenesis, VEGF acts as an attractive cue for endothelial cells (ECs), while Sema3E mediates repulsive cues. Here, we show that the small GTPase RhoJ integrates these opposing signals in directional EC migration. In the GTP-bound state, RhoJ interacts with the cytoplasmic domain of PlexinD1. Upon Sema3E stimulation, RhoJ released from PlexinD1 induces cell contraction. PlexinD1-bound RhoJ further facilitates Sema3E-induced PlexinD1-VEGFR2 association, VEGFR2 transphosphorylation at Y1214, and p38 MAPK activation, leading to reverse EC migration. Upon VEGF stimulation, RhoJ is required for the formation of the holoreceptor complex comprising VEGFR2, PlexinD1, and neuropilin-1, thereby preventing degradation of internalized VEGFR2, prolonging downstream signal transductions via PLCγ, Erk, and Akt, and promoting forward EC migration. After conversion to the GDP-bound state, RhoJ shifts from PlexinD1 to VEGFR2, which then terminates the VEGFR2 signals. RhoJ deficiency in ECs efficiently suppressed aberrant angiogenesis in ischemic retina. These findings suggest that distinct Rho GTPases may act as context-dependent integrators of chemotactic cues in directional cell migration and may serve as candidate therapeutic targets to manipulate cell motility in disease or tissue regeneration.
Collapse
Affiliation(s)
- Yoko Fukushima
- Division of Vascular Biology, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Koichi Nishiyama
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Kataoka
- Laboratory for Stem Cell Biology, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Marcus Fruttiger
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Kawasaki, Japan
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Hiroki Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shin-Ichi Nishikawa
- Laboratory for Stem Cell Biology, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Akiyoshi Uemura
- Division of Vascular Biology, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,Department of Retinal Vascular Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
41
|
Yao PL, Peavey J, Malek G. Leveraging Nuclear Receptors as Targets for Pathological Ocular Vascular Diseases. Int J Mol Sci 2020; 21:ijms21082889. [PMID: 32326149 PMCID: PMC7215709 DOI: 10.3390/ijms21082889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/18/2020] [Accepted: 04/19/2020] [Indexed: 02/07/2023] Open
Abstract
Vasculogenesis and angiogenesis are physiological mechanisms occurring throughout the body. Any disruption to the precise balance of blood vessel growth necessary to support healthy tissue, and the inhibition of abnormal vessel sprouting has the potential to negatively impact stages of development and/or healing. Therefore, the identification of key regulators of these vascular processes is critical to identifying therapeutic means by which to target vascular-associated compromises and complications. Nuclear receptors are a family of transcription factors that have been shown to be involved in modulating different aspects of vascular biology in many tissues systems. Most recently, the role of nuclear receptors in ocular biology and vasculopathies has garnered interest. Herein, we review studies that have used in vitro assays and in vivo models to investigate nuclear receptor-driven pathways in two ocular vascular diseases associated with blindness, wet or exudative age-related macular degeneration, and proliferative diabetic retinopathy. The potential therapeutic targeting of nuclear receptors for ocular diseases is also discussed.
Collapse
Affiliation(s)
- Pei-Li Yao
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27503, USA; (P.-L.Y.); (J.P.)
| | - Jeremy Peavey
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27503, USA; (P.-L.Y.); (J.P.)
| | - Goldis Malek
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27503, USA; (P.-L.Y.); (J.P.)
- Department of Pathology, Duke University School of Medicine, Durham, NC 27503, USA
- Correspondence: ; Tel.: +919-684-0820
| |
Collapse
|
42
|
Iragavarapu-Charyulu V, Wojcikiewicz E, Urdaneta A. Semaphorins in Angiogenesis and Autoimmune Diseases: Therapeutic Targets? Front Immunol 2020; 11:346. [PMID: 32210960 PMCID: PMC7066498 DOI: 10.3389/fimmu.2020.00346] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 02/12/2020] [Indexed: 01/17/2023] Open
Abstract
The axonal guidance molecules, semaphorins, have been described to function both physiologically and pathologically outside of the nervous system. In this review, we focus on the vertebrate semaphorins found in classes 3 through 7 and their roles in vascular development and autoimmune diseases. Recent studies indicate that while some of these vertebrate semaphorins promote angiogenesis, others have an angiostatic function. Since some semaphorins are also expressed by different immune cells and are known to modulate immune responses, they have been implicated in autoimmune disorders such as multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus and systemic sclerosis. We conclude this review by addressing strategies targeting semaphorins as potential therapeutic agents for angiogenesis and autoimmune diseases.
