1
|
Berg C, Sieber M, Sun J. Finishing the egg. Genetics 2024; 226:iyad183. [PMID: 38000906 PMCID: PMC10763546 DOI: 10.1093/genetics/iyad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/27/2023] [Indexed: 11/26/2023] Open
Abstract
Gamete development is a fundamental process that is highly conserved from early eukaryotes to mammals. As germ cells develop, they must coordinate a dynamic series of cellular processes that support growth, cell specification, patterning, the loading of maternal factors (RNAs, proteins, and nutrients), differentiation of structures to enable fertilization and ensure embryonic survival, and other processes that make a functional oocyte. To achieve these goals, germ cells integrate a complex milieu of environmental and developmental signals to produce fertilizable eggs. Over the past 50 years, Drosophila oogenesis has risen to the forefront as a system to interrogate the sophisticated mechanisms that drive oocyte development. Studies in Drosophila have defined mechanisms in germ cells that control meiosis, protect genome integrity, facilitate mRNA trafficking, and support the maternal loading of nutrients. Work in this system has provided key insights into the mechanisms that establish egg chamber polarity and patterning as well as the mechanisms that drive ovulation and egg activation. Using the power of Drosophila genetics, the field has begun to define the molecular mechanisms that coordinate environmental stresses and nutrient availability with oocyte development. Importantly, the majority of these reproductive mechanisms are highly conserved throughout evolution, and many play critical roles in the development of somatic tissues as well. In this chapter, we summarize the recent progress in several key areas that impact egg chamber development and ovulation. First, we discuss the mechanisms that drive nutrient storage and trafficking during oocyte maturation and vitellogenesis. Second, we examine the processes that regulate follicle cell patterning and how that patterning impacts the construction of the egg shell and the establishment of embryonic polarity. Finally, we examine regulatory factors that control ovulation, egg activation, and successful fertilization.
Collapse
Affiliation(s)
- Celeste Berg
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065 USA
| | - Matthew Sieber
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390 USA
| | - Jianjun Sun
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269 USA
| |
Collapse
|
2
|
Sheahan TD, Grewal A, Korthauer LE, Blumenthal EM. The Drosophila drop-dead gene is required for eggshell integrity. PLoS One 2023; 18:e0295412. [PMID: 38051756 PMCID: PMC10697589 DOI: 10.1371/journal.pone.0295412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023] Open
Abstract
The eggshell of the fruit fly Drosophila melanogaster is a useful model for understanding the synthesis of a complex extracellular matrix. The eggshell is synthesized during mid-to-late oogenesis by the somatic follicle cells that surround the developing oocyte. We previously reported that female flies mutant for the gene drop-dead (drd) are sterile, but the underlying cause of the sterility remained unknown. In this study, we examined the role of drd in eggshell synthesis. We show that eggs laid by drd mutant females are fertilized but arrest early in embryogenesis, and that the innermost layer of the eggshell, the vitelline membrane, is abnormally permeable to dye in these eggs. In addition, the major vitelline membrane proteins fail to become crosslinked by nonreducible bonds, a process that normally occurs during egg activation following ovulation, as evidenced by their solubility and detection by Western blot in laid eggs. In contrast, the Cp36 protein, which is found in the outer chorion layers of the eggshell, becomes crosslinked normally. To link the drd expression pattern with these phenotypes, we show that drd is expressed in the ovarian follicle cells beginning in mid-oogenesis, and, importantly, that all drd mutant eggshell phenotypes could be recapitulated by selective knockdown of drd expression in the follicle cells. To determine whether drd expression was required for the crosslinking itself, we performed in vitro activation and crosslinking experiments. The vitelline membranes of control egg chambers could become crosslinked either by incubation in hyperosmotic medium, which activates the egg chambers, or by exogenous peroxidase and hydrogen peroxide. In contrast, neither treatment resulted in the crosslinking of the vitelline membrane in drd mutant egg chambers. These results indicate that drd expression in the follicle cells is necessary for vitelline membrane proteins to serve as substrates for peroxidase-mediated cross-linking at the end of oogenesis.
Collapse
Affiliation(s)
- Tayler D. Sheahan
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Amanpreet Grewal
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Laura E. Korthauer
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Edward M. Blumenthal
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
3
|
Isoe J, Simington CJ, Oscherwitz ME, Peterson AJ, Rascón AA, Massani BB, Miesfeld RL, Riehle MA. Characterization of essential eggshell proteins from Aedes aegypti mosquitoes. BMC Biol 2023; 21:214. [PMID: 37833714 PMCID: PMC10576393 DOI: 10.1186/s12915-023-01721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Up to 40% of the world population live in areas where mosquitoes capable of transmitting the dengue virus, including Aedes aegypti, coexist with humans. Understanding how mosquito egg development and oviposition are regulated at the molecular level may provide new insights into novel mosquito control strategies. Previously, we identified a protein named eggshell organizing factor 1 (EOF1) that when knocked down with RNA interference (RNAi) resulted in non-melanized and fragile eggs that did not contain viable embryos. RESULTS In this current study, we performed a comprehensive RNAi screen of putative A. aegypti eggshell proteins to identify additional proteins that interact with intracellular EOF1. We identified several proteins essential for eggshell formation in A. aegypti and characterized their phenotypes through a combination of molecular and biochemical approaches. We found that Nasrat, Closca, and Polehole structural proteins, together with the Nudel serine protease, are indispensable for eggshell melanization and egg viability. While all four proteins are predominantly expressed in ovaries of adult females, Nudel messenger RNA (mRNA) expression is highly upregulated in response to blood feeding. Furthermore, we identified four additional secreted eggshell enzymes that regulated mosquito eggshell formation and melanization. These enzymes included three dopachrome-converting enzymes (DCEs) and one cysteine protease. All eight of these eggshell proteins were essential for proper eggshell formation. Interestingly, their eggshell surface topologies in response to RNAi did not phenocopy the effect of RNAi-EOF1, suggesting that additional mechanisms may influence how EOF1 regulates eggshell formation and melanization. CONCLUSIONS While our studies did not identify a definitive regulator of EOF1, we did identify eight additional proteins involved in mosquito eggshell formation that may be leveraged for future control strategies.
Collapse
Affiliation(s)
- Jun Isoe
- Department of Entomology, The University of Arizona, Tucson, AZ, 85721, USA.
| | - Carter J Simington
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, USA
- Present address: Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA94720, USA
| | - Max E Oscherwitz
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, USA
- Present address: Heersink School of Medicine, University of Alabama, Birmingham, AL, 35233, USA
| | - Alyssa J Peterson
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, USA
| | - Alberto A Rascón
- Department of Chemistry, San José State University, San José, CA, 95192, USA
- Present address: School of Molecular Sciences, Arizona State University, Tempe, AZ, 85281, USA
| | - Brooke B Massani
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, USA
| | - Roger L Miesfeld
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, USA
| | - Michael A Riehle
- Department of Entomology, The University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
4
|
Sheahan TD, Grewal A, Korthauer LE, Blumenthal EM. The Drosophila drop-dead gene is required for eggshell integrity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538335. [PMID: 37163052 PMCID: PMC10168300 DOI: 10.1101/2023.04.25.538335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The eggshell of the fruit fly Drosophila melanogaster is a useful model for understanding the synthesis of a complex extracellular matrix. The eggshell is synthesized during mid-to-late oogenesis by the somatic follicle cells that surround the developing oocyte. We previously reported that female flies mutant for the gene drop-dead ( drd ) are sterile, but the underlying cause of the sterility remained unknown. In this study, we examined the role of drd in eggshell synthesis. We show that eggs laid by drd mutant females are fertilized but arrest early in embryogenesis, and that the innermost layer of the eggshell, the vitelline membrane, is abnormally permeable to dye in these eggs. In addition, the major vitelline membrane proteins fail to become crosslinked by nonreducible bonds, a process that normally occurs during egg activation following ovulation, as evidenced by their solubility and detection by Western blot in laid eggs. In contrast, the Cp36 protein, which is found in the outer chorion layers of the eggshell, becomes crosslinked normally. To link the drd expression pattern with these phenotypes, we show that drd is expressed in the ovarian follicle cells beginning in mid-oogenesis, and, importantly, that all drd mutant eggshell phenotypes could be recapitulated by selective knockdown of drd expression in the follicle cells. To determine whether drd expression was required for the crosslinking itself, we performed in vitro activation and crosslinking experiments. The vitelline membranes of control egg chambers could become crosslinked either by incubation in hyperosmotic medium, which activates the egg chambers, or by exogenous peroxidase and hydrogen peroxide. In contrast, neither treatment resulted in the crosslinking of the vitelline membrane in drd mutant egg chambers. These results indicate that drd expression in the follicle cells is necessary for vitelline membrane proteins to serve as substrates for peroxidase-mediated cross-linking at the end of oogenesis.
