1
|
Cao T, Tian D, Wang SY, Pan Y, Xia ZX, Chen WK, Yang SW, Zeng QQ, Zhao YL, Zheng L, Li N, Lai ZM, Luo YX, Shen ZC. Microglial DBP Signaling Mediates Behavioral Abnormality Induced by Chronic Periodontitis in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2406269. [PMID: 39429161 DOI: 10.1002/advs.202406269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/10/2024] [Indexed: 10/22/2024]
Abstract
Several lines of evidence implicate that chronic periodontitis (CP) increases the risk of mental illnesses, such as anxiety and depression, yet, the associated molecular mechanism for this remains poorly defined. Here, it is reported that mice subjected to CP exhibited depression-like behaviors and hippocampal memory deficits, accompanied by synapse loss and neurogenesis impairment in the hippocampus. RNA microarray analysis disclosed that albumin D-site-binding protein (DBP) is identified as the most prominently upregulated target gene following CP, and in vivo and in vitro immunofluorescence methods showed that DBP is preferentially expressed in microglia but not neurons or astrocytes in the hippocampus. Interestingly, it is found that the expression of DBP is significantly increased in microglia after CP, and knockdown of microglial DBP ameliorated the behavioral abnormality, as well as reversed the synapse loss and hippocampal neurogenesis damage induced by CP. Furthermore, DBP knockdown improved the CP-induced hippocampal inflammation and microglial polarization. Collectively, these results indicate a critical role of DBP in orchestrating chronic periodontitis-related behavioral abnormality, hippocampal synapse loss and neurogenesis deficits, in which the microglial activation may be indispensably involved.
Collapse
Affiliation(s)
- Ting Cao
- Department of Children's Stomatology, Stomatological Hospital of Xiamen Medical College, Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, 361003, China
| | - Dan Tian
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Si-Ying Wang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Yue Pan
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Zhi-Xuan Xia
- Department of Pharmacology, School of Basic Medicine and Life Science, Hainan Medical University, Haikou, 571199, China
| | - Wei-Kai Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Shao-Wei Yang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Qing-Quan Zeng
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Yue-Ling Zhao
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Ling Zheng
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Ning Li
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Zhong-Meng Lai
- Department of Anesthesiology, Union Hospital, Fujian Medical University, Fuzhou, 350001, China
| | - Yi-Xiao Luo
- Hunan Province People's Hospital, The First-affiliated Hospital of Hunan Normal University, Changsha, 410002, China
| | - Zu-Cheng Shen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| |
Collapse
|
2
|
Slabeva K, Baud MO. Timing Mechanisms for Circadian Seizures. Clocks Sleep 2024; 6:589-601. [PMID: 39449314 PMCID: PMC11503444 DOI: 10.3390/clockssleep6040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/17/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
For centuries, epileptic seizures have been noticed to recur with temporal regularity, suggesting that an underlying biological rhythm may play a crucial role in their timing. In this review, we propose to adopt the framework of chronobiology to study the circadian timing of seizures. We first review observations made on seizure timing in patients with epilepsy and animal models of the disorder. We then present the existing chronobiology paradigm to disentangle intertwined circadian and sleep-wake timing mechanisms. In the light of this framework, we review the existing evidence for specific timing mechanisms in specific epilepsy syndromes and highlight that current knowledge is far from sufficient. We propose that individual seizure chronotypes may result from an interplay between independent timing mechanisms. We conclude with a research agenda to help solve the urgency of ticking seizures.
Collapse
Affiliation(s)
- Kristina Slabeva
- Zentrum für Experimentelle Neurologie, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Maxime O. Baud
- Zentrum für Experimentelle Neurologie, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Schlaf-Wach Epilepsie Zentrum, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
3
|
Masuda S, Kurabayashi N, Nunokawa R, Otobe Y, Kozuka-Hata H, Oyama M, Shibata Y, Inoue JI, Koebis M, Aiba A, Yoshitane H, Fukada Y. TRAF7 determines circadian period through ubiquitination and degradation of DBP. Commun Biol 2024; 7:1280. [PMID: 39379486 PMCID: PMC11461874 DOI: 10.1038/s42003-024-07002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 10/01/2024] [Indexed: 10/10/2024] Open
Abstract
D-site binding protein, DBP, is a clock-controlled transcription factor and drives daily rhythms of physiological processes through the regulation of an array of genes harboring a DNA binding motif, D-box. DBP protein levels show a circadian oscillation with an extremely robust peak/trough ratio, but it is elusive how the temporal pattern is regulated by post-translational regulation. In this study, we show that DBP protein levels are down-regulated by the ubiquitin-proteasome pathway. Analysis using 19 dominant-negative forms of E2 enzymes have revealed that UBE2G1 and UBE2T mediate the degradation of DBP. A proteomic analysis of DBP-interacting proteins and database screening have identified Tumor necrosis factor Receptor-Associated Factor 7 (TRAF7), a RING-type E3 ligase, that forms a complex with UBE2G1 and/or UBE2T. Ubiquitination analysis have revealed that TRAF7 enhances K48-linked polyubiquitination of DBP in cultured cells. Overexpression of TRAF7 down-regulates DBP protein level, while knockdown of TRAF7 up-regulates DBP in cultured cells. Knockout of TRAF7 in NIH3T3 cells have revealed that TRAF7 mediates the time-of-the-day-dependent regulation of DBP levels. Furthermore, TRAF7 has a period-shortening effect on the cellular clock. Together, TRAF7 plays an important role in circadian clock oscillation through destabilization of DBP.
Collapse
Affiliation(s)
- Shusaku Masuda
- Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo, Japan
| | - Nobuhiro Kurabayashi
- Circadiain Clock Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Rina Nunokawa
- Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo, Japan
| | - Yuta Otobe
- Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo, Japan
- Circadiain Clock Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yuri Shibata
- Division of Cellular and Molecular Biology, Department of Cancer Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jun-Ichiro Inoue
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Cellular and Molecular Biology, Department of Cancer Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Michinori Koebis
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Atsu Aiba
- Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hikari Yoshitane
- Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo, Japan.
- Circadiain Clock Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | - Yoshitaka Fukada
- Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo, Japan.
- Circadiain Clock Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
4
|
Huang W, Zong J, Zhang Y, Zhou Y, Zhang L, Wang Y, Shan Z, Xie Q, Li M, Pan S, Xiao Z. The Role of Circadian Rhythm in Neurological Diseases: A Translational Perspective. Aging Dis 2024; 15:1565-1587. [PMID: 37815902 PMCID: PMC11272204 DOI: 10.14336/ad.2023.0921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/21/2023] [Indexed: 10/12/2023] Open
Abstract
Intrinsic biological clocks drive the circadian rhythm, which coordinates the physiological and pathophysiological processes in the body. Recently, a bidirectional relationship between circadian rhythms and several neurological diseases has been reported. Neurological diseases can lead to the disruption of circadian homeostasis, thereby increasing disease severity. Therefore, optimizing the current treatments through circadian-based approaches, including adjusted dosing, changing lifestyle, and targeted interventions, offer a promising opportunity for better clinical outcomes and precision medicine. In this review, we provide detailed implications of the circadian rhythm in neurological diseases through bench-to-bedside approaches. Furthermore, based on the unsatisfactory clinical outcomes, we critically discuss the potential of circadian-based interventions, which may encourage more studies in this discipline, with the hope of improving treatment efficacy in neurological diseases.
Collapse
Affiliation(s)
- Wanbin Huang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jiabin Zong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yanjie Zhou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lily Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yajuan Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhengming Shan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qingfang Xie
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ming Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Songqing Pan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zheman Xiao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
5
|
Mortimer T, Zinna VM, Atalay M, Laudanna C, Deryagin O, Posas G, Smith JG, García-Lara E, Vaca-Dempere M, Monteiro de Assis LV, Heyde I, Koronowski KB, Petrus P, Greco CM, Forrow S, Oster H, Sassone-Corsi P, Welz PS, Muñoz-Cánoves P, Benitah SA. The epidermal circadian clock integrates and subverts brain signals to guarantee skin homeostasis. Cell Stem Cell 2024; 31:834-849.e4. [PMID: 38701785 DOI: 10.1016/j.stem.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/14/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024]
Abstract
In mammals, the circadian clock network drives daily rhythms of tissue-specific homeostasis. To dissect daily inter-tissue communication, we constructed a mouse minimal clock network comprising only two nodes: the peripheral epidermal clock and the central brain clock. By transcriptomic and functional characterization of this isolated connection, we identified a gatekeeping function of the peripheral tissue clock with respect to systemic inputs. The epidermal clock concurrently integrates and subverts brain signals to ensure timely execution of epidermal daily physiology. Timely cell-cycle termination in the epidermal stem cell compartment depends upon incorporation of clock-driven signals originating from the brain. In contrast, the epidermal clock corrects or outcompetes potentially disruptive feeding-related signals to ensure the optimal timing of DNA replication. Together, we present an approach for cataloging the systemic dependencies of daily temporal organization in a tissue and identify an essential gate-keeping function of peripheral circadian clocks that guarantees tissue homeostasis.
Collapse
Affiliation(s)
- Thomas Mortimer
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.
| | - Valentina M Zinna
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Muge Atalay
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Carmelo Laudanna
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Oleg Deryagin
- Universitat Pompeu Fabra (UPF), Department of Medicine and Life Sciences (MELIS), 08003 Barcelona, Spain
| | - Guillem Posas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Jacob G Smith
- Universitat Pompeu Fabra (UPF), Department of Medicine and Life Sciences (MELIS), 08003 Barcelona, Spain; Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Elisa García-Lara
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Mireia Vaca-Dempere
- Universitat Pompeu Fabra (UPF), Department of Medicine and Life Sciences (MELIS), 08003 Barcelona, Spain
| | | | - Isabel Heyde
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Kevin B Koronowski
- Department of Biochemistry & Structural Biology, Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Paul Petrus
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Medicine (H7), Karolinska Institute, 141 86 Stockholm, Sweden
| | - Carolina M Greco
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcinni 4, Pieve Emanuele, 20090 Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Stephen Forrow
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Patrick-Simon Welz
- Hospital del Mar Research Institute, Cancer Research Programme, 08003 Barcelona, Spain.
| | - Pura Muñoz-Cánoves
- Universitat Pompeu Fabra (UPF), Department of Medicine and Life Sciences (MELIS), 08003 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain; Altos Labs Inc, San Diego Institute of Science, San Diego, CA 92121, USA.
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain.
| |
Collapse
|
6
|
Okyar A, Ozturk Civelek D, Akyel YK, Surme S, Pala Kara Z, Kavakli IH. The role of the circadian timing system on drug metabolism and detoxification: an update. Expert Opin Drug Metab Toxicol 2024; 20:503-517. [PMID: 38753451 DOI: 10.1080/17425255.2024.2356167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION The 24-hour variations in drug absorption, distribution, metabolism, and elimination, collectively known as pharmacokinetics, are fundamentally influenced by rhythmic physiological processes regulated by the molecular clock. Recent advances have elucidated the intricacies of the circadian timing system and the molecular interplay between biological clocks, enzymes and transporters in preclinical level. AREA COVERED Circadian rhythm of the drug metabolizing enzymes and carrier efflux functions possess a major role for drug metabolism and detoxification. The efflux and metabolism function of intestines and liver seems important. The investigations revealed that the ABC and SLC transporter families, along with cytochrome p-450 systems in the intestine, liver, and kidney, play a dominant role in the circadian detoxification of drugs. Additionally, the circadian control of efflux by the blood-brain barrier is also discussed. EXPERT OPINION The influence of the circadian timing system on drug pharmacokinetics significantly impacts the efficacy, adverse effects, and toxicity profiles of various drugs. Moreover, the emergence of sex-related circadian changes in the metabolism and detoxification processes has underscored the importance of considering gender-specific differences in drug tolerability and pharmacology. A better understanding of coupling between central clock and circadian metabolism/transport contributes to the development of more rational drug utilization and the implementation of chronotherapy applications.