Collapse
Affiliation(s)
| | - Ewa Wojcikiewicz
- Department of Biomedical Sciences, Florida Atlantic University, Boca Raton, FL, United States
| | - Alexandra Urdaneta
- Department of Biomedical Sciences, Florida Atlantic University, Boca Raton, FL, United States
| |
Collapse
|
43
|
Cai S, Yang Q, Cao Y, Li Y, Liu J, Wang J, Zhang X, Liu L, Li X, Zhang Y. PF4 antagonizes retinal neovascularization via inhibiting PRAS40 phosphorylation in a mouse model of oxygen-induced retinopathy. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165604. [DOI: 10.1016/j.bbadis.2019.165604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/19/2019] [Accepted: 11/01/2019] [Indexed: 12/22/2022]
|
44
|
Fu Z, Sun Y, Cakir B, Tomita Y, Huang S, Wang Z, Liu CH, S. Cho S, Britton W, S. Kern T, Antonetti DA, Hellström A, E.H. Smith L. Targeting Neurovascular Interaction in Retinal Disorders. Int J Mol Sci 2020; 21:E1503. [PMID: 32098361 PMCID: PMC7073081 DOI: 10.3390/ijms21041503] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/13/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023] Open
Abstract
The tightly structured neural retina has a unique vascular network comprised of three interconnected plexuses in the inner retina (and choroid for outer retina), which provide oxygen and nutrients to neurons to maintain normal function. Clinical and experimental evidence suggests that neuronal metabolic needs control both normal retinal vascular development and pathological aberrant vascular growth. Particularly, photoreceptors, with the highest density of mitochondria in the body, regulate retinal vascular development by modulating angiogenic and inflammatory factors. Photoreceptor metabolic dysfunction, oxidative stress, and inflammation may cause adaptive but ultimately pathological retinal vascular responses, leading to blindness. Here we focus on the factors involved in neurovascular interactions, which are potential therapeutic targets to decrease energy demand and/or to increase energy production for neovascular retinal disorders.
Collapse
Affiliation(s)
- Zhongjie Fu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Ye Sun
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - Bertan Cakir
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - Yohei Tomita
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - Shuo Huang
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - Zhongxiao Wang
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - Chi-Hsiu Liu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - Steve S. Cho
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - William Britton
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - Timothy S. Kern
- Center for Translational Vision Research, Gavin Herbert Eye Institute, Irvine, CA 92697, USA;
| | - David A. Antonetti
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Ann Hellström
- Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Göteborg, Sweden;
| | - Lois E.H. Smith
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| |
Collapse
|
45
|
Song X, Wang X, Ding L, He D, Sun J, Xi N, Yin Y, Peng H, Sun L. Identification of a novel heterozygous missense mutation of SEMA3E (c.1327G>A; p. Ala443Thr) in a labor induced fetus with CHARGE syndrome. Mol Genet Genomic Med 2019; 8:e1034. [PMID: 31691538 PMCID: PMC6978240 DOI: 10.1002/mgg3.1034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND CHARGE syndrome is a complex multisystem genetic disease. We aimed to find the potential gene mutation in the labor induced fetus with CHARGE syndrome. METHODS Genomic DNA was extracted from the fetal thigh muscle tissue and the peripheral blood of his parents. The resulting exomes were sequenced using whole exome sequencing (WES) followed by the selection of the candidate causative mutation genes. The deleteriousness of the identified variants was predicted. Analysis of multiple alignment of protein sequences and protein conserved domains was performed by online software. Finally, Sanger sequencing was applied for validation of the identified variants in the WES. RESULTS After sequencing and bioinformatics filtering, a heterozygous missense mutation of SEMA3E (c.1327G>A; p. Ala443Thr) was found in the fetus, while the mutation was absent in his parents. Genotyping results showed that the mutation cosegregated fully with definite CHARGE phenotypes between the fetus and his parents. This change was located in the Sema superfamily and highly conserved across different species. Sanger validation result was consistent with the WES analysis. CONCLUSION Our investigations suggested that the heterozygous missense mutation of SEMA3E (c.1327G>A; p. Ala443Thr) may be a potential causal variant in the fetus with CHARGE syndrome.