Collapse
|
5
|
Sirot L, Bansal R, Esquivel CJ, Arteaga-Vázquez M, Herrera-Cruz M, Pavinato VAC, Abraham S, Medina-Jiménez K, Reyes-Hernández M, Dorantes-Acosta A, Pérez-Staples D. Post-mating gene expression of Mexican fruit fly females: disentangling the effects of the male accessory glands. INSECT MOLECULAR BIOLOGY 2021; 30:480-496. [PMID: 34028117 DOI: 10.1111/imb.12719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/26/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
Mating has profound physiological and behavioural consequences for female insects. During copulation, female insects typically receive not only sperm, but a complex ejaculate containing hundreds of proteins and other molecules from male reproductive tissues, primarily the reproductive accessory glands. The post-mating phenotypes affected by male accessory gland (MAG) proteins include egg development, attraction to oviposition hosts, mating, attractiveness, sperm storage, feeding and lifespan. In the Mexican fruit fly, Anastrepha ludens, mating increases egg production and the latency to remating. However, previous studies have not found a clear relationship between injection of MAG products and oviposition or remating inhibition in this species. We used RNA-seq to study gene expression in mated, unmated and MAG-injected females to understand the potential mating- and MAG-regulated genes and pathways in A. ludens. Both mating and MAG-injection regulated transcripts and pathways related to egg development. Other transcripts regulated by mating included those with orthologs predicted to be involved in immune response, musculature and chemosensory perception, whereas those regulated by MAG-injection were predicted to be involved in translational control, sugar regulation, diet detoxification and lifespan determination. These results suggest new phenotypes that may be influenced by seminal fluid molecules in A. ludens. Understanding these influences is critical for developing novel tools to manage A. ludens.
Collapse
Affiliation(s)
- L Sirot
- The College of Wooster, Wooster, OH, USA
| | - R Bansal
- USDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, USA
| | - C J Esquivel
- Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA
| | - M Arteaga-Vázquez
- INBIOTECA, Universidad Veracruzana, Av de las Culturas Veracruzanas 101, Col. Emiliano Zapata, Xalapa, Veracruz, Mexico
| | - M Herrera-Cruz
- CONACyT- Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca, Mexico
| | - V A C Pavinato
- Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA
| | - S Abraham
- Laboratorio de Investigaciones Ecoetológicas de Moscas de la Fruta y sus Enemigos Naturales (LIEMEN), PROIMI, Tucumán, Argentina, CONICET, Argentina
| | - K Medina-Jiménez
- INBIOTECA, Universidad Veracruzana, Av de las Culturas Veracruzanas 101, Col. Emiliano Zapata, Xalapa, Veracruz, Mexico
| | - M Reyes-Hernández
- INBIOTECA, Universidad Veracruzana, Av de las Culturas Veracruzanas 101, Col. Emiliano Zapata, Xalapa, Veracruz, Mexico
| | - A Dorantes-Acosta
- INBIOTECA, Universidad Veracruzana, Av de las Culturas Veracruzanas 101, Col. Emiliano Zapata, Xalapa, Veracruz, Mexico
| | - D Pérez-Staples
- INBIOTECA, Universidad Veracruzana, Av de las Culturas Veracruzanas 101, Col. Emiliano Zapata, Xalapa, Veracruz, Mexico
| |
Collapse
|
6
|
Banisch TU, Slaidina M, Gupta S, Ho M, Gilboa L, Lehmann R. A transitory signaling center controls timing of primordial germ cell differentiation. Dev Cell 2021; 56:1742-1755.e4. [PMID: 34081907 PMCID: PMC8330407 DOI: 10.1016/j.devcel.2021.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 03/07/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022]
Abstract
Organogenesis requires exquisite spatiotemporal coordination of cell morphogenesis, migration, proliferation, and differentiation of multiple cell types. For gonads, this involves complex interactions between somatic and germline tissues. During Drosophila ovary morphogenesis, primordial germ cells (PGCs) either are sequestered in stem cell niches and are maintained in an undifferentiated germline stem cell state or transition directly toward differentiation. Here, we identify a mechanism that links hormonal triggers of somatic tissue morphogenesis with PGC differentiation. An early ecdysone pulse initiates somatic swarm cell (SwC) migration, positioning these cells close to PGCs. A second hormone peak activates Torso-like signal in SwCs, which stimulates the Torso receptor tyrosine kinase (RTK) signaling pathway in PGCs promoting their differentiation by de-repression of the differentiation gene, bag of marbles. Thus, systemic temporal cues generate a transitory signaling center that coordinates ovarian morphogenesis with stem cell self-renewal and differentiation programs, highlighting a more general role for such centers in reproductive and developmental biology.
Collapse
Affiliation(s)
- Torsten U Banisch
- Department of Cell Biology, Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY 10016, USA.
| | - Maija Slaidina
- Department of Cell Biology, Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Selena Gupta
- Department of Cell Biology, Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Megan Ho
- Department of Cell Biology, Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Lilach Gilboa
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ruth Lehmann
- Department of Cell Biology, Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
7
|
Scheys F, Van Damme EJM, Pauwels J, Staes A, Gevaert K, Smagghe G. N-glycosylation Site Analysis Reveals Sex-related Differences in Protein N-glycosylation in the Rice Brown Planthopper ( Nilaparvata lugens). Mol Cell Proteomics 2020; 19:529-539. [PMID: 31924694 PMCID: PMC7050106 DOI: 10.1074/mcp.ra119.001823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/08/2020] [Indexed: 01/24/2023] Open
Abstract
Glycosylation is a common modification of proteins and critical for a wide range of biological processes. Differences in protein glycosylation between sexes have already been observed in humans, nematodes and trematodes, and have recently also been reported in the rice pest insect Nilaparvata lugens Although protein N-glycosylation in insects is nowadays of high interest because of its potential for exploitation in pest control strategies, the functionality of differential N-glycosylation between sexes is yet unknown. In this study, therefore, the occurrence and role of sex-related protein N-glycosylation in insects were examined. A comprehensive investigation of the N-glycosylation sites from the adult stages of N. lugens was conducted, allowing a qualitative and quantitative comparison between sexes at the glycopeptide level. N-glycopeptide enrichment via lectin capturing using the high mannose/paucimannose-binding lectin Concanavalin A, or the Rhizoctonia solani agglutinin which interacts with complex N-glycans, resulted in the identification of over 1300 N-glycosylation sites derived from over 600 glycoproteins. Comparison of these N-glycopeptides revealed striking differences in protein N-glycosylation between sexes. Male- and female-specific N-glycosylation sites were identified, and some of these sex-specific N-glycosylation sites were shown to be derived from proteins with a putative role in insect reproduction. In addition, differential glycan composition between males and females was observed for proteins shared across sexes. Both lectin blotting experiments as well as transcript expression analyses with complete insects and insect tissues confirmed the observed differences in N-glycosylation of proteins between sexes. In conclusion, this study provides further evidence for protein N-glycosylation to be sex-related in insects. Furthermore, original data on N-glycosylation sites of N. lugens adults are presented, providing novel insights into planthopper's biology and information for future biological pest control strategies.