Collapse
Affiliation(s)
- Alper Okyar
- Department of Pharmacology, Istanbul University Faculty of Pharmacy, Istanbul, Turkiye
| | - Dilek Ozturk Civelek
- Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkiye
| | - Yasemin Kubra Akyel
- Department of Medical Pharmacology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Saliha Surme
- Molecular Biology and Genetics, Koc University, Istanbul, Türkiye
- Chemical and Biological Engineering, Koc University, Istanbul, Türkiye
| | - Zeliha Pala Kara
- Department of Pharmacology, Istanbul University Faculty of Pharmacy, Istanbul, Turkiye
| | - I Halil Kavakli
- Molecular Biology and Genetics, Koc University, Istanbul, Türkiye
- Chemical and Biological Engineering, Koc University, Istanbul, Türkiye
| |
Collapse
|
7
|
Tota M, Karska J, Kowalski S, Piątek N, Pszczołowska M, Mazur K, Piotrowski P. Environmental pollution and extreme weather conditions: insights into the effect on mental health. Front Psychiatry 2024; 15:1389051. [PMID: 38863619 PMCID: PMC11165707 DOI: 10.3389/fpsyt.2024.1389051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
Environmental pollution exposures, including air, soil, water, light, and noise pollution, are critical issues that may implicate adverse mental health outcomes. Extreme weather conditions, such as hurricanes, floods, wildfires, and droughts, may also cause long-term severe concerns. However, the knowledge about possible psychiatric disorders associated with these exposures is currently not well disseminated. In this review, we aim to summarize the current knowledge on the impact of environmental pollution and extreme weather conditions on mental health, focusing on anxiety spectrum disorders, autism spectrum disorders, schizophrenia, and depression. In air pollution studies, increased concentrations of PM2.5, NO2, and SO2 were the most strongly associated with the exacerbation of anxiety, schizophrenia, and depression symptoms. We provide an overview of the suggested underlying pathomechanisms involved. We highlight that the pathogenesis of environmental pollution-related diseases is multifactorial, including increased oxidative stress, systematic inflammation, disruption of the blood-brain barrier, and epigenetic dysregulation. Light pollution and noise pollution were correlated with an increased risk of neurodegenerative disorders, particularly Alzheimer's disease. Moreover, the impact of soil and water pollution is discussed. Such compounds as crude oil, heavy metals, natural gas, agro-chemicals (pesticides, herbicides, and fertilizers), polycyclic or polynuclear aromatic hydrocarbons (PAH), solvents, lead (Pb), and asbestos were associated with detrimental impact on mental health. Extreme weather conditions were linked to depression and anxiety spectrum disorders, namely PTSD. Several policy recommendations and awareness campaigns should be implemented, advocating for the advancement of high-quality urbanization, the mitigation of environmental pollution, and, consequently, the enhancement of residents' mental health.
Collapse
Affiliation(s)
- Maciej Tota
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Julia Karska
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Szymon Kowalski
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Natalia Piątek
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | | | - Katarzyna Mazur
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Patryk Piotrowski
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
8
|
Thöny B, Ng J, Kurian MA, Mills P, Martinez A. Mouse models for inherited monoamine neurotransmitter disorders. J Inherit Metab Dis 2024; 47:533-550. [PMID: 38168036 DOI: 10.1002/jimd.12710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/07/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Several mouse models have been developed to study human defects of primary and secondary inherited monoamine neurotransmitter disorders (iMND). As the field continues to expand, current defects in corresponding mouse models include enzymes and a molecular co-chaperone involved in monoamine synthesis and metabolism (PAH, TH, PITX3, AADC, DBH, MAOA, DNAJC6), tetrahydrobiopterin (BH4) cofactor synthesis and recycling (adGTPCH1/DRD, arGTPCH1, PTPS, SR, DHPR), and vitamin B6 cofactor deficiency (ALDH7A1), as well as defective monoamine neurotransmitter packaging (VMAT1, VMAT2) and reuptake (DAT). No mouse models are available for human DNAJC12 co-chaperone and PNPO-B6 deficiencies, disorders associated with recessive variants that result in decreased stability and function of the aromatic amino acid hydroxylases and decreased neurotransmitter synthesis, respectively. More than one mutant mouse is available for some of these defects, which is invaluable as different variant-specific (knock-in) models may provide more insights into underlying mechanisms of disorders, while complete gene inactivation (knock-out) models often have limitations in terms of recapitulating complex human diseases. While these mouse models have common phenotypic traits also observed in patients, reflecting the defective homeostasis of the monoamine neurotransmitter pathways, they also present with disease-specific manifestations with toxic accumulation or deficiency of specific metabolites related to the specific gene affected. This review provides an overview of the currently available models and may give directions toward selecting existing models or generating new ones to investigate novel pathogenic mechanisms and precision therapies.
Collapse
Affiliation(s)
- Beat Thöny
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zürich, Switzerland
| | - Joanne Ng
- Genetic Therapy Accelerator Centre, University College London, Queen Square Institute of Neurology, London, UK
| | - Manju A Kurian
- Zayed Centre for Research into Rare Disease in Children, GOS Institute of Child Health, University College London, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Philippa Mills
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Aurora Martinez
- Department of Biomedicine and Center for Translational Research in Parkinson's Disease, University of Bergen, Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
9
|
Deng L, Jiang H, Lin J, Xu D, Qi A, Guo Q, Li PP, Wang X, Liu JS, Fu X, Li P. Clock knockout in inhibitory neurons reduces predisposition to epilepsy and influences anxiety-like behaviors in mice. Neurobiol Dis 2024; 193:106457. [PMID: 38423191 DOI: 10.1016/j.nbd.2024.106457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024] Open
Abstract
Epilepsy is a brain disorder affecting up to 1 in 26 individuals. Despite its clinical importance, the molecular mechanisms of epileptogenesis are still far from clarified. Our previous study showed that disruption of Clock in excitatory neurons alters cortical circuits and leads to generation of focal epilepsy. In this study, a GAD-Cre;Clockflox/flox mouse line with conditional Clock gene knockout in inhibitory neurons was established. We observed that seizure latency was prolonged, the severity and mortality of pilocarpine-induced seizure were significantly reduced, and memory was improved in GAD-Cre;Clockflox/flox mice. We hypothesize that mice with CLOCK knockout in inhibitory neurons have increased threshold for seizure, opposite from mice with CLOCK knockout in excitatory neurons. Further investigation showed Clock knockout in inhibitory neurons upregulated the basal protein level of ARC, a synaptic plasticity-associated immediate-early gene product, likely through the BDNF-ERK pathway. Altered basal levels of ARC may play an important role in epileptogenesis after Clock deletion in inhibitory neurons. Although sEPSCs and intrinsic properties of layer 5 pyramidal neurons in the somatosensory cortex exhibit no changes, the spine density increased in apical dendrite of pyramidal neurons in CLOCK knockout group. Our results suggest an underlying mechanism by which the circadian protein CLOCK in inhibitory neurons participates in neuronal activity and regulates the predisposition to epilepsy.
Collapse
Affiliation(s)
- Lu Deng
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Hong Jiang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Jingjing Lin
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Di Xu
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Ailin Qi
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Qing Guo
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Ping-Ping Li
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Xinshi Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Shangcai Village, Ouhai District, Wenzhou, Zhejiang Province, China
| | - Judy S Liu
- Department of Neurology, Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02903, USA.
| | - Xiaoqin Fu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China.
| | - Peijun Li
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China; Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117, Jinan, Shandong, China.
| |
Collapse
|
10
|
Li L, Yu Y, Zhuang Z, Wu Q, Lin S, Hu J. Circadian rhythm, ipRGCs, and dopamine signalling in myopia. Graefes Arch Clin Exp Ophthalmol 2024; 262:983-990. [PMID: 37864638 DOI: 10.1007/s00417-023-06276-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/01/2023] [Accepted: 10/09/2023] [Indexed: 10/23/2023] Open
Abstract
Myopia, a common ophthalmic disorder, places a high economic burden on individuals and society. Genetic and environmental factors influence myopia progression; however, the underlying mechanisms remain unelucidated. This paper reviews recent advances in circadian rhythm, intrinsically photosensitive retinal ganglion cells (ipRGCs), and dopamine (DA) signalling in myopia and proposes the hypothesis of a circadian rhythm brain retinal circuit in myopia progression. The search of relevant English articles was conducted in the PubMed databases until June 2023. Based on the search, emerging evidence indicated that circadian rhythm was associated with myopia, including circadian genes Bmal1, Cycle, and Per. In both humans and animals, the ocular morphology and physiology show rhythmic oscillations. Theoretically, such ocular rhythms are regulated locally and indirectly via the suprachiasmatic nucleus, which receives signal from the ipRGCs. Compared with the conventional retinal ganglion cells, ipRGCs can sense the presence of light because of specific expression of melanopsin. Light, together with ipRGCs and DA signalling, plays a crucial role in both circadian rhythm and myopia. In summary, regarding myopia progression, a circadian rhythm brain retinal circuit involving ipRGCs and DA signalling has not been well established. However, based on the relationship between circadian rhythm, ipRGCs, and DA signalling in myopia, we hypothesised a circadian rhythm brain retinal circuit.
Collapse
Affiliation(s)
- Licheng Li
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Engineering Research Centre of Assistive Technology for Visual Impairment, Fujian Province University, Quanzhou, Fujian Province, China
| | - Yang Yu
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Engineering Research Centre of Assistive Technology for Visual Impairment, Fujian Province University, Quanzhou, Fujian Province, China
| | - Zihao Zhuang
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Engineering Research Centre of Assistive Technology for Visual Impairment, Fujian Province University, Quanzhou, Fujian Province, China
| | - Qi Wu
- Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St., Sydney, Australia
| | - Shu Lin
- Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St., Sydney, Australia.
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| | - Jianmin Hu
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Engineering Research Centre of Assistive Technology for Visual Impairment, Fujian Province University, Quanzhou, Fujian Province, China.
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian Province, China.
| |
Collapse
|
11
|
Chang J, Xu Y, Fu Y, Liu J, Jiang D, Pan J, Ouyang H, Liu W, Xu J, Tian Y, Huang Y, Ruan J, Shen X. The dynamic landscape of chromatin accessibility and active regulatory elements in the mediobasal hypothalamus influences the seasonal activation of the reproductive axis in the male quail under long light exposure. BMC Genomics 2024; 25:197. [PMID: 38373887 PMCID: PMC10877898 DOI: 10.1186/s12864-024-10097-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND In cold and temperate zones, seasonal reproduction plays a crucial role in the survival and reproductive success of species. The photoperiod influences reproductive processes in seasonal breeders through the hypothalamic-pituitary-gonadal (HPG) axis, in which the mediobasal hypothalamus (MBH) serves as the central region responsible for transmitting light information to the endocrine system. However, the cis-regulatory elements and the transcriptional activation mechanisms related to seasonal activation of the reproductive axis in MBH remain largely unclear. In this study, an artificial photoperiod program was used to induce the HPG axis activation in male quails, and we compared changes in chromatin accessibility changes during the seasonal activation of the HPG axis. RESULTS Alterations in chromatin accessibility occurred in the mediobasal hypothalamus (MBH) and stabilized at LD7 during the activation of the HPG axis. Most open chromatin regions (OCRs) are enriched mainly in introns and distal intergenic regions. The differentially accessible regions (DARs) showed enrichment of binding motifs of the RFX, NKX, and MEF family of transcription factors that gained-loss accessibility under long-day conditions, while the binding motifs of the nuclear receptor (NR) superfamily and BZIP family gained-open accessibility. Retinoic acid signaling and GTPase-mediated signal transduction are involved in adaptation to long days and maintenance of the HPG axis activation. According to our footprint analysis, three clock-output genes (TEF, DBP, and HLF) and the THRA were the first responders to long days in LD3. THRB, NR3C2, AR, and NR3C1 are the key players associated with the initiation and maintenance of the activation of the HPG axis, which appeared at LD7 and tended to be stable under long-day conditions. By integrating chromatin and the transcriptome, three genes (DIO2, SLC16A2, and PDE6H) involved in thyroid hormone signaling showed differential chromatin accessibility and expression levels during the seasonal activation of the HPG axis. TRPA1, a target of THRB identified by DAP-seq, was sensitive to photoactivation and exhibited differential expression levels between short- and long-day conditions. CONCLUSION Our data suggest that trans effects were the main factors affecting gene expression during the seasonal activation of the HPG axis. This study could lead to further research on the seasonal reproductive behavior of birds, particularly the role of MBH in controlling seasonal reproductive behavior.
Collapse
Affiliation(s)
- Jianye Chang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yanglong Xu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yuting Fu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jiaxin Liu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Danli Jiang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jianqiu Pan
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Hongjia Ouyang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Wenjun Liu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jin Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510642, China
| | - Yunbo Tian
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yunmao Huang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Jue Ruan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Xu Shen
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| |
Collapse
|
12
|
Karska J, Kowalski S, Gładka A, Brzecka A, Sochocka M, Kurpas D, Beszłej JA, Leszek J. Artificial light and neurodegeneration: does light pollution impact the development of Alzheimer's disease? GeroScience 2024; 46:87-97. [PMID: 37733222 PMCID: PMC10828315 DOI: 10.1007/s11357-023-00932-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023] Open
Abstract
Two multidimensional problems of recent times - Alzheimer's disease and light pollution - seem to be more interrelated than previously expected. A series of studies in years explore the pathogenesis and the course of Alzheimer's disease, yet the mechanisms underlying this pathology remain not fully discovered and understood. Artificial lights which accompany civilization on a daily basis appear to have more detrimental effects on both environment and human health than previously anticipated. Circadian rhythm is affected by inappropriate lighting conditions in particular. The consequences are dysregulation of the sleep-wake cycle, gene expression, neuronal restructuring, brain's electricity, blood flow, metabolites' turnover, and gut microbiota as well. All these phenomena may contribute to neurodegeneration and consequently Alzheimer's disease. There is an increasing number of research underlining the complexity of the correlation between light pollution and Alzheimer's disease; however, additional studies to enhance the key tenets are required for a better understanding of this relationship.