Collapse
Affiliation(s)
- Xiao Song
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Hospital for Women and Children, Chengdu, Sichuan, China
| | - Xueyan Wang
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Hospital for Women and Children, Chengdu, Sichuan, China
| | - Li Ding
- Department of Radiology, Sichuan Provincial Hospital for Women and Children, Chengdu, Sichuan, China
| | - Dan He
- Department of Maternal and Child Health Management, Sichuan Provincial Hospital for Women and Children, Chengdu, Sichuan, China
| | - Jin Sun
- Department of Pharmacy, Sichuan Provincial Hospital for Women and Children, Chengdu, Sichuan, China
| | - Na Xi
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Hospital for Women and Children, Chengdu, Sichuan, China
| | - Yan Yin
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Hospital for Women and Children, Chengdu, Sichuan, China
| | - Hui Peng
- Department of Ultrasound, Sichuan Provincial Hospital for Women and Children, Chengdu, Sichuan, China
| | - Lingling Sun
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Hospital for Women and Children, Chengdu, Sichuan, China
| |
Collapse
|
46
|
Sandireddy R, Cibi DM, Gupta P, Singh A, Tee N, Uemura A, Epstein JA, Singh MK. Semaphorin 3E/PlexinD1 signaling is required for cardiac ventricular compaction. JCI Insight 2019; 4:125908. [PMID: 31434798 DOI: 10.1172/jci.insight.125908] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/01/2019] [Indexed: 01/10/2023] Open
Abstract
Left ventricular noncompaction (LVNC) is one of the most common forms of genetic cardiomyopathy characterized by excessive trabeculation and impaired myocardial compaction during fetal development. Patients with LVNC are at higher risk of developing left/right ventricular failure or both. Although the key regulators for cardiac chamber development are well studied, the role of semaphorin (Sema)/plexin signaling in this process remains poorly understood. In this article, we demonstrate that genetic deletion of Plxnd1, a class-3 Sema receptor in endothelial cells, leads to severe cardiac chamber defects. They were characterized by excessive trabeculation and noncompaction similar to patients with LVNC. Loss of Plxnd1 results in decreased expression of extracellular matrix proteolytic genes, leading to excessive deposition of cardiac jelly. We demonstrate that Plxnd1 deficiency is associated with an increase in Notch1 expression and its downstream target genes. In addition, inhibition of the Notch signaling pathway partially rescues the excessive trabeculation and noncompaction phenotype present in Plxnd1 mutants. Furthermore, we demonstrate that Semaphorin 3E (Sema3E), one of PlexinD1's known ligands, is expressed in the developing heart and is required for myocardial compaction. Collectively, our study uncovers what we believe to be a previously undescribed role of the Sema3E/PlexinD1 signaling pathway in myocardial trabeculation and the compaction process.