Collapse
Affiliation(s)
- Freja Scheys
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium; Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Els J M Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Jarne Pauwels
- VIB-UGent Center for Medical Biotechnology, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - An Staes
- VIB-UGent Center for Medical Biotechnology, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium.
| |
Collapse
|
8
|
Transcriptome analyses reveal the synergistic effects of feeding and eyestalk ablation on ovarian maturation in black tiger shrimp. Sci Rep 2020; 10:3239. [PMID: 32094422 PMCID: PMC7040003 DOI: 10.1038/s41598-020-60192-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 02/03/2020] [Indexed: 01/23/2023] Open
Abstract
Unilateral eyestalk ablation in the female black tiger shrimp Penaeus monodon is commonly employed to induce ovarian maturation. However, the importance of complementing this practice with the provision of live feed supplement (such as polychaetes) has not been emphasized in previous studies. Indeed, it has been less emphasized that female broodstock must be fed with live feeds such as polychaetes for this practice to be effective. While the effects of eyestalk ablation have been thoroughly studied in various aspects, the synergistic effects of feeding with live feeds and the ablation have never been elucidated at a transcriptome-wide level. With recent advances in the next-generation sequencing platforms, it is now possible to investigate the effects of eyestalk ablation and live feeds at the transcriptomic levels. This study employed both short-read Illumina RNA sequencing and long-read Pacific Biosciences (PacBio) isoform sequencing (Iso-seq) to generate the first high-quality ovarian reference transcriptome in P. monodon. This novel assembly allowed us to dissect the effects of feeds and eyestalk ablation and reveal their synergistic effects at the transcriptomic level through the regulation of important genes involved in fatty acid regulation, energy production, and hormone-mediated oocyte maturation pathways. The synergistic effects between the polychaete feeding and the eyestalk ablation in the process of ovarian maturation in black tiger shrimp suggest that without having proper nutrients from the polychaetes, female broodstock might not be ready to develop its ovary. However, even with proper nutrients, the eyestalk ablation is still necessary to perhaps manipulate the female endocrine of the black tiger shrimp. These findings shed the light on molecular mechanisms and key molecular pathways that lead to successful ovarian maturation.
Collapse
|
9
|
Receptor Tyrosine Kinases in Development: Insights from Drosophila. Int J Mol Sci 2019; 21:ijms21010188. [PMID: 31888080 PMCID: PMC6982143 DOI: 10.3390/ijms21010188] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/25/2022] Open
Abstract
Cell-to-cell communication mediates a plethora of cellular decisions and behaviors that are crucial for the correct and robust development of multicellular organisms. Many of these signals are encoded in secreted hormones or growth factors that bind to and activate cell surface receptors, to transmit the cue intracellularly. One of the major superfamilies of cell surface receptors are the receptor tyrosine kinases (RTKs). For nearly half a century RTKs have been the focus of intensive study due to their ability to alter fundamental aspects of cell biology, such as cell proliferation, growth, and shape, and because of their central importance in diseases such as cancer. Studies in model organisms such a Drosophila melanogaster have proved invaluable for identifying new conserved RTK pathway components, delineating their contributions, and for the discovery of conserved mechanisms that control RTK-signaling events. Here we provide a brief overview of the RTK superfamily and the general mechanisms used in their regulation. We further highlight the functions of several RTKs that govern distinct cell-fate decisions in Drosophila and explore how their activities are developmentally controlled.
Collapse
|
10
|
Sex identification from distinctive gene expression patterns in Antarctic krill (Euphausia superba). Polar Biol 2019. [DOI: 10.1007/s00300-019-02592-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abstract
Antarctic krill (Euphausia superba) is a highly abundant keystone species of the Southern Ocean ecosystem, directly connecting primary producers to high-trophic level predators. Sex ratios of krill vary remarkably between swarms and this phenomenon is poorly understood, as identification of krill sex relies on external morphological differences that appear late during development. Sex determination mechanisms in krill are unknown, but could include genetic, environmental or parasitic mechanisms. Similarly, virtually nothing is known about molecular sex differentiation. The krill genome has to date not been sequenced, and due to its enormous size and large amount of repetitive elements, it is currently not feasible to develop sex-specific DNA markers. To produce a reliable molecular marker for sex in krill and to investigate molecular sex differentiation we therefore focused on identifying sex-specific transcriptomic differences. Through transcriptomic analysis, we found large gene expression differences between testes and ovaries and identified three genes exclusively expressed in female whole krill from early juvenile stages onwards. The sex-specific expression of these three genes persisted through sexual regression, although our regressed samples originated from a krill aquarium and may differ from wild-regressed krill. Two slightly male-biased genes did not display sufficient expression differences to clearly differentiate sexes. Based on the expression of the three female-specific genes we developed a molecular test that for the first time allows the unambiguous sex determination of krill samples lacking external sex-specific features from juvenile stages onwards, including the sexually regressed krill we examined.
Collapse
|
11
|
Taylor SE, Tuffery J, Bakopoulos D, Lequeux S, Warr CG, Johnson TK, Dearden PK. The torso-like gene functions to maintain the structure of the vitelline membrane in Nasonia vitripennis, implying its co-option into Drosophila axis formation. Biol Open 2019; 8:bio.046284. [PMID: 31488408 PMCID: PMC6777369 DOI: 10.1242/bio.046284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Axis specification is a fundamental developmental process. Despite this, the mechanisms by which it is controlled across insect taxa are strikingly different. An excellent example of this is terminal patterning, which in Diptera such as Drosophila melanogaster occurs via the localized activation of the receptor tyrosine kinase Torso. In Hymenoptera, however, the same process appears to be achieved via localized mRNA. How these mechanisms evolved and what they evolved from remains largely unexplored. Here, we show that torso-like, known for its role in Drosophila terminal patterning, is instead required for the integrity of the vitelline membrane in the hymenopteran wasp Nasonia vitripennis. We find that other genes known to be involved in Drosophila terminal patterning, such as torso and Ptth, also do not function in Nasonia embryonic development. These findings extended to orthologues of Drosophila vitelline membrane proteins known to play a role in localizing Torso-like in Drosophila; in Nasonia these are instead required for dorso–ventral patterning, gastrulation and potentially terminal patterning. Our data underscore the importance of the vitelline membrane in insect development, and implies phenotypes caused by knockdown of torso-like must be interpreted in light of its function in the vitelline membrane. In addition, our data imply that the signalling components of the Drosophila terminal patterning systems were co-opted from roles in regulating moulting, and co-option into terminal patterning involved the evolution of a novel interaction with the vitelline membrane protein Torso-like. This article has an associated First Person interview with the first author of the paper. Summary: In the parasitic wasp Nasonia, Tsl, a key component of the process that defines the termini of the embryo of Drosophila, has a function in the structure of the vitelline membrane.
Collapse
Affiliation(s)
- Shannon E Taylor
- Genomics Aotearoa and Biochemistry Department, University of Otago, P.O. Box 56, Dunedin, Aotearoa-New Zealand
| | - Jack Tuffery
- Genomics Aotearoa and Biochemistry Department, University of Otago, P.O. Box 56, Dunedin, Aotearoa-New Zealand
| | - Daniel Bakopoulos
- School of Biological Sciences, Monash University, 18 Innovation Walk, Clayton VIC 3800, Australia
| | - Sharon Lequeux
- Otago Micro- and Nano- scale Imaging, University of Otago, PO Box 913, Dunedin, New Zealand, Aotearoa-New Zealand
| | - Coral G Warr
- School of Medicine, University of Tasmania, 17 Liverpool St Hobart, TAS 7000, Australia
| | - Travis K Johnson
- School of Biological Sciences, Monash University, 18 Innovation Walk, Clayton VIC 3800, Australia
| | - Peter K Dearden
- Genomics Aotearoa and Biochemistry Department, University of Otago, P.O. Box 56, Dunedin, Aotearoa-New Zealand
| |
Collapse
|
12
|
Control of growth factor signalling by MACPF proteins. Biochem Soc Trans 2019; 47:801-810. [PMID: 31209154 DOI: 10.1042/bst20180179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/17/2019] [Accepted: 05/28/2019] [Indexed: 11/17/2022]
Abstract
Members of the membrane attack complex/perforin-like (MACPF) protein superfamily have long captured interest because of their unique ability to assemble into large oligomeric pores on the surfaces of cells. The best characterised of these act in vertebrate immunity where they function to deliver pro-apoptotic factors or induce the cytolysis and death of targeted cells. Less appreciated, however, is that rather than causing cell death, MACPF proteins have also evolved to control cellular signalling pathways and influence developmental programmes such as pattern formation and neurogenesis. Torso-like (Tsl) from the fruit fly Drosophila, for example, functions to localise the activity of a growth factor for patterning its embryonic termini. It remains unclear whether these developmental proteins employ an attenuated form of the classical MACPF lytic pore, or if they have evolved to function via alternative mechanisms of action. In this minireview, we examine the evidence that links pore-forming MACPF proteins to the control of growth factor and cytokine signalling. We will then attempt to reconcile how the MACPF domain may have been repurposed during evolution for developmental events rather than cell killing.