Collapse
Affiliation(s)
- Julia Karska
- Department of Psychiatry, Wrocław Medical University, Pasteura 10, 50-367, Wrocław, Poland.
| | - Szymon Kowalski
- Faculty of Medicine, Wrocław Medical University, Pasteura 1, 50-367, Wrocław, Poland
| | - Anna Gładka
- Department of Psychiatry, Wrocław Medical University, Pasteura 10, 50-367, Wrocław, Poland
| | - Anna Brzecka
- Department of Pulmonology and Lung Oncology, Wrocław Medical University, Grabiszyńska 105, 53-439, Wrocław, Poland
| | - Marta Sochocka
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland
| | - Donata Kurpas
- Health Sciences Faculty, Wroclaw Medical University, Bartla 5, 50-996, Wrocław, Poland
| | - Jan Aleksander Beszłej
- Department of Psychiatry, Wrocław Medical University, Pasteura 10, 50-367, Wrocław, Poland
| | - Jerzy Leszek
- Department of Psychiatry, Wrocław Medical University, Pasteura 10, 50-367, Wrocław, Poland
| |
Collapse
|
13
|
Akpoghiran O, Afonso DJS, Zhang Y, Koh K. TARANIS Interacts with VRILLE and PDP1 to Modulate the Circadian Transcriptional Feedback Mechanism in Drosophila. J Neurosci 2024; 44:e0922232023. [PMID: 38296648 PMCID: PMC10860567 DOI: 10.1523/jneurosci.0922-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 02/02/2024] Open
Abstract
The molecular clock that generates daily rhythms of behavior and physiology consists of interlocked transcription-translation feedback loops. In Drosophila, the primary feedback loop involving the CLOCK-CYCLE transcriptional activators and the PERIOD-TIMELESS transcriptional repressors is interlocked with a secondary loop involving VRILLE (VRI) and PAR DOMAIN PROTEIN 1 (PDP1), a repressor and activator of Clock transcription, respectively. Whereas extensive studies have found numerous transcriptional, translational, and posttranslational modulators of the primary loop, relatively little is known about the secondary loop. In this study, using male and female flies as well as cultured cells, we demonstrate that TARANIS (TARA), a Drosophila homolog of the TRIP-Br/SERTAD family of transcriptional coregulators, functions with VRI and PDP1 to modulate the circadian period and rhythm strength. Knocking down tara reduces rhythm amplitude and can shorten the period length, while overexpressing TARA lengthens the circadian period. Additionally, tara mutants exhibit reduced rhythmicity and lower expression of the PDF neuropeptide. We find that TARA can form a physical complex with VRI and PDP1, enhancing their repressor and activator functions, respectively. The conserved SERTA domain of TARA is required to regulate the transcriptional activity of VRI and PDP1, and its deletion leads to reduced locomotor rhythmicity. Consistent with TARA's role in enhancing VRI and PDP1 activity, overexpressing tara has a similar effect on the circadian period and rhythm strength as simultaneously overexpressing vri and Pdp1 Together, our results suggest that TARA modulates circadian behavior by enhancing the transcriptional activity of VRI and PDP1.
Collapse
Affiliation(s)
- Oghenerukevwe Akpoghiran
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia 19107, Pennsylvania
| | - Dinis J S Afonso
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia 19107, Pennsylvania
| | - Yanan Zhang
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia 19107, Pennsylvania
| | - Kyunghee Koh
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia 19107, Pennsylvania
| |
Collapse
|
14
|
Akpoghiran O, Afonso DJ, Zhang Y, Koh K. TARANIS interacts with VRILLE and PDP1 to modulate the circadian transcriptional feedback mechanism in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541420. [PMID: 38076905 PMCID: PMC10705542 DOI: 10.1101/2023.05.19.541420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The molecular clock that generates daily rhythms of behavior and physiology consists of interlocked transcription-translation feedback loops. In Drosophila, the primary feedback loop involving the CLOCK-CYCLE transcriptional activators and the PERIOD-TIMELESS transcriptional repressors is interlocked with a secondary loop involving VRILLE (VRI) and PAR DOMAIN PROTEIN 1 (PDP1), a repressor and activator of Clock transcription, respectively. Whereas extensive studies have found numerous transcriptional, translational, and post-translational modulators of the primary loop, relatively little is known about the secondary loop. In this study, using male and female flies as well as cultured cells, we demonstrate that TARANIS (TARA), a Drosophila homolog of the TRIP-Br/SERTAD family of transcriptional coregulators, functions with VRI and PDP1 to modulate the circadian period and rhythm strength. Knocking down tara reduces rhythm amplitude and can shorten the period length, while overexpressing TARA lengthens the circadian period. Additionally, tara mutants exhibit reduced rhythmicity and lower expression of the PDF neuropeptide. We find that TARA can form a physical complex with VRI and PDP1, enhancing their repressor and activator functions, respectively. The conserved SERTA domain of TARA is required to regulate the transcriptional activity of VRI and PDP1, and its deletion leads to reduced locomotor rhythmicity. Consistent with TARA's role in enhancing VRI and PDP1 activity, overexpressing tara has a similar effect on the circadian period and rhythm strength as simultaneously overexpressing vri and Pdp1. Together, our results suggest that TARA modulates circadian behavior by enhancing the transcriptional activity of VRI and PDP1.
Collapse
Affiliation(s)
- Oghenerukevwe Akpoghiran
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia, USA. 19107
| | - Dinis J.S. Afonso
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia, USA. 19107
| | - Yanan Zhang
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia, USA. 19107
| | - Kyunghee Koh
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia, USA. 19107
| |
Collapse
|
15
|
Sun Z, Wu K, Feng C, Lei XG. Selenium-dependent glutathione peroxidase 1 regulates transcription of elongase 3 in murine tissues. Free Radic Biol Med 2023; 208:708-717. [PMID: 37726091 DOI: 10.1016/j.freeradbiomed.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/26/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023]
Abstract
We have previously shown dysregulated lipid metabolism in tissues of glutathione peroxidase 1 (GPX1) overexpressing (OE) or deficient (KO) mice. This study explored underlying mechanisms of GPX1 in regulating tissue fatty acid (FA) biosynthesis. GPX1 OE, KO, and wild-type (WT) mice (n = 5, male, 3-6 months old) were fed a Se-adequate diet (0.3 mg/kg) and assayed for liver and adipose tissue FA profiles and mRNA levels of key enzymes of FA biosynthesis and redox-responsive transcriptional factors (TFs). These three genotypes of mice (n = 5) were injected intraperitoneally with diquat, ebselen, and N-acetylcysteine (NAC) at 10, 50, and 50 mg/kg of body weight, respectively, and killed at 0 and 12 h after the injections to detect mRNA levels of FA elongases and desaturases and the TFs in the liver and adipose tissue. A luciferase reporter assay with targeted deletions of mouse Elovl3 promoter was performed to determine transcriptional regulations of the gene by GPX1 mimic ebselen in HEK293T cells. Compared with WT, GPX1 OE and KO mice had 9-42% lower (p < 0.05) and 36-161% higher (p < 0.05) concentrations of C20:0, C22:0, and C24:0 in these two tissues, respectively, along with reciprocal increases and decreases (p < 0.05) of Elovl3 transcripts. Ebselen and NAC decreased (p < 0.05), whereas diquat decreased (p < 0.05), Elovl3 transcripts in the two tissues. Overexpression and knockout of GPX1 decreased (p < 0.05) and increased (p < 0.05) ELOVL3 levels in the two tissues, respectively. Three TFs (GABP, SP1, and DBP) were identified to bind the Elovl3 promoter (-1164/+33 base pairs). Deletion of DBP (-98/-86 base pairs) binding domain in the promoter attenuated (13%, p < 0.05) inhibition of ebselen on Elovl3 promoter activation. In summary, GPX1 overexpression down-regulated very long-chain FA biosynthesis via transcriptional inhibition of the Elovl3 promoter activation.
Collapse
Affiliation(s)
- Ziqiao Sun
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Kun Wu
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Chenhan Feng
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
16
|
Han T, Chen T, Chen L, Li K, Xiang D, Dou L, Li H, Gu Y. HLF promotes ovarian cancer progression and chemoresistance via regulating Hippo signaling pathway. Cell Death Dis 2023; 14:606. [PMID: 37709768 PMCID: PMC10502110 DOI: 10.1038/s41419-023-06076-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/05/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023]
Abstract
Hepatic leukemia factor (HLF) is aberrantly expressed in human malignancies. However, the role of HLF in the regulation of ovarian cancer (OC) remains unknown. Herein, we reported that HLF expression was upregulated in OC tissues and ovarian cancer stem cells (CSCs). Functional studies have revealed that HLF regulates OC cell stemness, proliferation, and metastasis. Mechanistically, HLF transcriptionally activated Yes-associated protein 1 (YAP1) expression and subsequently modulated the Hippo signaling pathway. Moreover, we found that miR-520e directly targeted HLF 3'-UTR in OC cells. miR-520e expression was negatively correlated with HLF and YAP1 expression in OC tissues. The combined immunohistochemical (IHC) panels exhibited a better prognostic value for OC patients than any of these components alone. Importantly, the HLF/YAP1 axis determines the response of OC cells to carboplatin treatment and HLF depletion or the YAP1 inhibitor verteporfin abrogated carboplatin resistance. Analysis of patient-derived xenografts (PDXs) further suggested that HLF might predict carboplatin benefits in OC patients. In conclusion, these findings suggest a crucial role of the miR-520e/HLF/YAP1 axis in OC progression and chemoresistance, suggesting potential therapeutic targets for OC.
Collapse
Affiliation(s)
- Tao Han
- Department of Oncology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Tingsong Chen
- Department of Cancer Intervention, Seventh People's Hospital of Shanghai University of TCM, Shanghai, 200001, China
| | - Lujun Chen
- Department of Oncology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China
- Postgraduate College, China Medical University, Shenyang, 110001, China
| | - Kerui Li
- Department of Oncology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Daimin Xiang
- Clinical Cancer Institute, Center for Translational Medicine, Naval Military Medical University, Shanghai, 200433, China
- Department of hepatobiliary surgery, East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Lei Dou
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
| | - Hengyu Li
- Department of Breast and Thyroid Surgery, Changhai Hospital, Naval Military Medical University, Shanghai, 200433, China.
| | - Yubei Gu
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
17
|
Zhang Y, Zhao X, Guo C, Zhang Y, Zeng F, Yin Q, Li Z, Shao L, Zhou D, Liu L. The Circadian System Is Essential for the Crosstalk of VEGF-Notch-mediated Endothelial Angiogenesis in Ischemic Stroke. Neurosci Bull 2023; 39:1375-1395. [PMID: 36862341 PMCID: PMC10465432 DOI: 10.1007/s12264-023-01042-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/18/2022] [Indexed: 03/03/2023] Open
Abstract
Ischemic stroke is a major public health problem worldwide. Although the circadian clock is involved in the process of ischemic stroke, the exact mechanism of the circadian clock in regulating angiogenesis after cerebral infarction remains unclear. In the present study, we determined that environmental circadian disruption (ECD) increased the stroke severity and impaired angiogenesis in the rat middle cerebral artery occlusion model, by measuring the infarct volume, neurological tests, and angiogenesis-related protein. We further report that Bmal1 plays an irreplaceable role in angiogenesis. Overexpression of Bmal1 promoted tube-forming, migration, and wound healing, and upregulated the vascular endothelial growth factor (VEGF) and Notch pathway protein levels. This promoting effect was reversed by the Notch pathway inhibitor DAPT, according to the results of angiogenesis capacity and VEGF pathway protein level. In conclusion, our study reveals the intervention of ECD in angiogenesis in ischemic stroke and further identifies the exact mechanism by which Bmal1 regulates angiogenesis through the VEGF-Notch1 pathway.