Collapse
Affiliation(s)
- Reddemma Sandireddy
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore
| | - Dasan Mary Cibi
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore
| | - Priyanka Gupta
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore
| | - Anamika Singh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore
| | - Nicole Tee
- National Heart Research Institute Singapore, National Heart Center Singapore, Singapore
| | - Akiyoshi Uemura
- Department of Retinal Vascular Biology, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Japan
| | - Jonathan A Epstein
- Penn Cardiovascular Institute, Department of Medicine, Department of Cell and Developmental Biology, and Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Manvendra K Singh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore.,National Heart Research Institute Singapore, National Heart Center Singapore, Singapore
| |
Collapse
|
47
|
Zahra FT, Sajib MS, Ichiyama Y, Akwii RG, Tullar PE, Cobos C, Minchew SA, Doçi CL, Zheng Y, Kubota Y, Gutkind JS, Mikelis CM. Endothelial RhoA GTPase is essential for in vitro endothelial functions but dispensable for physiological in vivo angiogenesis. Sci Rep 2019; 9:11666. [PMID: 31406143 PMCID: PMC6690958 DOI: 10.1038/s41598-019-48053-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/27/2019] [Indexed: 01/03/2023] Open
Abstract
Imbalanced angiogenesis is a characteristic of several diseases. Rho GTPases regulate multiple cellular processes, such as cytoskeletal rearrangement, cell movement, microtubule dynamics, signal transduction and gene expression. Among the Rho GTPases, RhoA, Rac1 and Cdc42 are best characterized. The role of endothelial Rac1 and Cdc42 in embryonic development and retinal angiogenesis has been studied, however the role of endothelial RhoA is yet to be explored. Here, we aimed to identify the role of endothelial RhoA in endothelial cell functions, in embryonic and retinal development and explored compensatory mechanisms. In vitro, RhoA is involved in cell proliferation, migration and tube formation, triggered by the angiogenesis inducers Vascular Endothelial Growth Factor (VEGF) and Sphingosine-1 Phosphate (S1P). In vivo, through constitutive and inducible endothelial RhoA deficiency we tested the role of endothelial RhoA in embryonic development and retinal angiogenesis. Constitutive endothelial RhoA deficiency, although decreased survival, was not detrimental for embryonic development, while inducible endothelial RhoA deficiency presented only mild deficiencies in the retina. The redundant role of RhoA in vivo can be attributed to potential differences in the signaling cues regulating angiogenesis in physiological versus pathological conditions and to the alternative compensatory mechanisms that may be present in the in vivo setting.
Collapse
Affiliation(s)
- Fatema Tuz Zahra
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106, USA
| | - Md Sanaullah Sajib
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106, USA
| | - Yusuke Ichiyama
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Ophthalmology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Racheal Grace Akwii
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106, USA
| | - Paul E Tullar
- Department of Obstetrics and Gynecology, School of Medicine, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106, USA
| | - Christopher Cobos
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106, USA
| | - Shelby A Minchew
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106, USA
| | - Colleen L Doçi
- College of Arts and Sciences, Marian University Indianapolis, Indianapolis, Indiana, 46222, USA
| | - Yi Zheng
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45229, USA
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - J Silvio Gutkind
- Department of Pharmacology, UCSD, San Diego, California, 92093, USA
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106, USA.
| |
Collapse
|
48
|
Refueling the Ischemic CNS: Guidance Molecules for Vascular Repair. Trends Neurosci 2019; 42:644-656. [PMID: 31285047 DOI: 10.1016/j.tins.2019.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/09/2019] [Accepted: 05/20/2019] [Indexed: 12/30/2022]
Abstract
Stroke patients have only limited therapeutic options and often remain with considerable disabilities. To promote neurological recovery, angiogenesis in the ischemic peri-infarct region has been recognized as an encouraging therapeutic target. Despite advances in mechanistic understanding of vascular growth and repair, effective and safe angiogenic treatments are currently missing. Besides the most intensively studied angiogenic growth factors, recent research has indicated that the process of vascular sprouting and migration also requires the participation of guidance molecules, many of which were initially identified as regulators of axonal growth. Here, we review the inhibitory and growth-promoting effects of guidance molecules on the vascular system and discuss their potential as novel angiogenic targets for neurovascular diseases.