Collapse
|
13
|
Mineo A, Furriols M, Casanova J. The trigger (and the restriction) of Torso RTK activation. Open Biol 2018; 8:180180. [PMID: 30977718 PMCID: PMC6303783 DOI: 10.1098/rsob.180180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/08/2018] [Indexed: 01/09/2023] Open
Abstract
The Torso pathway is an ideal model of receptor tyrosine kinase systems, in particular when addressing questions such as how receptor activity is turned on and, equally important, how it is restricted, how different outcomes can be generated from a single signal, and the extent to which gene regulation by signalling pathways relies on the relief of transcriptional repression. In this regard, we considered it pertinent to single out the fundamental notions learned from the Torso pathway beyond the specificities of this system (Furriols and Casanova 2003 EMBO J. 22, 1947-1952. ( doi:10.1093/emboj/cdg224 )). Since then, the Torso system has gained relevance and its implications beyond its original involvement in morphogenesis and into many disciplines such as oncogenesis, hormone control and neurobiology are now acknowledged. Thus, we believe that it is timely to highlight additional notions supported by new findings and to draw attention to future prospects. Given the late development of research in the field, we wish to devote this review to the events leading to the activation of the Torso receptor, the main focus of our most recent work.
Collapse
Affiliation(s)
- Alessandro Mineo
- Institut de Biologia Molecular de Barcelona (CSIC), C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
- Institut de Recerca Biomèdica de Barcelona, (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
| | - Marc Furriols
- Institut de Biologia Molecular de Barcelona (CSIC), C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
- Institut de Recerca Biomèdica de Barcelona, (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
| | - Jordi Casanova
- Institut de Biologia Molecular de Barcelona (CSIC), C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
- Institut de Recerca Biomèdica de Barcelona, (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
14
|
De novo assembly, characterization, functional annotation and expression patterns of the black tiger shrimp (Penaeus monodon) transcriptome. Sci Rep 2018; 8:13553. [PMID: 30202061 PMCID: PMC6131155 DOI: 10.1038/s41598-018-31148-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/12/2018] [Indexed: 12/17/2022] Open
Abstract
The black tiger shrimp (Penaeus monodon) remains the second most widely cultured shrimp species globally; however, issues with disease and domestication have seen production levels stagnate over the past two decades. To help identify innovative solutions needed to resolve bottlenecks hampering the culture of this species, it is important to generate genetic and genomic resources. Towards this aim, we have produced the most complete publicly available P. monodon transcriptome database to date based on nine adult tissues and eight early life-history stages (BUSCO - Complete: 98.2% [Duplicated: 51.3%], Fragmented: 0.8%, Missing: 1.0%). The assembly resulted in 236,388 contigs, which were then further segregated into 99,203 adult tissue specific and 58,678 early life-history stage specific clusters. While annotation rates were low (approximately 30%), as is typical for a non-model organisms, annotated transcript clusters were successfully mapped to several hundred functional KEGG pathways. Transcripts were clustered into groups within tissues and early life-history stages, providing initial evidence for their roles in specific tissue functions, or developmental transitions. We expect the transcriptome to provide an essential resource to investigate the molecular basis of commercially relevant-significant traits in P. monodon and other shrimp species.
Collapse
|
15
|
Holes in the Plasma Membrane Mimic Torso-Like Perforin in Torso Tyrosine Kinase Receptor Activation in the Drosophila Embryo. Genetics 2018; 210:257-262. [PMID: 30049783 DOI: 10.1534/genetics.118.301397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/24/2018] [Indexed: 11/18/2022] Open
Abstract
Receptor tyrosine kinase (RTK) pathways play central roles in development, and, when abnormally activated, they can lead to pathological conditions, including oncogenesis. Thus, RTK activation, mediated by ligand binding, is under tight control, a critical step being the conversion of an inactive precursor into the active form of the ligand. A variety of mechanisms have been shown to be involved in this conversion; however, little attention has been paid to how mechanical phenomena may impinge on this process. Here we address this issue by studying Torso, an RTK activated at both poles of the Drosophila embryo at the blastoderm stage. Torso activation is induced by a cleaved form of Trunk, a growth factor-like protein, but it also requires the accumulation of the Torso-like (Tsl) protein at both ends of the blastoderm. Tsl is the only known protein in Drosophila bearing a membrane attack complex/perforin (MACPF) domain-a motif present in proteins involved in pore formation at cell membranes. However, while different hypotheses have been put forward to account for the function of Tsl in Torso receptor activation, little is known about its molecular role and whether it indeed contributes to membrane pore formation. Here, we show that mechanically induced holes in the Drosophila embryo can substitute for Tsl function. These results suggest that Tsl is required for an exchange between the interior of the Drosophila embryo and its surrounding milieu and that mechanically induced cell injuries may contribute to abnormal RTK activation.
Collapse
|
16
|
Genome-Wide Screen for New Components of the Drosophila melanogaster Torso Receptor Tyrosine Kinase Pathway. G3-GENES GENOMES GENETICS 2018; 8:761-769. [PMID: 29363515 PMCID: PMC5844297 DOI: 10.1534/g3.117.300491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Patterning of the Drosophila embryonic termini by the Torso (Tor) receptor pathway has long served as a valuable paradigm for understanding how receptor tyrosine kinase signaling is controlled. However, the mechanisms that underpin the control of Tor signaling remain to be fully understood. In particular, it is unclear how the Perforin-like protein Torso-like (Tsl) localizes Tor activity to the embryonic termini. To shed light on this, together with other aspects of Tor pathway function, we conducted a genome-wide screen to identify new pathway components that operate downstream of Tsl. Using a set of molecularly defined chromosomal deficiencies, we screened for suppressors of ligand-dependent Tor signaling induced by unrestricted Tsl expression. This approach yielded 59 genomic suppressor regions, 11 of which we mapped to the causative gene, and a further 29 that were mapped to <15 genes. Of the identified genes, six represent previously unknown regulators of embryonic Tor signaling. These include twins (tws), which encodes an integral subunit of the protein phosphatase 2A complex, and α-tubulin at 84B (αTub84B), a major constituent of the microtubule network, suggesting that these may play an important part in terminal patterning. Together, these data comprise a valuable resource for the discovery of new Tor pathway components. Many of these may also be required for other roles of Tor in development, such as in the larval prothoracic gland where Tor signaling controls the initiation of metamorphosis.
Collapse
|
17
|
Torso-Like Is a Component of the Hemolymph and Regulates the Insulin Signaling Pathway in Drosophila. Genetics 2018; 208:1523-1533. [PMID: 29440191 DOI: 10.1534/genetics.117.300601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/12/2018] [Indexed: 01/01/2023] Open
Abstract
In Drosophila, key developmental transitions are governed by the steroid hormone ecdysone. A number of neuropeptide-activated signaling pathways control ecdysone production in response to environmental signals, including the insulin signaling pathway, which regulates ecdysone production in response to nutrition. Here, we find that the Membrane Attack Complex/Perforin-like protein Torso-like, best characterized for its role in activating the Torso receptor tyrosine kinase in early embryo patterning, also regulates the insulin signaling pathway in Drosophila We previously reported that the small body size and developmental delay phenotypes of torso-like null mutants resemble those observed when insulin signaling is reduced. Here we report that, in addition to growth defects, torso-like mutants also display metabolic and nutritional plasticity phenotypes characteristic of mutants with impaired insulin signaling. We further find that in the absence of torso-like, the expression of insulin-like peptides is increased, as is their accumulation in insulin-producing cells. Finally, we show that Torso-like is a component of the hemolymph and that it is required in the prothoracic gland to control developmental timing and body size. Taken together, our data suggest that the secretion of Torso-like from the prothoracic gland influences the activity of insulin signaling throughout the body in Drosophila.