Collapse
Affiliation(s)
- Yuxing Zhang
- Department of Neurology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, 410208, China
- Hunan University of Chinese Medicine, Changsha, 410006, China
| | - Xin Zhao
- Hunan University of Chinese Medicine, Changsha, 410006, China
| | - Chun Guo
- Department of Neurology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Ying Zhang
- Department of Neurology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
- Hunan University of Chinese Medicine, Changsha, 410006, China
| | - Fukang Zeng
- Department of Neurology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, 410208, China
- Hunan University of Chinese Medicine, Changsha, 410006, China
| | - Qian Yin
- Hunan University of Chinese Medicine, Changsha, 410006, China
| | - Zhong Li
- Department of Neurology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Le Shao
- Hunan University of Chinese Medicine, Changsha, 410006, China
- Laboratory of Prevention and Transformation of Major Diseases in Internal Medicine of Traditional Chinese Medicine, Changsha, 410007, China
| | - Desheng Zhou
- Department of Neurology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China.
| | - Lijuan Liu
- Department of Neurology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China.
| |
Collapse
|
18
|
Bunik V. The Therapeutic Potential of Vitamins B1, B3 and B6 in Charcot-Marie-Tooth Disease with the Compromised Status of Vitamin-Dependent Processes. BIOLOGY 2023; 12:897. [PMID: 37508330 PMCID: PMC10376249 DOI: 10.3390/biology12070897] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023]
Abstract
Understanding the molecular mechanisms of neurological disorders is necessary for the development of personalized medicine. When the diagnosis considers not only the disease symptoms, but also their molecular basis, treatments tailored to individual patients may be suggested. Vitamin-responsive neurological disorders are induced by deficiencies in vitamin-dependent processes. These deficiencies may occur due to genetic impairments of proteins whose functions are involved with the vitamins. This review considers the enzymes encoded by the DHTKD1, PDK3 and PDXK genes, whose mutations are observed in patients with Charcot-Marie-Tooth (CMT) disease. The enzymes bind or produce the coenzyme forms of vitamins B1 (thiamine diphosphate, ThDP) and B6 (pyridoxal-5'-phosphate, PLP). Alleviation of such disorders through administration of the lacking vitamin or its derivative calls for a better introduction of mechanistic knowledge to medical diagnostics and therapies. Recent data on lower levels of the vitamin B3 derivative, NAD+, in the blood of patients with CMT disease vs. control subjects are also considered in view of the NAD-dependent mechanisms of pathological axonal degeneration, suggesting the therapeutic potential of vitamin B3 in these patients. Thus, improved diagnostics of the underlying causes of CMT disease may allow patients with vitamin-responsive disease forms to benefit from the administration of the vitamins B1, B3, B6, their natural derivatives, or their pharmacological forms.
Collapse
Affiliation(s)
- Victoria Bunik
- Belozersky Institute of Physicochemical Biology, Department of Biokinetics, Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
- Department of Biochemistry, Sechenov University, 119048 Moscow, Russia
| |
Collapse
|
19
|
Angelopoulou E, Bougea A, Paudel YN, Georgakopoulou VE, Papageorgiou SG, Piperi C. Genetic Insights into the Molecular Pathophysiology of Depression in Parkinson's Disease. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1138. [PMID: 37374342 DOI: 10.3390/medicina59061138] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023]
Abstract
Background and Objectives: Parkinson's disease (PD) is a clinically heterogeneous disorder with poorly understood pathological contributing factors. Depression presents one of the most frequent non-motor PD manifestations, and several genetic polymorphisms have been suggested that could affect the depression risk in PD. Therefore, in this review we have collected recent studies addressing the role of genetic factors in the development of depression in PD, aiming to gain insights into its molecular pathobiology and enable the future development of targeted and effective treatment strategies. Materials and Methods: we have searched PubMed and Scopus databases for peer-reviewed research articles published in English (pre-clinical and clinical studies as well as relevant reviews and meta-analyses) investigating the genetic architecture and pathophysiology of PD depression. Results: in particular, polymorphisms in genes related to the serotoninergic pathway (sodium-dependent serotonin transporter gene, SLC6A4, tryptophan hydrolase-2 gene, TPH2), dopamine metabolism and neurotransmission (dopamine receptor D3 gene, DRD3, aldehyde dehydrogenase 2 gene, ALDH2), neurotrophic factors (brain-derived neurotrophic factor gene, BDNF), endocannabinoid system (cannabinoid receptor gene, CNR1), circadian rhythm (thyrotroph embryonic factor gene, TEF), the sodium-dependent neutral amino acid transporter B(0)AT2 gene, SLC6A15), and PARK16 genetic locus were detected as altering susceptibility to depression among PD patients. However, polymorphisms in the dopamine transporter gene (SLC6A3), monoamine oxidase A (MAOA) and B (MAOB) genes, catechol-O-methyltransferase gene (COMT), CRY1, and CRY2 have not been related to PD depression. Conclusions: the specific mechanisms underlying the potential role of genetic diversity in PD depression are still under investigation, however, there is evidence that they may involve neurotransmitter imbalance, mitochondrial impairment, oxidative stress, and neuroinflammation, as well as the dysregulation of neurotrophic factors and their downstream signaling pathways.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, 11527 Athens, Greece
| | - Anastasia Bougea
- Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Subang Jaya 46150, Selangor, Malaysia
| | | | - Sokratis G Papageorgiou
- Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, 11527 Athens, Greece
| |
Collapse
|
20
|
Kaplow IM, Lawler AJ, Schäffer DE, Srinivasan C, Sestili HH, Wirthlin ME, Phan BN, Prasad K, Brown AR, Zhang X, Foley K, Genereux DP, Karlsson EK, Lindblad-Toh K, Meyer WK, Pfenning AR. Relating enhancer genetic variation across mammals to complex phenotypes using machine learning. Science 2023; 380:eabm7993. [PMID: 37104615 PMCID: PMC10322212 DOI: 10.1126/science.abm7993] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/23/2023] [Indexed: 04/29/2023]
Abstract
Protein-coding differences between species often fail to explain phenotypic diversity, suggesting the involvement of genomic elements that regulate gene expression such as enhancers. Identifying associations between enhancers and phenotypes is challenging because enhancer activity can be tissue-dependent and functionally conserved despite low sequence conservation. We developed the Tissue-Aware Conservation Inference Toolkit (TACIT) to associate candidate enhancers with species' phenotypes using predictions from machine learning models trained on specific tissues. Applying TACIT to associate motor cortex and parvalbumin-positive interneuron enhancers with neurological phenotypes revealed dozens of enhancer-phenotype associations, including brain size-associated enhancers that interact with genes implicated in microcephaly or macrocephaly. TACIT provides a foundation for identifying enhancers associated with the evolution of any convergently evolved phenotype in any large group of species with aligned genomes.
Collapse
Affiliation(s)
- Irene M. Kaplow
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Alyssa J. Lawler
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Daniel E. Schäffer
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Chaitanya Srinivasan
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Heather H. Sestili
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Morgan E. Wirthlin
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - BaDoi N. Phan
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kavya Prasad
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ashley R. Brown
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Xiaomeng Zhang
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Kathleen Foley
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Diane P. Genereux
- Broad Institute, Cambridge, MA, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Elinor K. Karlsson
- Broad Institute, Cambridge, MA, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kerstin Lindblad-Toh
- Broad Institute, Cambridge, MA, USA
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Wynn K. Meyer
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Andreas R. Pfenning
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Sun S, Wang H. Clocking Epilepsies: A Chronomodulated Strategy-Based Therapy for Rhythmic Seizures. Int J Mol Sci 2023; 24:4223. [PMID: 36835631 PMCID: PMC9962262 DOI: 10.3390/ijms24044223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Epilepsy is a neurological disorder characterized by hypersynchronous recurrent neuronal activities and seizures, as well as loss of muscular control and sometimes awareness. Clinically, seizures have been reported to display daily variations. Conversely, circadian misalignment and circadian clock gene variants contribute to epileptic pathogenesis. Elucidation of the genetic bases of epilepsy is of great importance because the genetic variability of the patients affects the efficacies of antiepileptic drugs (AEDs). For this narrative review, we compiled 661 epilepsy-related genes from the PHGKB and OMIM databases and classified them into 3 groups: driver genes, passenger genes, and undetermined genes. We discuss the potential roles of some epilepsy driver genes based on GO and KEGG analyses, the circadian rhythmicity of human and animal epilepsies, and the mutual effects between epilepsy and sleep. We review the advantages and challenges of rodents and zebrafish as animal models for epileptic studies. Finally, we posit chronomodulated strategy-based chronotherapy for rhythmic epilepsies, integrating several lines of investigation for unraveling circadian mechanisms underpinning epileptogenesis, chronopharmacokinetic and chronopharmacodynamic examinations of AEDs, as well as mathematical/computational modeling to help develop time-of-day-specific AED dosing schedules for rhythmic epilepsy patients.
Collapse
Affiliation(s)
- Sha Sun
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| |
Collapse
|
22
|
Valakh V, Wise D, Zhu XA, Sha M, Fok J, Van Hooser SD, Schectman R, Cepeda I, Kirk R, O'Toole SM, Nelson SB. A transcriptional constraint mechanism limits the homeostatic response to activity deprivation in mammalian neocortex. eLife 2023; 12:e74899. [PMID: 36749029 PMCID: PMC10010687 DOI: 10.7554/elife.74899] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Healthy neuronal networks rely on homeostatic plasticity to maintain stable firing rates despite changing synaptic drive. These mechanisms, however, can themselves be destabilizing if activated inappropriately or excessively. For example, prolonged activity deprivation can lead to rebound hyperactivity and seizures. While many forms of homeostasis have been described, whether and how the magnitude of homeostatic plasticity is constrained remains unknown. Here, we uncover negative regulation of cortical network homeostasis by the PARbZIP family of transcription factors. In cortical slice cultures made from knockout mice lacking all three of these factors, the network response to prolonged activity withdrawal measured with calcium imaging is much stronger, while baseline activity is unchanged. Whole-cell recordings reveal an exaggerated increase in the frequency of miniature excitatory synaptic currents reflecting enhanced upregulation of recurrent excitatory synaptic transmission. Genetic analyses reveal that two of the factors, Hlf and Tef, are critical for constraining plasticity and for preventing life-threatening seizures. These data indicate that transcriptional activation is not only required for many forms of homeostatic plasticity but is also involved in restraint of the response to activity deprivation.
Collapse
Affiliation(s)
- Vera Valakh
- Department of Biology and Program in Neuroscience, Brandeis UniversityWalthamUnited States
| | - Derek Wise
- Department of Biology and Program in Neuroscience, Brandeis UniversityWalthamUnited States
| | - Xiaoyue Aelita Zhu
- Department of Biology and Program in Neuroscience, Brandeis UniversityWalthamUnited States
| | - Mingqi Sha
- Department of Biology and Program in Neuroscience, Brandeis UniversityWalthamUnited States
| | - Jaidyn Fok
- Department of Biology and Program in Neuroscience, Brandeis UniversityWalthamUnited States
| | - Stephen D Van Hooser
- Department of Biology and Program in Neuroscience, Brandeis UniversityWalthamUnited States
| | - Robin Schectman
- Department of Biology and Program in Neuroscience, Brandeis UniversityWalthamUnited States
| | - Isabel Cepeda
- Department of Biology and Program in Neuroscience, Brandeis UniversityWalthamUnited States
| | - Ryan Kirk
- Department of Biology and Program in Neuroscience, Brandeis UniversityWalthamUnited States
| | - Sean M O'Toole
- Department of Biology and Program in Neuroscience, Brandeis UniversityWalthamUnited States
| | - Sacha B Nelson
- Department of Biology and Program in Neuroscience, Brandeis UniversityWalthamUnited States
| |
Collapse
|
23
|
Schurhoff N, Toborek M. Circadian rhythms in the blood-brain barrier: impact on neurological disorders and stress responses. Mol Brain 2023; 16:5. [PMID: 36635730 PMCID: PMC9835375 DOI: 10.1186/s13041-023-00997-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Circadian disruption has become more prevalent in society due to the increase in shift work, sleep disruption, blue light exposure, and travel via different time zones. The circadian rhythm is a timed transcription-translation feedback loop with positive regulators, BMAL1 and CLOCK, that interact with negative regulators, CRY and PER, to regulate both the central and peripheral clocks. This review highlights the functions of the circadian rhythm, specifically in the blood-brain barrier (BBB), during both healthy and pathological states. The BBB is a highly selective dynamic interface composed of CNS endothelial cells, astrocytes, pericytes, neurons, and microglia that form the neurovascular unit (NVU). Circadian rhythms modulate BBB integrity through regulating oscillations of tight junction proteins, assisting in functions of the NVU, and modulating transporter functions. Circadian disruptions within the BBB have been observed in stress responses and several neurological disorders, including brain metastasis, epilepsy, Alzheimer's disease, and Parkinson's disease. Further understanding of these interactions may facilitate the development of improved treatment options and preventative measures.
Collapse
Affiliation(s)
- Nicolette Schurhoff
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Suite 528, 1011 NW 15th Street, Miami, FL, 33155, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Suite 528, 1011 NW 15th Street, Miami, FL, 33155, USA.
- Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, 40-065, Katowice, Poland.
| |
Collapse
|
24
|
Kalita E, Panda M, Prajapati VK. The interplay between circadian clock and viral infections: A molecular perspective. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 137:293-330. [PMID: 37709380 DOI: 10.1016/bs.apcsb.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The circadian clock influences almost every aspect of mammalian behavioral, physiological and metabolic processes. Being a hierarchical network, the circadian clock is driven by the central clock in the brain and is composed of several peripheral tissue-specific clocks. It orchestrates and synchronizes the daily oscillations of biological processes to the environment. Several pathological events are influenced by time and seasonal variations and as such implicate the clock in pathogenesis mechanisms. In context with viral infections, circadian rhythmicity is closely associated with host susceptibility, disease severity, and pharmacokinetics and efficacies of antivirals and vaccines. Leveraging the circadian molecular mechanism insights has increased our understanding of clock infection biology and proposes new avenues for viral diagnostics and therapeutics. In this chapter, we address the molecular interplay between the circadian clock and viral infections and discuss the importance of chronotherapy as a complementary approach to conventional medicines, emphasizing the significance of virus-clock studies.
Collapse
Affiliation(s)
- Elora Kalita
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Mamta Panda
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India..
| |
Collapse
|
25
|
Zhang Y, Zhao X, Zhang Y, Zeng F, Yan S, Chen Y, Li Z, Zhou D, Liu L. The role of circadian clock in astrocytes: From cellular functions to ischemic stroke therapeutic targets. Front Neurosci 2022; 16:1013027. [PMID: 36570843 PMCID: PMC9772621 DOI: 10.3389/fnins.2022.1013027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/10/2022] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidence suggests that astrocytes, the abundant cell type in the central nervous system (CNS), play a critical role in maintaining the immune response after cerebral infarction, regulating the blood-brain barrier (BBB), providing nutrients to the neurons, and reuptake of glutamate. The circadian clock is an endogenous timing system that controls and optimizes biological processes. The central circadian clock and the peripheral clock are consistent, controlled by various circadian components, and participate in the pathophysiological process of astrocytes. Existing evidence shows that circadian rhythm controls the regulation of inflammatory responses by astrocytes in ischemic stroke (IS), regulates the repair of the BBB, and plays an essential role in a series of pathological processes such as neurotoxicity and neuroprotection. In this review, we highlight the importance of astrocytes in IS and discuss the potential role of the circadian clock in influencing astrocyte pathophysiology. A comprehensive understanding of the ability of the circadian clock to regulate astrocytes after stroke will improve our ability to predict the targets and biological functions of the circadian clock and gain insight into the basis of its intervention mechanism.
Collapse
Affiliation(s)
- Yuxing Zhang
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China,The Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xin Zhao
- The Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying Zhang
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China,The Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Fukang Zeng
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China,The Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Siyang Yan
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yao Chen
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhong Li
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Desheng Zhou
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China,Desheng Zhou,
| | - Lijuan Liu
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China,*Correspondence: Lijuan Liu,
| |
Collapse
|
26
|
Preston R, Meng QJ, Lennon R. The dynamic kidney matrisome - is the circadian clock in control? Matrix Biol 2022; 114:138-155. [PMID: 35569693 DOI: 10.1016/j.matbio.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/21/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023]
Abstract
The circadian clock network in mammals is responsible for the temporal coordination of numerous physiological processes that are necessary for homeostasis. Peripheral tissues demonstrate circadian rhythmicity and dysfunction of core clock components has been implicated in the pathogenesis of diseases that are characterized by abnormal extracellular matrix, such as fibrosis (too much disorganized matrix) and tissue breakdown (too little matrix). Kidney disease is characterized by proteinuria, which along with the rate of filtration, displays robust circadian oscillation. Clinical observation and mouse studies suggest the presence of 24 h kidney clocks responsible for circadian oscillation in kidney function. Recent experimental evidence has also revealed that cell-matrix interactions and the biomechanical properties of extracellular matrix have key roles in regulating peripheral circadian clocks and this mechanism appears to be cell- and tissue-type specific. Thus, establishing a temporally resolved kidney matrisome may provide a useful tool for studying the two-way interactions between the extracellular matrix and the intracellular time-keeping mechanisms in this critical niche tissue. This review summarizes the latest genetic and biochemical evidence linking kidney physiology and disease to the circadian system with a particular focus on the extracellular matrix. We also review the experimental approaches and methodologies required to dissect the roles of circadian pathways in specific tissues and outline the translational aspects of circadian biology, including how circadian medicine could be used for the treatment of kidney disease.
Collapse
Affiliation(s)
- Rebecca Preston
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Qing-Jun Meng
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK.
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK; Department of Pediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK.
| |
Collapse
|
27
|
Rodent Models of Audiogenic Epilepsy: Genetic Aspects, Advantages, Current Problems and Perspectives. Biomedicines 2022; 10:biomedicines10112934. [PMID: 36428502 PMCID: PMC9687921 DOI: 10.3390/biomedicines10112934] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Animal models of epilepsy are of great importance in epileptology. They are used to study the mechanisms of epileptogenesis, and search for new genes and regulatory pathways involved in the development of epilepsy as well as screening new antiepileptic drugs. Today, many methods of modeling epilepsy in animals are used, including electroconvulsive, pharmacological in intact animals, and genetic, with the predisposition for spontaneous or refractory epileptic seizures. Due to the simplicity of manipulation and universality, genetic models of audiogenic epilepsy in rodents stand out among this diversity. We tried to combine data on the genetics of audiogenic epilepsy in rodents, the relevance of various models of audiogenic epilepsy to certain epileptic syndromes in humans, and the advantages of using of rodent strains predisposed to audiogenic epilepsy in current epileptology.
Collapse
|
28
|
Miao L, Batty KR, Jackson AN, Pieno HA, Rhoades MW, Kojima S. Genetic and environmental perturbations alter the rhythmic expression pattern of a circadian long non-coding RNA, Per2AS, in mouse liver. F1000Res 2022; 11:1073. [PMID: 36250003 PMCID: PMC9551389 DOI: 10.12688/f1000research.125628.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Long non-coding RNAs (lncRNAs) play a wide variety of biological roles without encoding a protein. Although the functions of many lncRNAs have been uncovered in recent years, the regulatory mechanism of lncRNA expression is still poorly understood despite that the expression patterns of lncRNAs are much more specific compared to mRNAs. Here, we investigated the rhythmic expression of Per2AS, a novel lncRNA that regulates circadian rhythms. Given that Per2AS expression is antiphasic to Period2 ( Per2), a core circadian clock gene, and transcribed from the antisense strand of Per2, we hypothesized that the rhythmic Per2AS expression is driven either by its own promoter or by the rhythmic Per2 transcription via transcriptional interference. Methods: We leveraged existing circadian RNA-seq datasets and analyzed the expression patterns of Per2AS and Per2 in response to the genetic or environmental disruption of the circadian rhythm in mouse liver. We tested our hypotheses by comparing the changes in the expression patterns of Per2AS and Per2. Conclusions: We found that, in some cases, Per2AS expression is independently controlled by other circadian transcription factors. In other cases, the pattern of expression change is consistent with both transcriptional interference and independent regulation hypotheses. Although additional experiments will be necessary to distinguish these possibilities, findings from this work contribute to a deeper understanding of the mechanism of how the expression of lncRNA is regulated.
Collapse
Affiliation(s)
- Lin Miao
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA,Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Kyle R. Batty
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA,Division of Systems Biology, Academy of Integrated Science, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Ayana N. Jackson
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA,Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Heather A. Pieno
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Maisy W. Rhoades
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Shihoko Kojima
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA,Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA,Division of Systems Biology, Academy of Integrated Science, Virginia Tech, Blacksburg, VA, 24061, USA,
| |
Collapse
|
29
|
Kreitlow BL, Li W, Buchanan GF. Chronobiology of epilepsy and sudden unexpected death in epilepsy. Front Neurosci 2022; 16:936104. [PMID: 36161152 PMCID: PMC9490261 DOI: 10.3389/fnins.2022.936104] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
Epilepsy is a neurological disease characterized by spontaneous, unprovoked seizures. Various insults render the brain hyperexcitable and susceptible to seizure. Despite there being dozens of preventative anti-seizure medications available, these drugs fail to control seizures in nearly 1 in 3 patients with epilepsy. Over the last century, a large body of evidence has demonstrated that internal and external rhythms can modify seizure phenotypes. Physiologically relevant rhythms with shorter periodic rhythms, such as endogenous circadian rhythms and sleep-state, as well as rhythms with longer periodicity, including multidien rhythms and menses, influence the timing of seizures through poorly understood mechanisms. The purpose of this review is to discuss the findings from both human and animal studies that consider the effect of such biologically relevant rhythms on epilepsy and seizure-associated death. Patients with medically refractory epilepsy are at increased risk of sudden unexpected death in epilepsy (SUDEP). The role that some of these rhythms play in the nocturnal susceptibility to SUDEP will also be discussed. While the involvement of some of these rhythms in epilepsy has been known for over a century, applying the rhythmic nature of such phenomenon to epilepsy management, particularly in mitigating the risk of SUDEP, has been underutilized. As our understanding of the physiological influence on such rhythmic phenomenon improves, and as technology for chronic intracranial epileptiform monitoring becomes more widespread, smaller and less invasive, novel seizure-prediction technologies and time-dependent chronotherapeutic seizure management strategies can be realized.
Collapse
Affiliation(s)
- Benjamin L. Kreitlow
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, United States
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
- Department of Neurology, University of Iowa, Iowa City, IA, United States
- Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - William Li
- Department of Neurology, University of Iowa, Iowa City, IA, United States
- Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Gordon F. Buchanan
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, United States
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
- Department of Neurology, University of Iowa, Iowa City, IA, United States
- Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- *Correspondence: Gordon F. Buchanan, ; orcid.org/0000-0003-2371-4455
| |
Collapse
|
30
|
Liu M, Ding J, Wang X. The interaction between circadian rhythm and epilepsy. ACTA EPILEPTOLOGICA 2022. [DOI: 10.1186/s42494-022-00094-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractEvidence about the interaction between circadian rhythms (CR) and epilepsy has been expanded with the application of advanced detection technology. An adequate understanding of how circadian system and epilepsy interact with each other could contribute to more accurate seizure prediction as well as rapid development of potential treatment timed to specific phases of CR. In this review, we present the reciprocal relationship between CR and epileptic activities from aspects of sleep effect, genetic modulation and brain biochemistry. It has been found that sleep-wake patterns, circadian timing systems and multidien rhythms have essential roles in seizure activities and interictal epileptiform discharge (IED). For instance, specific distribution patterns of seizures and IED have been reported, i.e., lighter non-rapid eye movement (NREM) sleep stage (stage 2) induces seizures while deeper NREM sleep stage (stage 3) activates IEDs. Furthermore, the epilepsy type, seizure type and seizure onset zone can significantly affect the rhythms of seizure occurrence. Apart from the common seizure types, several specific epilepsy syndromes also have a close correlation with sleep-wakefulness patterns. Sleep influences the epilepsy rhythm, and conversely, epilepsy alters the sleep rhythm through multiple pathways. Clock genes accompanied by two feedback loops of regulation have an important role in cortical excitability and seizure occurrence, which may be involved in the mTORopathy. The suprachiasmatic nuclei (SCN) has a rhythm of melatonin and cortisol secretion under the circadian pattern, and then these hormones can feed back into a central oscillator to affect the SCN-dependent rhythms, leading to variable but prominent influence on epilepsy. Furthermore, we discuss the precise predictive algorithms and chronotherapy strategies based on different temporal patterns of seizure occurrence for patients with epilepsy, which may offer a valuable indication for non-invasive closed-loop treatment system. Optimization of the time and dose of antiseizure medications, and resynchronization of disturbed CR (by hormone therapy, light exposure, ketogenic diet, novel small molecules) would be beneficial for epileptic patients in the future. Before formal clinical practice, future large-scale studies are urgently needed to assist prediction and treatment of circadian seizure activities and address unsolved restrictions.
Collapse
|
31
|
Koui Y, Ideue T, Boylan M, Anderson MJ, Osato M, Suda T, Yokomizo T, Mukouyama YS. Hepatic leukemia factor-expressing paraxial mesoderm cells contribute to the developing brain vasculature. Biol Open 2022; 11:276428. [PMID: 36017733 PMCID: PMC9493726 DOI: 10.1242/bio.059510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022] Open
Abstract
Recent genetic lineage tracing studies reveal heterogeneous origins of vascular endothelial cells and pericytes in the developing brain vasculature, despite classical experimental evidence for a mesodermal origin. Here we provide evidence through a genetic lineage tracing experiment that cephalic paraxial mesodermal cells give rise to endothelial cells and pericytes in the developing mouse brain. We show that Hepatic leukemia factor (Hlf) is transiently expressed by cephalic paraxial mesenchyme at embryonic day (E) 8.0-9.0 and the genetically-marked E8.0 Hlf-expressing cells mainly contribute to the developing brain vasculature. Interestingly, the genetically-marked E10.5 Hlf-expressing cells, which have been previously reported to contain embryonic hematopoietic stem cells, fail to contribute to the vascular cells. Combined, our genetic lineage tracing data demonstrate that a transient expression of Hlf marks a cephalic paraxial mesenchyme contributing to the developing brain vasculature.