Collapse
|
49
|
Zhou Z, Lu C, Meng S, Dun L, Yin N, An H, Xu H, Liu G, Cai Y. Silencing of PTGS2 exerts promoting effects on angiogenesis endothelial progenitor cells in mice with ischemic stroke via repression of the NF-κB signaling pathway. J Cell Physiol 2019; 234:23448-23460. [PMID: 31222746 DOI: 10.1002/jcp.28914] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 12/20/2022]
Abstract
The objective of the current study is to investigate the effect of PTGS2 on proliferation, migration, angiogenesis and apoptosis of endothelial progenitor cells (EPCs) in mice with ischemic stroke through the NF-κB signaling pathway. Middle cerebral artery occlusion (MCAO) model was established in mice. EPCs were identified, in which ectopic expression and depletion experiments were conducted. The mRNA and protein expression of related factors in tissues and cells were measured. Besides, proliferation, migration, angiogenesis, and apoptosis, as well as cell cycle distribution, of cells were determined. MCAO mice showed overexpression of interleukin-6 (IL-6), IL-17, and IL-23, and increased positive protein expression of PTGS2, as well as expression of PTGS2, nuclear factor-κB (NF-κB), tumor suppressor region 1 (TSP-1) and Bcl-2-associated X protein (Bax), but underexpression of vascular endothelial growth factor (VEGF), S-phase kinase associated protein 2 (Skp2), and B-cell lymphoma 2 (Bcl-2). Moreover, ectopic expression of tumor necrosis factor-α significantly elevated the expression of PTGS2, NF-κB, TSP-1, and Bax, as well as cell apoptosis and cell cycle arrest, but decreased the expression of VEGF, Skp2, and Bcl-2, as well as proliferation, migration and angiogenesis of EPCs, and the PTGS2-siRNA group showed an opposite trend. Taken together, we conclude that the specific knockdown of PTGS2 expression could repress the NF-κB signaling pathway, thereby inhibits apoptosis and promotes proliferation, migration and angiogenesis of EPCs, providing protective effect on mice with ischemic stroke.
Collapse
Affiliation(s)
- Zheyi Zhou
- Department of Neurology, Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.,Department of Neurology, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, People's Republic of China
| | - Changjun Lu
- Department of Neurology, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, People's Republic of China
| | - Shuhui Meng
- Department of Neurology, Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Linglu Dun
- Department of Neurology, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, People's Republic of China
| | - Nannan Yin
- Guangxi University of Chinese Medicine, Nanning, People's Republic of China
| | - Hongwei An
- Department of Neurology, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, People's Republic of China
| | - Hong Xu
- Department of Neurology, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, People's Republic of China
| | - Guocheng Liu
- Department of Neurology, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, People's Republic of China
| | - Yefeng Cai
- Department of Neurology, Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.,Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People's Republic of China
| |
Collapse
|
50
|
Vivekanadhan S, Mukhopadhyay D. Divergent roles of Plexin D1 in cancer. Biochim Biophys Acta Rev Cancer 2019; 1872:103-110. [PMID: 31152824 DOI: 10.1016/j.bbcan.2019.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/06/2019] [Accepted: 05/28/2019] [Indexed: 11/18/2022]
Abstract
Plexin D1 belongs to a family of transmembrane proteins called plexins. It was characterized as a receptor for semaphorins and is known to be essential for axonal guidance and vascular patterning. Mutations in Plexin D1 have been implicated in pathologic conditions such as truncus arteriosus and Möbius syndrome. Emerging data show that expression of Plexin D1 is deregulated in several cancers; it can support tumor development by aiding in tumor metastasis and EMT; and conversely, it can act as a dependence receptor and stimulate cell death in the absence of its canonical ligand, semaphorin 3E. The role of Plexin D1 in tumor development and progression is thereby garnering research interest for its potential as a biomarker and as a therapeutic target. In this review, we describe its discovery, structure, mutations, role(s) in cancer, and therapeutic potential.
Collapse
Affiliation(s)
- Sneha Vivekanadhan
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine and Science, Jacksonville, FL, USA
| | | |
Collapse
|