Collapse
|
18
|
Johnson TK, Henstridge MA, Warr CG. MACPF/CDC proteins in development: Insights from Drosophila torso-like. Semin Cell Dev Biol 2017; 72:163-170. [DOI: 10.1016/j.semcdb.2017.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 05/01/2017] [Accepted: 05/11/2017] [Indexed: 01/08/2023]
|
19
|
Maternal Torso-Like Coordinates Tissue Folding During Drosophila Gastrulation. Genetics 2017; 206:1459-1468. [PMID: 28495958 DOI: 10.1534/genetics.117.200576] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/04/2017] [Indexed: 11/18/2022] Open
Abstract
The rapid and orderly folding of epithelial tissue during developmental processes such as gastrulation requires the precise coordination of changes in cell shape. Here, we report that the perforin-like protein Torso-like (Tsl), the key extracellular determinant for Drosophila embryonic terminal patterning, also functions to control epithelial morphogenesis. We find that tsl null mutants display a ventral cuticular hole phenotype that is independent of the loss of terminal structures, and arises as a consequence of mesoderm invagination defects. We show that the holes are caused by uncoordinated constriction of ventral cell apices, resulting in the formation of an incomplete ventral furrow. Consistent with these data, we find that loss of tsl is sensitive to gene dosage of RhoGEF2, a critical mediator of Rho1-dependent ventral cell shape changes during furrow formation, suggesting that Tsl may act in this pathway. In addition, loss of tsl strongly suppressed the effects of ectopic expression of Folded Gastrulation (Fog), a secreted protein that promotes apical constriction. Taken together, our data suggest that Tsl controls Rho1-mediated apical constriction via Fog. Therefore, we propose that Tsl regulates extracellular Fog activity to synchronize cell shape changes and coordinate ventral morphogenesis in Drosophila Identifying the Tsl-mediated event that is common to both terminal patterning and morphogenesis will be valuable for our understanding of the extracellular control of developmental signaling by perforin-like proteins.
Collapse
|
20
|
Transfer of Dorsoventral and Terminal Information from the Ovary to the Embryo by a Common Group of Eggshell Proteins in Drosophila. Genetics 2017; 205:1529-1536. [PMID: 28179368 DOI: 10.1534/genetics.116.197574] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/02/2017] [Indexed: 11/18/2022] Open
Abstract
The Drosophila eggshell is an extracellular matrix that confers protection to the egg and also plays a role in transferring positional information from the ovary to pattern the embryo. Among the constituents of the Drosophila eggshell, Nasrat, Polehole, and Closca form a group of proteins related by sequence, secreted by the oocyte, and mutually required for their incorporation into the eggshell. Besides their role in eggshell integrity, Nasrat, Polehole, and Closca are also required for embryonic terminal patterning by anchoring or stabilizing Torso-like at the eggshell. Here, we show that they are also required for dorsoventral patterning, thereby unveiling that the dorsoventral and terminal systems, hitherto considered independent, share a common extracellular step. Furthermore, we show that Nasrat, Polehole, and Closca are required for proper Nudel activity, a protease acting both in embryonic dorsoventral patterning and eggshell integrity, thus providing a means to account for the role of Nasrat, Polehole, and Closca. We propose that a Nasrat/Polehole/Closca complex acts as a multifunctional hub to anchor various proteins synthesized at oogenesis, ensuring their spatial and temporal restricted function.
Collapse
|
21
|
Schmidt-Ott U, Kwan CW. Morphogenetic functions of extraembryonic membranes in insects. CURRENT OPINION IN INSECT SCIENCE 2016; 13:86-92. [PMID: 27436557 DOI: 10.1016/j.cois.2016.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/26/2016] [Accepted: 01/26/2016] [Indexed: 06/06/2023]
Abstract
Morphogenetic functions of the amnioserosa, the serosa, the amnion, and the yolk sac are reviewed on the basis of recent studies in flies (Drosophila, Megaselia), beetles (Tribolium), and hemipteran bugs (Oncopeltus). Three hypotheses are presented. First, it is suggested that the amnioserosa of Drosophila and the dorsal amnion of other fly species function in a similar manner. Second, it is proposed that in many species with an amniotic cavity, the amnion determines the site of serosa rupture, which, through interactions between the serosa and the amnion, enables the embryo to break free from the amniotic cavity and to close its backside. Finally, it is concluded that the yolk sac is likely an important player in insect morphogenesis.
Collapse
Affiliation(s)
- Urs Schmidt-Ott
- University of Chicago, Dept. of Organismal Biology and Anatomy, Cummings Life Science Center, 920 East 58th Street, Chicago, IL 60637, USA.
| | - Chun Wai Kwan
- University of Chicago, Dept. of Organismal Biology and Anatomy, Cummings Life Science Center, 920 East 58th Street, Chicago, IL 60637, USA
| |
Collapse
|
22
|
Romani P, Gargiulo G, Cavaliere V. The ecdysone receptor signalling regulates microvilli formation in follicular epithelial cells. Cell Mol Life Sci 2016; 73:409-25. [PMID: 26223269 PMCID: PMC11108565 DOI: 10.1007/s00018-015-1999-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 07/03/2015] [Accepted: 07/22/2015] [Indexed: 11/27/2022]
Abstract
Epithelial morphogenesis contributes greatly to the development and homeostasis of the organs and body parts. Here, we analysed the consequences of impaired ecdysone receptor (EcR) signalling in the Drosophila follicular epithelium. Besides governing cell growth, the three EcR isoforms act redundantly in controlling follicle cell positioning. Flattening of the microvilli and an aberrant actin cytoskeleton arise from defective EcR signalling in follicle cells, and these defects impact on the organisation of the oocyte membrane. We found that this signalling governs a complex molecular network since its impairment affects key molecules as atypical protein kinase C and activated Moesin. Interestingly, the activity of the transcription factor Tramtrack69 isoform is required for microvilli and their actin core morphogenesis as well as for follicle cell positioning. In conclusion, our findings provide evidence of novel roles for EcR signalling and Tramtrack69 transcription factor in controlling stage-specific differentiation events that take place in the follicular epithelium.
Collapse
Affiliation(s)
- Patrizia Romani
- Dipartimento di Farmacia e Biotecnologie, FaBiT, Università di Bologna, Via Selmi, 3, 40126, Bologna, Italy.
| | - Giuseppe Gargiulo
- Dipartimento di Farmacia e Biotecnologie, FaBiT, Università di Bologna, Via Selmi, 3, 40126, Bologna, Italy
| | - Valeria Cavaliere
- Dipartimento di Farmacia e Biotecnologie, FaBiT, Università di Bologna, Via Selmi, 3, 40126, Bologna, Italy.
| |
Collapse
|
23
|
Johnson TK, Henstridge MA, Herr A, Moore KA, Whisstock JC, Warr CG. Torso-like mediates extracellular accumulation of Furin-cleaved Trunk to pattern the Drosophila embryo termini. Nat Commun 2015; 6:8759. [PMID: 26508274 PMCID: PMC4640135 DOI: 10.1038/ncomms9759] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/28/2015] [Indexed: 01/21/2023] Open
Abstract
Patterning of the Drosophila embryonic termini is achieved by localized activation of the Torso receptor by the growth factor Trunk. Governing this event is the perforin-like protein Torso-like, which is localized to the extracellular space at the embryo poles and has long been proposed to control localized proteolytic activation of Trunk. However, a protease involved in terminal patterning remains to be identified, and the role of Torso-like remains unknown. Here we find that Trunk is cleaved intracellularly by Furin proteases. We further show that Trunk is secreted, and that levels of extracellular Trunk are greatly reduced in torso-like null mutants. On the basis of these and previous findings, we suggest that Torso-like functions to mediate secretion of Trunk, thus providing the mechanism for spatially restricted activation of Torso. Our data represent an alternative mechanism for the spatial control of receptor signalling, and define a different role for perforin-like proteins in eukaryotes. Activation of the growth factor Trunk patterns the Drosophila embryonic termini but how this is regulated is unclear. Here, Johnson et al. report that Trunk is cleaved intracellularly by Furin proteases, and its extracellular accumulation is then mediated by the perforin-like protein Torso-like.