Collapse
Affiliation(s)
- Yuta Koui
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Development Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Takako Ideue
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Michael Boylan
- Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| | - Matthew J Anderson
- Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| | - Motomi Osato
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan.,Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Toshio Suda
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan.,Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Tomomasa Yokomizo
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan.,Microscopic and Developmental Anatomy, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Yoh-Suke Mukouyama
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Development Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
32
|
Zhang Y, Liu L, Zhao X, Yan S, Zeng F, Zhou D. New insight into ischemic stroke: Circadian rhythm in post-stroke angiogenesis. Front Pharmacol 2022; 13:927506. [PMID: 36016550 PMCID: PMC9395980 DOI: 10.3389/fphar.2022.927506] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/07/2022] [Indexed: 11/29/2022] Open
Abstract
The circadian rhythm is an endogenous clock system that coordinates and optimizes various physiological and pathophysiological processes, which accord with the master and the peripheral clock. Increasing evidence indicates that endogenous circadian rhythm disruption is involved in the lesion volume and recovery of ischemic stroke. As a critical recovery mechanism in post-stroke, angiogenesis reestablishes the regional blood supply and enhances cognitive and behavioral abilities, which is mainly composed of the following processes: endothelial cell proliferation, migration, and pericyte recruitment. The available evidence revealed that the circadian governs many aspects of angiogenesis. This study reviews the mechanism by which circadian rhythms regulate the process of angiogenesis and its contribution to functional recovery in post-stroke at the aspects of the molecular level. A comprehensive understanding of the circadian clock regulating angiogenesis in post-stroke is expected to develop new strategies for the treatment of cerebral infarction.
Collapse
Affiliation(s)
- Yuxing Zhang
- The Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Lijuan Liu
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xin Zhao
- The Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Siyang Yan
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Fukang Zeng
- The Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Desheng Zhou
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- *Correspondence: Desheng Zhou,
| |
Collapse
|
33
|
Lalpekhlui R, Renthlei Z, Trivedi AK. Molecular expression of clock genes in central and peripheral tissues of white-rumped munia ( Lonchura striata). Chronobiol Int 2022; 39:1058-1067. [PMID: 35473420 DOI: 10.1080/07420528.2022.2062374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
To synchronize with the fluctuating environment, organisms have evolved an endogenous time tracking mechanism referred to as the biological clock(s). This clock machinery has been identified in almost all cells of vertebrates and categorized as central and peripheral clocks. In birds, three independent circadian clocks have been identified in the hypothalamus, the pineal and the retina which interact and generate circadian time at a functional level. However, there is a limited knowledge of molecular clockwork and integration between central and peripheral clocks in birds. Therefore, we studied the daily expression of clock genes (Bmal1, Clock, Per2, Cry1, Npas2, Rev-Erbα, E4bp4, Pparα, Hlf and Tef) in three central circadian clocks (hypothalamus, pineal and retina), other brain areas (cerebellum, optic tectum and telencephalon) and in the peripheral tissues (liver, intestine, muscle and blood) of white-rumped munia. Adult birds were exposed to equinox photoperiod (12 L:12D) for 2 weeks and were then sampled (N = 5 per time point) at six-time points (ZT1, ZT5, ZT9, ZT13, ZT17 and ZT21). Daily expressions of clock genes were studied using qPCR. We observed daily variations and tissue-specific expression patterns for clock genes. These results are consistent with the autoregulatory circadian feedback loop proposed for the mammalian system and thus suggest a conserved tissue-level circadian time generation in white-rumped munia.
Collapse
|
34
|
The role of cell-autonomous circadian oscillation of Cry transcription in circadian rhythm generation. Cell Rep 2022; 39:110703. [PMID: 35443162 DOI: 10.1016/j.celrep.2022.110703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/17/2022] [Accepted: 03/29/2022] [Indexed: 11/21/2022] Open
Abstract
The current model of the mammalian circadian clock describes cell-autonomous and negative feedback-driven circadian oscillation of Cry and Per transcription as the core circadian rhythm generator. However, the actual contribution of this oscillation to circadian rhythm generation remains undefined. Here we perform targeted disruption of cis elements indispensable for cell-autonomous Cry oscillation. Mice lacking overt cell-autonomous Cry oscillation show robust circadian rhythms in locomotor activity. In addition, tissue-autonomous circadian rhythms are robust in the absence of overt Cry oscillation. Unexpectedly, although the absence of overt Cry oscillation leads to severe attenuation of Per oscillation at the cell-autonomous level, circadian rhythms in Per2 accumulation remain robust. As a mechanism to explain this counterintuitive result, Per2 half-life shows cell-autonomous circadian rhythms independent of Cry and Per oscillation. The cell-autonomous circadian clock may therefore remain partially functional even in the absence of overt Cry and Per oscillation because of circadian oscillation in Per2 degradation.
Collapse
|
35
|
Thomas ED, Timms AE, Giles S, Harkins-Perry S, Lyu P, Hoang T, Qian J, Jackson VE, Bahlo M, Blackshaw S, Friedlander M, Eade K, Cherry TJ. Cell-specific cis-regulatory elements and mechanisms of non-coding genetic disease in human retina and retinal organoids. Dev Cell 2022; 57:820-836.e6. [PMID: 35303433 PMCID: PMC9126240 DOI: 10.1016/j.devcel.2022.02.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/06/2021] [Accepted: 02/18/2022] [Indexed: 01/05/2023]
Abstract
Cis-regulatory elements (CREs) play a critical role in the development and disease-states of all human cell types. In the retina, CREs have been implicated in several inherited disorders. To better characterize human retinal CREs, we performed single-nucleus assay for transposase-accessible chromatin sequencing (snATAC-seq) and single-nucleus RNA sequencing (snRNA-seq) on the developing and adult human retina and on induced pluripotent stem cell (iPSC)-derived retinal organoids. These analyses identified developmentally dynamic, cell-class-specific CREs, enriched transcription-factor-binding motifs, and putative target genes. CREs in the retina and organoids are highly correlated at the single-cell level, and this supports the use of organoids as a model for studying disease-associated CREs. As a proof of concept, we disrupted a disease-associated CRE at 5q14.3, confirming its principal target gene as the miR-9-2 primary transcript and demonstrating its role in neurogenesis and gene regulation in mature glia. This study provides a resource for characterizing human retinal CREs and showcases organoids as a model to study the function of CREs that influence development and disease.
Collapse
Affiliation(s)
- Eric D Thomas
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Andrew E Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Sarah Giles
- Lowy Medical Research Institute, La Jolla, CA 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sarah Harkins-Perry
- Lowy Medical Research Institute, La Jolla, CA 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Pin Lyu
- Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thanh Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiang Qian
- Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Victoria E Jackson
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville 3052, VIC, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville 3052, VIC, Australia
| | - Seth Blackshaw
- Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Martin Friedlander
- Lowy Medical Research Institute, La Jolla, CA 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kevin Eade
- Lowy Medical Research Institute, La Jolla, CA 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Timothy J Cherry
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Biological Structure, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA 98195, USA; Brotman Baty Institute, Seattle, WA 98195, USA.
| |
Collapse
|
36
|
Role of Sleep Restriction in Daily Rhythms of Expression of Hypothalamic Core Clock Genes in Mice. Curr Issues Mol Biol 2022; 44:609-625. [PMID: 35723328 PMCID: PMC8929085 DOI: 10.3390/cimb44020042] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
Lack of sleep time is a menace to modern people, and it leads to chronic diseases and mental illnesses. Circadian processes control sleep, but little is known about how sleep affects the circadian system. Therefore, we performed a 28-day sleep restriction (SR) treatment in mice. Sleep restriction disrupted the clock genes’ circadian rhythm. The circadian rhythms of the Cry1 and Per1/2/3 genes disappeared. The acrophase of the clock genes (Bmal1, Clock, Rev-erbα, and Rorβ) that still had a circadian rhythm was advanced, while the acrophase of negative clock gene Cry2 was delayed. Clock genes’ upstream signals ERK and EIFs also had circadian rhythm disorders. Accompanied by changes in the central oscillator, the plasma output signal (melatonin, corticosterone, IL-6, and TNF-α) had an advanced acrophase. While the melatonin mesor was decreased, the corticosterone, IL-6, and TNF-α mesor was increased. Our results indicated that chronic sleep loss could disrupt the circadian rhythm of the central clock through ERK and EIFs and affect the output signal downstream of the core biological clock.
Collapse
|
37
|
Bunik V, Aleshin V, Nogues I, Kähne T, Parroni A, Contestabile R, Salvo ML, Graf A, Tramonti A. Thiamine‐dependent regulation of mammalian brain pyridoxal kinase
in vitro
and
in vivo. J Neurochem 2022; 161:20-39. [DOI: 10.1111/jnc.15576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Victoria Bunik
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University 19991 Moscow Russia
- Faculty of Bioengineering and Bioinformatics Lomonosov Moscow State University Moscow 119991 Russia
- Sechenov University 119048 Moscow Russia
| | - Vasily Aleshin
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University 19991 Moscow Russia
- Sechenov University 119048 Moscow Russia
| | - Isabel Nogues
- Research Institute of Terrestrial Ecosystems Italian National Research Council Via Salaria Km. 29 300–00015 Monterotondo Scalo
| | - Thilo Kähne
- Institute of Exptl. Internal Medicine Otto‐von‐Guericke‐Universität Magdeburg 39120 Magdeburg Germany
| | - Alessia Parroni
- Istituto Pasteur Italia‐ Fondazione Cenci Bolognetti Department of Biochemical Sciences “A. Rossi Fanelli” Sapienza University of Rome P.le A. Moro 5 ‐ 00185 Rome Italy
| | - Roberto Contestabile
- Istituto Pasteur Italia‐ Fondazione Cenci Bolognetti Department of Biochemical Sciences “A. Rossi Fanelli” Sapienza University of Rome P.le A. Moro 5 ‐ 00185 Rome Italy
| | - Martino Luigi Salvo
- Istituto Pasteur Italia‐ Fondazione Cenci Bolognetti Department of Biochemical Sciences “A. Rossi Fanelli” Sapienza University of Rome P.le A. Moro 5 ‐ 00185 Rome Italy
| | - Anastasia Graf
- Moscow Institute of Physics and Technology 123098 Moscow Russia
- Faculty of Biology Lomonosov Moscow State University 19991 Moscow Russia
| | - Angela Tramonti
- Istituto Pasteur Italia‐ Fondazione Cenci Bolognetti Department of Biochemical Sciences “A. Rossi Fanelli” Sapienza University of Rome P.le A. Moro 5 ‐ 00185 Rome Italy
- Istitute of Molecular Biology and Pathology Italian National Research Council P.le A. Moro 5 ‐ 00185 Rome Italy
| |
Collapse
|
38
|
Yang F, Jia G, Guo J, Liu Y, Wang C. Quantitative Chemoproteomic Profiling with Data-Independent Acquisition-Based Mass Spectrometry. J Am Chem Soc 2022; 144:901-911. [PMID: 34986311 DOI: 10.1021/jacs.1c11053] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Activity-based protein profiling (ABPP) has emerged as a powerful and versatile tool to enable annotation of protein functions and discovery of targets of bioactive ligands in complex biological systems. It utilizes chemical probes to covalently label functional sites in proteins so that they can be enriched for mass spectrometry (MS)-based quantitative proteomics analysis. However, the semistochastic nature of data-dependent acquisition and high cost associated with isotopically encoded quantification reagents compromise the power of ABPP in multidimensional analysis and high-throughput screening, when a large number of samples need to be quantified in parallel. Here, we combine the data-independent acquisition (DIA) MS with ABPP to develop an efficient label-free quantitative chemical proteomic method, DIA-ABPP, with good reproducibility and high accuracy for high-throughput quantification. We demonstrated the power of DIA-ABPP for comprehensive profiling of functional cysteineome in three distinct applications, including dose-dependent quantification of cysteines' sensitivity toward a reactive metabolite, screening of ligandable cysteines with a covalent fragment library, and profiling of cysteinome fluctuation in circadian clock cycles. DIA-ABPP will open new opportunities for in-depth and multidimensional profiling of functional proteomes and interactions with bioactive small molecules in complex biological systems.