Collapse
Affiliation(s)
- Travis K Johnson
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Michelle A Henstridge
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Anabel Herr
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Karyn A Moore
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - James C Whisstock
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Coral G Warr
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
24
|
Zou Z, Xu Y, Ma B, Xiang Z, He N. BmECM25, from the silkworm Bombyx mori, is an extracellular matrix protein. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 65:68-74. [PMID: 26070472 DOI: 10.1016/j.ibmb.2015.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/20/2015] [Accepted: 06/04/2015] [Indexed: 06/04/2023]
Abstract
BmECM25 (previously reported as BmVMP25) was previously predicted as a gene encoding the vitelline membrane protein in silkworm, Bombyx mori. In this study, we investigated the detail temporal and spatial patterns of BmECM25 protein. Western blot results showed that BmECM25 was expressed in the follicular epithelium cells from stages -6 to +1, and was then secreted into the oocytes. However, the abundance of BmECM25 decreased during the subsequent oogenesis and finally disappeared in the mature follicles. Immunofluorescence detection showed that BmECM25 locates inside the VM layer and forms a discontinuous layer. These features of BmECM25 suggest that it is an oocyte membrane matrix protein, not a vitelline membrane protein.
Collapse
Affiliation(s)
- Ziliang Zou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Yunmin Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Bi Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
25
|
Furriols M, Casanova J. Germline and somatic vitelline proteins colocalize in aggregates in the follicular epithelium of Drosophila ovaries. Fly (Austin) 2015; 8:113-9. [PMID: 25483249 DOI: 10.4161/fly.29133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nasrat and Polehole, two Drosophila proteins related functionally and by sequence, are secreted from the oocyte and incorporated into the vitelline membrane, where they play a role in the integrity of the same and in the activation of embryonic Torso RTK. In addition, they also accumulate in a punctate pattern in the follicular epithelium. Here we show that their accumulation at the follicle cells depends on their gene expression in the germline, indicating that these proteins move from the oocyte to the follicle cells in a process that does not require endocytosis. Finally we used cell markers to examine the distribution of these proteins at the follicle cells and show they accumulated in aggregates with vitelline membrane proteins in close association with the plasmatic membrane. We propose that these aggregates represent spatially restricted sinks for vitelline membrane proteins that fail to be incorporated into vitelline bodies and later on into the vitelline membrane.
Collapse
Affiliation(s)
- Marc Furriols
- a Institut de Biologia Molecular de Barcelona (IBMB-CSIC); Barcelona, Catalonia, Spain
| | | |
Collapse
|
26
|
Mineo A, Furriols M, Casanova J. Accumulation of the Drosophila Torso-like protein at the blastoderm plasma membrane suggests that it translocates from the eggshell. Development 2015; 142:1299-304. [PMID: 25758463 DOI: 10.1242/dev.117630] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The eggshell serves as a depository for proteins that play an important role in early embryonic development. In particular, the Drosophila eggshell is responsible for transferring asymmetries from the egg chamber to specify the regions at both ends of the embryo through the uneven activation of the Torso (Tor) receptor in its membrane. This process relies on the restricted expression of the gene torso-like (tsl) in subpopulations of follicle cells during oogenesis and its protein accumulation at both poles of the eggshell, but it is not known how this signal is transmitted to the embryo. Here, we show that Tsl accumulates at the embryonic plasma membrane, even in the absence of the Tor receptor. However, during oogenesis, we detected Tsl accumulation only at the eggshell. These results suggest that there is a two-step mechanism to transfer the asymmetric positional cues from the egg chamber into the early embryo: initial anchoring of Tsl at the eggshell as it is secreted, followed by its later translocation to the egg plasma membrane, where it enables Tor receptor activation. Translocation of anchored determinants from the eggshell might then regulate the spatial and temporal control of early embryonic developmental processes.
Collapse
Affiliation(s)
- Alessandro Mineo
- Institut de Biologia Molecular de Barcelona (CSIC), Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Catalonia, Spain
| | - Marc Furriols
- Institut de Biologia Molecular de Barcelona (CSIC), Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Catalonia, Spain
| | - Jordi Casanova
- Institut de Biologia Molecular de Barcelona (CSIC), Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
27
|
Torso-like functions independently of Torso to regulate Drosophila growth and developmental timing. Proc Natl Acad Sci U S A 2013; 110:14688-92. [PMID: 23959885 DOI: 10.1073/pnas.1309780110] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation of the Drosophila receptor tyrosine kinase Torso (Tor) only at the termini of the embryo is achieved by the localized expression of the maternal gene Torso-like (Tsl). Tor has a second function in the prothoracic gland as the receptor for prothoracicotropic hormone (PTTH) that initiates metamorphosis. Consistent with the function of Tor in this tissue, Tsl also localizes to the prothoracic gland and influences developmental timing. Despite these commonalities, in our studies of Tsl we unexpectedly found that tsl and tor have opposing effects on body size; tsl null mutants are smaller than normal, rather than larger as would be expected if the PTTH/Tor pathway was disrupted. We further found that whereas both genes regulate developmental timing, tsl does so independently of tor. Although tsl null mutants exhibit a similar length delay in time to pupariation to tor mutants, in tsl:tor double mutants this delay is strikingly enhanced. Thus, loss of tsl is additive rather than epistatic to loss of tor. We also find that phenotypes generated by ectopic PTTH expression are independent of tsl. Finally, we show that a modified form of tsl that can rescue developmental timing cannot rescue terminal patterning, indicating that Tsl can function via distinct mechanisms in different contexts. We conclude that Tsl is not just a specialized cue for Torso signaling but also acts independently of PTTH/Tor in the control of body size and the timing of developmental progression. These data highlight surprisingly diverse developmental functions for this sole Drosophila member of the perforin-like superfamily.
Collapse
|
28
|
Bickel RD, Cleveland HC, Barkas J, Jeschke CC, Raz AA, Stern DL, Davis GK. The pea aphid uses a version of the terminal system during oviparous, but not viviparous, development. EvoDevo 2013; 4:10. [PMID: 23552511 PMCID: PMC3639227 DOI: 10.1186/2041-9139-4-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/18/2013] [Indexed: 01/03/2023] Open
Abstract
Background In most species of aphid, female nymphs develop into either sexual or asexual adults depending on the length of the photoperiod to which their mothers were exposed. The progeny of these sexual and asexual females, in turn, develop in dramatically different ways. The fertilized oocytes of sexual females begin embryogenesis after being deposited on leaves (oviparous development) while the oocytes of asexual females complete embryogenesis within the mother (viviparous development). Compared with oviparous development, viviparous development involves a smaller transient oocyte surrounded by fewer somatic epithelial cells and a smaller early embryo that comprises fewer cells. To investigate whether patterning mechanisms differ between the earliest stages of the oviparous and viviparous modes of pea aphid development, we examined the expression of pea aphid orthologs of genes known to specify embryonic termini in other insects. Results Here we show that pea aphid oviparous ovaries express torso-like in somatic posterior follicle cells and activate ERK MAP kinase at the posterior of the oocyte. In addition to suggesting that some posterior features of the terminal system are evolutionarily conserved, our detection of activated ERK in the oocyte, rather than in the embryo, suggests that pea aphids may transduce the terminal signal using a mechanism distinct from the one used in Drosophila. In contrast with oviparous development, the pea aphid version of the terminal system does not appear to be used during viviparous development, since we did not detect expression of torso-like in the somatic epithelial cells that surround either the oocyte or the blastoderm embryo and we did not observe restricted activated ERK in the oocyte. Conclusions We suggest that while oviparous oocytes and embryos may specify posterior fate through an aphid terminal system, viviparous oocytes and embryos employ a different mechanism, perhaps one that does not rely on an interaction between the oocyte and surrounding somatic cells. Together, these observations provide a striking example of a difference in the fundamental events of early development that is both environmentally induced and encoded by the same genome.
Collapse
Affiliation(s)
- Ryan D Bickel
- Department of Biology, Bryn Mawr College, Bryn Mawr, PA 19010, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Conserved and divergent elements in Torso RTK activation in Drosophila development. Sci Rep 2012; 2:762. [PMID: 23094137 PMCID: PMC3478583 DOI: 10.1038/srep00762] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 10/02/2012] [Indexed: 11/29/2022] Open
Abstract
The repeated use of signalling pathways is a common phenomenon but little is known about how they become co-opted in different contexts. Here we examined this issue by analysing the activation of Drosophila Torso receptor in embryogenesis and in pupariation. While its putative ligand differs in each case, we show that Torso-like, but not other proteins required for Torso activation in embryogenesis, is also required for Torso activation in pupariation. In addition, we demonstrate that distinct enhancers control torso-like expression in both scenarios. We conclude that repeated Torso activation is linked to a duplication and differential expression of a ligand-encoding gene, the acquisition of distinct enhancers in the torso-like promoter and the recruitment of proteins independently required for embryogenesis. A combination of these mechanisms is likely to allow the repeated activation of a single receptor in different contexts.