Collapse
Affiliation(s)
- Fan Yang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Guogeng Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiuzhou Guo
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yuan Liu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chu Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
39
|
Logan RW, Xue X, Ketchesin KD, Hoffman G, Roussos P, Tseng G, McClung CA, Seney ML. Sex Differences in Molecular Rhythms in the Human Cortex. Biol Psychiatry 2022; 91:152-162. [PMID: 33934884 PMCID: PMC8423868 DOI: 10.1016/j.biopsych.2021.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Diurnal rhythms in gene expression have been detected in the human brain. Previous studies found that males and females exhibit 24-hour rhythms in known circadian genes, with earlier peak expression in females. Whether there are sex differences in large-scale transcriptional rhythms in the cortex that align with observed sex differences in physiological and behavioral rhythms is currently unknown. METHODS Diurnal rhythmicity of gene expression was determined for males and females using RNA sequencing data from human postmortem dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC). Sex differences among rhythmic genes were determined using significance cutoffs, threshold-free analyses, and R2 difference. Phase concordance was assessed across the DLPFC and ACC for males and females. Pathway and transcription factor analyses were also conducted on significantly rhythmic genes. RESULTS Canonical circadian genes had diurnal rhythms in both sexes with similar amplitude and phase. When analyses were expanded to the entire transcriptome, significant sex differences in transcriptional rhythms emerged. There were nearly twice as many rhythmic transcripts in the DLPFC in males and nearly 4 times as many rhythmic transcripts in the ACC in females. Results suggest a diurnal rhythm in synaptic transmission specific to the ACC in females (e.g., GABAergic [gamma-aminobutyric acidergic] and cholinergic neurotransmission). For males, there was phase concordance between the DLPFC and ACC, while phase asynchrony was found in females. CONCLUSIONS There are robust sex differences in molecular rhythms of genes in the DLPFC and ACC, providing potential mechanistic insights into how neurotransmission and synaptic function are modulated in a circadian-dependent and sex-specific manner.
Collapse
Affiliation(s)
- Ryan W Logan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts; Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, Maine
| | - Xiangning Xue
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kyle D Ketchesin
- Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania; Translational Neuroscience Program, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania
| | - Gabriel Hoffman
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York
| | - Panos Roussos
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York; Mental Illness Research, Education, and Clinical Center, James J. Peters VA Medical Center, Bronx, New York
| | - George Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Colleen A McClung
- Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, Maine; Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania; Translational Neuroscience Program, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania
| | - Marianne L Seney
- Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania; Translational Neuroscience Program, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania.
| |
Collapse
|
40
|
Barth E, Srivastava A, Wengerodt D, Stojiljkovic M, Axer H, Witte OW, Kretz A, Marz M. Age-dependent expression changes of circadian system-related genes reveal a potentially conserved link to aging. Aging (Albany NY) 2021; 13:25694-25716. [PMID: 34923482 PMCID: PMC8751596 DOI: 10.18632/aging.203788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022]
Abstract
The circadian clock system influences the biology of life by establishing circadian rhythms in organisms, tissues, and cells, thus regulating essential biological processes based on the day/night cycle. Circadian rhythms change over a lifetime due to maturation and aging, and disturbances in the control of the circadian system are associated with several age-related pathologies. However, the impact of chronobiology and the circadian system on healthy organ and tissue aging remains largely unknown. Whether aging-related changes of the circadian system’s regulation follow a conserved pattern across different species and tissues, hence representing a common driving force of aging, is unclear. Based on a cross-sectional transcriptome analysis covering 329 RNA-Seq libraries, we provide indications that the circadian system is subjected to aging-related gene alterations shared between evolutionarily distinct species, such as Homo sapiens, Mus musculus, Danio rerio, and Nothobranchius furzeri. We discovered differentially expressed genes by comparing tissue-specific transcriptional profiles of mature, aged, and old-age individuals and report on six genes (per2, dec2, cirp, klf10, nfil3, and dbp) of the circadian system, which show conserved aging-related expression patterns in four organs of the species examined. Our results illustrate how the circadian system and aging might influence each other in various tissues over a long lifespan and conceptually complement previous studies tracking short-term diurnal and nocturnal gene expression oscillations.
Collapse
Affiliation(s)
- Emanuel Barth
- Bioinformatics/High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
| | - Akash Srivastava
- Bioinformatics/High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany.,FLI Leibniz Institute for Age Research, Jena, Germany.,Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Diane Wengerodt
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Milan Stojiljkovic
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Hubertus Axer
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Alexandra Kretz
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Manja Marz
- Bioinformatics/High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany.,FLI Leibniz Institute for Age Research, Jena, Germany.,German Center for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany.,European Virus Bioinformatics Center (EVBC), Jena, Germany
| |
Collapse
|
41
|
Fedotova IB, Surina NM, Nikolaev GM, Revishchin AV, Poletaeva II. Rodent Brain Pathology, Audiogenic Epilepsy. Biomedicines 2021; 9:biomedicines9111641. [PMID: 34829870 PMCID: PMC8615954 DOI: 10.3390/biomedicines9111641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
The review presents data which provides evidence for the internal relationship between the stages of rodent audiogenic seizures and post-ictal catalepsy with the general pattern of animal reaction to the dangerous stimuli and/or situation. The wild run stage of audiogenic seizure fit could be regarded as an intense panic reaction, and this view found support in numerous experimental data. The phenomenon of audiogenic epilepsy probably attracted the attention of physiologists as rodents are extremely sensitive to dangerous sound stimuli. The seizure proneness in this group shares common physiological characteristics and depends on animal genotype. This concept could be the new platform for the study of epileptogenesis mechanisms.
Collapse
Affiliation(s)
- Irina B. Fedotova
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.B.F.); (N.M.S.); (G.M.N.)
| | - Natalia M. Surina
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.B.F.); (N.M.S.); (G.M.N.)
| | - Georgy M. Nikolaev
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.B.F.); (N.M.S.); (G.M.N.)
| | | | - Inga I. Poletaeva
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.B.F.); (N.M.S.); (G.M.N.)
- Correspondence:
| |
Collapse
|
42
|
Aleshin VA, Graf AV, Artiukhov AV, Boyko AI, Ksenofontov AL, Maslova MV, Nogués I, di Salvo ML, Bunik VI. Physiological and Biochemical Markers of the Sex-Specific Sensitivity to Epileptogenic Factors, Delayed Consequences of Seizures and Their Response to Vitamins B1 and B6 in a Rat Model. Pharmaceuticals (Basel) 2021; 14:ph14080737. [PMID: 34451834 PMCID: PMC8400147 DOI: 10.3390/ph14080737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 01/28/2023] Open
Abstract
The disturbed metabolism of vitamins B1 or B6, which are essential for neurotransmitters homeostasis, may cause seizures. Our study aims at revealing therapeutic potential of vitamins B1 and B6 by estimating the short- and long-term effects of their combined administration with the seizure inductor pentylenetetrazole (PTZ). The PTZ dose dependence of a seizure and its parameters according to modified Racine’s scale, along with delayed physiological and biochemical consequences the next day after the seizure are assessed regarding sexual dimorphism in epilepsy. PTZ sensitivity is stronger in the female than the male rats. The next day after a seizure, sex differences in behavior and brain biochemistry arise. The induced sex differences in anxiety and locomotor activity correspond to the disappearance of sex differences in the brain aspartate and alanine, with appearance of those in glutamate and glutamine. PTZ decreases the brain malate dehydrogenase activity and urea in the males and the phenylalanine in the females. The administration of vitamins B1 and B6 24 h before PTZ delays a seizure in female rats only. This desensitization is not observed at short intervals (0.5–2 h) between the administration of the vitamins and PTZ. With the increasing interval, the pyridoxal kinase (PLK) activity in the female brain decreases, suggesting that the PLK downregulation by vitamins contributes to the desensitization. The delayed effects of vitamins and/or PTZ are mostly sex-specific and interacting. Our findings on the sex differences in sensitivity to epileptogenic factors, action of vitamins B1/B6 and associated biochemical events have medical implications.
Collapse
Affiliation(s)
- Vasily A. Aleshin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.A.); (A.V.A.); (A.I.B.)
- A.N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.G.); (A.L.K.)
| | - Anastasia V. Graf
- A.N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.G.); (A.L.K.)
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
- Faculty of Nano-, Bio-, Informational, Cognitive and Socio-Humanistic Sciences and Technologies at Moscow Institute of Physics and Technology, 123098 Moscow, Russia
| | - Artem V. Artiukhov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.A.); (A.V.A.); (A.I.B.)
- A.N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.G.); (A.L.K.)
| | - Alexandra I. Boyko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.A.); (A.V.A.); (A.I.B.)
| | - Alexander L. Ksenofontov
- A.N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.G.); (A.L.K.)
| | - Maria V. Maslova
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Isabel Nogués
- Research Institute of Terrestrial Ecosystems, National Research Council, Via Salaria km 29.300, Monterotondo, 00015 Rome, Italy;
| | - Martino L. di Salvo
- Department of Biological Sciences A. Rossi Fanelli, Sapienza University, 00185 Rome, Italy;
| | - Victoria I. Bunik
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.A.); (A.V.A.); (A.I.B.)
- A.N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.G.); (A.L.K.)
- Department of Biochemistry, Sechenov University, Trubetskaya, 8, bld. 2, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
43
|
Wu H, Liu Y, Liu L, Meng Q, Du C, Li K, Dong S, Zhang Y, Li H, Zhang H. Decreased expression of the clock gene Bmal1 is involved in the pathogenesis of temporal lobe epilepsy. Mol Brain 2021; 14:113. [PMID: 34261484 PMCID: PMC8281660 DOI: 10.1186/s13041-021-00824-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 07/05/2021] [Indexed: 11/10/2022] Open
Abstract
Clock genes not only regulate the circadian rhythm of physiological activities but also participate in the pathogenesis of many diseases. Previous studies have documented the abnormal expression of clock genes in epilepsy. However, the molecular mechanism of brain and muscle Arnt-like protein 1 (Bmal1), one of the core clock genes, in the epileptogenesis and seizures of temporal lobe epilepsy (TLE) remain unclear. We first investigated the levels of Bmal1 and other clock proteins in the hippocampus of subjects with epilepsy to define the function of Bmal1. The levels of Bmal1 were decreased during the latent and chronic phases in the experimental group compared with those in the control group. Knockout of Bmal1 in hippocampal dentate gyrus (DG) neurons of Bmal1flox/flox mice by Synapsin 1 (Syn1) promoter AAV (adeno-associated virus) lowered the threshold of seizures induced by pilocarpine administration. High-throughput sequencing analysis showed that PCDH19 (protocadherin 19), a gene associated with epilepsy, was regulated by Bmal1. PCDH19 expression was also decreased in the hippocampus of epileptic mice. Furthermore, the higher levels of Bmal1 and PCDH19 were detected in patients with no hippocampal sclerosis (no HS) than in patients with HS International League Against Epilepsy (ILAE) type I and III. Altogether, these data suggest that decreased expression of clock gene Bmal1 may participate in epileptogenesis and seizures via PCDH19 in TLE.
Collapse
Affiliation(s)
- Hao Wu
- Department of Neurosurgery, Clinical Research Center for Refractory Epilepsy of Shannxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Yong Liu
- Department of Neurosurgery, Clinical Research Center for Refractory Epilepsy of Shannxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Lishuo Liu
- Department of Neurosurgery, Clinical Research Center for Refractory Epilepsy of Shannxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Qiang Meng
- Department of Neurosurgery, Clinical Research Center for Refractory Epilepsy of Shannxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Changwang Du
- Department of Neurosurgery, Clinical Research Center for Refractory Epilepsy of Shannxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Kuo Li
- Department of Neurosurgery, Clinical Research Center for Refractory Epilepsy of Shannxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Shan Dong
- Department of Neurosurgery, Clinical Research Center for Refractory Epilepsy of Shannxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Yong Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Huanfa Li
- Department of Neurosurgery, Clinical Research Center for Refractory Epilepsy of Shannxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China.
| | - Hua Zhang
- Department of Neurosurgery, Clinical Research Center for Refractory Epilepsy of Shannxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China.
- Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
44
|
Fu X, Liu JS, Li P. Stopping the Clock on Seizures! Trends Neurosci 2021; 44:422-423. [PMID: 33965214 DOI: 10.1016/j.tins.2021.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
A recent paper by Zhang et al. shows that REV-ERBα, a negative regulator of the circadian molecular clock, is pro-convulsant through its action on GABA signaling. The findings support the role of the circadian molecular clock in epilepsy and suggest REV-ERBα as a potential therapeutic target for the management of seizures.