Collapse
|
30
|
Airoldi SJ, McLean PF, Shimada Y, Cooley L. Intercellular protein movement in syncytial Drosophila follicle cells. J Cell Sci 2011; 124:4077-86. [PMID: 22135360 DOI: 10.1242/jcs.090456] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Ring canals connecting Drosophila germline, follicle and imaginal disc cells provide direct contact of cytoplasm between cells. To date, little is known about the formation, structure, or function of the somatic ring canals present in follicle and imaginal disc cells. Here, we show by confocal and electron microscopy that Pavarotti kinesin-like protein and Visgun are stable components of somatic ring canals. Using live-cell confocal microscopy, we show that somatic ring canals form from the stabilization of mitotic cleavage furrows. In contrast to germline cells, syncytial follicle cells do not divide synchronously, are not maximally branched and their ring canals do not increase in size during egg chamber development. We show for the first time that somatic ring canals permit exchange of cytoplasmic proteins between follicle cells. These results provide insight into the composition and function of ring canals in somatic cells, implying a broader functional significance for syncytial organization of cells outside the germline.
Collapse
Affiliation(s)
- Stephanie J Airoldi
- Department of Genetics, Yale School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
31
|
Ventura G, Furriols M, Martín N, Barbosa V, Casanova J. closca, a new gene required for both Torso RTK activation and vitelline membrane integrity. Germline proteins contribute to Drosophila eggshell composition. Dev Biol 2010; 344:224-32. [PMID: 20457146 DOI: 10.1016/j.ydbio.2010.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 04/29/2010] [Accepted: 05/01/2010] [Indexed: 11/29/2022]
Abstract
The Drosophila eggshell is a specialised extracellular matrix (ECM) that surrounds and protects the oocyte and the embryo until its eclosion. In addition, the vitelline membrane, the innermost layer of the eggshell, holds the local determinant required to activate the Torso RTK pathway, which establishes the embryonic terminal regions. Here we report the identification and characterisation of closca, a gene encoding a new member of a group of proteins that act non-redundantly in vitelline membrane biogenesis and in Torso signalling. We also show that the Nasrat protein, another member of this group, is incorporated into the vitelline membrane, thereby indicating that the eggshell is a shared ECM that receives contributions from both follicle cells and the germline. This observation also provides a new scenario that accounts for the long known contribution of germline products to vitelline membrane biogenesis and to the follicle cell-dependent activation of the Torso receptor.
Collapse
Affiliation(s)
- Gemma Ventura
- Institut de Biologia Molecular de Barcelona (CSIC) and Institut de Recerca de Biomèdica, Barcelona, Spain
| | | | | | | | | |
Collapse
|
32
|
Cavaliere V, Bernardi F, Romani P, Duchi S, Gargiulo G. Building up theDrosophilaeggshell: First of all the eggshell genes must be transcribed. Dev Dyn 2008; 237:2061-72. [DOI: 10.1002/dvdy.21625] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
33
|
Park Y, Zhang Z, Linhardt RJ, LeMosy EK. Distinct heparan sulfate compositions in wild-type and pipe-mutant eggshell matrix. Fly (Austin) 2008; 2:175-9. [PMID: 18719407 DOI: 10.4161/fly.6706] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Spatial information embedded in the extracellular matrix establishes the dorsoventral polarity of the Drosophila embryo through the ventral activity of a serine protease cascade. Pipe is a Golgi-localized protein responsible for generating this spatial information during oogenesis through sulfation of unknown glycans. Although Pipe has sequence homology to glycosaminoglycan 2-O-sulfotransferases, its activity and authentic substrates have not been demonstrated and genetic evidence has argued against a role for glycosaminoglycans in dorsoventral polarity establishment. Here, direct examination of matrix glycosaminoglycans demonstrates that pipe-mutant matrix shows decreased tri-sulfated heparan sulfate compared to wild-type matrix, with correspondingly increased 2-O-sulfated heparan sulfate. Chondroitin sulfate was not detected in this matrix. These results suggest that Pipe promotes 6-O- and/or N-sulfation of heparan sulfate but is not required for heparan sulfate 2-O-sulfation. We discuss the possible significance of these unexpected findings and how they might be reconciled with the genetic data.
Collapse
Affiliation(s)
- Youmie Park
- Department of Chemistry and Chemical Biology, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | | | | | | |
Collapse
|
34
|
Bernardi F, Duchi S, Cavaliere V, Donati A, Andrenacci D, Gargiulo G. Egfr signaling modulates VM32E gene expression during Drosophila oogenesis. Dev Genes Evol 2007; 217:529-40. [PMID: 17569083 DOI: 10.1007/s00427-007-0164-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 05/16/2007] [Indexed: 11/24/2022]
Abstract
Drosophila vitelline membrane gene VM32E is expressed in the follicle cells of the stage 10 egg chamber and shows a peculiar temporal and spatial expression pattern compared to the other members of the same gene family. Previous work has led us to demonstrate that Decapentaplegic (Dpp) signaling represses the expression of the VM32E gene in the centripetal follicle cells. In this paper, we describe another level of complexity of the VM32E gene expression regulation. Through clonal analyses, we show that the expression of the VM32E gene in the main body follicle cells is modulated by the epidermal growth factor receptor (Egfr) activity. In follicle cell clones expressing a constitutively active form of the Egfr, the VM32E gene is downregulated, while the loss of the Egfr activity upregulates VM32E expression. In addition, we show that the ectopic expression of the Egfr-induced ETS transcription factor PointedP2 (PntP2) affects the expression of the VM32E gene. From these results and our previously published data, it appears that the proper patterning of follicle cells, defined by Dpp and Egfr signaling pathways, controls the VM32E gene expression pattern. This may suggest that a fine tuning of the expression of specific eggshell structural genes could be part of the complex process that leads to a proper eggshell assembly.
Collapse
Affiliation(s)
- Fabio Bernardi
- Dipartimento di Biologia Evoluzionistica Sperimentale, Università di Bologna, Via Selmi 3, 40126,, Bologna, Italy
| | | | | | | | | | | |
Collapse
|
35
|
Bernardi F, Cavaliere V, Andrenacci D, Gargiulo G. Dpp signaling down-regulates the expression of VM32E eggshell gene during Drosophila oogenesis. Dev Dyn 2006; 235:768-75. [PMID: 16372348 DOI: 10.1002/dvdy.20660] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Among the members of the Drosophila melanogaster vitelline membrane protein gene family, VM32E has the unique feature of being a component of both the vitelline and the endochorion layers. The VM32E gene is expressed at stage 10 of egg chamber development in the main body follicle cells, and it is repressed in the anterior and posterior follicle cells. Here, we show that this spatial restriction of VM32E gene expression is conserved in the D. pseudoobscura orthologous gene, suggestive of a conserved function of VM32E protein. The VM32E gene is not expressed in the centripetal migrating follicle cells, where the Decapentaplegic (Dpp) pathway is active in patterning the anterior eggshell structures. By analyzing the native VM32E gene and the activity of specific VM32E regulatory regions, in genetic backgrounds altering the Dpp pathway, we show that VM32E gene is negatively regulated by the Dpp signaling. Therefore, it appears that the Dpp signaling pathway executes its control on eggshell morphogenesis also by controlling the expression of eggshell structural genes.
Collapse
Affiliation(s)
- Fabio Bernardi
- Dipartimento di Biologia Evoluzionistica Sperimentale, Bologna, Italy
| | | | | | | |
Collapse
|
36
|
Schlichting K, Wilsch-Bräuninger M, Demontis F, Dahmann C. Cadherin Cad99C is required for normal microvilli morphology in Drosophila follicle cells. J Cell Sci 2006; 119:1184-95. [PMID: 16507588 DOI: 10.1242/jcs.02831] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Microvilli are actin-filled membranous extensions common to epithelial cells. Several proteins have been identified that localize to microvilli. However, most of these proteins are dispensable for the normal morphogenesis of microvilli. Here, we show by immunoelectron microscopy that the non-classical cadherin Cad99C localizes to microvilli of Drosophila ovarian follicle cells. Loss of Cad99C function leads to disorganized and abnormal follicle cell microvilli. Conversely, overexpression of Cad99C in follicle cells results in large bundles of microvilli. Furthermore, altered microvilli morphology correlates with defects in the assembly of the vitelline membrane, an extracellular layer secreted by follicle cells that is part of the eggshell. Finally, we provide evidence that Cad99C is the homolog of vertebrate protocadherin 15. Mutations in the gene encoding protocadherin 15 lead to the disorganization of stereocilia, which are microvilli-derived extensions of cochlear hair cells, and deafness (Usher syndrome type 1F). Our data suggest an essential role for Cad99C in microvilli morphogenesis that is important for follicle cell function. Furthermore, these results indicate that insects and vertebrates use related cadherins to organize microvilli-like cellular extensions.
Collapse
Affiliation(s)
- Karin Schlichting
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | | | | | |
Collapse
|
37
|
Luschnig S, Moussian B, Krauss J, Desjeux I, Perkovic J, Nüsslein-Volhard C. An F1 genetic screen for maternal-effect mutations affecting embryonic pattern formation in Drosophila melanogaster. Genetics 2005; 167:325-42. [PMID: 15166158 PMCID: PMC1470860 DOI: 10.1534/genetics.167.1.325] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Large-scale screens for female-sterile mutations have revealed genes required maternally for establishment of the body axes in the Drosophila embryo. Although it is likely that the majority of components involved in axis formation have been identified by this approach, certain genes have escaped detection. This may be due to (1) incomplete saturation of the screens for female-sterile mutations and (2) genes with essential functions in zygotic development that mutate to lethality, precluding their identification as female-sterile mutations. To overcome these limitations, we performed a genetic mosaic screen aimed at identifying new maternal genes required for early embryonic patterning, including zygotically required ones. Using the Flp-FRT technique and a visible germline clone marker, we developed a system that allows efficient screening for maternal-effect phenotypes after only one generation of breeding, rather than after the three generations required for classic female-sterile screens. We identified 232 mutants showing various defects in embryonic pattern or morphogenesis. The mutants were ordered into 10 different phenotypic classes. A total of 174 mutants were assigned to 86 complementation groups with two alleles on average. Mutations in 45 complementation groups represent most previously known maternal genes, while 41 complementation groups represent new loci, including several involved in dorsoventral, anterior-posterior, and terminal patterning.
Collapse
Affiliation(s)
- Stefan Luschnig
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung Genetik, D-72076 Tübingen, Germany.
| | | | | | | | | | | |
Collapse
|
38
|
Tadros W, Houston SA, Bashirullah A, Cooperstock RL, Semotok JL, Reed BH, Lipshitz HD. Regulation of maternal transcript destabilization during egg activation in Drosophila. Genetics 2003; 164:989-1001. [PMID: 12871909 PMCID: PMC1462612 DOI: 10.1093/genetics/164.3.989] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In animals, the transfer of developmental control from maternal RNAs and proteins to zygotically derived products occurs at the midblastula transition. This is accompanied by the destabilization of a subset of maternal transcripts. In Drosophila, maternal transcript destabilization occurs in the absence of fertilization and requires specific cis-acting instability elements. We show here that egg activation is necessary and sufficient to trigger transcript destabilization. We have identified 13 maternal-effect lethal loci that, when mutated, result in failure of maternal transcript degradation. All mutants identified are defective in one or more additional processes associated with egg activation. These include vitelline membrane reorganization, cortical microtubule depolymerization, translation of maternal mRNA, completion of meiosis, and chromosome condensation (the S-to-M transition) after meiosis. The least pleiotropic class of transcript destabilization mutants consists of three genes: pan gu, plutonium, and giant nuclei. These three genes regulate the S-to-M transition at the end of meiosis and are thought to be required for the maintenance of cyclin-dependent kinase (CDK) activity during this cell cycle transition. Consistent with a possible functional connection between this S-to-M transition and transcript destabilization, we show that in vitro-activated eggs, which exhibit aberrant postmeiotic chromosome condensation, fail to initiate transcript degradation. Several genetic tests exclude the possibility that reduction of CDK/cyclin complex activity per se is responsible for the failure to trigger transcript destabilization in these mutants. We propose that the trigger for transcript destabilization occurs coincidently with the S-to-M transition at the end of meiosis and that pan gu, plutonium, and giant nuclei regulate maternal transcript destabilization independent of their role in cell cycle regulation.
Collapse
Affiliation(s)
- Wael Tadros
- Program in Developmental Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Recent data indicate that Torsolike, a spatial cue for patterning terminal structures of a Drosophila embryo, is stably anchored in the fruitfly eggshell; an as yet unidentified factor is required for the high activity of Torsolike at the embryo termini.
Collapse
Affiliation(s)
- Ellen K LeMosy
- Department of Cellular Biology and Anatomy, Medical College of Georgia, 1459 Laney Walker Boulevard, CB2915, Augusta, GE 30901, USA.
| |
Collapse
|
40
|
Stevens LM, Beuchle D, Jurcsak J, Tong X, Stein D. The Drosophila embryonic patterning determinant torsolike is a component of the eggshell. Curr Biol 2003; 13:1058-63. [PMID: 12814553 DOI: 10.1016/s0960-9822(03)00379-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The development of the head and tail regions of the Drosophila embryo is dependent upon the localized polar activation of Torso (Tor), a receptor tyrosine kinase that is uniformly distributed in the membrane of the developing embryo. Trunk (Trk), the proposed ligand for Tor, is secreted as an inactive precursor into the perivitelline fluid that lies between the embryonic membrane and the vitelline membrane (VM), the inner layer of the eggshell. The spatial regulation of Trk processing is thought to be mediated by the secreted product of the torsolike (tsl) gene, which is expressed during oogenesis by a specialized population of follicle cells present at the two ends of the oocyte. We show here that Tsl protein is specifically localized to the polar regions of the VM in laid eggs. We further demonstrate that although Tsl can associate with nonpolar regions of the VM, the activity of polar-localized Tsl is enhanced, suggesting the existence of another spatially restricted factor acting in this pathway. The incorporation of Tsl into the VM provides a mechanism for the transfer of spatial information from the follicle cells to the developing embryo. To our knowledge, Tsl represents the first example of an embryonic patterning determinant that is a component of the eggshell.
Collapse
Affiliation(s)
- Leslie M Stevens
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | | | | | | | |
Collapse
|
41
|
Affiliation(s)
- Marc Furriols
- Institut de Biologia Molecular de Barcelona (CSIC), C/ Jordi Girona 18-26, E-08034 Barcelona, Spain
| | | |
Collapse
|
42
|
Abstract
Many regulatory systems operate in the early mammalian embryo. This brief overview surveys several systems and their integration including polarities and axes, left-right differentiation, timers in cells, tissues and in gene expression, and imprinting. Polarities are essential from the very earliest stages of oocyte formation, and maintain their significance until blastocyst stages and beyond. They determine cleavage axes and the distribution of maternal proteins in the oocyte, distinct distributions being identified at the animal pole especially. Left-right axes are no doubt expressed from the earliest embryonic stages, and perhaps even in determining slight differences in the axes of cleavage and of maternal protein distribution. Timers, equally fundamental, have been demonstrated to control many functions in oocytes and embryos. Many fundamental processes in early mammalian oocytes and embryos are closely timed. They are classified into circadian rhythms, hourglass timers, clocks regulating major aspects of development including transcription, longevity via telomere clocks and long-range systems. Imprinting and methylation, increasingly important in establishing stable phenotypes in early embryos, might develop abnormally under some circumstances including intracytoplasmic sperm injection and cloning. A general summary briefly describes some other aspects of regulation, especially chromosomal anomalies in human embryos.
Collapse
Affiliation(s)
- R G Edwards
- Reproductive BioMedicine Online, Duck End Farm, Dry Drayton, Cambridge CB3 8DB, UK.
| |
Collapse
|