Collapse
Affiliation(s)
- Xiaoqin Fu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Judy S Liu
- Department of Neurology, Brown University, Providence, RI 02903, USA; Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02903, USA.
| | - Peijun Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
45
|
Zhang T, Yu F, Xu H, Chen M, Chen X, Guo L, Zhou C, Xu Y, Wang F, Yu J, Wu B. Dysregulation of REV-ERBα impairs GABAergic function and promotes epileptic seizures in preclinical models. Nat Commun 2021; 12:1216. [PMID: 33619249 PMCID: PMC7900242 DOI: 10.1038/s41467-021-21477-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 01/28/2021] [Indexed: 01/31/2023] Open
Abstract
To design potentially more effective therapies, we need to further understand the mechanisms underlying epilepsy. Here, we uncover the role of Rev-erbα in circadian regulation of epileptic seizures. We first show up-regulation of REV-ERBα/Rev-erbα in brain tissues from patients with epilepsy and a mouse model. Ablation or pharmacological modulation of Rev-erbα in mice decreases the susceptibility to acute and chronic seizures, and abolishes diurnal rhythmicity in seizure severity, whereas activation of Rev-erbα increases the animal susceptibility. Rev-erbα ablation or antagonism also leads to prolonged spontaneous inhibitory postsynaptic currents and elevated frequency in the mouse hippocampus, indicating enhanced GABAergic signaling. We also identify the transporters Slc6a1 and Slc6a11 as regulators of Rev-erbα-mediated clearance of GABA. Mechanistically, Rev-erbα promotes the expressions of Slc6a1 and Slc6a11 through transcriptional repression of E4bp4. Our findings propose Rev-erbα as a regulator of synaptic function at the crosstalk between pathways regulating the circadian clock and epilepsy.
Collapse
MESH Headings
- Acute Disease
- Animals
- Basic-Leucine Zipper Transcription Factors/genetics
- Basic-Leucine Zipper Transcription Factors/metabolism
- Chronic Disease
- Disease Models, Animal
- Epilepsy, Temporal Lobe/genetics
- Epilepsy, Temporal Lobe/pathology
- Epilepsy, Temporal Lobe/physiopathology
- GABA Plasma Membrane Transport Proteins/genetics
- GABA Plasma Membrane Transport Proteins/metabolism
- GABAergic Neurons/metabolism
- Gene Expression Regulation/drug effects
- Hippocampus/pathology
- Humans
- Inhibitory Postsynaptic Potentials/drug effects
- Isoquinolines/pharmacology
- Kindling, Neurologic/drug effects
- Mice, Inbred C57BL
- Mice, Knockout
- Nuclear Receptor Subfamily 1, Group D, Member 1/genetics
- Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Seizures/genetics
- Seizures/pathology
- Seizures/physiopathology
- Small Molecule Libraries/pharmacology
- Thiophenes/pharmacology
- gamma-Aminobutyric Acid/metabolism
- Mice
Collapse
Affiliation(s)
- Tianpeng Zhang
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
- Integrated Chinese and Western Medicine Postdoctoral research station, Jinan University, Guangzhou, China
| | - Fangjun Yu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Haiman Xu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Min Chen
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xun Chen
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Lianxia Guo
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Cui Zhou
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Yuting Xu
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Fei Wang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Jiandong Yu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China.
- College of Pharmacy, Jinan University, Guangzhou, China.
| |
Collapse
|
46
|
Maganti RK, Jones MV. Untangling a Web: Basic Mechanisms of the Complex Interactions Between Sleep, Circadian Rhythms, and Epilepsy. Epilepsy Curr 2021; 21:105-110. [PMID: 33541118 PMCID: PMC8010879 DOI: 10.1177/1535759721989674] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Seizures have sleep–wake and circadian patterns in various epilepsies and, in turn, disrupt sleep and circadian rhythms. The resultant sleep deprivation (SD) is an exacerbating factor for seizures that sets up a vicious cycle that can potentially lead to disease progression and even to epilepsy-related mortality. A variety of cellular or network electrophysiological changes and changes in expression of clock-controlled genes or other transcription factors underlie sleep–wake and circadian distribution of seizures, as well as the disruptions seen in both. A broad understanding of these mechanisms may help in designing better treatments to prevent SD-induced seizure exacerbation, disrupt the vicious cycle of disease progression, and reduce epilepsy-related mortality.
Collapse
Affiliation(s)
- Rama K Maganti
- Department of Neurology, 5228University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Mathew V Jones
- Department of Neuroscience, 5228University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
47
|
Weger BD, Gobet C, David FPA, Atger F, Martin E, Phillips NE, Charpagne A, Weger M, Naef F, Gachon F. Systematic analysis of differential rhythmic liver gene expression mediated by the circadian clock and feeding rhythms. Proc Natl Acad Sci U S A 2021; 118:e2015803118. [PMID: 33452134 PMCID: PMC7826335 DOI: 10.1073/pnas.2015803118] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The circadian clock and feeding rhythms are both important regulators of rhythmic gene expression in the liver. To further dissect the respective contributions of feeding and the clock, we analyzed differential rhythmicity of liver tissue samples across several conditions. We developed a statistical method tailored to compare rhythmic liver messenger RNA (mRNA) expression in mouse knockout models of multiple clock genes, as well as PARbZip output transcription factors (Hlf/Dbp/Tef). Mice were exposed to ad libitum or night-restricted feeding under regular light-dark cycles. During ad libitum feeding, genetic ablation of the core clock attenuated rhythmic-feeding patterns, which could be restored by the night-restricted feeding regimen. High-amplitude mRNA expression rhythms in wild-type livers were driven by the circadian clock, but rhythmic feeding also contributed to rhythmic gene expression, albeit with significantly lower amplitudes. We observed that Bmal1 and Cry1/2 knockouts differed in their residual rhythmic gene expression. Differences in mean expression levels between wild types and knockouts correlated with rhythmic gene expression in wild type. Surprisingly, in PARbZip knockout mice, the mean expression levels of PARbZip targets were more strongly impacted than their rhythms, potentially due to the rhythmic activity of the D-box-repressor NFIL3. Genes that lost rhythmicity in PARbZip knockouts were identified to be indirect targets. Our findings provide insights into the diurnal transcriptome in mouse liver as we identified the differential contributions of several core clock regulators. In addition, we gained more insights on the specific effects of the feeding-fasting cycle.
Collapse
Affiliation(s)
- Benjamin D Weger
- Société des Produits Nestlé, Nestlé Research, CH-1015 Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia QLD-4072, Australia
| | - Cédric Gobet
- Société des Produits Nestlé, Nestlé Research, CH-1015 Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Fabrice P A David
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Gene Expression Core Facility, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- BioInformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Florian Atger
- Société des Produits Nestlé, Nestlé Research, CH-1015 Lausanne, Switzerland
- Department of Pharmacology and Toxicology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Eva Martin
- Société des Produits Nestlé, Nestlé Research, CH-1015 Lausanne, Switzerland
| | - Nicholas E Phillips
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Aline Charpagne
- Société des Produits Nestlé, Nestlé Research, CH-1015 Lausanne, Switzerland
| | - Meltem Weger
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia QLD-4072, Australia
| | - Felix Naef
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland;
| | - Frédéric Gachon
- Société des Produits Nestlé, Nestlé Research, CH-1015 Lausanne, Switzerland;
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia QLD-4072, Australia
| |
Collapse
|
48
|
Chan F, Liu J. Molecular regulation of brain metabolism underlying circadian epilepsy. Epilepsia 2021; 62 Suppl 1:S32-S48. [PMID: 33395505 DOI: 10.1111/epi.16796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022]
Abstract
Extensive study has demonstrated that epilepsy occurs with greater frequency at certain times in the 24-h cycle. Although these findings implicate an overlap between the circadian rhythm and epilepsy, the molecular and cellular mechanisms underlying this circadian regulation are poorly understood. Because the 24-h rhythm is generated by the circadian molecular system, it is not surprising that this system comprised of many circadian genes is implicated in epilepsy. We summarized evidence in the literature implicating various circadian genes such as Clock, Bmal1, Per1, Rev-erb⍺, and Ror⍺ in epilepsy. In various animal models of epilepsy, the circadian oscillation and the steady-state level of these genes are disrupted. The downstream pathway of these genes involves a large number of metabolic pathways associated with epilepsy. These pathways include pyridoxal metabolism, the mammalian target of rapamycin pathway, and the regulation of redox state. We propose that disruption of these metabolic pathways could mediate the circadian regulation of epilepsy. A greater understanding of the cellular and molecular mechanism of circadian regulation of epilepsy would enable us to precisely target the circadian disruption in epilepsy for a novel therapeutic approach.
Collapse
Affiliation(s)
- Felix Chan
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Judy Liu
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA.,Department of Neurology, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
49
|
Cox KH, Takahashi JS. Introduction to the Clock System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1344:3-20. [PMID: 34773223 DOI: 10.1007/978-3-030-81147-1_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Circadian (24-h) rhythms dictate almost everything we do, setting our clocks for specific times of sleeping and eating, as well as optimal times for many other basic functions. The physiological systems that coordinate circadian rhythms are intricate, but at their core, they all can be distilled down to cell-autonomous rhythms that are then synchronized within and among tissues. At first glance, these cell-autonomous rhythms may seem rather straight-forward, but years of research in the field has shown that they are strikingly complex, responding to many different external signals, often with remarkable tissue-specificity. To understand the cellular clock system, it is important to be familiar with the major players, which consist of pairs of proteins in a triad of transcriptional/translational feedback loops. In this chapter, we will go through each of the core protein pairs one-by-one, summarizing the literature as to their regulation and their broader impacts on circadian gene expression. We will conclude by briefly examining the human genetics literature, as well as providing perspectives on the future of the study of the molecular clock.
Collapse
Affiliation(s)
- Kimberly H Cox
- Department of Neuroscience and Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph S Takahashi
- Department of Neuroscience and Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
50
|
Matsumura T, Ohta Y, Taguchi A, Hiroshige S, Kajimura Y, Fukuda N, Yamamoto K, Nakabayashi H, Fujimoto R, Yanai A, Shinoda K, Watanabe K, Mizukami Y, Kanki K, Shiota G, Tanizawa Y. Liver-specific dysregulation of clock-controlled output signal impairs energy metabolism in liver and muscle. Biochem Biophys Res Commun 2021; 534:415-421. [PMID: 33256979 DOI: 10.1016/j.bbrc.2020.11.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022]
Abstract
The liver is the major organ maintaining metabolic homeostasis in animals during shifts between fed and fasted states. Circadian oscillations in peripheral tissues including the liver are connected with feeding-fasting cycles. We generated transgenic mice with hepatocyte specific E4BP4, D-box negative regulator, overexpression. Liver-specific E4BP4 overexpression was also achieved by adenoviral gene transfer. Interestingly, hepatic E4BP4 overexpression induced marked insulin resistance, that was rescued by DBP, a competing D-box positive regulator, overexpression. At basal conditions hepatocyte E4BP4 transgenic mice exhibited increased gluconeogenesis with reduced AKT phosphorylation in liver. In muscle, AKT phosphorylation was impaired after insulin stimulation. Such muscle insulin resistance was associated with elevated free fatty acid flux from the liver and reduced fatty acid utilization as an energy source during the inactive phase. E4BP4, one of the clock-controlled output genes, are key metabolic regulators in liver adjusting liver and muscle metabolism and insulin sensitivity in the feeding-fasting cycles. Its tuning is critical for preventing metabolic disorders.
Collapse
Affiliation(s)
- Takuro Matsumura
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Department of Bio-Signal Analysis, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yasuharu Ohta
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Department of Bio-Signal Analysis, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, Yamaguchi, 755-8505, Japan; Department of Diabetes Research, Yamaguchi University, School of Medicine, 1-1-1, Minami Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Akihiko Taguchi
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Department of Bio-Signal Analysis, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Syunsuke Hiroshige
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Department of Bio-Signal Analysis, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yasuko Kajimura
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Department of Bio-Signal Analysis, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Naofumi Fukuda
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Department of Bio-Signal Analysis, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Kaoru Yamamoto
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Department of Bio-Signal Analysis, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Hiroko Nakabayashi
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Department of Bio-Signal Analysis, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Ruriko Fujimoto
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Department of Bio-Signal Analysis, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Akie Yanai
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University, Graduate School of Medicine, 1-1-1 Minami Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Koh Shinoda
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University, Graduate School of Medicine, 1-1-1 Minami Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Kenji Watanabe
- Center for Regenerative and Cell Therapy, Yamaguchi University, 1-1-1 Minami Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yoichi Mizukami
- Center for Regenerative and Cell Therapy, Yamaguchi University, 1-1-1 Minami Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Keita Kanki
- Department of Biomedical Engineering, Faculty of Engineering, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
| | - Goshi Shiota
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, Yonago, 683-8503, Japan
| | - Yukio Tanizawa
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Department of Bio-Signal Analysis, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|